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Steven I. Gordon
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Forward
This issue begins with an article by Taub, Armoni, and Ben-

Ari that studied the impacts of programming simulations on

the underlying physics knowledge of high school students.

They used concept maps to compare students physics con-

ceptual knowledge with those of experts at various stages of

a course that used simulation programs to investigate physi-

cal phenomena. They found significant impacts on student?s

knowledge of physics concepts.

The article by Liang describes a series of graph algorithm vi-

sualizations that were used to teach graph algorithms in an

undergraduate data structures and algorithms course. They

found that the visualizations helped the student understand-

ing of the algorithms.

Chen et.al. present a student paper that used a genetic al-

gorithm to help optimize the selection of a feature set in the

study of protein folding. They conclude that their method

provides an e�cient and accurate way to choose features

used in molecular dynamics simulations.

The student paper by Luke et. al. describes the use of an

artificial neural network model to assist with DNA sequenc-

ing. The model was tested against a number of published

sequences and found to be highly accurate.

Finally, Vasquez, Mohl, and Leung in their student paper

developed and parallelized a preprocessing program for that

generates the input files for the OncoMiner genetic sequenc-

ing tool. The programs were then used to process the 35

datasets from patients with acute myeloid leukemia.
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ABSTRACT 
Students1 face many difficulties dealing with physics principles 
and concepts during physics problem solving. For example, they 
lack the understanding of the components of formulas, as well as 
of the physical relationships between the two sides of a formula. 
To overcome these difficulties some educators have suggested 
integrating simulations design into physics learning. They claim 
that the programming process necessarily fosters understanding of 
the physics underlying the simulations. We investigated physics 
learning in a high-school course on computational science. The 
course focused on the development of computational models of 
physics phenomena and programming corresponding simulations. 
The study described in this paper deals with the development of 
students' conceptual physics knowledge throughout the course. 
Employing a qualitative approach, we used concept maps to 
evaluate students' physics conceptual knowledge at the beginning 
and the end of the model development process, and at different 
stages in between. We found that the students gained physics 
knowledge that has been reported to be difficult for high-school 
and even undergraduate students. We use two case studies to 
demonstrate our method of analysis and its outcomes. We do that 
by presenting a detailed analysis of two projects in which 
computational models and simulations of physics phenomena 
were developed. 

CCS CONCEPTS 
• Computer systems organization → Embedded systems;
Redundancy; Robotics • Networks → Network reliability
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1 INTRODUCTION 
Students face many difficulties while trying to understand physics 
principles, concepts and formulas  [15, 19, 26]. These 
misconceptions exist in physics areas that are strongly related to 
everyday experiences such as mechanics [28], as well as in other 
areas that are less related to everyday experiences such as 
electromagnetism [17]. 

Widespread instructional methods aiming at overcoming these 
difficulties involve computer simulations—programs that  model 
systems or processes [10]—in physics teaching. One approach for 
such involvement is by students' use of simulations, with or 
without controlling some of their variables [37]. Another 
approach is by programming simulations of physics phenomena 
[4]. Programming physics simulations has the potential to 
promote physics conceptual understanding in two ways. First, it 
enables dealing with real-life problems [35], a possible 
opportunity for conceptual change of misconceptions that are 
related to real-life experiences. Second, programming the physics 
phenomena may unfold students' physics knowledge, leaving no 
"black boxes" [4]. 

The research presented in this paper aims at investigating the 
physics learning taking place while programming physics 
simulations. Moreover, it investigates physics learning in a unique 
context, a computational-science course where the physics 
learning is not one of the direct goals of the course. Instead, the 
course's goal is to expose the students to different computational 
methods, while the physics content is addressed mainly through 
examples demonstrating how to apply these methods. 
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Here we report on the evolution of the students' physics 
conceptual knowledge taking place during the course. This 
knowledge was evaluated at the beginning and at the end of the 
process of developing computational models, and at different 
stages in between. The students' knowledge in each stage was 
compared to that of physics experts. To represent the experts' and 
students' knowledge we relied on the framework of concept maps 
[29], a powerful tool for knowledge representation, while making 
several modifications to this tool. 

Originally, concept maps were intended to be used by students 
to express their own knowledge as a learning tool or as 
assessment tool. In Section 2, we elaborate on various ways for 
using concept maps as an assessment tool. In this study concept 
maps were used in the following manner: We asked physics 
experts to represent as concept maps the physics knowledge the 
students were supposed. We then followed the evolution of 
students' physics knowledge, represented as concept maps at 
various points during the learning process, and compared these 
concept maps with those of the experts. 

This paper opens with a review of the relevant literature, 
continues with a description of the research context—the 
computational-science course—and the research methodology, 
presents the findings and summarizes them. 

2 LITERATURE REVIEW 
This section reviews literature on the difficulties students 
experience while learning physics, on the knowledge area of 
computational science and on concept maps as tools for assessing 
the evolution of knowledge. 

2.1 Difficulties in Physics Understanding 
Research on difficulties and alternative conceptions that students 
have when dealing with mechanics shows that students' intuitive 
knowledge differs from the formal knowledge. McDermott [28] 
reviewed studies that explored mechanics-related difficulties. 
Populations in these studies ranged over different age groups, 
from middle- and high-schools to universities, and included 
students who studied physics less than a year to those who studied 
for several years. Interestingly, the results obtained were very 
similar, pointing to the persistence of difficulties and 
misconceptions in mechanics. For example, Gunstone and White 
[18] discovered that when dealing with questions related to
gravity, students tend to mix velocity and acceleration, and mass
and weight. Similar results regarding the confusion between
velocity and acceleration were found by Trowbridge and
McDermott [46].

Bagno, Berger, and Eylon [2] found that high-school physics 
students provided a vague description of the components of a 
formula. For instance, when referring to the formula	 " = $%, 
students related only to one force " and ignored the net force. As 
another example, the students explained the meaning of the 
variable & in a formula as ‘time’, while an accurate explanation 
should have been ‘the time elapsed since & = 0 ,. Another 
difficulty described by Bagno et al. [2] is that many students were 
unable to explain the conditions under which a formula can be 

applied. For instance, in the formula	( = () + %& + +
, %&

,, 80% of
the students did not mention the fact that the formula applies only 
for objects moving with constant acceleration. Another study 
reported by Shaffer and McDermott [40], examined whether 
20,000 college and university students were able to associate the 
direction of the acceleration and the net force denoted by the 
formula " = $% . They found that when asked about the 
direction and magnitude of the acceleration of a ball moving on a 
ramp, only 20% of the students answered correctly. The others 
thought that the direction of the acceleration is toward the bottom 
because 'gravity causes the motion'. The authors explained that 
some of the students did not associate the direction of the 
acceleration with that of the net force. 

Research on students' learning geometrical optics, in particular 
light propagation, also uncovered difficulties. Galili and Hazan 
[15] reported on a conception students hold that claims that a
single ray is emitted from each point of the light source. The
authors explained that this conception is not incorrect but
incomplete from a scientific view: the complete conception should
be that multiple rays emanate from each point of the light source
in all directions. Chang, Chen, Guo, Chen, Chang, Lin et al. [7]
examined conceptions of elementary, middle-school and high-
school students regarding different topics in classical physics. One
of their findings was related to the images created by lenses and
mirrors, showing that the students tended to use point-by-point
conception to describe the refraction of lens and perceived light as
a kind of material. When asked what would happen to the image
of an object standing in front of a partially covered convex lens of
a camera, most students answered that a part of the image would
disappear. This is in contrast to the scientifically correct answer
stating that the size of the image would stay the same, although it
would look darker. Similar results were found by other
researchers such as Galili [14].

Studies point to difficulties that students face regarding 
temperature and heat. For example, Thomaz, Malaquias, Valente, 
and Antunes [45] suggested five common students' 
misconceptions that students: (a) believe that heat is a kind of 
substance; (b) cannot differentiate between heat and temperature; 
(c) confuse temperature and the ‘feel’ of an object; (d) believe that
application of heat to a body always results in a rise in
temperature; and (e) misunderstand the temperature of a phase
transition. Jasien and Oberem [22] reported on the following three
difficulties physics students, and pre- and in-service teachers face:
(a) the meaning of thermal equilibrium; (b) the physical basis for
heat transfer and temperature change; and (c) the relationships
between specific heat, heat capacity, and temperature change.

Difficulties students face when dealing with physics topics, 
such as mechanics, geometrical optics and heat are closely related 
to conceptions stemming from everyday experiences. Some 
topics, however, have no obvious parallel experience in everyday 
life. Electromagnetism is one such example [17].  While learning 
electromagnetism students were found to (a) be unable to link 
electrostatics and electrodynamics [13]; (b) be unable to connect 
between macro and micro relationships in electric circuits [5]; (c) 
confuse related concepts such as current, voltage, energy and 
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power [40]; (d) incorrectly determine the direction of the induced 
magnetic field; and (e) claim that the path of an electric charge in 
a magnetic field is always circular [3]. 

2.2 Computational Science 
Computational science is a field that deals with different aspects 
of the construction of computational models. The Journal of 
Computational Science [42] describes it as an interdisciplinary 
field that uses advanced computing and data analysis to 
understand and solve complex problems. It claims that 
computational science has reached predictive capabilities that join 
the traditional experimentation and theory. 

Yasar and Landau [47] explain that computational science is a 
field that integrates natural sciences, applied mathematics and 
computer science (CS), and uses the common elements of these 
disciplines to develop models of scientific systems; they add that 
computational science  is not only the intersection between the 
three domains but also has content of its own (Fig. 1). 

Figure 1: Left: Early view of CSE (Computational Science and 
Engineering) as the intersection between science, applied 
mathematics and computer-science. Right: Current view of CSE 
as sharing common concerns with these disciplines and also 
having content of its own [from 47]. 

Computational modeling is perceived to provide opportunities 
to promote students' conceptual knowledge. One of the most 
influential views regarding programming as a way to enhance 
scientific learning is described by Papert [31]. Learning by 
programming is claimed to be significantly better than learning by 
watching television or even reading. Programming a computer is 
an active learning process that empowers the learner due to the 
active creation of knowledge. Papert [31] explains that 
programming provides a tool to concretize formal and abstract 
knowledge. Since programming is about teaching the computer 
how to think, programming requires the learner to think about 
thinking. For example, children tend to think that in learning, they 
either get a right or wrong answer. But when programming a 
computer, solution is rarely right the first time the program is run. 

Physics instructors suggest combining programming 
computational models as a way to improve physics learning [4, 
38]. The rationale behind this suggestion is that such a 
combination requires that physics knowledge be organized and 
represented as computational models of physical systems, that is, 

computer programs. Abelson, Sussman, and Sussman [1] explain 
that computer programs are more than just sets of instructions for 
a computer to perform tasks. They also serve as frameworks for 
organizing ideas about processes. They deal with data that 
represent objects in a given system, and procedures that represent 
the rules for manipulating the data. These attributes of computer 
programs enable computational-science students to organize their 
ideas about physical objects and processes. 

Research on combining computational-science elements in 
physics introductory courses shows positive effects. Redish and 
Wilson [35] developed an introductory physics course that was 
based on the computerized M.U.P.P.E.T environment. The 
authors introduced programming at the beginning of the 
traditional calculus-based introductory physics course at the 
University of Maryland. They found several benefits for teaching 
physics in a computer-based environment, among them are: (a) 
using the environment to overcome a lack of intensive 
mathematical knowledge; (b) exposing students to research 
methods that professional physicists use, and (c) being able to 
discuss real-world problems such as projectile motion with air 
resistance. 

Chabay & Sherwood [4] list the pros and cons of learning 
physics while programming. One benefit is that when 
programming the physics phenomena, there are no "black boxes" 
of the physics knowledge at the basis of the simulation. Another 
benefit is the link generated between different representations of 
the same physics idea: an algebraic equation and programming 
code. Among the negative aspects of using programming for 
learning physics, they mention that a large portion of the students 
have no background in programming and therefore teaching 
programming takes up a lot of time needed for physics learning. 

Sherin [41] compared between what he termed algebraic 
physics and programming physics. Two groups of his students 
solved physics problems. One group solved ordinary textbooks 
problems (algebraic physics) and the other (programming physics) 
was asked to develop simulations on phenomena similar to those 
underlying the problems solved by the algebraic physics group. 
He concluded that the algebraic notation of the physics formulas 
does not naturally displays causal relationships between variables; 
therefore students tend to infer the existence of equilibrium 
between the two sides of an equation instead of causal 
relationships. In contrast, programming physics leads more 
naturally to understanding processes and causality, stemming 
from the importance of the order of the lines in the program. 

2.3 Concept Maps 
Researchers use different methods to assess learners' conceptual 
knowledge, among which are open-ended and multiple-choice 
questionnaires. In order to use such questionnaires as research 
tools, they are designed by the researchers before the teaching and 
learning process, and they require the students to express their 
conceptual knowledge, as answers to the pre-defined 
questionnaire. In the current research, however, the situation was 
somewhat different. First, the physics topics that the students' 
projects were dealing with were not defined in advance. Instead, 
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the students decided on these while already working on the 
projects and learning the related physics material. In some cases, 
the students even changed the subject of the project after working 
on it for a few lessons. In addition, each project dealt with a 
different subject. Therefore, we could not prepare in advance a 
questionnaire for determining the students' conceptual knowledge 
before and after working on their projects. Second, we wished to 
capture and assess several stages in the development of the 
students' knowledge, not only pre- and post-working on the 
projects. It seemed that the students would find it too exhausting 
to answer assessment questions several times during their 
projects. Moreover, we could not know in advance exactly when 
these stages would occur. For these reasons, we looked for a 
method of using the students' discourse in order to assess stages in 
the development of their knowledge. Concept maps were our 
choice. 

As noted by Novak and Cañas [29] concept maps were first 
proposed by Novak in 1972. Novak and Gowin [30] described 
them as spatial arrays that represent elements of knowledge as 
nodes together with links among them.  Here we follow Ruiz-
primo[36] and define a concept map as a graph consisting of 
nodes and labeled lines and/or arrows. 2  The nodes denote the 
important concepts in a domain. The lines and arrows denote 
relations between pairs of concepts (nodes). The labels on the 
lines or the arrows tell how the two concepts are related. The 
combination of two nodes and a labeled line or arrow is called a 
proposition. A proposition is the basic unit of meaning in a 
concept map. 

The psychological foundations of concept maps lie in the 
attempts to characterize the knowledge of experts, and to assess 
the distance of learners' knowledge from it. Research on the 
cognitive aspects of science learning suggests that the knowledge 
of experts, apart from being more extensive than that of novices, 
is organized in a cognitive structure, a schema [8, 11, 32]. 

Novak and Cañas [29] explained how to construct a good 
concept map, emphasizing that "a concept map is never finished" 
(p. 12): (a) create a context by identifying a segment of a text, a 
laboratory or field activity, or a particular problem or question 
that one is trying to understand; (b) identify the key concepts that 
apply to this context and construct a preliminary map; (c) seek 
links between the concepts; and (d) revise the map, by 
repositioning the concepts or refining the links in ways that lead 
to more clarity and a better over-all structure. 

Originally, concept maps were intended to be used by students 
to express their own knowledge as a learning tool or as 
assessment tool. As an assessment tool, concept maps are 
effective in identifying both valid and invalid ideas held by 
students. They can be as effective as other, more time-consuming, 
assessment tools for identifying the relevant knowledge a learner 
possesses before or after instruction [27, 29, 36]. Concepts maps 
are being extensively used to assess knowledge structures [21, 
43]. For example, Jacobs-Lawson and Hershey [21] used concept 

                                                                    
2 Although Ruiz-Primo and Araceli (2000) use only lines, we sometimes use arrows 
to demonstrate the direction of the connection between two nodes. 

maps to evaluate students' knowledge in psychology courses. 
They, too, concluded that concept maps are effective in such 
assessments. 

There are various strategies for using concept maps for 
assessment which differ on several dimensions: The phase of the 
teaching process in which concept maps are used, the methods 
used for analyzing and evaluating the concept maps (direct 
evaluation or by comparison to a target concept map), and the 
manner in which concept maps are drawn (by the students, by the 
teachers, or by the researchers). For example, Hasemann and 
Mansfield [20] used concept maps drawn by 4th-grade students to 
assess their mathematics knowledge before the teaching process, 
right after it, and two years later. Ghaffar, Iqbal, and Hashmi [16] 
used concept maps to represent a learning objective through a 
concept map describing the knowledge of an expert. Novak and 
Gowin [30] suggested evaluating students' concept maps by 
comparing them to a criterion map (representing sufficient 
knowledge, which may be partial, compared to an expert's 
knowledge). McClure et al. [27] used concept maps to take a 
snapshot of students' knowledge and examined various assessment 
methods, some of which used a direct scoring method and some 
used master maps. Peterson and Treagust [33, 34] used concept 
maps in a pre-post research setting. Lomask, Baron, Greig, and 
Harrison [25] used concept maps that were developed by teachers 
from students' essays. 

Our use of concept maps was a combination of several of the 
strategies described above. We used them as a qualitative 
assessment tool to analyze the development of conceptual 
understanding. Hence, the students' knowledge was monitored at 
various points during the learning process. We followed the 
strategy used by Lomask et al. [25] in which concept maps were 
developed from students' essays. Thus, our concept maps were not 
created by the students; rather, we created the concept maps, using 
them to reflect the students' knowledge. However, unlike Lomask 
et al. who relied on written essays, our concept maps were based 
on students' audio-recorded discourse. Finally, we evaluated 
students' knowledge as reflected in the concept maps by 
comparison to an expert's map. To this end, we asked physics 
experts to represent as concept maps the physics knowledge the 
students were supposed to acquire. 

3 METHODOLOGY 

3.1 The Research Question 
How does students' conceptual physics knowledge change when 
developing computational models in the context of a 
computational-science course? 

3.2 The Research Setting 
The research was conducted in a 3-year computational-science 
course intended for talented high-school students (10th to 12th 
grades). This was an elective course, for which the students 
earned credit that was reflected in their matriculation diploma. 
During the course the students learned about different models 
such as static, mechanistic and stochastic, and used them to 
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represent scientific phenomena, mainly physics phenomena. 
Learning about these models required the combination of physics, 
mathematics and computer science (CS). 

Most of the learning during the course was done independently 
by pairs of students under the guidance of a textbook, while the 
teacher served as a mentor. All the classes took place once a week 
for 3 hours in the afternoon after regular school hours. In each of 
three years, the students developed (in pairs) mid and final 
projects of their choice, most of which dealt with physics material 
they had not learned before. 

This research was carried out among 10th- and 11th-grade 
students (during the first and second year of data collection, 
respectively). During the course these students learned 
programming concepts, the Java language, kinematics, dynamics 
and optics. The researchers were not involved in the teaching of 
this course. The software the students used in these classes was 
Easy Java Simulations 3  (10th-11th grades) and Maxima 4  (11th 
grade). 

Easy Java Simulation (EJS) is a software package created by 
Francisco Esquembre [9, 12]. It enables the construction of 
computational models by providing a user-friendly environment 
for Java. The intended users are science students, teachers and 
researchers who want to avoid putting too much effort into 
programming and more emphasis on the scientific content. To 
achieve that the user interface can be created without any 
programming knowledge on the part of the simulation's designer. 
Therefore she/he may focus on the algorithmic component when 
designing the scientific model. This software breaks the modeling 
process into three activities that are selected by the user: (a) 
documentation, (b) modeling, (c) interface design.  In the 
modeling activity the designer represents the physical solution as 
an algorithm implemented in Java. 

Maxima is a Computer Algebraic System (CAS), for 
manipulating symbolic and numerical expressions, including 
differentiation, integration, ordinary differential equations, 
systems of linear equations, polynomials, and more. In the 
computational-science course, 11th-grade students used Maxima 
for studying random models in a CAS environment, studying 
differential equations, finding analytic and numeric solutions of 
differential equations, writing a program to solve linear equations, 
and more. 

During the research we observed and recorded the work on 
seven final projects. Five of them were designed and implemented 
by pairs of 10th-grade students and the other two by pairs of 11th-
grade students. All students volunteered to participate in the 
research, and the research, including its methodology of data 
collection, was approved by the Ministry of Education. Of the 
volunteers we chose all the girls (three) since we wanted to have 
both genders represented in the research population. All together 
during the research we analyzed the work of 12 students, since 
one pair of students was observed working on two projects, in 

                                                                    
3http://fem.um.es/Ejs/ 
4http://maxima.sourceforge.net/ 

both 10th grade and 11th grade, respectively. The work on each 
project lasted approximately 10 hours (four lessons). 

The choice of which physics phenomena to simulate was done 
independently by the students and it ranged over many topics. 
Four projects dealt with mechanics (a circular motion of a car, an 
anti-missile system, collision of two balls on an inclined plane, 
and a Frisbee game) one dealt with optics (lenses and mirrors), 
one with electricity and magnetism (the Lorentz force – an electric 
charge moving in a magnetic field), and one with thermodynamics 
(the diffusion equation – air heated by fire). 

3.3 Research Tools 
Two types of research tools were used to collect data in this study. 

1. The work of the six pairs of students on the seven final 
projects was documented in detailed using the Debut 
screen-capture software. 5  It recorded their computer 
screens, including the work on the programming files, 
the mouse actions, and the students' voices while talking 
to each other during their work. 

2. Observations of the students' work while taking field 
notes. One researcher (the first author) joined each 
lesson one to three pairs, observing their work and 
taking field notes. This enabled her to notice non-
auditory gestures that could not be recorded and to get 
an impression of the students' working style, for 
example, how the work was divided between the two 
students. 

As noted above, students' participation was voluntary and they 
were aware of the data collection process. 

3.4 Analysis 
Analysis of the students' discourse was conducted using concept 
maps [30] aimed at assessing evolution of the students' physics 
conceptual knowledge. 

To express the students' conceptual knowledge in physics, we 
relied on excerpts from the students' discourse taken from the 
students' work on the computational models (approximately ten 
hours per project). Based on the excerpts we created concept 
maps. The students were not involved in the creation of the 
concept maps. For each episode in the students' discourse we drew 
several maps that represented the evolution in their understanding 
of physics concepts that were relevant to their project, and of the 
relationships among them. This was done by: 

1. Identifying the main physics concepts discussed by the 
students in a specific episode. 

2. Linking between the physics concepts according to the 
physics formulas and principles. Almost all the physics 
phenomena that the students modeled evolve in time, 
such as circular motion or a flying discus. For this 
reason, some of the links between concepts express time 
evolution. For example, the link - → (  shows that a 

                                                                    
5 www.nchsoftware.com  
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change in velocity of an object yields a change in its 
position over time. Other links, however, stem from 

physics definitions. For example, the link - = /0
/1  shows 

that the velocity is the derivative of the position with 
respect to the time. 

3. Drawing an expert's concept map expressing the 
concepts and links in (1) and (2). 

4. Drawing concept maps that represent the students' 
knowledge of these concepts in several points along of 
the learning process: initial, final, and at least one point 
in between. 

5. Comparing between the students' initial and final 
concept maps to evaluate the evolution in their 
conceptual knowledge (relevant to their project). 

6. Comparing between the expert's concept map and the 
students' final concept map to evaluate the level of the 
students' conceptual knowledge (relevant to their 
project). 

Actions (1)-(6) were applied twice (for validation purposes) by 
the third researcher, by a physics educator and by a physicist who 
is also a computer scientist. Disagreements were discussed and 
resolved, and the maps were changed accordingly. 

4 FINDINGS 
The choice of which physics phenomena to simulate was done 
independently by the students and ranged over many topics. Still, 
it was possible to identify some general findings that repeated 
themselves in several different projects. This section opens with 
two case studies (two projects) exemplifying in detail the analysis 
process and its outcomes. Then we presents the general findings 
of our overall analysis of all seven projects. 

4.1 Case Studies 
This section focuses on two projects, describing their analysis in 
detail and presenting its results. These case studies enable a 
deeper insight of the concept-map-based analysis process and its 
rationale. The first project was developed by two 11th-students 
simulating a Frisbee game. The second was developed by two 
10th-grade students, simulating an electric charge moving in a 
magnetic field. 

4.1.1  Case Study 1. Students S5 and S6 (11th grade) decided 
to develop a simulation of a discus thrown at a specific initial 
velocity and moving in the air, affected by the wind. The physics 
description of the motion relates to: 

1. Projectile motion of the discus under the effect of the 
forces exerted by gravity, aerodynamic lift, 
aerodynamic drag (air resistance), and the wind. 

2. Spinning of the discus due to an angular momentum 
provided by the thrower. 

Developing such a simulation is challenging for high-school 
students since the high-school physics syllabus that they study is 
limited to motion primarily under the effect of a constant force 
such as $2. Varying forces that the students encounter are the 
harmonic force, inverse square forces (such as the electrostatic 

force), and the magnetic force ( " = 3-´4). The syllabus does 
not, however, treat motion under other varying forces that are 
exerted, for example, by the air on a moving object. Moreover, the 
syllabus does not include the physics of spinning objects. 
Accordingly, the teacher advised the students to first simulate the 
projectile motion of the discus under the effect of the constant and 
varying forces, and only later on to add its spinning. As it turned 
out, developing the simulation of projectile motion was 
challenging enough for them and lasted five lessons 
(approximately twelve hours), leaving no time for the spinning 
force.  For this reason, the new physics material that the students 
had to study was dealing with the effect of the forces mentioned in 
item (1) above on the motion of the discus. 

The conceptual knowledge required in order to develop such a 
simulation appears in Fig. 2 represented as a (high-level) expert's 
concept map. 

The discus is being thrown at an initial velocity -). Four forces 
affect the motion of the discus: gravitation (assumed to be 
constant), aerodynamic lift and drag, and the wind. The students 
assumed the wind to have a constant velocity. The net of these 
forces generate an acceleration as expressed by Newton's second 

law " = $% = $ /5
/1 . Since the velocity is a vector, it is 

represented by magnitude and angle (- ,	 a). The velocity is 
defined as the derivative of (, the position of the discus. For each 
∆& , the drag and lift forces are being changed because of change 
in the velocity, leading to a new net force, changing the velocity 
and accordingly the position of the discus. 

 
Figure 2: Expert's concept map representing the conceptual 
knowledge of the physics involved in the project of S5 and S6. 

Here we focus on an example demonstrating the development 
of a subset of the physics involved, relying on data taken from 
several episodes scattered along the full work on this project, 
which lasted about 12 hours. 

The example deals with the interrelationships between the net 
force and the velocity of the discus, repeatedly calculated every 
∆&. Figure 3 presents the relevant parts of the expert's concept 
map. This map is more detailed than the previous one. It shows, as 
previously, the effect of the net force on the velocity. In addition, 
it shows that the observed velocity of the discus (-) is the sum of 
the discus' velocity relative to the air and the velocity of the wind 
(assumed by the students to be constant and in the direction of the 
x axis). The speed of the discus relative to the air changes the 
forces of aerodynamic lift and drag. 

Since this example focuses on this aspect of the project, the 
students' evolving concept maps will be compared to the expert 
map in Fig. 3, and not to the wider map of Fig. 2. 
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Figure 3: Expert's concept map of the interrelationships 
between the net force and the velocity of the discus. 

The students started the project by studying the relevant 
physics principles and formulas from a scientific paper the teacher 
gave them. The relevant material that was explained in this paper 
includes: (a) the observed velocity of the discus is the sum of the 
velocity of the discus relative to the air and of the velocity of the 
wind; (b) the calculations of the discus' velocity and position are 
time dependent; and (c) the velocity of the discus relative to the 
air affects the aerodynamic forces of drag and lift. 

In what follows we describe three learning episodes. We will 
see that the students did not understand these issues very well, and 
that their understanding evolved while developing the simulation. 

Episode 1: After reading the paper given to them by the 
teacher, the students said: 

S5: I don't understand the meaning of Vrel [velocity of the 
discus relative to the air]. 

S6: I want to start programming; we'll figure it out later. 
S5 and S6 began with declaring the program variables 

corresponding to the physics variables. They started with Vd and 
Rd, the variables corresponding to the magnitude and angle of the 
velocity of the discus relative to the air. They continued by 
declaring Vrel and R, corresponding to the magnitude and angle of 
the observed velocity of the discus. The reason they chose to 
name the variable Vrel and not Vobserved was that they referred 
to this velocity as relative to the ground. Choosing such variable 
names was the first step in confusing between the two kinds of 
velocities of the discus. 

The students wrote the programming segment corresponding 
to the physics formulas that appeared in the scientific paper (Fig. 
4). It started with calculating Vrel, the observed velocity of the 
discus by summing the wind velocity and the discus velocity 
relative to the air. It continued with calculating the x and y 
components of the acceleration. 

Two logical errors exist in this segment. First, it is written just 
once, thus it will be executed only once and will not cause a 
change in velocity over time. Second, the calculation of the 
contribution of the aerodynamic drag and lift forces to the 
acceleration (based on Newton's second law) is affected by Vrel, 
which is the sum of the velocity relative to the air and the wind 
velocity. Instead, it was supposed to be affected only by the 
discus' velocity relative to the air. 

 Figure 4: Code of the calculation of the discus' observed 
velocity and of the x and y components of the acceleration. 

We conclude that the students correctly perceived the observed 
velocity of the discus as including its velocity relative to the air 
and the wind velocity. They incorrectly thought that the discus 
observed velocity affects the forces and thus the acceleration and 
they did not see the dependence of the velocity on time. 

The concept map that describes the students' understanding 
appears at Fig. 5. It shows the students' perception of the effect of 
the sum of the velocities on the aerodynamic forces. However, it 
does not contain a time loop, indicating the students' lack of 
understanding of the time dependency of the process. 

 
Figure 5: First concept map of the students S5 and S6. 

Episode 2: Executing the simulation led S6 to understand that 
there are problems in the program they wrote. She re-checked it 
several times, reflecting on what they wanted to achieve: 

S6: In order to calculate the velocity I need to first calculate 
the acceleration and then calculate its anti-derivative. 

She then suddenly said: 
S6: Wait, does that mean that I need to calculate it every time? 
S5: Hmmm… I don't know. 
S6: Do I actually need to calculate all the previous values and 

use them for calculating the velocity repeating it again and again? 
The above excerpt indicates that S6 gained a new insight, 

regarding the time dependency of the calculation of the velocity 
(proving that she did not understand it in the previous episode). 
These desired repetitions are the algorithmic description of a 
programing loop which calculates the physical change in the 
acceleration and consequently in the velocity of the discus. 

After several more discussions, the students programmed a 
for-loop (Fig. 6) representing the progress of time (t=0 to t=10). It 
includes a repetitive calculation of the: acceleration of the discus 
(as was explained for Fig. 5), the discus velocity relative to the 
air, and the observed discus velocity including the wind. Although 
here the students understood the dependency of the calculation on 
time, they were still in error in that they calculated the 
acceleration according to the discus observed velocity and not the 
relative velocity. 

The concept map that describes the students' conceptual 
knowledge at this stage appears at Figure 7. Again, it shows the 
students' perception on the effect of the sum of the velocities on 
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the aerodynamic forces. It differs from the previous map, 
however, in that it contains a time loop, indicating an 
understanding of the time dependency of the calculations. 

 Figure 6: The for-loop written by the students. 

 
Figure 7: The second concept map of the students S5 and S6. 

Episode 3: S5 and S6 faced many difficulties when trying to 
execute their program, debug and understand it. Significant effort 
was invested trying to understand the meaning of each of the 
velocities: 

S6: There are the wind's velocity, the discus velocity, and Vrel. 
S5: Wait, what was our meaning here [pointing on the segment 

of calculating the anti-derivative of the acceleration]? Which 
velocity is it? 

S6: I can't remember. 
At this point the students consulted their teacher for help in 

writing a correct program. Since they still did not understand the 
meaning of each velocity, they tried to copy the components of 
the formulas into the program without understanding them. This 
led to long sessions of correcting the code, the students trying 
again and again to understand the variables. Eventually, S6 said: 

S6: Oh! Vrel is equal to Vdiscus minus Vwind. 
In this excerpt S6 means that Vrel is not what they previously 

thought— the observed discus velocity, summing the velocity 
relative to the air and the wind velocity. Instead, it is the velocity 

relative to the air, that is, the observed velocity minus the velocity 
of the wind. The following method was generated (Fig. 8): 

 Figure 8: Code of calculation of relative to the air discus' 
velocity. 

The relevant concept map describing the students' current 
conceptual knowledge is now equivalent to the expert's one (Fig. 
9).  

 
Figure 9: Third concept map of the students S5 and S6. 

To summarize this case study, S5 and S6 achieved three main 
insights: 

1. The dependence of the calculation of the discus velocity 
on time. The students understood the need to repeatedly 
calculate the velocity based on its previous values. 

2. The difference between the variables of the observed 
velocity of the discus and one the relative to the air. 
After confusing the two variables for three lessons, the 
students finally understood which of the discus 
velocities is the observed and which is relative to the 
air. 

3. The cause and effect relationships between the discus 
velocity relative to the air and the aerodynamic forces. 
After achieving the second insight of the difference 
between the two discus' velocities, the students correctly 
understood that only the discus relative velocity affects 
the aerodynamic forces and hence the acceleration. 

Many factors affected the development in the students' 
conceptual understanding: the computational environment, the 
scientific paper, the teacher, the conversations between the 
students and more. It is not clear which one of these affected each 
one of the described episodes. Still, during observations, we 
noticed the following: 

The students did not understand the physics formulas well 
enough before programming them; they simply copied parts of the 
formulas. The statement of S6 in the first lesson clearly 
demonstrates this point: "I want to start programming; we'll figure 
it [the meaning of the variables in the formula] out later." The 

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 9



 

reason may be that the students preferred implementing the 
formulas as programming segments instead of properly 
understanding them. Or, they may have thought that programming 
the formulas will assist them in understanding them. Either way, it 
seems reasonable to conclude that the need to program prevented 
the student from achieving understanding, at least initially. 

The students used names of programming variables that were 
very hard to distinguish from each other. For example, they used 
Vd, Vx, Vy, and Vrel to represent different kinds of velocities. 
Since programming the simulation was a long process that lasted 
around twelve hours, the students could not remember the 
meaning of each variable. This made the process of debugging the 
code quite challenging. For example, when debugging, S5 asked: 
"Which velocity is it?" We believe that using more meaningful 
names may have assisted the processes of understanding both the 
physics and the programming. 

On the other hand, it was clear that the students have gone 
through deep learning processes. The relevant physics material 
was challenging. The need to represent it in a program forced the 
students to explore the meaning of each concept and the 
interrelationships among the physics concepts. Moreover, the fact 
that the simulation was time dependent encouraged the students to 
understand the time dependency of the process. An analysis of the 
learning processes that occurred during the course and the 
interrelations between CS and physics during these learning 
processes was the focus of another publication (removed for 
anonymity) in which we used the perspective of Knowledge 
Integration [23, 24]. 

Another interesting observation concerns the students' strong 
motivation to accomplish their mission and develop a correct 
simulation. This motivation was expressed, for example, in their 
use of several sources for learning the relevant physics material, 
among which are the scientific paper, the teacher and the internet. 
Most of their time was used for independent learning and very 
little irrelevant activities such as chatting with friends. We believe 
that the type of the mission the students confronted yielded both 
enthusiasm and obligation. However, the interrelations between 
students' motivation and learning are not at the focus of this paper. 

4.1.2 Case Study 2. S7 and S8 (10th grade) simulated an 
electric charge entering a force-free region and then moving into a 
constant magnetic field. The students decided that the charge 
would start moving along a straight line in the force-free region 
and then circulate in the magnetic field. The physics equations the 
students relied on were ( = -& for the force-free region and " =
3-×4 for the magnetic field. They programmed the two motions 
of the charge. When executing the simulation they discovered that 
the circular motion did not appear as they expected. They tried 
various ways to solve this problem, but after two more lessons 
(approx. 5 hours) the students reached a dead end and decided to 
abandon the project. Despite their lack of success, they did gain 
physics knowledge while working on the project. 

Fig. 10 presents the expert's concept-map of the formula " =
3-×4 , underlying the mechanism of the motion of an electric 
charge in a magnetic field. 

It contains three vectors, each with direction and magnitude: -, 
the velocity of the electric charge, 4the magnetic field, and ", the 
magnetic force acting on the electric charge. The fourth concept is 
3, the charge of the particle, which has magnitude and a sign (plus 
or minus). 

The velocity - and the charge 3 of the electric charge entering 
a magnetic field, jointly with the magnetic field 4, set the size and 
direction of the force ". The force, (which is the net force in this 
case), in turn (according to Newton's second law) changes the 
velocity of the charge and consequently its location. For each ∆& 
the force repeatedly changes the velocity causing the process to 
repeat itself as long as the charge moves in the magnetic field.  

 
Figure 10: Expert's concept map representing the conceptual 
knowledge of the physics involved in the project of S7 and S8. 

At the beginning of the episode taken from the second lesson 
of the project, the students demonstrated a vague understanding of 
the equation  " = 3-×4  , but they did not understand the 
meaning of the concepts denoted by the equation nor the 
relationships among them. At the end of this episode they were 
able to explain the meaning of the concepts, and the casual 
relationships among them. Three concept maps representing the 
evolution in the students' understanding during this episode are 
presented. 

This description starts at the stage when the students 
discovered that the circular phase of the motion is wrong, that is, 
the charge entered the magnetic field, "jumped" upwards, moved 
down and only then started the circle. The students debugged the 
simulation, but did not succeed in correcting it. 

At this stage they consulted the teacher and clarified the 
physical meaning of the equations they wrote as programming 
code: 

S7: What do we have here? v? What is v? [...] B is the 
magnetic field. 

Teacher: What is the direction of the field? 
S7: I don't care, we haven't decided yet. 
According to the formula, the direction of the magnetic field 

affects the direction of the circular motion of the charge; 
therefore, in order to present this motion the direction of the field 
should be pre-set, though S7 did not think that this was necessary. 
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Fig. 11 presents the concept map representing the students' 
knowledge at this stage.  

 
Figure 11: First concept map of the students S7 and S8. 

This map shows that the students did not know the meaning of 
some of the concepts denoted in the equation. Moreover, although 
they knew that 4 is the magnetic field, they did not understand 
that its direction affects the direction of the force, thus affecting 
the direction of the charge's motion. Having to concretely 
represent the direction of the charge's motion in the visual 
simulation led the students to discuss the factors that influence it. 
They arrived at the following conclusion: 

S7: The simulation is two dimensional; therefore, the charge 
cannot circulate inward. The magnetic field, therefore, has to be 
directed outward. It affects the direction of the force which in turn 
changes v every time, resulting in a circle. 

The above understanding is expressed in the following concept 
map (Fig. 12):  

 
Figure 12: Second concept map of the students S7 and S8. 

This map shows that the students understood the meaning of 
the variables and the relationships among them. Still, it is not 
complete, since q is missing. After discussing it some more with 
the teacher, S8 stated the following: 

S8: The sign of the charge [the sign of q] affects the direction 
of the circle, as well. 

The concept map representing the students' current 
understanding (Fig. 13) is similar to the expert's map (Fig. 10) 

with one exception. The expert's map includes % = /5
/1  but the 

students' map does not. This is because 10th-grade students have 
not yet learned derivatives. 

 
Figure 13: Third concept map of the students S7 and S8. 

Although gaining a better understanding of the meaning of the 
equation, the students did not solve the problem of the charge 
"jumping" before circling in the magnetic field region. Their error 
was in another equation used for the circular motion inside the 
magnetic field: 8 = 9& , where θ  is the angle, 9  is the angular 
velocity, & is the time. The variable t is assumed to be equal to 
zero when starting the circular motion. In their simulation, on the 
other hand, the time was greater than zero, since the charge was 
moving in the force-free region first. 

The students kept making minor changes to the program and 
executed the simulation to check whether the problem was solved. 
After two more lessons they decided to abandon the subject and 
develop a new simulation. 

4.2 General Findings 
The other five projects were analyzed in a manner similar to that 
of the two case studies. In all projects a development of students' 
conceptual knowledge was evident. As the work on the projects 
progressed, students' concept maps improved and became more 
similar to the corresponding expert map. Our findings indicated 
that this development was fostered by the need to program a 
physics phenomenon and represent it as a simulation. In 
particular, the following patterns, which were demonstrated in the 
two case studies above, were also found in other projects: 

Understanding the time dependency of physical processes. In 
both case studies, the students' initial concept map did not contain 
a link representing time dependency, but such a link was present 
in the consequent maps. This was the also case for other projects. 
Most of the simulations designed by the students represented 
physical processes that progress in time. For this reason, 
simulations' design demands an explicit use of the time variable 
and loops. The loops may be implicit in the software (as in EJS) 
or explicitly written by the students (as in Maxima). In both cases, 
recognizing the need for such loops is related to students' better 
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understanding of time dependency, an understanding that is 
known to be hard for physics students [2]. 

Understanding the meaning of the components in a formula. In 
both case studies, the students' concept maps depicted a 
misunderstanding or a partial understanding of the meaning of a 
certain variable (which represents a component in the formula that 
corresponds to the simulation) that was later resolved. This was 
also evident in the other projects. All the students worked with 
formal physics formulas that they later translated into 
programming statements. One of the initial phases in program 
design is declaring the variables that represent the physics 
variables, and deciding on their type (integer or float). Even this 
simple action forced the students to try and understand the 
meaning of the programming variables and consequently the 
physics ones. 

Understanding the cause and effect relationships in the 
formula. In both case studies an understanding of the cause and 
effect relationships in the formula developed during the work on 
the project. In the first case study these were cause and effect 
relationships between the discus velocity relative to the air and the 
aerodynamic forces. In the second case study these were the cause 
and effect relationships between the direction of the magnetic 
field, the direction of the force, and the direction of the charge's 
motion. Many times students started the projects with a vague 
understanding of the physics formulas, as also reported in the 
literature [2]. The "step by step" nature of the algorithm and the 
resulting program, in which a single-line physics equation needs 
to be implemented in several program lines, forces the students to 
decide what is the cause in the formula and what is the effect. This 
is in contrast with the mathematical notation that uses the equality 
sign and does not indicate the direction of the causality. 

5 DISCUSSION 
This research focused on gifted high-school students who 
participated after regular school hours in an elective 3-year 
computational-science course (for which they earned credit 
reflected in their matriculation diploma). They combined physics, 
mathematics, and computer science in order to learn 
computational models and computational methods. We 
investigated the relationships between the computational 
environment, CS and the physics conceptual knowledge that the 
students gained. 

Programming physical phenomena is a complex activity. On 
the one hand, it puts an extra load on the students. It may confuse 
the students and prevent them from focusing on aspects of 
physics. Evidence for this claim was included in the descriptions 
of both case studies presented in the paper and was found in other 
cases that we analyzed. Using improper names for programming 
variables, lack of debugging skills, and more were found to 
prevent the students from achieving some physical insights. 

On the other hand, programming forces the students to unfold 
the physical meanings and relationships expressed in the 
formulas. It motivates students to deal with difficult physics 
knowledge and causes them to feel obligated to design correct 

simulations. Moreover, programming simulations provides 
context-rich problems similar to real-life situations. Students' 
conceptual knowledge in physics was found to develop even 
regarding concepts that are known in the literature to be difficult. 
Within the limitations of an exploratory qualitative study, it is 
reasonable to attribute this learning to the computational science 
course and the unique learning scenarios it has enabled. 

Physics and computational-science instructors face a dilemma 
when considering the inclusion of programming sessions in 
physics classes. Our observations lead us to hypothesize that one 
of the major problems students face when combining these three 
disciplines is related to cognitive load [6]. Three types of 
cognitive load are described in the literature: intrinsic, extraneous 
[6], and germane [44]. Intrinsic load is the level of difficulty 
inherent to the learning task, extraneous load is generated by the 
manner in which the information is presented to the learner, and 
germane load is the load devoted to the processing, construction 
and automation of schemata. Thus, intrinsic and extraneous are 
the "bad" loads and germane is the "good" one, since instructional 
effort should be put in creating schemata of information to make 
the learning efficient. 

Learning within multiple disciplines (CS, physics and 
mathematics) may cause intrinsic load, since each discipline is 
difficult by itself. Moreover, it may cause extraneous load as well, 
due to the instruction of three different disciplines at the same 
time. 

One of the possible ways to reduce the extraneous load would 
be to provide the students with more intensive physics training. 
Some of the training may take place apart from programming, so 
that students would have a chance to understand the physics 
aspects before they mix it with programming. This 
recommendation is compatible with the teacher's claim that the 
students lacked proper physics knowledge when programming the 
simulations. Similarly, the students should be taught CS strategies 
separately, possibly after learning some of the physics content. 

The research presented in this paper explored the evolution of 
conceptual knowledge in physics during the programming of 
computational models. Other studies explored what elements in 
the computational-science environment affected this evolution 
(removed for anonymity). We did not, however, refer to other 
factors that may have been related to the students' learning. 
Further research is needed to explore the possible relationships 
among other factors and the students' learning, such as them being 
gifted or learning in pairs. 

Another important aspect that was not addressed here is the 
evolution of the students' CS learning. A large portion of the class 
time was spent on learning programming aspects. The question of 
the influence of the physics context on CS learning is one that 
would definitely interest CS educators and may affect the 
instruction of the discipline. 
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ABSTRACT
Markov State Models (MSMs) are a powerful framework to repro-
duce the long-time conformational dynamics of biomolecules using
a set of short Molecular Dynamics (MD) simulations. However,
precise kinetics predictions of MSMs heavily rely on the features
selected to describe the system. Despite the importance of feature
selection for large system, determining an optimal set of features re-
mains a di�cult unsolved problem. Here, we introduce an automatic
approach to optimize feature selection based on genetic algorithms
(GA), which adaptively evolves the most �tted solution according
to natural selection laws. The power of the GA-based method is
illustrated on long atomistic folding simulations of four proteins,
varying in length from 28 to 80 residues. Due to the diversity of
tested proteins, we expect that our method will be extensible to
other proteins and drive MSM building to a more objective protocol.

KEYWORDS
Genetic algorithm, feature selection, markov state model, molecular
dynamics simulation, generalized matrix Rayleigh quotient

1 INTRODUCTION
Molecular Dynamics (MD) simulation, �rst introduced by Alder
and Wainwright[2] in the late 1950’s, has evolved into a major tech-
nique to study the detailed actions and mechanisms of proteins[10,
23, 26, 35, 39]. Based on Newton’s equations of motion, MD sim-
ulations can describe protein dynamics in unprecedented spatial
and temporal resolution. However, one of the major challenges
for MD simulations are the analysis of high dimensional data and
the incompatibility between timescales accessible to MD simula-
tion and that are functionally relevant[22, 25, 45, 46, 50]. Markov
State Models (MSMs)[20, 37, 44] have recently been used to address
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the aforementioned issues by predicting protein dynamics at long
timescales from a pool of short MD simulations. The MSM itself is
a "transition probability matrix"[6], describing mathematically the
memoryless transitions between metastable states. To construct a
MSM, raw MD trajectories are �rst transformed from their Carte-
sian coordinates to features, such as dihedral angles[18, 33] or
pairwise contact distances of a protein. This step is often called
"featurization". The dimensionality of these features may be further
reduced through dimensionality reduction step. One commonly
used method is time-structure independent components analysis
(tICA), which creates linear combinations of input features by max-
imizing their decorrelation time[24, 27, 38, 41, 42]. With a properly
constructed MSM, useful thermodynamic and kinetic properties of
the dynamic process can be extracted. Despite the attractive feature
of MSMs, the thermodynamics and kinetics predicted by MSMs
are highly sensitive to which features are selected to discretize the
con�guration space[4, 10, 28]. Ideally, features should be chosen to
capture the slowest motions of the protein, which are usually the
most interesting or important processes. However, determining an
optimal set of features remains a considerable challenge especially
when a protein system is su�ciently complex.

Currently, there are twomajor ways of selecting features in terms
of "contact featurization", where pairwise contact distances of a pro-
tein are used as features. One is using all pairwise contact distances
of a protein as features. In principle, no important information
about the system is missed out since all the contact distances are
considered. However, it is costly to calculate all distances even for a
small protein. For a protein system with R residues, the total num-
ber of distances among each other will be R(R-1)/2, which creates
a heavy load of calculation on computers. In addition, irrelevant
features that do not contribute to the dynamics process may lead to
the poor generalization performance of the model. Thus, using all
available features may degrade the performance of the MSM both in
speed (due to high dimensionality) and accuracy (due to irrelevant
information). Alternatively, the most commonly used method is
choosing a subset of contact distances based on human intuition
[20]. Consequently, the thermodynamics and kinetics extracted
from MSMs can be biased by the manually chosen features. In sum-
mary, either way is not appropriate for the selection of features
and a more convenient, accurate and automated method for feature
selection is necessary. A variety of machine learning methods have
been recently reported for dimensionality reduction and/or feature
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selection for molecular dynamics datasets[33]. However, the use of
these ideas for automatic feature selection in building MSMs has
not been explored.

Here, we present a genetic-algorithm based method to select
an optimal set of residue pair distances for contact featurization.
Genetic algorithm (GA) is one of the advanced methods to help with
dealing feature selection problems in data science. First proposed
by John H. Holland[13, 15], GA is a heuristic and adaptive simula-
tion algorithm that evolves the most �tted solution to a problem
based on Darwinian natural selection laws. GA has been broadly
applied to help with function optimization[48], protein folding
prediction[21, 49], multiple sequence alignment[14] and more sci-
enti�c investigations[16]. In nature, useful traits in genes tend to
be preserved in o�spring because of a higher survival probability.
Like the real cases in nature, better solutions to a problem can be
derived by GA according to this principal. In our case, each "gene"
represents the alpha carbon distance between a residue pair, and
"chromosomes" are combinations of residue pair distances. To seed
the whole process, we randomly select one residue pair distance
as the starting point of the GA. The adaptability of each "chromo-
some" (a set of residue pair distances) is quantitatively expressed
as �tness scores in GA. In this study, we use generalized matrix
Rayleigh quotient (GMRQ) score as the �tness score. GMRQ was
recently introduced to quantitatively evaluate MSMs based on its
distance from a theoretical upper limit[19, 30, 36]. The higher the
GMRQ score is, the more prominent the MSM is to capture the slow
underlying dynamical motions while a low GMRQ score indicates
that the MSM is not able to reveal the slow dynamics of the system.
Therefore, the goal of our method is optimizing a set of residue
pairs that gives the highest GMRQ score. The framework of our
GA-based method is adapted from the "Optimal Probes" method
proposed byMittal and Shukla[32]. In their study, an optimal choice
of residue pairs, capturing the slow conformational dynamics, is
successfully predicted for double electron-election resonance spec-
troscopy, an experimental technique capable of detecting confor-
mational changes by monitoring the distance between electron
spins.

In this method, we (1) perform contact featurization for each
set of residue pair alpha carbon distances, (2) use tICA to further
reduce the dimensionality of the data, (3) construct MSMs based
on the reduced dimensionality, and (4) calculate GMRQ for each
set of residue pair distances to evaluate the MSMs. Based on the
GMRQ score, the combination of residue pair distances will be
updated. The algorithm will then go back to step (1) to repeat the
whole process until reaching user speci�ed number of iterations.
In the end, the set of distances with the maximum GMRQ score is
chosen as an optimal set of residues for the construction of the "best
MSM". To evaluate of our method, we test the GA-based method
on four folding proteins with the size ranging from 28 residues
to 80 residues. Our experimental results show that the method
yields comparable and even better accuracy compared with using
all available features. To our knowledge, this is the �rst attempt
to automatically select proper MSM features for analysis. The GA-
based method described here can be extended to larger proteins
undergoing conformational changes.

2 THEORY AND METHODS
MolecularDynamics (MD) SimulationDataset.MD simulation
datasets of the four folding proteins for analysis were generated
by Lindor�-Larsen et al[26]. The four proteins (BBA, Villin, WW
domain and �-repressor) vary in length from 28 to 80 amino acids.
More details of the simulations are summarized in Table 1. For the
analysis, we retain all the trajectory frames. Three small proteins
(BBA, Villin and WW domain) are chosen to evaluate the proposed
method and the best GMRQ achieved using all contact distances
serves as the benchmark. The 80-amino-acid �-repressor is used
to test the feasibility of the method on large proteins, as using all
distances is impractical.

Table 1: Protein and Trajectory Information.

Protein PDB Residues Total simulation time (µs)
BBA 1FME 28 325
Villin 2F4K 47 429
WW domain 2F21 35 1137
�-repressor 1LMB 80 643

Markov State Models (MSMs). In this study, the goal is optimiz-
ing a set of residue pair distances to build the best MSM based
GMRQ. MSMs are kinetic models that reveal the dynamics of a
system[6, 17, 37, 39, 40]. AnMSM describes a network of metastable
conformational states and reveals the probabilities of each state
performing jumps from one to another over an appropriate time
resolution (� , also called lag time). The jumps are memoryless,
which means the probability to transit to the present state is not
dependent on the previous ones. Such information is presented in
a "transition probability matrix" by MSM, where an n ⇥ n square
matrix depicts the transitions among n states[6]. The probability of
each jump can be expressed according to the equation below:

pj (t + � ) =
n’
i=1

pi (t)Ti j (� ) (1)

The equation can also be expressed in a matrix form:

pT (t + � ) = pT (t)T (� ) (2)

where pi (t) is a population vector whose elements show the proba-
bility at time t , pj (t + � ) is a population vector after time � , Ti j (� )
is the probability to jump from state i to state j and T (� ) is the
transition probability matrix that T (� ) 2 Rn⇥n . Further details of
the transition matrix can be found in literatures[6, 44].

The transition probability matrix can be decomposed into eigen-
functions and eigenvalues shown below:

T (� ) ��i = �i�i (3)

where�i is the eigenfunction and �i are the real eigenvalues that
�i  1, arranged in descending order.

Here, each step of the MSM building process used in this study
is described in detail. All the hyperparameters (e.g. the number of
tICA components, tICA lagtime, the number of clusters, the number
of MSM timescales and MSM lagtime) are shown in Table 2.
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(1) Featurization. To construct an MSM, the �rst step is to pro-
cess the datasets that we plan to work on. In our case, we use
the MD simulation data sets listed in Table 1. The datasets
are given in the form of MD trajectories, which present series
of motion of the protein atoms in a frame-wise arrangement.
Because the simulated movements recorded in Cartesian co-
ordinates are not ideal for analysis, and too much noise not
relevant to our study may be included, it is better to interpret
the data in other ways. As a result, a lot of reasonable metrics
such as dihedral angle[18] and contact distances between
residue pairs are used to featurize the data. The featurization
method we choose here is contact distance analysis. By using
such technique, more useful information can be extracted
from the redundant MD trajectories. Again, our goal of this
study is to optimize the choice of residue pairs for contact
distance calculation, so that an MSM with more information
and less noise can be found by this method. The method
outlined in this study could be applied to any chosen set of
features calculated using simulation data.

(2) Dimensionality reduction. We further processed our featur-
ized data by tICA so as to reduce the dimensionality of the
data. After featurization, the featurized data were projected
onto linear subspaces of the slowest dynamics. The compo-
nents of tICA are termed time structure-based independent
components (tICs), which are linear combination of the in-
put features (a set of contact distances in our case). Top tICs
capture the slowest motion captured by tICA and usually
represent the most interesting dynamics[24, 27, 38, 41, 42].

(3) Clustering. We perform mini-batch k-means clustering on
the processed data. Clustering refers to the coarse graining
analysis that groups certain datasets based on their simi-
larities, so that macrostates can be formed to be better un-
derstood. Commonly used clustering algorithms, such as
mini-batch k-means[6, 30, 34], mini-batch k-medoids[8, 12]
and k-centers[5, 24], have shown similar performance when
the data is preprocessed with tICA[27, 33, 38, 41].

(4) MSM construction. After the clustering, a MSM can be built
based on the processed datasets. The process was imple-
mented in a Python environment and the software involved
to produce the analysis above includeNumpy[3],MDTraj[28]
and MSMBuilder3.8[4].

GeneralizedRayleighQuotient (GMRQ). In short, an idealMSM
should successfully identify the slowest dynamics of the protein.
Because the state decomposition mentioned above reveals the dy-
namical processes in the system, the identi�cation of true eigen-
function and eigenvalues become the major problem for scientists
to solve. A more quantitative method is needed to help evaluate
and �nd the true state decomposition, which is directly related to
the choice of metrics in the featurization stage.

To help solve this problem, GMRQ was introduced as a quantita-
tive way of evaluating the quality of an MSM[30, 30, 36]. GMRQ
is derived from the variational principle that adds up the �rstm
eigenvalues, which denote the slowestm dynamical processes in the
system. The variational principles set an upper boundary[19, 30, 36]

for the total sum of real eigenvalues shown below:

GMRQ ⌘
m’
i=1

�̂i 
m’
i=1

�i (4)

where the �̂i is the estimated eigenvalue and the �i is the real
eigenvalue. In this study, as we try to maximize GMRQ score to
approach the upper boundary, the larger the GMRQ score we get,
the closer we are to the slowest dynamics of the protein.

To help avoid over�tting, cross-validation must be applied to
evaluate our GMRQ scores. The dataset from the MD simulation is
split into a training set and a test set. The training set is �rst used
to estimate the model parameters such as the eigenvalues, then the
estimated model is applied to score its performance in the test set.
In this way, the model will not be biased by over�tting the data
onto the model. The process of deriving GMRQ scores is achieved
by Osprey package[29] and the recruited parameters are shown in
Table 2. Mean GMRQ of �ve cross-validation iterations are used for
the analysis.

Figure 1: The �ow chart showing the whole process of our
GA-based method.
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Genetic-algorithm-based Method for automatic feature se-
lection in Markov State Models (MSMs). To simulate the nat-
ural selection process according to the Darwinian law, we must
decide how the natural selection principles are implemented in our
algorithm. In this section, we introduce our basic operators of GA,
the framework that we follow to perform GA, and the protocol we
adopt to �nally generate optimal residue pairs. The construction of
the GA is based on the work of Mittal and Shukla[32].

In the �eld of programming, operators refer to the actions to
take during each step of execution of the algorithm. The basic
operators in our study are composed of natural selection, mutation,
and crossover. In the following section, we discuss our method to
help predict an optimized set of residue pair distances for MSM
construction using genetic algorithm. We also provide the series of
steps as a �ow chart shown in Figure 1. Some important parameters
that are involved in these steps are: populationSize, percentMutation
and percentCrossover. These parameters can be changed according
to user’s need.

(1) A set of all possible residue pairs is identi�ed.R(R-1)/2 residue
pairs for a protein with R residues.

(2) populationSize preliminary sets of residue pair are randomly
selected from the set of all possible residue pairs for the
�rst iteration. Each set contains only one residue pair as the
starting point for selection. These sets of residue pairs serve
as the initial generation G0 and are assigned �tness scores
of 0.

(3) Natural selection is performed to choose the new generation
of residue pairs according to their �tness scores. The natural
selection operator corresponds to the reproductive process in
nature, which selects genomes with ideal traits for breeding
o�spring. In our case, we de�ne a parameter populationSize
that describes the number of elements randomly chosen from
the parental set for a new generation Gnew .

(4) Mutation is performed to maintain diversity to the current
generation of residue pair selections. The mutation operator
corresponds to the mutation process in nature to increase
genetic diversity. In our version of GA, we de�ne a parame-
ter percentMutation to maintain a ratio of mutation in our
combination of residue pairs. During the mutation step, the
number of residue pairs to be mutated are generated by (per-
centMutation ⇥ populationSize)/100 from Gnew and those
residue pairs are randomly replaced by other residue pairs
that are excluded in the Gnew .

(5) Crossover is performed to add more diversity to the cur-
rent generation. The crossover operator corresponds to the
natural recombination process of chromosomes. Here, we
de�ne another parameter percentCrossover as the percent-
age of crossover in our combination of residue pairs. The
number of residue pairs to perform crossover is generated
by (percentCrossover ⇥ populationSize)/100 from Gnew . The
residue pair distance sets will then be swapped according to
the number calculated before to create a new combination
of residue pair distances.

(6) Evaluations are performed to assign �tness scores to the
newly generated residue pairs. MSMs are constructed based
on contact featurization using the current generation of

residue pairs, and GMRQ scores are calculated accordingly
to serve as �tness scores.

(7) If more iterations are designed to be �nished, the next itera-
tion should restart at step (3) and use the current generation
of residue pairs asG0. As the iteration number increases, the
�tness scores for the selection of residue pairs should show
a convergence of �tness scores.

All the parameters used in this study are organized in Table 2.

Table 2: Model Hyperparameteres.

Featurization
�-carbon contact distances
Decomposition Components Lag time (ns)
tICA 5 0.2
Clustering Clusters
Mini-batch k-means 200
Model �tting N_timescales Lag time (ns)
MSM 5 50
Scoring
GMRQ
Cross-validation Iterations Test set size
Shu�e & Split 5 0.5
Genetic algorithm
Iterations 40
populationSize 20%
percentMutation 50%
percentCrossover 20%

3 RESULTS
In this section, we discuss the optimized set of residue pair distances
obtained from our GA-based approach. As described in the method
part, the unbiased and extensive MD simulation data (>100µs) simu-
lating the folding process of the proteins is taken from literature[26].
Preliminary sets of residue pair distance are randomly selected from
the set of all the possible residue pairs as the starting point of the
genetic algorithms. These sets go through selection, mutation and
crossover steps to provide a new generation of residue pair dis-
tances. In the setting of GA, we choose a population size of 10%,
mutation percentage of 50% and crossover percentage of 20%. Next,
the newly generated residue pair distances are used to build MSMs
and assign new GMRQ scores (�tness scores) for evaluation. The
next iteration will then go back to the selection step and select
according to the newly assigned �tness scores. As the process goes
through more iterations, the GMRQ scores will converge and a best
GMRQ score can be found.

This method is applied to 4 proteins for demonstration of its
functionality: BBA, Villin, WW domain and �-repressor. Among
the proteins, 3 proteins (BBA, Villin and WW domain) are small
proteins, each of which has a residue number that smaller than 40
(R < 40). To examine the e�ectiveness of our method, we compare
the GMRQ scores and implied timescales with their corresponding
benchmark values (using all contact distances as features). In the
end, we show the ability of our GA-based method to process larger
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Table 3: Comparison of the best GMRQ scores generated and benchmark GMRQ scores from all contact featurization. The
fraction of all residue pairs is the fraction of chosen residue pairs in all residue pairs. The best GMRQ refers to the highest
GMRQ score that we obtain fromMSMs using residue pair distance features given by our genetic algorithm approach, and the
benchmark GMRQ score is the GMRQ provided by the MSM constructed with all contact featurization. The deviation column
if the deviation of our best GMRQ score from the benchmark GMRQ score.

Protein Residues Number of chosen Fraction of Best Benchmark Deviation (%)
distances pairs (%) GMRQ GMRQ

BBA (1FME) 28 47 12.43 4.445 4.239 +4.80
Villin (2F4K) 35 61 10.25 3.203 3.705 -13.5
WW domain (2F21) 35 4 0.67 4.198 4.111 +2.12
�-repressor (1LMB) 80 60 1.90 4.956 N/A N/A

Figure 2: GMRQ scores re�ecting the MSMs based on the GA-predicted residue pairs. (A) BBA (PDB ID: 1FME), (B) Villin
(PDB ID: 2F4K), (C) WW domain (PDB ID: 2F21), (D) �-repressor (PDB ID: 1LMB). Green, dashed lines indicate the best GMRQ
score corresponding to MSMs based on all contact featurization. Each violin plot shows the increase of GMRQ scores over 40
iterations. In each set of data, the center dot shows the mean values and the vertical line shows the range of this GMRQ data
set.

proteins such as �-repressor, a protein with 80 residues, which
cannot be featurized using all contact distances.

3.1 Our GA-based method proved e�ectiveness
in generating GMRQ scores that are close to
the highest possible values given by all
contacts featurizer.

We featurize the small proteins (BBA, Villin, WW domain) using
all contacts featurization to produce benchmark GMRQ scores for
comparison. Benchmark GMRQ scores will serve as a compara-
ble reference to evaluate the performance of our method of using

GA to generate optimal residue pairs as featurization metrics. By
comparing the best GMRQ scores from our GA-based method to
the benchmark GMRQ scores, we are able to check whether our
method successfully provides the residue pair sets that depict the
slowest process of the protein dynamics. We also apply this method
to �-repressor, a medium sized protein with 80 residues, to show
its ability to process larger proteins. The GMRQ scores are calcu-
lated by adding up the eigenvalues of the transition probability
matrix provided by MSMs[30, 36]. The theoretical upper limit of
GMRQ score is 6 in all cases[19, 30, 36], due to the fact that the
number of MSM timescales is chosen to be 5 in the MSM settings.
Therefore, in our case, high GMRQ score that approaches 6 usually
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Figure 3: The �rst three slowest implied timescales as a function of MSM lag time. (A) BBA (PDB ID: 1FME), (B) Villin (PDB
ID: 2F4K), (C) WW domain (PDB ID: 2F21). The red, yellow and cyan colored lines indicate the slowest, second slowest and
third slowest implied timescales, respectively. Dashed lines correspond to the reference value given by the MSMs built on
all contacts featurization. Solid lines correspond to the implied timescales given by the MSMs achieved by using the set of
distances optimally chosen by our GA-based method.

suggests a better ability of an MSM to capture the slowest process,
whereas low GMRQ score implies ine�ective state decomposition
during the MSM construction process. All information regarding
the GMRQ scores and residue pair selection is summarized in Table
3. As shown in Figure 2, all GMRQ scores converged over 40 iter-
ations. In Figure 2A, the highest GMRQ score for BBA is around
4.445, which is higher than the benchmark GMRQ score (4.239).
Similar traits are shown by WW domain in Figure 2C that the best
GMRQ from GA (4.198) is higher than the benchmark (4.111). How-
ever, one exception happens in Villin, shown in Figure 2B. In Figure
2B, the best predicted GMRQ (3.203) does not reach the benchmark
(3.705). More iterations for Villin are needed to reach a best GMRQ
score that is higher than the benchmark, but there exists a trade-o�
between the accuracy and computational resource needed. Overall,
the percent variances between our predicted GMRQ score and the
benchmark GMRQ score are +4.8% for BBA, -13.5% for Villin and
+2.12% for WW domain, in which Villin has the highest di�erence
compared to the other two proteins.

Similar analysis is applied to �-repressor, except that �-repressor
lacks a benchmark GMRQ score due to its higher number of residues.
Hence, there is no reference value to compare in this case. The best
GMRQ score given over 40 iterations is around 4.956. Considering
that the upper limit of the GMRQ score in this system is 6, we believe
that a score of 4.956 is a relatively high GMRQ that e�ectively
captures the slow dynamics of the protein folding mechanisms.
Therefore, we can conclude that the method proves its ability to
provide the optimal selection of residue pairs for the construction
of the best MSM.

3.2 Implied timescale plots show that predicted
optimal sets of residue pair distances are
able to successfully capture the slowest
dynamics in the proteins.

By plotting lag time dependent implied timescale plots, we can
quantitatively visualize the slow modes of protein dynamics. Figure
3 shows the comparison between the converged slowest implied
timescales provided by all contact featurization and our GA-based
method. Again, the reference values are provided by utilizing all
residue pair distances as features. Since �-repressor is too big for all

contacts featurization, there is no benchmark data available and its
implied timescale is not shown. In Figure 3A, the slowest implied
timescales (solid and dashed red lines) of BBA nearly overlap with
each other, indicating that our method has chosen a set residue
pair distances that captures the slowest process. In addition, the
predicted second and third slowest implied timescales (yellow and
cyan) are slower than the corresponding timescale for the bench-
marks. In Figure 3B, the predicted implied timescales of Villin has
a larger deviation. This inconsistency will be explained and justi-
�ed in the next paragraph. In the case of WW domain (Figure 3C),
we capture a slower timescale than the benchmarks. We �nd that
inclusion of all residue pair distances can add noises to the model,
and our GA-based method helps improve the MSM construction by
excluding those irrelevant features.

3.3 Number of selected distances may re�ect
the degree of complexity of the protein
folding mechanism.

Other than the GMRQ scores and implied timescale plots, more
information can be obtained from the sets of residue pair distances.
In Table 2, we collect and summarize the number of distances
selected by GA and the actual residue numbers in each protein.
One interesting thing is that the number of residues in a protein
is not necessary correlated to the number of distances needed to
capture its slowest dynamics. For example, it can be observed in
Table 2 that although both Villin and WW domain have 35 residues
in their sequences, WW domain only needs 4 distances of residue
pairs while Villin requires 61 distances. This may be due to the
complex folding mechanism of Villin. Though both proteins are
fast-folding proteins with small numbers of residues, the secondary
structure elements in Villin fold more independently without much
interactions[31]. Such minimized interaction or minimal frustration
makes the folding kinetics fast for Villin, according to the folding
funnel theory[7]. Consequently, because the protein folds quickly,
this phenomenon suggests a continuous reduction in energy in
the folding funnel[7, 9], which implies multiple parallel pathways
during the folding hypothesis[51]. On the other hand, WW domain
folds much slower than Villin[6] and has more consistent folding
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Figure 4: GA-chosen residue pairs visualized on the unfolded MD structures and folded crystal structures. (A) BBA (PDB ID:
1FME), (B) Villin (PDB ID: 2F4K), (C) WW domain (PDB ID: 2F21), (D) �-repressor (PDB ID: 1LMB). The black lines specify the
distances between residue pairs chosen by our GA-based method, which capture the slowest dynamics of the proteins.

pathways[1]. The independent features in Villin make it hard for
GA to fully capture its slowest dynamics.

In a previous study, Feng and Shukla[11] utilized evolution cou-
plings (ECs) as functional features to capture protein folding and
conformational dynamics, which gives the similar results for Villin
and WW domain. Their work identi�ed that Villin needs 73 ECs
and WW domain only needs 5 ECs to fully describe the protein
dynamics. They stated that more ECs are needed if the ECs has
low correlation. Here, our results show the same trait that Villin
requires more features for identi�cation of its slowest dynamic pro-
cesses, which is reasonable due to the folding complexity of Villin
comparing to other fast-folding small proteins. To fully capture the
slow dynamics of proteins like Villin, a large number of features
should be included from its whole dataset. This is a di�erent sce-
nario comparing to capturing the dynamics of the proteins that
needs small numbers of features, which is a problem easier for GA
to solve. For proteins like Villin, other methods needs to be explored
for a more e�cient way to capture the slowest dynamics. Although
our method results in some degrees of deviations from the bench-
marks (shown in Figure 2B and 3B), it still shows e�ectiveness in
dealing with proteins with complicated kinetics.

To present our predicted results in a more understandable way,
we visualize the optimal sets of residue pairs for all four proteins
in Figure 4. Each section (A, B, C and D) of Figure 4 consists of two
parts, representing the unfolded and folded structure of the protein
respectively. It is easy to notice that the residue pair distances
chosen by our method spread out in the protein to capture the
complex dynamics of protein folding.

4 CONCLUSIONS
Feature selection of MSM construction determines the accuracy of
predicted kinetics properties. Currently, the selection of features is

done using trial and error. The utilization of GMRQ score enables a
quantitative description of the accuracy of MSMs in representing
the molecular dynamics observed in a simulation dataset. Using
GMRQ score as �tness score, we introduce a GA-based method
in order to optimize a set of residue pair distances that produce
superior MSMs. In this study, we have shown that our method
can provide an automatic, e�cient and accurate way to choose the
optimal residue pair distances as features for MSMs construction.
This signi�cantly improves the e�ciency in the overall process
of building MSMs while still guarantees the quality of MSMs to
capture the slowest protein dynamics. Due to the diversity of tested
proteins, our method can be widely applied to other proteins to
help with the feature selection process and we anticipate that this
method will shift MSM building one step closer to a systemic and
objective protocol. It is important to be aware that the underlying
assumption of this approach is that the slowest dynamic processes
correspond to the process of interest. However, this assumption
can be challenged in the case of insu�cient sampling or inaccurate
force �eld.

However, the method also has some limitations. The proposed
method belongs to the class of wrapper methods for feature selec-
tion that �nd the “optimal" feature subset by iteratively selecting
features based on the classi�er performance. The performance of
these methods drops signi�cantly for datasets with large number
of important but uncorrelated features. Our method also does not
perform well on systems with complex dynamics that requires a
large number of features to capture the underlying dynamics. In
other words, the e�ectiveness partially depends on the complexity
of the conformational changes in the protein, which is shown in the
discussion of Villin. As the folding complexity increases, more path-
ways are available for the protein, so the selection of residue pairs
may not fully depict the slowest dynamics of the protein. However, a
large number of biologically relevant dynamic processes have been
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shown to involve only a few important features[11, 22, 25, 43, 45–
47, 50]. In addition, sequence information and crystal structure of
the protein should be known, and su�cient amount of MD simula-
tion data should be generated to apply our method. In conclusion,
the proposed algorithm, can help identify essential residue pair dis-
tances for featurization and exclude noises for MSM construction
with high e�ciency.
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many aspects. This opportunity was rare and precious, especially
because I can utilize one of the leading-edge petascale computa-
tional resources on the BlueWaters Supercomputer. I was excited to
be o�ered the opportunity to meet other interns to study and prac-
tice computational skills together. Starting last summer, I have been
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workshop at University of Illinois at Urbana-Champaign, regular
webinars, monthly reports and preparing a manuscript. Majoring in
Material Science, I joined the internship with limited computational
experience. However, I quickly gained essential skills and became
adept with the help of internship coordinators, my research advisor
and mentors in the lab. In addition, working on the projects helped
me to be familiar with the life in a research group and be better
prepared for the graduate school. My presentation skills were im-
proved through attending group meetings and poster sessions. I
also practiced my writing skills through regular progress reports
and writing this manuscript. Overall, the past year was a busy year,
but it has became a unique experience in my undergraduate studies.
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ABSTRACT 
Graph algorithms have many applications. Many real-world 
problems can be solved using graph algorithms. Graph algorithms 
are commonly taught in the data structures, algorithms, and discrete 
mathematics courses. We have created two animations to visually 
demonstrate the graph algorithms. The first animation is for depth-
first search, breadth-first search, shortest paths, connected 
components, finding bipartite sets, and Hamiltonian path/cycle on 
unweighted graphs. The second animation is for the minimum 
spanning trees, shortest paths, travelling salesman problems on 
weighted graphs. The animations are developed using HTML, CSS, 
and JavaScript and are platform independent. They can be viewed 
from a browser on any device. The animations are useful tools for 
teaching and learning graph algorithms. This paper presents these 
animations.  

Keywords 
Algorithms, animation, data structures, discrete mathematics, 
graphs 

1. INTRODUCTION 
Graphs are simple mathematical structures. A graph consists of a 
set of vertices and a set of edges for connecting vertices. In a 
weighted graph, each edge is assigned with a value, called a weight. 
Graphs have many important applications. For example, a map can 
be modelled using a graph. The cities are the vertices and the roads 
connecting the cities are the edges, and the distances are the weights 
on the edges. The problem of finding the shortest distance between 
two cities can be solved by finding a shortest path between the two 
vertices in the graph. Many algorithms have been developed to 
solve a variety of graph problems. The common graph problems for 
unweighted graphs covered in the data structures, algorithms and 
discrete mathematics courses are depth-first search, breadth-first 
search, shortest paths, connected components, finding bipartite 
sets, and Hamiltonian path/cycle. For weighted graphs, the 
common problems are the minimum spanning trees, shortest paths, 
travelling salesman problems. We have created animations for 
helping instructors and students to teach and learn these algorithms.  
 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee.  

Copyright ©JOCSE, a supported publication of the Shodor Education 
Foundation Inc. DOI: https://doi.org/10.22369/issn.2153-4136/9/2/3  

 

The animations are freely accessible from 
https://yongdanielliang.github.io/animation/animation.html.     The 
animations enable instructors and students to create graphs 
dynamically,   apply   the   graph    algorithms   on   graphs,     and 
immediately see the results. The animations are effective tools for 
teaching and learning graph algorithms. The animations have been 
integrated in the Pearson’s interactive REVEL™ ebooks [5, 6, 7], 
which have received positive reviews [9, 10]. This paper presents 
the graph algorithm animations for unweighted graphs and for 
weighted graphs, respectively. 
 

2. SURVEYS OF GRAPH ALOGRITHM 
ANIMATIONS 
Several graph algorithm animations are available on the Web. The 
most popular graph animations are accessible from http://jhave.org/ 
[8], https://visualgo.net/en [12] and 
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html 
[3]. The first tool [8] is written in Java. Due to security restrictions 
on Java running on the browser, this tool cannot run from a Web 
browser. Neither of the tools allows you to create graphs 
interactively. Because the graphs are pre-created in these tools, the 
instructor cannot create their own graphs for class demonstration. 
Our graph algorithm animation tools enable instructors and 
students to create custom graphs dynamically and easily. 
Additionally, our tools combine all algorithms for unweighted 
graphs in one unified animation and all algorithms for weighted 
graphs in the other unified animation. As a result, it is simple and 
easy to use our graph algorithm animation tools. 
 
 

3. ALGORITHM ANIMATION FOR 
UNWEIGHTED GRAPHS 
The unweighted graph algorithm animation tool can be accessed for 
free from 
https://yongdanielliang.github.io/animation/web/GraphLearningT
ool.html, as shown in Figure 3.1. The process of creating a graph is 
simple. You can add a vertex by clicking the primary button in an 
open area. You can remove a vertex by clicking the vertex using 
the secondary button. You can add an edge between two vertices 
by dragging from one vertex to the other. You can also move a 
vertex by dragging the vertex while pressing the CTRL button. 
 
After creating a graph, you can apply an algorithm on the graph and 
see the result of applying the algorithm interactively. To display a 
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depth-first search tree or breadth-first search tree, specify a starting 
vertex and click the DFS or the BFS button to see the search tree. 
For example, as shown in Figure 3.2, a DFS tree is displayed 
starting from vertex 4. A BFS tree is displayed starting from vertex 
4 in Figure 3.3.  
 

 
Figure 3.1: The graph algorithm animation for unweighted 
graphs. 
 

 
Figure 3.2: A DFS tree starting from vertex 4 is displayed. 
 
The shortest path between two vertices in an unweighted graph can 
be obtained using the breadth-first search from a vertex. As shown 
in Figure 3.4, the user enters the starting vertex 2 and the ending 

vertex 5 and clicks the Shortest Path button to display a shortest 
path from 2 to 5. 
 

 
Figure 3.3: A BFS tree starting from vertex 4 is displayed. 
 

 
Figure 3.4: The shortest path from vertex 2 to vertex 5 is 
displayed. 
 
The Hamiltonian path is a path that traverses all vertices in the 
graph exactly once. As shown in Figure 3.5, clicking the 
Hamiltonian Path button displays a Hamiltonian path. The 
Hamiltonian cycle is a Hamiltonian path in which the starting 
vertex and the ending vertex are connected. As shown in Figure 3.6, 
clicking the Hamiltonian Cycle button displays a Hamiltonian 
cycle. 
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Figure 3.5: The animation displays a Hamiltonian path. 
 
 
 

 
Figure 3.6: The animation displays a Hamiltonian cycle. 
 
 
A connected component is a maximal connected subgraph in which 
every two vertices is connected by a path. You can find all 
connected components in the graph by clicking the Find Connected 
Components button as shown in Figure 3.7. Two connected 
components [0, 1, 4, 3, 2] and [5, 7, 6] are displayed for the graph 
in Figure 3.7. 
 

 
Figure 3.7: The connected components are displayed in the 
dialog box. 
 
You can find a cycle in the graph by clicking the Find a Cycle 
button, as shown in Figure 3.8. A cycle 0, 1, 4, 3 is displayed in the 
dialog box.  
 

 
Figure 3.8: A cycle is displayed. 
 
The bipartite sets are the two sets of vertices obtained from the 
graph such that no vertices in a set is connected. This type of the 
graph is called a bipartite graph. When you click the Find Bipartite 
Sets button for the graph in Figure 3.9, the animation displays that 
the graph is not bipartite, because no bipartite sets can be found for 
the graph. 
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Figure 3.9: The graph is not bipartite. 
 

  
Figure 4.1: The graph algorithm animation for weighted 
graphs. 

4. ALGORITHM ANIMATION FOR 
WEIGHTED GRAPHS 

The weighted graph algorithm animation can be accessed from 
https://yongdanielliang.github.io/animation/web/WeightedGraphL
earningTool.html, as shown in Figure 4.1. The process of creating 
a weighted graph is similar to creating an unweighted graph. You 
can add/remove a vertex in the same way as in the unweighted 
graph algorithm animation. You can add an edge by dragging from 

one vertex to the other. The weight of the edge is the distance 
between the two vertices.  

 
Figure 4.2: A minimum spanning tree is displayed. 
 
A spanning tree of a graph is a connected subgraph that contains all 
the vertices in the graph and the subgraph is a tree. A minimum 
spanning tree of a graph is a spanning tree with the minimum total 
weights. You can obtain the minimum spanning tree by clicking the 
MST button, as shown in Figure 4.2. 
 
A shortest path tree can be found using the Dijkstra’s algorithm. 
The tree represents a single source all shortest paths. For example, 
Figure 4.3 shows the shortest path tree starting from vertex 1. 

 
Figure 4.3: A shortest path tree starts from vertex 1.  

Volume 9, Issue 2 Journal of Computational Science Education

26 ISSN 2153-4136 December 2018



A shortest path between two vertices can be found after a shortest 
path tree is constructed. To find a shortest path from vertex u to v, 
first create a shortest path tree starting from vertex u. A path from 
u to v in the tree is the shortest path from u to v. For example, Figure 
4.4 shows the shortest path from vertex 1 to vertex 5. 
  

 
Figure 4.4: A shortest path from vertex 1 to vertex 5 is 
displayed. 
 
 
 

 
Figure 4.5: A solution for the travelling salesman problem is 
found with the total weights displayed in the dialog box. 
 

The travelling salesman problem is to find a shortest path that starts 
from a vertex and visits each vertex exactly once and returns back 
to the original vertex. Figure 4.5 shows a solution to the problem 
for the graph in the figure. 
 

5. BENEFITS OF USING GRAPH 
ALGORITHM ANIMATION 

 
Here are the major benefits for instructors and students to use our 
tool. 
 
Benefit 1: In a typical lecture for the graph algorithms, the 
instructor draws various types of graphs on the board and shows the 
result of applying the algorithms by hand. This is a tedious and 
time-consuming process. This tool enables the instructor to create 
a graph dynamically and show the results of applying the algorithm 
spontaneously. The instructor can draw any type of graph using this 
tool. The instructor can create vertices anywhere on the screen and 
can move it to a new location after it is created. The vertices can 
also be deleted. By dragging the mouse from one vertex to another, 
an edge between the two vertices can be created. All these 
interactive features also work on mobile devices. 
 
Benefit 2: Once a graph is created, the tool can show the result of 
applying the algorithm on the graph interactively. After a graph is 
modified, with a click of button, the tool can show the new result 
of applying the algorithm on the new graph. This is tremendously 
helpful to show students different scenarios. 
 
Benefit 3: A picture is worth a thousand words. An interactive 
animation is worth more than pictures. The interactive animation 
not only catches student attention in the class, it also engages the 
student with visual interaction. Students can use the tool to study 
before and after the lectures to see how an algorithm works on 
different graphs.  
 
Benefit 4: Our animation also serves as examples for students to 
write their own programs to visualize the graph algorithms. This 
gives students the opportunity to get deeper into the algorithms and 
see how the algorithms work in their own animation. In our data 
structures and algorithms courses, we assign projects for students 
to write their own code for graph algorithm animation. Students like 
the algorithm animation projects.  As supported in [11], students 
learn better, when they actually implement the algorithms using 
animation.  
 

6. EVALUATION  
Many algorithm animation tools are available. It is safe to say that 
algorithm animation assists instruction, but whether it helps 
students to learn is a mixed bag. Some experiments show positive 
student outcome [1, 8], while others say there are no significant 
difference to students whether animations are used or not [2]. An 
experiment conducted at George Washington University [4] 
showed that the students who used an interactive version of 
courseware spent more time and performed worse overall than 
those who used the non-interactive version of the courseware. The 
reason behind this is that the tools are ineffective and difficult to 
use. Our goal is to develop a simple tool that is effective and easy 
to use. First, our tool is free and directly accessible on the Web and 
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can run on any device from a Web browser. There is no need to 
install any software. Second, our tool is intuitive. It has only four 
lines of instructions on how to use it. Third, we combined all the 
algorithms for unweighted graphs into one application and all the 
algorithms for the weighted graph into another application, rather 
to have a separate application for each algorithm. Once a graph is 
created, the user can apply different algorithms on the same graph. 
 
We use the animation in our data structures and algorithm course 
in Java. The course covers recursion, Java generics, use of Java 
collections framework for array lists, linked lists, stacks, queues, 
priority queues, sets, and maps, implementation of array lists, 
linked lists, stacks, queues, and priority queues, binary search trees, 
AVL trees, hashing, and graphs applications for unweighted graphs 
and weighted graphs. The graph algorithms is a small part in the 
course, which is covered at the end of the semester. The course is 
offered every semester.  
 
In the spring of 2015, we conducted a survey for a class of 26 
students. The survey has many questions. Two questions related to 
the graph algorithm animation are the following: 
 

1. Does the graph algorithm animation help you learn graph 
algorithms? 20 answered yes, 2 answered no, and 4 
answered “not sure”.  

2. Is the graph algorithm animation intuitive and easy to 
use? All answered yes.  

 
In the fall of 2015, we conducted a second survey for a class of 22 
students. This time, we used a scale of 1 to 10 for answers, where 
1 is poor and 10 is excellent. The result is as follows: 
 

1. Does the graph algorithm animation help you learn graph 
algorithms? The average answer is 7.4.  

2. Is the graph algorithm animation intuitive and easy to 
use? The average answer is 9.1. 
 

The survey strongly suggests that the tool is easy to use and helps 
students learn graph algorithms.  
 

7. IMPLEMENTATION OF THE 
ANIMATION  

The animations are implemented using HTML, CSS, and 
JavaScript. The user interface is created using HTML. The style is 
defined in CSS. The user interaction and algorithms are 
implemented using JavaScript. We define the classes Graph and 
WeightedGraph to model unweighted graphs and weighted graphs. 
WeightedGraph is a subtype of Graph. The algorithms such as DFS, 
BFS, minimum spanning tree, and shortest path are implemented in 
these classes. The complete code for these classes can be obtained 
from https://yongdanielliang.github.io/animation/web/Graph.js 
and 
https://yongdanielliang.github.io/animation/web/WeightedGraph.j
s. When the user clicks the right mouse button on the canvas, a new 
vertex is created. The addVertex method in the Graph class is 
invoked to add the vertex to the graph. When the user clicks the left 
mouse button on a vertex, the vertex is removed. The removeVertex 
method in the Graph class is invoked to remove the vertex from the 
graph. When the user drags the mouse button from one vertex to 
another, an edge between the two vertices is created. The program 
invokes the addEdge method in the Graph class to add the edge to 

the graph. Each button on the user interface corresponds to an 
algorithm. For example, when the user clicks the DFS button in 
Figure 3.2, the program invokes the dfs method in the Graph class 
to find a depth-first search tree. The tree is then displayed on the 
canvas in the user interface.  
 
The system is built using a modular approach. An animation for a 
new algorithm can be easily added by creating a button in the user 
interface and implementing the algorithm in the Graph class for 
unweighted graphs or in the WeightedGraph class for weighted 
graphs. 
 
The source code (HTML, CSS, JavaScript) for the animations can 
be viewed using the “view page source” function in the browser. 
With the knowledge of HTML, CSS, JavaScript, and graph 
algorithms, one can modify the code to add new animations for 
custom algorithms. 
 

8. LESSONS LEARNED 
We started the project to develop the animations for graph 
algorithms in 2008. Over the years, we have created the animations 
for many graph algorithms and continuously improved the 
animation based on the feedback from the students and instructors. 
There are several lessons learned from developing the animations 
and from using the animations in classrooms.  
 

• The first lesson learned is to make the animation easy to 
access. We initially developed the animation using Java 
applets. Due to security restrictions, many users cannot 
access the animation. We recreated the animation using 
HTML, CSS, and JavaScript. The animations now can be 
viewed anywhere from a browser on a computer and on 
a mobile device.  

 
• The second lesson learned is to make the animation 

simple to deploy. We initially developed the animation 
for each algorithm. We had a total of thirteen animations: 
an animation for DFS, an animation for BFS, an 
animation for finding a shortest path, etc. With so many 
animations, it is difficult to deploy and the user has to 
click many links to access the animation. Later we 
combined all the animations into two animations: one for 
unweighted graph algorithms and the other for the 
weighted graph algorithms. Now we just need to deploy 
two animations rather than thirteen separate animations. 

 
• The third lesson learned is to make the animation easy to 

use. In the early version, the animation lets the user enter 
the coordinates for each vertex and specify the edges in 
text boxes in order to create a graph. This proved to be 
difficult and time-consuming for the user to create a 
graph. Later we improved it by letting the user use the 
mouse gestures to add and remove vertices and create the 
edges. With the mouse gestures, the user can create a 
graph quickly and easily.  

 

9. FUTURE WORK 
We have improved the tool over the years. At present, the tool 
enables the user to create a graph, apply the algorithm on the graph, 
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and show the result of applying the algorithm. However, it does not 
show the intermediate steps to obtain the result. The future work is 
to expand the animation to show the user the step-by-step procedure 
for obtaining the results while still retaining the tool’s simplicity.  

10. CONCLUSIONS 
This paper presented graph algorithm animation that is a useful tool 
for teaching and learning graph algorithms. It enables instructors 
and students to create custom graphs and see how the graph 
algorithms work. We developed two animations: one for the 
unweighted graphs and the other for the weighted graphs. For the 
unweighted graph, our algorithm animation supports the depth-first 
search, breadth-first search, shortest path, Hamiltonian path/cycle, 
finding connected components, finding a cycle, and finding 
bipartite sets. For the weighted graph, our animation supports 
minimum spanning trees, shortest path trees, shortest path, and 
travelling salesman problem. The animations are freely accessible 
from https://yongdanielliang.github.io/animation/animation.html. 
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ABSTRACT 
In this project we designed an Artificial Neural Network (ANN) 
computational model to predict the activity of short 
oligonucleotide sequences (octamers) with important biological 
role as exonic splicing enhancers (ESE) motifs recognized by 
human SR protein SC35. Since only active sequences were 
available from the literature as our initial data set, we generated 
an additional set of complementary sequences to the original set. 
We used back-propagation neural network (BPNN) with 
MATLAB® Neural Network Toolbox™ on our research 
designated computer. In Stage I of our project we trained, 
validated and tested the BPNN prototype. We started with 20 
samples in the training and 8 samples in the validation sets. 
Trained and validated BPNN prototype was then used to test the 
unique set of 10 octamer sequences with 5 active samples and 
their 5 complementary sequences. The test showed 2 
classification errors, one false positive and the other false 
negative. We used the test data and moved into Stage II of the 
project. First, we analyzed the initial DNA numerical 
representation (DNR) and changed the scheme to achieve higher 
difference between the subsets of active and complementary 
sequences. We compared the BPNN results with different 
numbers of nodes in the second hidden layer to optimize model 
accuracy. To estimate future model performance we needed to 
test the classifier on newly collected data from another paper. 
This practical application included the testing of 41 published, 
non-repeating SC35 ESE motif octamers, together with 41 
complementary sequences. The test showed high BPNN accuracy 
in the predictive power for both (active and inactive) categories.   

This study shows the potential for using a BPNN to screen SC35 
ESE motif candidates.  
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J.3 [Life and Medical Science]: Biology and genetics.  
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1. INTRODUCTION 
1.1 Artificial Neural Networks (ANN) 
Over the past few decades, machine learning processes have 
become more sophisticated and useful in many different fields of 
theoretical and applied science, such as applied biology, 
biomedical research, medicine, and drug discoveries. These 
methods are based on pattern recognition capabilities [1, 2].  

The new and more advanced applications of these models now 
achieved a major growing momentum.  

They are now incorporated in text (spam filtering) and voice 
recognition (Alexa, Siri and Cortana), virtual video games, self-
driving cars, economic forecasting, health related scans and 
images to reveal any abnormal patterns related to different 
symptoms and many other fields. 
Among other computer-assisted approaches such as machine-
learning Decision Trees and Nearest Neighbors algorithms, the 
ANN–based schemes have gained probably the most attention 
and are now widely applied.  
The initial information (signal) is entering the network of 
‘neurons’ called nodes that is programmed to react to this initial 
signal and passed the transformed signal to other cluster of nodes 
so that other signal transformation could be performed. Part of the 
ANN design is to assign a finite number of these clusters (layers) 
together with the number of nodes in each layer. The general 
process of turning the initial input into the output information is 
the result of ANN program and model design. So, the computer 
is actually allowed to ‘learn’ specific information by repeating the 
very same process, and adjusting the connections intensity 
between the nodes till the required output is reached. ANNs are 
then used to solve the problems that are too difficult for both: 
people and our digital computers. Since these models work on 
pattern recognition they do not need any underlying data 
distribution function that is usually required prior to any statistical 
data analysis and the requirement of data normality before 
hypotheses testing.   
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1.2 Biological Aspects 
Literature [3, 4] and personal communication are the sources of 
active oligonucleotide sequences (class=1) used in this project.  
The authors used the SELEX [5] method to generate a set of 
sequences with 8 nucleotides (octamers) that were originally 
evaluated by calculated scores. 
 
Only unique octamers, each with the non-repeating sequence 
pattern were used in our project. Nucleotide frequencies of a 
single position of each individual active sequence were then 
combined into score matrix resulting in an assembly of more 
general, biologically active SC35 motif [GGCCCCTG] called 
consensus sequence that we also incorporated into our BPNN 
model. 
These active octamers (also named SC35 ESE motifs) play a 
major biological role during the process of exon splicing process 
as exonic splicing enhancers (ESE) that are recognized by human 
SR protein SC35. This protein is responsible for splicing of 
another enzyme called pyruvate dehydrogenase (PDH).  Any 
significant deficiency in the process of producing PDH complex 
is a major cause of lactic acidosis and mental retardation in 
childhood. SR proteins are involved in proper RNA splicing. 
They are named SR since this family of proteins is rather 
conserved and contains many repeats of serine (S) and arginine 
(R) amino acids [6].   
 

1.3 Goals 
The major objective of our project was to apply ANN concept and 
design the back-propagation neural network (BPNN) on available 
SC35 ESE motifs. DNA numerical representation (DNR) scheme 
was then applied to encode the nucleotide bases into numerical 
values representing each sequence. The set of signals was 
normalized and partitioned into two major subgroups:  
 

1. training and validation (train+val) subsets 
2. testing (test) subset 

 
Both of these subsets contained only unique signals, i.e. none of 
the test sequences were included in train+val subsets and vice 
versa. 
 
If the ANN prototype shows high accuracy in sequence 
classification into active (1) and non-active (0) groups then it 
might be potentially used as the screening tool for SC35 ESE 
motifs.   
   
2. METHODS  
The very first step was to extract active unique sequences in their 
letter description format as shown in Tables 1 and 2. It means the 
sequences of 8 letters combination of A, C, G, and T described as 
SC35 ECE motif. The letter format represents different types of 
nucleotides based on their chemical structure and biochemical 
properties:  
 
A = adenine 
C = cytosine 
G = guanine 
T = thymine 
 
Computer-assisted BPNN is usually considered at least 2-class 
pattern recognition system with one class representing active (1) 

feature vectors and the other class holding the non-active (0) 
feature vectors. In order to satisfy these criteria and make 
balanced model we generated the matrices with complementary 
sequences representing non-active output. It is based on the 
general biological rule that complementary sequences would not 
fit as SC35 ESE motifs. This process was a part of our BPNN 
script, so the complementary matrix was computationally 
generated according to the basic biology principles, where G is 
the complementary (or antisense) base of C and A is a 
complement to T.  
The conversion could be expressed by G ↔ C and A ↔ T.  
 
We started with 20 active sequences in training and 8 active 
octamers in the validation set with generated complementary non-
active sequences as shown in Tables 1 and 2.  
 
Table 1. Training set of 20 unique sequences 
 

ID	 Active	(1)	 Non-active	(0)	

1.	 GATCCCCG	 CTAGGGGC	

2.	 GGCTCGTG	 CCGAGCAC	

3.	 GGCCGCAG	 CCGGCGTC	

4.	 GGCCCACA	 CCGGGTGT	

5.	 GGTTGGCG	 CCAACCGC	

6.	 GTCCTCCG	 CAGGAGGC	

7.	 GTCCCCTG	 CAGGGGAC	

8.	 GTTCTGTA	 CAAGACAT	

9.	 GAATACCG	 CTTATGGC	

10.	 GGACCGTA	 CCTGGCAT	

11.	 GTCTAACG	 CAGATTGC	

12.	 AGCCTCAG	 TCGGAGTC	

13.	 GGATGGAG	 CCTACCTC	

14.	 GGACTGTA	 CCTGACAT	

15.	 GGTTGTTG	 CCAACAAC	

16.	 GAGCACTG	 CTCGTGAC	

17.	 TGTTACTA	 ACAATGAT	

18.	 GGCTCCAA	 CCGAGGTT	

19.	 GGATCCGG	 CCTAGGCC	

20.	 GACCTGCT	 CTGGACGA	

 
 
Table 2. Validation set of 8 unique sequences 
 

ID	 Active	(1)	 Non-active	(0)	

1.	 GTTTCGAG	 CAAAGCTC	

2.	 GGTCGCCG	 CCAGCGGC	

3.	 GGTCAGTG	 CCAGTCAC	

4.	 GGCTGATG	 CCGACTAC	
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5.	 CGCCCTTG	 GCGGGAAC	

6.	 AGCTCCCA	 TCGAGGGT	

7.	 GACCGGTG	 CTGGCCAC	

8.	 GACTAGAA	 CTGATCTT	

 
In any machine learning process, DNA sequence are converted to 
numerical values for data representation and feature learning 
related to specific biological or biochemical application. The 
distinct nature of the DNA sequence being discrete in the 
‘amplitude’ and ‘time’ offers multiple DNA numerical 
representation (DNR) techniques in the form of single or 
multidimensional array. Current DNR techniques could be 
divided into three main categories: single-value mapping, 
multidimensional sequence mapping, and cumulative sequence 
mapping [7].  
 
 Integer, real number, and measurement representations 
are still frequently used encoding schemes. In many scenarios of 
single-value mapping A, C, G, and T are assigned to a single 
indicator such as 1, 2, 3, and 4. This scheme (also called Galois 
field) is also feasible for a complementary encoding because it 
provides symmetric deviations between both groups.  Also, it was 
used in the past for DNA barcode in large-scale screening of 
multiple genomic core databases. Other direct encoding schemes 
include Atomic representation, where each nucleotide is assigned 
its atomic number (i.e. number of protons) [C=58, T=66, A=70, 
and G=70]. Calculated electron energies for each nucleotide 
[C=0.1340, T=0.1335, A=0.1260 and G=0.0806] are the core of 
Electron-Ion Interaction Pseudopotential (EIIP) single-value 
scheme, while the Molecular Mass encoding is applied in 
mapping DNA sequences based on molecular mass of different 
nucleobases [C=110, T=125, A=134, and G=150] with atomic 
mass units.  
 
 Multidimensional sequence mapping include binary 
sequence indicators such as A=[00], C=[11], G=[10], and T=[01]; 
4-bit representation with A=[1000], C=[0100], G=[0010], and 
T=[0001]. 
 
 Cumulative representation include Z-curve, DNA walk 
and other more complex DNA encoding schemes.  
 
Currently, no DNR is considered to be the ‘gold standard’ and the 
choice is usually driven by the applicable biological aspects and 
the specific goals of the machine learning project. 
 
We selected direct, single-mapping Galois field encoding method 
because it provides uniform distance between active and non-
active (complementary) sequences with symmetric deviations. 
Other advantage is to use simple barcode method to label each 
sequence for automated sequence screening. It also supports our 
biological goals of the project to separate the signals for active 
and non-active octamers.  However, this structure might imply 
that pyrimidines (C and T) are in some respect ‘greater than’ 
purines (A and G), which is a disadvantage of this encoding 
method. 
 

Table 3 represents 10 octamers that we used to test BPNN model. 
This is a data set of unique sequences with known activities. Five 
of them are active and five of them are from the non-active group. 
None of these sequences were previously used in training and 

validation subset. Active samples (1, 4, 5 and 10) are from the 
published article [3], sample 9 was added based on the private 
communication [Luke, personal communication]. 
 
 
 
  
Table 3. Testing subset of 10 unique sequences 
 

ID	 Designation	 Class	
1.	 GATCGCTG	 1	
2.	 AGTCGGAT	 0	
3.	 CTCATTGC	 0	
4.	 GGCCCCTG	 1	
5.	 GGACGCTG	 1	
6.	 CCGGGGAC	 0	
7.	 CTAGCGAC	 0	
8.	 CCTGCGAC	 0	
9.	 TCAGCCTA	 1	
10.	 GAGTAACG	 1	

 
 

Figure 1 shows the general ANN based on one-layer hidden units, 
where all nodes have the same number of weights (synapses) and 
all receive the input signal simultaneously.  
 

 
 
Figure 1. General assembly of neural network processing  
 

Action of formal neuron (node) consists in summing all weighted 
inputs (wi) transformed via activation function into output signals 
(oj). BPNN default is the sigmoid function. 

               
 

Volume 9, Issue 2 Journal of Computational Science Education

32 ISSN 2153-4136 December 2018



Figure 2. ANN node action with sigmoid transformation 
  function  
 
 
 

 
3. RESULTS AND DISCUSSION 
3.1 Project Stage I 
The initial step in BPNN design was to generate Galois field 
numerical encoding for A = 1, T = 2, C = 3, and G = 4.  
Active sequences were added into BPNN MATLAB script with 
activity equal to 1. The next part of the script generated the 
complementary, non-active sequences that were used to balance 
the BPNN model. All data went through the normalization into 
[0, 1] interval across each feature matrix.  
 
In this project we used a supervised training where both the input 
signal and the output activity are provided. The network 
transforms the inputs with connection weights through the nodes 
and layers and calculate the errors between the resulting and 
desired outputs. Errors are then propagated back through the 
network to adjust the weights which control the network 
assembly. During this learning process the training data set is 
processed many times as the connection weights are continually 
adjusted and finally refined.  
 
Validation process that is parallel to training enables to validate 
the final model specification with the validation data set. The 
model is trained on the training set and the error is calculated on 
the validation set multiple times while adjusting the weights. It is 
used to analyze the value of parameters in the model which 
usually results in less error on validation set. 
 
Testing provides then an unbiased evaluation of a final model fit 
on the training dataset.   
 
For our BPNN model we used the seed for the random number 
generator applied for the initial weights to be equal 1. 
 
BPNN component was applied with multiple variables:  

 
• Convergence error (SSE): usually about 0.0001 
• Number of iterations: 100 
 
Samples not previously included in training process were used for 
the validation.   
Finally, we tested the BPNN classifier with test data set (i.e. 10 
unique octamers with known output 0 or 1) in specific model 
conditions with 8 nodes in the first layer and 6 nodes in the second 
hidden layer.  
 
 
Table 4. BPNN classification of test sequences 
 

ID	 Letter	
Designation	

Known	
classification	

BPNN	
classification	

1.	 GATCGCTG	 1	 0.9935	
2.	 AGTCGGAT	 0	 0.8843	
3.	 CTCATTGC	 0	 0.0046	
4.	 GGCCCCTG	 1	 0.9934	

5.	 GGACGCTG	 1	 0.9949	
6.	 CCGGGGAC	 0	 0.0028	
7.	 CTAGCGAC	 0	 0.0043	
8.	 CCTGCGAC	 0	 0.0044	
9.	 TCAGCCTA	 1	 0.0027	
10.	 GAGTAACG	 1	 0.9958	

Training	error	 0.0144	
Validation1	error	 0.9769	
Validation0	error	 0.9821	
Testing	error	 2	

 
Classification with the BPNN model under the specific conditions 
revealed 2 errors. Non-active sample 2 was predicted to be active 
(false positive), while the active sequence 9 was misplaced by 
BPNN model into the cluster of non-active sequences (false 
negative). We were not satisfied with model performance and 
moved into Stage II of the project.  
 

3.2 Project Stage II 
We started this stage with graphical interpretation of active and 
non-active feature vectors that provided the partial key to the 
problem. Our computer script generated the matrix of 
complementary (non-active) sequences based on the given 
instructions with the application of the existing biology rules. Our 
complementary sequences were generated with the absolute 
difference of 1 between nucleobases A and T and C and G. 
 
                    | A – T | = | 1 – 2 | = | C – G | = | 3 – 4 | = 1 
 

The data analysis of the initial train+val sequence subsets showed 
that the majority of the active sequences (86%) started with the 
first nucleotide G (C for complementary sequences). All tested 
sequences starting with G or C were then correctly classified by 
BPNN model. However, in the initial train+val subsets we also 
had total of 3 sequences starting with A nucleotide (2 active and 
1 non-active). The active sequences started with AG and non-
active AC dinucleotide. Size limitation of the training set could 
be the potential reason of the lower performance of our BPNN 
model resulting in misclassification of 2 tested sequences. 

In attempt to reduce misclassification error we applied higher 
resolution between the active and non-active categories to further 
separate both of these subsets in their space. We went back and 
changed the initial single-value DNR scheme to achieve higher 
and constant difference between both groups.  
 
        If A = 2, T = 4, C = 3, and G = 1, then  
              | A – T | = | 2 – 4 | = 2 and | C – G | = | 3 – 1 | = 2  
 

We also created a 2-D distribution chart to differentiate between 
active and non-active categories. Graph 1 displayed a complete 
overlap of both groups at position 3 and some partial overlaps at 
positions 2, 4, and 5, respectively.  
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Graph 1. Distribution of 10 tested sequences 
 
In the following step of Stage II we tried different numbers of 
nodes in the second hidden layer in order to find an optimal 
estimate.  
The results are summarized in Table 5 together with training, 
validation, and test errors. 
 
Table 5.  BPNN outputs for tested sequences with variable  
 number of nodes in the second hidden layer 
 
 

ID	 Class	 #	
nodes	1	

#	
nodes	2	

#	
nodes	3	

#	
nodes	4	

1.	 1	 0.9946	 0.9964	 0.9963	 0.9970	
2.	 0	 0.0589	 0.1048	 0.0371	 0.0291	
3.	 0	 0.0091	 0.0064	 0.0014	 0.0033	
4.	 1	 0.9948	 0.9966	 0.9970	 0.9967	
5.	 1	 0.9940	 0.9963	 0.9967	 0.9964	
6.	 0	 0.0075	 0.0043	 0.0013	 0.0023	
7.	 0	 0.0077	 0.0050	 0.0013	 0.0028	
8.	 0	 0.0084	 0.0045	 0.0013	 0.0035	
9.	 1	 0.0094	 0.0051	 0.0014	 0.0058	
10.	 1	 0.9930	 0.9971	 0.9967	 0.9969	
Training	error	 0.0292	 0.0104	 0.0125	 0.0113	

Validation1	error	 0.0086	 0.0054	 0.0063	 0.0048	
Validation0	error	 0.0163	 0.0114	 0.0020	 0.0082	
Testing	error	 1	 1	 1	 1	

ID	 Class	 #	
nodes	5	

#	
nodes	6	

#	
nodes	7		

#	
nodes	8	

1.	 1	 0.9962	 0.9969	 0.9891	 0.9951	
2.	 0	 0.3789	 0.0129	 0.4544	 0.0792	
3.	 0	 0.0070	 0.0042	 0.0048	 0.0051	
4.	 1	 0.9972	 0.9968	 0.9894	 0.9955	
5.	 1	 0.9966	 0.9971	 	0.9894	 0.9951	
6.	 0	 0.0040	 0.0043	 0.0044	 0.0053	
7.	 0	 0.0042	 0.0041	 0.0045	 0.0048	

8.	 0	 0.0049	 0.0044	 0.0055	 0.0059	
9.	 1	 0.0043	 0.0047	 0.0057	 0.0070	
10.	 1	 0.9974	 0.9963	 0.9896	 0.9948	
Training	error	 0.0141	 0.0084	 0.0170	 0.0216	

Validation1	error	 0.0062	 0.0046	 0.0125	 0.0082	
Validation0	error	 0.0087	 0.0078	 0.0121	 0.0141	
Testing	error	 1	 1	 1	 1	

 

Based on calculated training, validation, testing errors and the 
BPNN overall performance, the optimal estimate is represented 
by 6 nodes in the second hidden layer.  
Variables of the optimal BPNN prototype: 

• Convergence error (SSE): 0.0001 
• Number of iterations: 100 
• Number of nodes in the first layer: 8 
• Number of nodes in second (hidden) layer: 6 

 

3.3 Testing larger database 
We used Stage I test data to initiate Stage II and to optimize the 
number of nodes in the second hidden layer, so the test 
performance is likely an optimal estimate. To evaluate future 
performance, we needed to test the classifier on newly collected 
data from another paper [6]. The authors provided the list of 128 
active SC35 ESE motif sequences specifically arranged by 
different tissues, genes, and selected organs. They proposed 
highly conserved SC35 motif between tissues, among different 
genes, and within the same chromosome. They showed a slight 
variation in the SC35 ESE sequence motif among human 
chromosomes, with the conserved G nucleotide at the very first 
position of all active sequences.  

The set included multiple sequence duplicates as they occurred in 
several tissues and various genes, and chromosomes. Prior to the 
test we removed all duplicates (87 sequences) and used the total 
of 41 unique active sequences together with 41 complementary 
non-active sequences with our optimal BPNN classifier. Again, 
none of these tested sequences were included in our BPNN 
train+val sets.  

Model classification, together with training, validation and test 
errors are summarized in Table 6.  
 

Table 6.  Prediction for 41 active and complementary  
 sequences with the optimal BPNN model  
 

ID	 Class	(1)	 BPNN	 Class	(0)	 BPNN	

1.	 GACCCCTG	 0.9917	 CTGGGGAC	 0.0039	

2.	 GACCTCTG	 0.9916	 CTGGAGAC	 0.0034	

3.	 GACCACTG	 0.9917	 CTGGTGAC	 0.0027	

4.	 GATCACTG	 0.9920	 CTAGTGAC	 0.0033	

5.	 GATCCCTG	 0.9922	 CTAGGGAC	 0.0050	

6.	 GGCCCCTG	 0.9922	 CCGGGGAC	 0.0053	

7.	 GGCTCCTG	 0.9920	 CCGAGGAC	 0.0122	

8.	 GACTCCTG	 0.9920	 CTGAGGAC	 0.0058	

9.	 GACTCCCG	 0.9917	 CTGAGGGC	 0.0048	

10.	 GACCCCCG	 0.9917	 CTGGGGGC	 0.0035	
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11.	 GACCACCG	 0.9922	 CTGGTGGC	 0.0025	

12.	 GGCCCCCG	 0.9913	 CCGGGGGC	 0.0046	

13.	 GGCCTCTA	 0.9921	 CCGGAGAT	 0.0032	

14.	 GGCCTCTG	 0.9913	 CCGGAGAC	 0.0047	

15.	 GGCCTCCA	 0.9921	 CCGGAGGT	 0.0029	

16.	 GGCCTCCG	 0.9915	 CCGGAGGC	 0.0041	

17.	 GGCCCCTA	 0.9907	 CCGGGGAT	 0.0036	

18.	 GTCTCCTG	 0.9888	 CAGAGGAC	 0.0433	

19.	 GTCCCCTA	 0.9923	 CAGGGGAT	 0.0090	

20.	 GGCTCCAG	 0.9922	 CCGAGGTC	 0.0205	

21.	 GGCCCCAG	 0.9915	 CCGGGGTC	 0.0068	

22.	 GGCCCCCA	 0.9924	 CCGGGGGT	 0.0032	

23.	 GGCTACTG	 0.9920	 CCGATGAC	 0.0121	

24.	 GGCTTCTG	 0.9925	 CCGAAGAC	 0.0119	

25.	 GGCTGCTG	 0.9922	 CCGACGAC	 0.0118	

26.	 GGCCACTG	 0.9922	 CCGGTGAC	 0.0039	

27.	 GGCCGCTG	 0.9922	 CCGGCGAC	 0.0042	

28.	 GGCTCCTA	 0.9916	 CCGAGGAT	 0.0057	

29.	 GGCTCCCG	 0.9923	 CCGAGGGC	 0.0093	

30.	 GGCTCCCA	 0.9917	 CCGAGGGT	 0.0047	

31.	 GACTCCCA	 0.9912	 CTGAGGGT	 0.0032	

32.	 GATTTCCG	 0.9921	 CTAAAGGC	 0.0059	

33.	 GATTCCCG	 0.9923	 CTAAGGGC	 0.0065	

34.	 GACTTCCG	 0.9917	 CTGAAGGC	 0.0044	

35.	 GACCTCCG	 0.9916	 CTGGAGGC	 0.0031	

36.	 GACCTCCA	 0.9904	 CTGGAGGT	 0.0024	

37.	 GACCTCTA	 0.9904	 CTGGAGAT	 0.0026	

38.	 GACCCCCA	 0.9906	 CTGGGGGT	 0.0027	

39.	 GACCCCTA	 0.9907	 CTGGGGAT	 0.0029	

40.	 GACTTCTG	 0.9916	 CTGAAGAC	 0.0052	

41.	 GGCCTCAG	 0.9920	 CCGGAGTC	 0.0063	

Training	error	 0.0205	

Validation1	error	 0.0107	

Validation0	error	 0.8008	

Testing	error	 0	

 
The test confirmed that the BPNN prototype satisfactory 
distinguishes between all 41 proposed SC35 ESE active motifs 
and their compliments with high accuracy in BPNN classification 
performance.  
 

4. CONCLUSION 
In our research project we used ANN script to construct a 
functional back-propagation neural network (BPNN) model. We 
designed this model in order to classify the short oligonucleotide 

sequences with 8 nucleotide elements (octamers) into two 
categories: active (1) and non-active (0) clusters. The visual 
interpretation of the data (Graph 1) shows some partial overlaps 
of both groups on multiple feature vector elements, which 
supports our decision to apply neural network concept. Statistical 
data analysis requires a prior knowledge of data distribution, 
which could be very complex in case of any overlap. Also, all 
elements of the feature vector are discrete values in relatively 
small data set which will most likely require non-parametric 
statistical analysis.  

We used single-value scheme to encode sequence letter 
description into numerical designation. The model was trained 
with 20 active sequences and validated with the set of 8 active 
sequences. In order to keep the model balanced the 
complementary, non-active sequences were generated. The initial 
virtual screen included 10 unique sequences from the testing data 
set (5 active and 5 non-active sequences) used to assess the model 
accuracy and overall performance. After the BPNN model update 
we tried different number of nodes (1-8) in the second hidden 
layer to determine the optimal model.  

We tested our optimal BPNN prototype on larger data set of 82 
unique (41 active and 41 non-active) sequences and the results of 
the data classification revealed high model accuracy for this data 
set.   
 

5. FUTURE WORK 
For future work we could test any proposed CS35 ESE motif 
candidate or use the BPNN prototype to screen any sequence 
database for a potential match. We might also draw random 
biological sequences that are not known to be SC35 ESE motif 
candidates and detect how many of them are classified by BPNN 
as active.  
The initial published data were listed with their scores that were 
calculated using a score matrix. Another type of future work 
would be to incorporate this information into our model, i.e. not 
just to classify the data into active and non-active subsets but add 
some degree to the activity and answer the question:  “If active, 
how much activity is predicted?”  
Also, it would be beneficial to create and compare additional 
classification prototypes based on different DNA numerical 
representation (DNR) methods such as binary indicators and 
OneHot Encoder and additional classification procedures such as 
decision trees or k-nearest neighbor algorithm.  
 

6. REFLECTIONS  
The project described in this paper was the very first research 
project for all undergraduate students in my research group. They 
all actively participated on this project as each of them designed 
their own ANN model. The major attraction for all students was 
the introduction of artificial intelligence in the computer-assisted 
model and the practical application of the BPNN prototype on real 
SC35 ESE motif sequences. 
This project provided the students with multiple opportunities to 
participate on each stage of the project, starting with the literature 
research, learning the basics of MATLAB computing together 
with Neural Network Toolbox, join the time consuming journey 
to design the proper ANN model through the training, validation, 
and testing procedures. They were all rather skeptical after the 
Stage I about the real possibility to enhance model 80% accuracy. 
The first run after model update in Stage II showing improved to 
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90% accuracy on small tested data was accepted with contagious 
joy and new motivation to continue and apply BPNN prototype 
on larger data set. I know that during this project all students 
learned many invaluable skills that they could apply to their future 
education or work. They all have a better understanding of the 
advantages of applied neural network models as well as the 
limitation of such models. Students also used this research 
opportunity and presented their work during all project stages in 
multiple forums, including poster and oral presentations at local, 
state and national conferences.  Their poster was accepted for an 
oral presentation on ACS National Meeting & Exposition, as well 
as on ASBMB National Meeting.     
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ABSTRACT 

With the recent advances in next generation sequencing 
technology, analysis of prevalent DNA sequence variants from 
patients with a particular disease has become an important tool 
for understanding the associations between the disease and 
genetic mutations. A publicly accessible bioinformatics pipeline, 
called OncoMiner (http://oncominer.utep.edu), was implemented 
in 2016 to help biomedical researchers analyze large genomic 
datasets from patients with cancer. However, the current version 
of OncoMiner can only accept input files with a highly specific 
format for sequence variant description. In order to handle data 
from a broader range of sequencing platforms, a data 
preprocessing tool is necessary. We have therefore implemented 
the OncoMiner Preprocessing (OP) program for parsing data files 
in the popular FastQ and BAM formats to generate an OncoMiner 
input file. OP involves using the open source Bowtie2 and 
SAMtools software, followed by a python script we developed for 
genetic sequence variant identification. To preprocess very large 
datasets efficiently, the OP program has been parallelized on two 
local computers and the Blue Waters system at the National 
Center for Supercomputing Applications using a multiprocessing 
approach. Although reasonable parallelization efficiency has 
been obtained on the local computers, the OP program’s speedup 
on Blue Waters has been limited, possibly due to I/O issues and 
individual node memory constraints. Despite these, Blue Waters 
has provided the necessary resources to process 35 datasets from 
patients with acute myeloid leukemia and demonstrated 
significant correlation of OP runtimes with the BAM input size 
and chromosome diversity. 

Keywords 
Next generation sequencing, Genetic sequence variants, Cancer, 
OncoMiner pipeline, Data preprocessing, Acute myeloid 
leukemia, High performance computing, Blue Waters, 
Multiprocessing, Python scripts.  
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1 INTRODUCTION 

Many serious diseases, such as cancer [1], cystic fibrosis [2] and 
multiple sclerosis [3], are often linked to genetic mutations in the 
human genome. Identification of mutations prevalent in 
individuals with a given illness helps establish associations 
between the mutations and the disease.  This is exemplified in 
acute myeloid leukemia (AML) with the genes DNMT3A, 
ASKL1, TET2, IDH1 and IDH2 linked to early disease 
progression [1]. With the recent advances in next generation 
sequencing (NGS), genomic sequences of an increasing number 
of cases have been made available. These data have enabled 
scientists to perform detailed data analyses to look for 
associations between diseases and DNA mutations, called genetic 
sequence variants (GSVs). 

OncoMiner [4] (http://oncominer.utep.edu) is a publicly 
accessible bioinformatics pipeline developed at the University of 
Texas at El Paso (UTEP) for analyzing large genomic datasets 
from patients with cancer. OncoMiner’s functionalities include 
linking GSVs with published research literature, visualization of 
their chromosomal locations, and performing statistical 
comparisons of their occurrence frequencies among different 
groups of subjects. As OncoMiner was originally developed for 
analyzing the GSVs from NGS and GSV identification services 
provided by Otogenetics Corporation, the input files for the 
OncoMiner pipeline were restricted to a particular format with a 
set of specific terms describing the type and location of each 
GSV. In order to utilize OncoMiner on more general datasets 
coming from other NGS platforms (e.g., the Illumina NextSeq 
sequencer in the UTEP Genomic Analysis Core Facility), data 
preprocessing needs to be performed in order to provide an input 
file that can be passed to OncoMiner for GSV analysis.  

The purpose of this project was to develop an efficient program 
to preprocess NGS data, extract the necessary information and 
write it in a suitable format to be inputted to OncoMiner for 
further analysis. NGS data files are typically large, in the order of 
tens of gigabytes (GBs) and downstream analysis in OncoMiner 
usually involves multiple samples from the cancer group and the 
control group. Serial preprocessing of such datasets on our local 
computers would take excessive amount of time to complete all 
the tasks. A high performance computing system such as Blue 
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Waters that allow multiple samples to be processed 
simultaneously would be essential.   

In this paper, we describe the implementation of a program to 
preprocess NGS data files in the popular FastQ and BAM 
formats, converting them to files in csv format that can be 
inputted to the OncoMiner pipeline on three parallel computing 
platforms. Some background information about NGS data and the 
OncoMiner input requirements is given in the next section. The 
Methods section describes the steps taken to complete the data 
preprocessing using a multiprocessing approach. This 
preprocessing program is tested with a collection of 35 datasets 
from patients with AML. The resulting runtimes, speedup, and 
efficiencies are presented in Section 4, where we also discuss 
various issues encountered during the parallelization process. The 
conclusion and our ongoing investigations are given in section 5. 

2 BACKGROUND 

Human genetic information is stored in DNA molecules 
contained inside 23 pairs of chromosomes, designated 
chromosomes 1, 2,…, 22, and X. Each chromosome contains a 
DNA molecule represented by a very long string of letters from 
the four-letter alphabet denoting the nucleotide bases adenine (A), 
cytosine (C), guanine (G), and thymine (T).  The lengths of 
human DNA molecules are in the range of approximately 48 
million - 250 million nucleotides. DNA has a double stranded, 
antiparallel structure. One end of each strand is labeled 5’ and the 
other labeled 3’. Genetic information in DNA can be found on 
either strand and is always read from the 5’ end to 3’ end. 

There are three common types of point mutations that cause 
genetic information changes: (1) substitution occurs when a 
nucleotide is substituted by another; (2) insertions are “extra” 
nucleotides inserted into the sequence; (3) deletions are the 
removal of nucleotides. An example of each type is shown in 

Figure 1. The top line is the reference sequence. A substitution of 
nucleotide “C” by “A” occurs at position 7 of line 2. In line 3, the 
nucleotide “A” is inserted after position 25. The four nucleotides 
“AACC” at position 13 – 16 are deleted in line 4. 

A gene comprises multiple segments of DNA that are necessary 
to transcribe and translate encoded genetic information into a 
protein. DNA is transcribed into RNA containing both exons and 
introns initially.  During the process of RNA splicing, introns are 
removed and the exons are joined to form a continuous, mature 
mRNA. Except for the small stretch of nucleotides at the 5’ end 
and the 3’ end of the mRNA, the rest of the transcript form the 
coding sequence (CDS) that will be translated into a protein. A 
description of the organization of DNA transcriptional elements 
can be found at http://www.scfbio-iitd.res.in/research/orf.html. 
GSVs within the CDS of a gene can either be synonymous or non-
synonymous. Synonymous variants do not change the resulting 
protein, but non-synonymous variants do. Non-synonymous 
GSVs can directly affect biological functions and are generally of 
greater biomedical concern. 

NGS is a high-throughput technology for DNA sequencing. It 
allows for large amounts of sequences to be obtained much faster 
and cheaper than the traditional Sanger sequencing procedure that 
produces one sequence at a time.  Some NGS platforms can 
generate up to 20 billion reads or 6 TB of data per run. The results 
are often stored in FastQ format (Figure 2A), which contains 
nucleotide sequences and their respective sequencing quality 
scores. Programs like Bowtie2 [5] and Burrows-Wheeler Aligner 
(BWA) [6] align the sequences obtained by NGS to a reference 
human genome and store the results in a sequence alignment map 
(SAM) file or its binary equivalent BAM file. The SAM format 
(Figure 2B) contains information about the location and nature of 
the differences from the reference sequence, and quality scores 
among other things.  

Currently, a number of open-source programs are available for 
GSV identification and analysis. For example, ANNOVAR [7] is 
a tool for ANNotation Of genetic VARiants. VEP (Variant Effect 
Predictor) uses different scoring schemes to evaluate 

Figure 1. Three types of point mutations in DNA: 
substitution, insertion, and deletion.  

ATCGGGCCAAAAAACCCCCGCGCGCGAAAAATTTTT  Ref Sequence 
ATCGGGACAAAAAACCCCCGCGCGCGAAAAATTTTT  Substitution 
ATCGGGCCAAAAAACCCCCGCGCGACGAAAAATTTTT Insertion 
ATCGGGCCAAAA____CCCGCGCGCGAAAAATTTTT  Deletion 

A 

B 

Figure 2. Examples of FastQ (panel A) and SAM (panel B) input files. 
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consequences of genetic mutations. SNPeff [8] is a set of tools for 
annotating and predicting the effects of GSVs on genes. MuSiC 
[9] is a package that provides statistical methods to identify 
significantly mutated genes. Each of these program packages 
contains their own preprocessing procedures for converting NGS 
data files to the required format for downstream analysis. 

The OncoMiner pipeline [4] was originally developed in support 
of researchers in the UTEP Border Biomedical Research Center 
for the investigation of GSVs from a group of patients with 
leukemia in the El Paso Children’s Hospital. The current 
OncoMiner pipeline provides the necessary tools for literature 
search, visualization, and statistical analysis with control of false 
discovery rates in one package, but it can only accept input files 
in a specific format that comes from the NGS and GSV 
identification services provided by Otogenetics Corporation. 
However, as the scope of the study expands and more genome 
sequencing is now being done at different locations by different 
sequencers, an additional data preprocessing step is needed to 
obtain the required information to generate an OncoMiner input 
(OMI) file. 

At a minimum, an OMI file requires 11 data items for each variant 
as shown in Figure 3. These include a unique numeric identifier 
(var_index), its position on the reference genome (chrom, left and 
right), gene name (gene_name), the nucleotides involved (ref_seq 
and var_seq1), the number of sequences obtained (count) and an 
averaged sequencing quality score over those sequences 
(var_score). Additionally, if a variant is within a transcript, the 
where_in_transcript field states whether the variant falls on a 
CDS, an intron, or an untranslated region. The field change_type1 
tells whether the variant is synonymous or nonsynonymous if it 
is within a CDS. In the next section, we will describe the steps 
involved to get the above information from an NGS dataset of an 
individual in FastQ or BAM format and prepare the OMI file. 

3 METHODS 

3.1 Overall Workflow  

The OncoMiner Preprocessing (OP) program has three 
components. First, the open-source Bowtie2 aligner [5] is used to 
align the sequence data in a FastQ file to a reference human 
genome to produce a BAM file. Second, we use the SAMtools 
software toolkit [10], along with our file-splitting awk script to 
sort the aligned data and separate them by chromosomes. Finally, 
we have developed a mutation-calling (MC) python script to 
identify GSVs and generate the OMI file for input into 
OncoMiner.  The overall workflow is displayed in Figure 4 and it 

has been implemented on two Linux-based local computers as 
well as the Blue Waters system at the National Center of 
Supercomputing Applications (NCSA). 

3.2 Alignment by Bowtie2 

An NGS data file, in FastQ format (Figure 2A), would first go 
through Bowtie2 [5], which aligns sequences in the FastQ file to 
the reference human genome version GRCh38 (Genome 
Reference Consortium human build 38), available at the 

Figure 4. Workflow through which a FastQ or BAM file is 
processed to become an OncoMiner Input (OMI) file.  

 

Figure 3. OncoMiner Input (OMI) file example 

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 39



  

University of California at Santa Cruz (UCSC) Genome Browser 
[11]. These alignments are stored as a sequence alignment map 
(SAM) file as shown in Figure 2B or its binary equivalent BAM 
file. The SAM file contains readable text with the DNA sequence 
fragments as well as descriptions that include read lengths, 
ASCII-encoded quality scores of each nucleotide, chromosomal 
positions and mutation information in comparison to the reference 
sequence.  The corresponding BAM file contains the same 
information in binary format, and has a much smaller file size. 

3.3 File Sorting using SAMtools 

The SAMtools sort and index functions are used on the BAM file 
generated by the alignment step above in order to group the GSVs 
on the same chromosome together and sort them by their positions 
on the chromosome. At this point, the SAMtools view function is 
used to extract information from the sorted BAM file and write 
them to 23 readable SAM files each containing the sorted, 
chromosome specific GSVs. These 23 chromosome specific 
SAM files are named Chr1, Chr2,…, Chr22, and ChrX in Figure 
4, where Cn stands for chromosome n for n = 1,…, 22, and ChrX 
the sex chromosome (generally only chromosome X is sequenced 
even for a male subject as the chromosome Y is considered 
sufficiently similar to a portion of chromosome X). 

When handling large BAM files on computers with limited 
memory (e.g., 32 GB), out-of-memory (OOM) errors sometimes 
occur when running the SAMtools sort function. This problem is 
circumvented by using an awk script to split a BAM file with size 
exceeding a threshold (e.g., 5 GB) into four pieces, each of which 
is then sorted by chromosome as described above. The threshold 
can be adjusted by the user according to the available amount of 
memory in the particular machine running the program. The four 
files associated with each chromosome are then joined back 
together by the cat command before feeding into the next step for 
GSV identification. 

3.4 GSV Identification and Mutation-Calling  

To identify GSVs and build the OMI file for input into 
OncoMiner, we have developed the mutation-calling (MC) script 
to parse the information contained in the chromosome specific 
SAM files from the previous sorting step. Information for most of 
the required fields in the OMI file, such as the GSV location, 
nucleotides involved, gene name, can be parsed directly from the 
SAM files. However, classifying the genomic region type for 
each variant is not as straightforward. GSVs have to be classified 
based on information obtained from the UCSC Genome Browser 
in the form of a refflat file (Figure 5) [12], which contains 

reference information for the start and end positions of various 
genes, introns, exons, and untranscribed regions.  

Using this information, each GSV can be classified according to 
the decision tree shown in Figure 6. Each unique GSV is given an 
identifier consisting of the chromosome number and the position 
of the GSV within the chromosome. It is then added to the GSV 
dictionary. For each sequence containing the GSV, the site is 
counted and the sequence quality is tracked. Once all the 
sequences have been processed, GSVs that fail to meet minimum 
quality scores and sequence depth specified by the user are 
removed. 

3.5 Parallelization  

Bowtie2 is an open-source program that can run in parallel by 
simply specifying the number of processors in the command. In 
contrast, the SAMtools functions are designed to run in serial so 
we have not attempted any parallelization for them. However, the 
process of extracting GSV information from the sorted BAM file 
to produce the chromosome specific SAM files has been 
parallelized using different processors to extract the information 
for different chromosomes and write to different files.  

For GSV identification, we have created the GSVId function that 
makes use of the Python multiprocessing module to run the MC 
script in parallel, distributing the chromosome specific files to run 
on different cores. Since the first two chromosomes contain the 
largest number of genes and are likely to take the longest to run, 
we start with assigning these two chromosomes to two cores first, 
and then the others to the remaining available cores. 

3.6 Implementation and Testing 

Position	of	
GSV

Within	
transcript	

Exon

Translated

Synonymous Non-
synonymous

Not	
translated

Intron

Outside	
transcript

Not	close	
to	gene

Close	to	
gene

5’	untranscribed 3’	untranscribed

Figure 6. GSVId decision tree. The MC script classifies 
mutations according to their positions in relation to genetic 

transcripts. All decisions are based on gene information 
within the refflat file except for “Close to gene” which is a 

tunable parameter set as a default of 5000 nucleotides from 
either beginning or end of transcript. 

cv 

Figure 5. Example of a refflat file. 
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The OP program has been implemented on two local computers 
at UTEP. The first one is BioTower, a Dell Precision 5810 
containing an Intel Xeon E5-1650 with a 12-core processor and 
32 GB memory. The second machine is BinfCompute, a more 
powerful Dell PowerEdge R730 with 32 cores (dual Intel Xeon 
E5-2667 processors with 16 cores) and 256 GB memory. Both 
computers have CentOS 7 as operating system and use the OS 
default version of Python (v2.7).  The required Python modules, 
Bowtie2, SAMtools and reference files are locally available on 
these machines.  

For initial testing of OP, we used a FastQ file generated by our 
local DNA sequencer in the Genomics Core Facility in the Border 
Biomedical Research Center at UTEP.  The file was 7.3 GB in 
size containing 29 million 100-base long sequences spanning all 
23 human chromosomes.  OP was run on both machines using 
varying number of cores to check that parallelization of each step 
has been achieved. The final output file of OP was inputted to 
OncoMiner to check that a legitimate OMI file was produced.  

For further performance testing, we have also implemented OP 
on the Blue Waters system, a Cray XE/XK hybrid machine 
composed of AMD 6276 Interlagos processors running the 
Cray Linux Environment. Our OP program implementation uses 
only one high memory XE node with 128 GB total memory to 
process the dataset from one individual. The Blue Waters Python 
software stack bwpy and PrgEnv-gnu modules have to be loaded 
in order to use Python and the GNU programming environment 
respectively.  

A collection of BAM files containing the aligned sequence 
information of 35 patients with AML was obtained from The 
Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) for 
testing [13]. These file sizes range from 15 to 54 GB. In all the 
test runs, runtimes were determined using the Linux time 
command and internally using Python’s time module. Internal 
memory usage was determined using Python’s getrusage() 
function.  

We have assessed the performance of the parallelization on the 
local machines by calculating the efficiency of core usage as 
T(1)/[pT(p)] where T(p) is the measured runtime using p cores 
with varying p = 1, 2, 4, 8, 16, and 24. Statistical analysis of 
efficiencies and runtimes were performed using the functions for 
t-tests and linear models in the statistical software package R [14]. 

4 RESULTS AND DISCUSSION 

4.1 The OP program 

The OP program has been successfully implemented on both of 
our local machines BioTower and BinfCompute. It can take FastQ 
files as input and produce OMI files as output in the correct 
format that can then be fed into OncoMiner for downstream 
analysis. Because many datasets in public databases such as 
TCGA are already stored in the form of BAM files, our OP 
program has been set up to also take input in BAM format.  

To set a baseline for parallelization performance assessment, we 
first conducted runtime measurements of OP using the locally 
generated 7.3 GB FastQ file on a single core in the two local 
machines. The runtimes of the various steps on BinfCompute are 
displayed in Table 1 (the run time distribution on BioTower is 
similar). These results show that about 80% of the total OP 
runtime is taken by Bowtie2 in the alignment step. Fortunately, 
Bowtie2 is designed to run in parallel, and the speedup using 
multiple cores seems quite substantial. While the SAMtools sort 
and index functions must run serially, parallelization of the 
extraction process to produce chromosome specific SAM files by 
the SAMtools view function has reduced the runtime somewhat.  

Table 1. Runtimes (in minutes) of different steps of OP on 
BinfCompute using 1, 8, and 24 cores. 

Function 1 Core 8 Cores 24 Cores 
Alignment 
(Bowtie2) 145.16 22.39 10.08 

File sorting 
(SAMtools) 13.12 6.33 5.85 

GSVId 
(MC script) 

19.17 3.30 2.56 

Others 0.32 0.29 0.29 

Total 177.76 32.31 18.78 

As the GSV identification part of the OP program was developed 
entirely by our group, we examined the MC script performance 
more carefully. Figure 7 displays the runtimes for our test dataset 
on BioTower and BinfCompute, showing substantial speedups as 
the number of cores increases from 1 to 8 on both machines.  For 
BioTower with only 32 GB of RAM, the execution speed 
deteriorated sharply beyond 8 cores as swap memory started to be 
used.  We therefore stopped the BioTower runtime measurements 
at that point, but continued the measurements on BinfCompute 
using higher number of cores. Overall, the best average MC script 
speedup achieved on BioTower was 3.32 using 6 cores, and on 
BinfCompute was 9.29 using 16 cores. 

Aside from the locally generated 7.3 GB FastQ file, we also 
selected 9 datasets from our AML collection obtained from 
TCGA to run on the two local machines. These data files were 
already in BAM format but were much larger than our test dataset. 
OOM errors were encountered on BioTower during the execution 
of the SAMTools sort function. Such problems did not occur on 
BinfCompute though. Given that BioTower has only 32 GB of 
memory while BinfCompute has 256 GB, this is not surprising. It 
has, however, suggested that memory requirement is an issue at 
this point of the OP program. 
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With the expectation that the OP program might need to be run 
on other computers without large amounts of memory, we used 
awk to split the large BAM files exceeding a cutoff file size into 
four pieces and let each piece be sorted one at a time. The cutoff 
file size can be set by the user with consideration to the available 
memory of the specific computer running OP. For BioTower, we 
found that a 5 GB cutoff worked well. The splitting slowed down 
the file sorting step substantially, but OOM errors were avoided.  

We further examined the overall parallelization efficiency of the 
OP program on BinfCompute for the 9 selected AML dataset. If 
no speedup were achieved at all by the parallelization, the 
efficiency would have a baseline value of 1/p. Figure 8 shows the 
average efficiency of the OP program on BinfCompute with p = 
2, 4, 8, 16, 24. In each case, a t-test confirmed statistically that the 
average efficiency was at least 20% higher than the baseline 
values at significance level α = 0.05.  

In the test runs of these 9 files, the runtimes required ranged from 
around 15 minutes to almost 9 hours. It seemed not practical to 
run the OP program for all the TCGA datasets on our local 
computers as each run would tie up the computer for a substantial 
amount of time and prevent others from running their jobs on 
these machines that were used heavily. We therefore turned to 
Blue Waters to utilize the allocated resources to complete this 
project. 

4.2 Running OP on Blue Waters 

The OP program was installed on Blue Waters using one high 
memory XE node with 128 GB memory to process each of the 35 
datasets from the AML collection. While Blue Waters allows 

multiple nodes to be used at one time, we decided to process a 
dataset in a single node, as the shared memory within the same 
node made it easier to construct the dictionary of GSVs and kept 
communication time to a minimum.  However, we were able to 
use multiple nodes to independently process multiple datasets 
simultaneously. 
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Figure 7. Runtimes for test dataset on two local 
computers: BioTower and BinfCompute. 

Figure 8. Average efficiencies ± standard deviation for 
2, 4, 8, 16, 24 cores on BinfCompute. Dashed curve 
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OOM errors occurred in the MC script on Blue Waters for a few 
datasets when the node could not provide sufficient memory for 
processing all the chromosome files at once. In those cases, we 
had to reduce the number of cores used so that fewer 
chromosomes were processed at one time. On hindsight after 
understanding the shared memory constraints, a better approach 
to parallelize the OP program on Blue Waters would be to couple 
MPI to our script and allocate a node to process each of the four 
pieces of one chromosome-specific file, and then join the four 
dictionaries afterwards. We plan to implement this approach in 
the next version of OP.  

Furthermore, we observed that using more than one core in the 
node produced no speedup in runtime. After monitoring the 
memory usage on Blue Waters, the reading and writing (I/O) of 
the utilized files was believed to be the cause of this lack in 
speedup because of the data transfer to and from the compute 
node. This would not have readily been seen on the BinfCompute 
and BioTower machines using local storage of the data but is a 
known issue for HPC systems analyzing large datasets [15].    

Despite these issues, Blue Waters was the only platform that 
provided us with sufficient resources to process our complete 
AML dataset collection. From the recorded runtimes on Blue 
Waters, we were also able to investigate which characteristics of 
the datasets would influence the runtimes significantly, as 
described below. 

 

4.3 Runtime correlates with input file size and 
chromosome diversity  

The runtimes for our 35 AML datasets using one core varied from 
53 minutes to over 30 hours. One would expect larger input files 
to require longer runtime. Surprisingly, a simple linear regression 
analysis indicated that the correlation r = 0.152 was not 
significant (p value = 0.385). Looking at the scatter plot in Figure 
9, we noticed a few outliers that might have contributed to the 
unexpected result. For example, the largest input file (54 GB) ran 
very quickly. On closer examination, we found that this dataset 
contains GSVs from only one chromosome of the patient.  

This prompted us to look into how the number of chromosomes 
in the input file might affect the OP runtime (Figure 10). This 
time, regression analysis showed a highly significant linear 
correlation (r = 0.762, p value = 1.07e-07). The correlation was 
even stronger (r = 0.858) when only the datasets with no more 
than 22 chromosomes were considered. This result suggested that 
chromosome diversity could be an important factor that 
influenced the OP runtime. The I/O involved in the analysis of 
individual chromosome files is believed to drive the major 
difference in runtimes of files with different numbers of 
chromosomes. Having multiple cores trying to access the larger 
files from a network drive at the same time could create a 
bottleneck in the accessibility of the data and thus causing the 
individual processes to slow down. This would not be as much of 
a factor when pulling data from a local hard drive.  

When the OP runtimes for only those files with complete sets of 
23 chromosomes are analyzed, we then see a significant positive 

Figure 10. OP runtimes versus the number of chromosomes 
contained within the files.  The solid regression line was 

determined with all data points while the dashed line used 
only the data points with no more than 22 chromosomes. 

Figure 11. OP runtimes versus input file size for datasets 
with 23 chromosomes 
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correlation with input file size (see Figure 11, r = 0.509, p value 
= 0.031).  This implies that a strong relationship between input 
file size and runtime indeed exists once the number of 
chromosomes is fixed.  

To complete the runtime analysis, a multiple regression model 
was fit to our runtime data with the number of chromosomes and 
input file size as covariates, producing the regression equation: 

Runtime = 94.8 + 20.3 * (# chromosomes) + 22.3 * (file size) 

with coefficient of determination 0.749, implying that almost 
75% of the variations in runtime can be explained by input file 
size and chromosome diversity together. This regression equation 
will allow OP runtimes to be estimated when we process new data 
files in the future. 

5. CONCLUSION AND FUTURE WORK 

We have implemented the OP program, which comprises the open 
source Bowtie2 and SAMtools programs, as well as our GSVId 
function, on two local computers at UTEP and on Blue Waters at 
the NCSA. The OP program can preprocess NGS data stored in 
either FastQ or BAM format and obtain the necessary information 
to produce an OMI file to be inputted to OncoMiner for 
downstream genetic variation analysis.  

We have demonstrated that our multiprocessing parallelization 
approach in GSVId for the MC script works with reasonable 
efficiencies on our local computers. However, the same 
parallelization using multiple cores on one node in Blue Waters 
did not produce any substantial speedup of the OP program. We 
have identified possible factors involving memory constraints and 
I/O issues that limit the OP program’s performance on Blue 
Waters and will continue to develop a better approach using MPI 
to distribute the analysis of a single dataset to multiple nodes. We 
also plan to test the script on other high performance platforms 
with more memory in a single node and internal solid state drives 
for the I/O intensive portions of the code.  

Despite the memory and I/O issues encountered, Blue Waters 
provided the necessary resources for us to process our entire 
collection of datasets from 35 patients with AML and showed that 
OP runtimes were correlated not only with the input data file size, 
but also with chromosomes diversity.  

Aside from the most popular FastQ and BAM formats, genome 
sequence variant data may also come in other file formats such as 
the variant call format (VCF). The OP program framework set up 
in this project now allows us to adapt and extend our code 
relatively easily to process files in other formats to produce OMI 
files for input to OncoMiner.   

6. REFLECTIONS 

The Blue Waters Student Internship Program (BWSIP) allowed 
me to learn about parallel computing, which I had not been 
previously introduced to. I am glad to have attended the two-week 

Petascale Institute 2016 workshop. What I learned during the 
workshop and internship will be useful in the future for 
performing bioinformatics analysis. The NCSA and Shodor staff 
was very helpful and explained the concepts of parallel 
computing clearly. I had an eye-opening experience in the BW 
Symposium in May of 2017 as I got to see how HPC was used in 
so many different fields with methodologies that I had not 
encountered in bioinformatics related projects.  

Due to parallelization of the MC script having been effective on 
the local machines, memory usage was a suspected cause of static 
runtime on Blue Waters. The process of ruling out possible causes 
for the lack of speedup was an invaluable lesson. Looking at the 
memory usage of the MC script helped me better understand 
memory related issues in parallel programming and taught me 
how to monitor the usage at different points in the script. 
Although the runtime remained static, I now have a better feel for 
how to check to see if our current suspect, I/O, is behind it. In this, 
the future work will revolve around machines with higher 
memory and designed for I/O intensive programs. 

The research experience also allowed for a local collaboration at 
UTEP. While working with my group, I learned about version 
control and improved on communication with other group 
members. I learned the value in clarifying tasks at the onset and 
in keeping track of changes to allow easier modifications during 
debugging. In conclusion, the internship has not only made me 
more knowledgeable in the use of HPC systems, but also trained 
me to become a better researcher.  
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