
Volume 9 Issue 2

December 2018

	

Volume 9, Issue 2 December 2018

Editor: Steven Gordon
Associate Editors: Thomas Hacker, Holly Hirst, David Joiner,

Ashok Krishnamurthy, Robert Pano↵,
Helen Piontkivska, Susan Ragan, Shawn Sendlinger,
D.E. Stevenson, Mayya Tokman, Theresa Windus

CSERD Project Manager: Jennifer Houchins Managing Editor: Jennifer
Houchins. Web Development: Jennifer Houchins, Aaron Weeden, Joel Col-
dren. Graphics: Stephen Behun, Heather Marvin.

The Journal Of Computational Science Education (JOCSE), ISSN 2153-4136,
is published quarterly in online form, with more frequent releases if submission
quantity warrants, and is a supported publication of the Shodor Education
Foundation Incorporated. Materials accepted by JOCSE will be hosted on the
JOCSE website, and will be catalogued by the Computational Science Education
Reference Desk (CSERD) for inclusion in the National Science Digital Library
(NSDL).

Subscription: JOCSE is a freely available online peer-reviewed publication
which can be accessed at http://jocse.org.

Copyright c�JOCSE 2018 by the Journal Of Computational Science Education,
a supported publication of the Shodor Education Foundation Incorporated.

	

Contents

Introduction to Volume 9 Issue 2 1

Steven I. Gordon, Editor

Physics Conceptual Understanding in a Computational Science Course 2

Rivka Taub, Michal Armoni, and Mordechai (Moti) Ben-Ari

Automatic Feature Selection in Markov State Models Using Genetic 14

Algorithm

Qihua Chen, Jiangyan Feng, Shriyaa Mittal, and Diwakar Shukla

Teaching and Learning Graph Algorithms Using Animation 23

Y. Daniel Liang

Identification of Active Oligonucleotide Sequences Using Artificial Neural

Network

30

Alex Luke, Sarah Fergione, Riley Wilson, Brady Gunn, and
Stan Svojanovsky

Parsing Next Generation Sequencing Data in Parallel Environments for

Downstream Genetic Variation Analysis

37

Mariana Vasquez, Jonathon Mohl, and Ming-Ying Leung

	

Introduction to Volume 9 Issue 2

Steven I. Gordon
Editor

Ohio Supercomputer Center
Columbus, OH

sgordon@osc.edu

Forward
This issue begins with an article by Taub, Armoni, and Ben-

Ari that studied the impacts of programming simulations on

the underlying physics knowledge of high school students.

They used concept maps to compare students physics con-

ceptual knowledge with those of experts at various stages of

a course that used simulation programs to investigate physi-

cal phenomena. They found significant impacts on student?s

knowledge of physics concepts.

The article by Liang describes a series of graph algorithm vi-

sualizations that were used to teach graph algorithms in an

undergraduate data structures and algorithms course. They

found that the visualizations helped the student understand-

ing of the algorithms.

Chen et.al. present a student paper that used a genetic al-

gorithm to help optimize the selection of a feature set in the

study of protein folding. They conclude that their method

provides an e�cient and accurate way to choose features

used in molecular dynamics simulations.

The student paper by Luke et. al. describes the use of an

artificial neural network model to assist with DNA sequenc-

ing. The model was tested against a number of published

sequences and found to be highly accurate.

Finally, Vasquez, Mohl, and Leung in their student paper

developed and parallelized a preprocessing program for that

generates the input files for the OncoMiner genetic sequenc-

ing tool. The programs were then used to process the 35

datasets from patients with acute myeloid leukemia.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 1

Physics Conceptual Understanding in a Computational Science
Course

Rivka Taub
Department of Education

Hevel-Yavne Regional Council
Israel

rivka.t@hevel-yavne.org.il

Michal Armoni
Science Teaching Department
Weizmann Institute of Science

234 Herzl. St. Rehovot 7610001
Israel

michal.armoni@weizmann.ac.il

Mordechai (Moti) Ben-Ari
Science Teaching Department
Weizmann Institute of Science

234 Herzl. St. Rehovot 7610001
Israel

moti.ben-ari@weizmann.ac.il

ABSTRACT
Students1 face many difficulties dealing with physics principles
and concepts during physics problem solving. For example, they
lack the understanding of the components of formulas, as well as
of the physical relationships between the two sides of a formula.
To overcome these difficulties some educators have suggested
integrating simulations design into physics learning. They claim
that the programming process necessarily fosters understanding of
the physics underlying the simulations. We investigated physics
learning in a high-school course on computational science. The
course focused on the development of computational models of
physics phenomena and programming corresponding simulations.
The study described in this paper deals with the development of
students' conceptual physics knowledge throughout the course.
Employing a qualitative approach, we used concept maps to
evaluate students' physics conceptual knowledge at the beginning
and the end of the model development process, and at different
stages in between. We found that the students gained physics
knowledge that has been reported to be difficult for high-school
and even undergraduate students. We use two case studies to
demonstrate our method of analysis and its outcomes. We do that
by presenting a detailed analysis of two projects in which
computational models and simulations of physics phenomena
were developed.

CCS CONCEPTS
• Computer systems organization → Embedded systems;
Redundancy; Robotics • Networks → Network reliability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright
©JOCSE, a supported publication of the Shodor Education Foundation Inc.

DOI: https://doi.org/10.22369/issn.2153-4136/9/2/1

KEYWORDS
Computational science, conceptual understanding, concept maps

ACM Reference format:
R. Taub, M. Armoni, M. Ben-Ari. 2018. Physics Conceptual
Understanding in a Computational Science Course. In Journal of
Computational Science Education, 14 pages. https://doi.org/10.1145/123 4

1 INTRODUCTION
Students face many difficulties while trying to understand physics
principles, concepts and formulas [15, 19, 26]. These
misconceptions exist in physics areas that are strongly related to
everyday experiences such as mechanics [28], as well as in other
areas that are less related to everyday experiences such as
electromagnetism [17].

Widespread instructional methods aiming at overcoming these
difficulties involve computer simulations—programs that model
systems or processes [10]—in physics teaching. One approach for
such involvement is by students' use of simulations, with or
without controlling some of their variables [37]. Another
approach is by programming simulations of physics phenomena
[4]. Programming physics simulations has the potential to
promote physics conceptual understanding in two ways. First, it
enables dealing with real-life problems [35], a possible
opportunity for conceptual change of misconceptions that are
related to real-life experiences. Second, programming the physics
phenomena may unfold students' physics knowledge, leaving no
"black boxes" [4].

The research presented in this paper aims at investigating the
physics learning taking place while programming physics
simulations. Moreover, it investigates physics learning in a unique
context, a computational-science course where the physics
learning is not one of the direct goals of the course. Instead, the
course's goal is to expose the students to different computational
methods, while the physics content is addressed mainly through
examples demonstrating how to apply these methods.

Volume 9, Issue 2 Journal of Computational Science Education

2 ISSN 2153-4136 December 2018

Here we report on the evolution of the students' physics
conceptual knowledge taking place during the course. This
knowledge was evaluated at the beginning and at the end of the
process of developing computational models, and at different
stages in between. The students' knowledge in each stage was
compared to that of physics experts. To represent the experts' and
students' knowledge we relied on the framework of concept maps
[29], a powerful tool for knowledge representation, while making
several modifications to this tool.

Originally, concept maps were intended to be used by students
to express their own knowledge as a learning tool or as
assessment tool. In Section 2, we elaborate on various ways for
using concept maps as an assessment tool. In this study concept
maps were used in the following manner: We asked physics
experts to represent as concept maps the physics knowledge the
students were supposed. We then followed the evolution of
students' physics knowledge, represented as concept maps at
various points during the learning process, and compared these
concept maps with those of the experts.

This paper opens with a review of the relevant literature,
continues with a description of the research context—the
computational-science course—and the research methodology,
presents the findings and summarizes them.

2 LITERATURE REVIEW
This section reviews literature on the difficulties students
experience while learning physics, on the knowledge area of
computational science and on concept maps as tools for assessing
the evolution of knowledge.

2.1 Difficulties in Physics Understanding
Research on difficulties and alternative conceptions that students
have when dealing with mechanics shows that students' intuitive
knowledge differs from the formal knowledge. McDermott [28]
reviewed studies that explored mechanics-related difficulties.
Populations in these studies ranged over different age groups,
from middle- and high-schools to universities, and included
students who studied physics less than a year to those who studied
for several years. Interestingly, the results obtained were very
similar, pointing to the persistence of difficulties and
misconceptions in mechanics. For example, Gunstone and White
[18] discovered that when dealing with questions related to
gravity, students tend to mix velocity and acceleration, and mass
and weight. Similar results regarding the confusion between
velocity and acceleration were found by Trowbridge and
McDermott [46].

Bagno, Berger, and Eylon [2] found that high-school physics
students provided a vague description of the components of a
formula. For instance, when referring to the formula	 " = $%,
students related only to one force " and ignored the net force. As
another example, the students explained the meaning of the
variable & in a formula as ‘time’, while an accurate explanation
should have been ‘the time elapsed since & = 0 ,. Another
difficulty described by Bagno et al. [2] is that many students were
unable to explain the conditions under which a formula can be

applied. For instance, in the formula	(= () + %& + +
, %&

,, 80% of
the students did not mention the fact that the formula applies only
for objects moving with constant acceleration. Another study
reported by Shaffer and McDermott [40], examined whether
20,000 college and university students were able to associate the
direction of the acceleration and the net force denoted by the
formula " = $% . They found that when asked about the
direction and magnitude of the acceleration of a ball moving on a
ramp, only 20% of the students answered correctly. The others
thought that the direction of the acceleration is toward the bottom
because 'gravity causes the motion'. The authors explained that
some of the students did not associate the direction of the
acceleration with that of the net force.

Research on students' learning geometrical optics, in particular
light propagation, also uncovered difficulties. Galili and Hazan
[15] reported on a conception students hold that claims that a
single ray is emitted from each point of the light source. The
authors explained that this conception is not incorrect but
incomplete from a scientific view: the complete conception should
be that multiple rays emanate from each point of the light source
in all directions. Chang, Chen, Guo, Chen, Chang, Lin et al. [7]
examined conceptions of elementary, middle-school and high-
school students regarding different topics in classical physics. One
of their findings was related to the images created by lenses and
mirrors, showing that the students tended to use point-by-point
conception to describe the refraction of lens and perceived light as
a kind of material. When asked what would happen to the image
of an object standing in front of a partially covered convex lens of
a camera, most students answered that a part of the image would
disappear. This is in contrast to the scientifically correct answer
stating that the size of the image would stay the same, although it
would look darker. Similar results were found by other
researchers such as Galili [14].

Studies point to difficulties that students face regarding
temperature and heat. For example, Thomaz, Malaquias, Valente,
and Antunes [45] suggested five common students'
misconceptions that students: (a) believe that heat is a kind of
substance; (b) cannot differentiate between heat and temperature;
(c) confuse temperature and the ‘feel’ of an object; (d) believe that
application of heat to a body always results in a rise in
temperature; and (e) misunderstand the temperature of a phase
transition. Jasien and Oberem [22] reported on the following three
difficulties physics students, and pre- and in-service teachers face:
(a) the meaning of thermal equilibrium; (b) the physical basis for
heat transfer and temperature change; and (c) the relationships
between specific heat, heat capacity, and temperature change.

Difficulties students face when dealing with physics topics,
such as mechanics, geometrical optics and heat are closely related
to conceptions stemming from everyday experiences. Some
topics, however, have no obvious parallel experience in everyday
life. Electromagnetism is one such example [17]. While learning
electromagnetism students were found to (a) be unable to link
electrostatics and electrodynamics [13]; (b) be unable to connect
between macro and micro relationships in electric circuits [5]; (c)
confuse related concepts such as current, voltage, energy and

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 3

power [40]; (d) incorrectly determine the direction of the induced
magnetic field; and (e) claim that the path of an electric charge in
a magnetic field is always circular [3].

2.2 Computational Science
Computational science is a field that deals with different aspects
of the construction of computational models. The Journal of
Computational Science [42] describes it as an interdisciplinary
field that uses advanced computing and data analysis to
understand and solve complex problems. It claims that
computational science has reached predictive capabilities that join
the traditional experimentation and theory.

Yasar and Landau [47] explain that computational science is a
field that integrates natural sciences, applied mathematics and
computer science (CS), and uses the common elements of these
disciplines to develop models of scientific systems; they add that
computational science is not only the intersection between the
three domains but also has content of its own (Fig. 1).

Figure 1: Left: Early view of CSE (Computational Science and
Engineering) as the intersection between science, applied
mathematics and computer-science. Right: Current view of CSE
as sharing common concerns with these disciplines and also
having content of its own [from 47].

Computational modeling is perceived to provide opportunities
to promote students' conceptual knowledge. One of the most
influential views regarding programming as a way to enhance
scientific learning is described by Papert [31]. Learning by
programming is claimed to be significantly better than learning by
watching television or even reading. Programming a computer is
an active learning process that empowers the learner due to the
active creation of knowledge. Papert [31] explains that
programming provides a tool to concretize formal and abstract
knowledge. Since programming is about teaching the computer
how to think, programming requires the learner to think about
thinking. For example, children tend to think that in learning, they
either get a right or wrong answer. But when programming a
computer, solution is rarely right the first time the program is run.

Physics instructors suggest combining programming
computational models as a way to improve physics learning [4,
38]. The rationale behind this suggestion is that such a
combination requires that physics knowledge be organized and
represented as computational models of physical systems, that is,

computer programs. Abelson, Sussman, and Sussman [1] explain
that computer programs are more than just sets of instructions for
a computer to perform tasks. They also serve as frameworks for
organizing ideas about processes. They deal with data that
represent objects in a given system, and procedures that represent
the rules for manipulating the data. These attributes of computer
programs enable computational-science students to organize their
ideas about physical objects and processes.

Research on combining computational-science elements in
physics introductory courses shows positive effects. Redish and
Wilson [35] developed an introductory physics course that was
based on the computerized M.U.P.P.E.T environment. The
authors introduced programming at the beginning of the
traditional calculus-based introductory physics course at the
University of Maryland. They found several benefits for teaching
physics in a computer-based environment, among them are: (a)
using the environment to overcome a lack of intensive
mathematical knowledge; (b) exposing students to research
methods that professional physicists use, and (c) being able to
discuss real-world problems such as projectile motion with air
resistance.

Chabay & Sherwood [4] list the pros and cons of learning
physics while programming. One benefit is that when
programming the physics phenomena, there are no "black boxes"
of the physics knowledge at the basis of the simulation. Another
benefit is the link generated between different representations of
the same physics idea: an algebraic equation and programming
code. Among the negative aspects of using programming for
learning physics, they mention that a large portion of the students
have no background in programming and therefore teaching
programming takes up a lot of time needed for physics learning.

Sherin [41] compared between what he termed algebraic
physics and programming physics. Two groups of his students
solved physics problems. One group solved ordinary textbooks
problems (algebraic physics) and the other (programming physics)
was asked to develop simulations on phenomena similar to those
underlying the problems solved by the algebraic physics group.
He concluded that the algebraic notation of the physics formulas
does not naturally displays causal relationships between variables;
therefore students tend to infer the existence of equilibrium
between the two sides of an equation instead of causal
relationships. In contrast, programming physics leads more
naturally to understanding processes and causality, stemming
from the importance of the order of the lines in the program.

2.3 Concept Maps
Researchers use different methods to assess learners' conceptual
knowledge, among which are open-ended and multiple-choice
questionnaires. In order to use such questionnaires as research
tools, they are designed by the researchers before the teaching and
learning process, and they require the students to express their
conceptual knowledge, as answers to the pre-defined
questionnaire. In the current research, however, the situation was
somewhat different. First, the physics topics that the students'
projects were dealing with were not defined in advance. Instead,

Volume 9, Issue 2 Journal of Computational Science Education

4 ISSN 2153-4136 December 2018

the students decided on these while already working on the
projects and learning the related physics material. In some cases,
the students even changed the subject of the project after working
on it for a few lessons. In addition, each project dealt with a
different subject. Therefore, we could not prepare in advance a
questionnaire for determining the students' conceptual knowledge
before and after working on their projects. Second, we wished to
capture and assess several stages in the development of the
students' knowledge, not only pre- and post-working on the
projects. It seemed that the students would find it too exhausting
to answer assessment questions several times during their
projects. Moreover, we could not know in advance exactly when
these stages would occur. For these reasons, we looked for a
method of using the students' discourse in order to assess stages in
the development of their knowledge. Concept maps were our
choice.

As noted by Novak and Cañas [29] concept maps were first
proposed by Novak in 1972. Novak and Gowin [30] described
them as spatial arrays that represent elements of knowledge as
nodes together with links among them. Here we follow Ruiz-
primo[36] and define a concept map as a graph consisting of
nodes and labeled lines and/or arrows. 2 The nodes denote the
important concepts in a domain. The lines and arrows denote
relations between pairs of concepts (nodes). The labels on the
lines or the arrows tell how the two concepts are related. The
combination of two nodes and a labeled line or arrow is called a
proposition. A proposition is the basic unit of meaning in a
concept map.

The psychological foundations of concept maps lie in the
attempts to characterize the knowledge of experts, and to assess
the distance of learners' knowledge from it. Research on the
cognitive aspects of science learning suggests that the knowledge
of experts, apart from being more extensive than that of novices,
is organized in a cognitive structure, a schema [8, 11, 32].

Novak and Cañas [29] explained how to construct a good
concept map, emphasizing that "a concept map is never finished"
(p. 12): (a) create a context by identifying a segment of a text, a
laboratory or field activity, or a particular problem or question
that one is trying to understand; (b) identify the key concepts that
apply to this context and construct a preliminary map; (c) seek
links between the concepts; and (d) revise the map, by
repositioning the concepts or refining the links in ways that lead
to more clarity and a better over-all structure.

Originally, concept maps were intended to be used by students
to express their own knowledge as a learning tool or as
assessment tool. As an assessment tool, concept maps are
effective in identifying both valid and invalid ideas held by
students. They can be as effective as other, more time-consuming,
assessment tools for identifying the relevant knowledge a learner
possesses before or after instruction [27, 29, 36]. Concepts maps
are being extensively used to assess knowledge structures [21,
43]. For example, Jacobs-Lawson and Hershey [21] used concept

2 Although Ruiz-Primo and Araceli (2000) use only lines, we sometimes use arrows
to demonstrate the direction of the connection between two nodes.

maps to evaluate students' knowledge in psychology courses.
They, too, concluded that concept maps are effective in such
assessments.

There are various strategies for using concept maps for
assessment which differ on several dimensions: The phase of the
teaching process in which concept maps are used, the methods
used for analyzing and evaluating the concept maps (direct
evaluation or by comparison to a target concept map), and the
manner in which concept maps are drawn (by the students, by the
teachers, or by the researchers). For example, Hasemann and
Mansfield [20] used concept maps drawn by 4th-grade students to
assess their mathematics knowledge before the teaching process,
right after it, and two years later. Ghaffar, Iqbal, and Hashmi [16]
used concept maps to represent a learning objective through a
concept map describing the knowledge of an expert. Novak and
Gowin [30] suggested evaluating students' concept maps by
comparing them to a criterion map (representing sufficient
knowledge, which may be partial, compared to an expert's
knowledge). McClure et al. [27] used concept maps to take a
snapshot of students' knowledge and examined various assessment
methods, some of which used a direct scoring method and some
used master maps. Peterson and Treagust [33, 34] used concept
maps in a pre-post research setting. Lomask, Baron, Greig, and
Harrison [25] used concept maps that were developed by teachers
from students' essays.

Our use of concept maps was a combination of several of the
strategies described above. We used them as a qualitative
assessment tool to analyze the development of conceptual
understanding. Hence, the students' knowledge was monitored at
various points during the learning process. We followed the
strategy used by Lomask et al. [25] in which concept maps were
developed from students' essays. Thus, our concept maps were not
created by the students; rather, we created the concept maps, using
them to reflect the students' knowledge. However, unlike Lomask
et al. who relied on written essays, our concept maps were based
on students' audio-recorded discourse. Finally, we evaluated
students' knowledge as reflected in the concept maps by
comparison to an expert's map. To this end, we asked physics
experts to represent as concept maps the physics knowledge the
students were supposed to acquire.

3 METHODOLOGY

3.1 The Research Question
How does students' conceptual physics knowledge change when
developing computational models in the context of a
computational-science course?

3.2 The Research Setting
The research was conducted in a 3-year computational-science
course intended for talented high-school students (10th to 12th
grades). This was an elective course, for which the students
earned credit that was reflected in their matriculation diploma.
During the course the students learned about different models
such as static, mechanistic and stochastic, and used them to

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 5

represent scientific phenomena, mainly physics phenomena.
Learning about these models required the combination of physics,
mathematics and computer science (CS).

Most of the learning during the course was done independently
by pairs of students under the guidance of a textbook, while the
teacher served as a mentor. All the classes took place once a week
for 3 hours in the afternoon after regular school hours. In each of
three years, the students developed (in pairs) mid and final
projects of their choice, most of which dealt with physics material
they had not learned before.

This research was carried out among 10th- and 11th-grade
students (during the first and second year of data collection,
respectively). During the course these students learned
programming concepts, the Java language, kinematics, dynamics
and optics. The researchers were not involved in the teaching of
this course. The software the students used in these classes was
Easy Java Simulations 3 (10th-11th grades) and Maxima 4 (11th
grade).

Easy Java Simulation (EJS) is a software package created by
Francisco Esquembre [9, 12]. It enables the construction of
computational models by providing a user-friendly environment
for Java. The intended users are science students, teachers and
researchers who want to avoid putting too much effort into
programming and more emphasis on the scientific content. To
achieve that the user interface can be created without any
programming knowledge on the part of the simulation's designer.
Therefore she/he may focus on the algorithmic component when
designing the scientific model. This software breaks the modeling
process into three activities that are selected by the user: (a)
documentation, (b) modeling, (c) interface design. In the
modeling activity the designer represents the physical solution as
an algorithm implemented in Java.

Maxima is a Computer Algebraic System (CAS), for
manipulating symbolic and numerical expressions, including
differentiation, integration, ordinary differential equations,
systems of linear equations, polynomials, and more. In the
computational-science course, 11th-grade students used Maxima
for studying random models in a CAS environment, studying
differential equations, finding analytic and numeric solutions of
differential equations, writing a program to solve linear equations,
and more.

During the research we observed and recorded the work on
seven final projects. Five of them were designed and implemented
by pairs of 10th-grade students and the other two by pairs of 11th-
grade students. All students volunteered to participate in the
research, and the research, including its methodology of data
collection, was approved by the Ministry of Education. Of the
volunteers we chose all the girls (three) since we wanted to have
both genders represented in the research population. All together
during the research we analyzed the work of 12 students, since
one pair of students was observed working on two projects, in

3http://fem.um.es/Ejs/
4http://maxima.sourceforge.net/

both 10th grade and 11th grade, respectively. The work on each
project lasted approximately 10 hours (four lessons).

The choice of which physics phenomena to simulate was done
independently by the students and it ranged over many topics.
Four projects dealt with mechanics (a circular motion of a car, an
anti-missile system, collision of two balls on an inclined plane,
and a Frisbee game) one dealt with optics (lenses and mirrors),
one with electricity and magnetism (the Lorentz force – an electric
charge moving in a magnetic field), and one with thermodynamics
(the diffusion equation – air heated by fire).

3.3 Research Tools
Two types of research tools were used to collect data in this study.

1. The work of the six pairs of students on the seven final
projects was documented in detailed using the Debut
screen-capture software. 5 It recorded their computer
screens, including the work on the programming files,
the mouse actions, and the students' voices while talking
to each other during their work.

2. Observations of the students' work while taking field
notes. One researcher (the first author) joined each
lesson one to three pairs, observing their work and
taking field notes. This enabled her to notice non-
auditory gestures that could not be recorded and to get
an impression of the students' working style, for
example, how the work was divided between the two
students.

As noted above, students' participation was voluntary and they
were aware of the data collection process.

3.4 Analysis
Analysis of the students' discourse was conducted using concept
maps [30] aimed at assessing evolution of the students' physics
conceptual knowledge.

To express the students' conceptual knowledge in physics, we
relied on excerpts from the students' discourse taken from the
students' work on the computational models (approximately ten
hours per project). Based on the excerpts we created concept
maps. The students were not involved in the creation of the
concept maps. For each episode in the students' discourse we drew
several maps that represented the evolution in their understanding
of physics concepts that were relevant to their project, and of the
relationships among them. This was done by:

1. Identifying the main physics concepts discussed by the
students in a specific episode.

2. Linking between the physics concepts according to the
physics formulas and principles. Almost all the physics
phenomena that the students modeled evolve in time,
such as circular motion or a flying discus. For this
reason, some of the links between concepts express time
evolution. For example, the link - → (shows that a

5 www.nchsoftware.com

Volume 9, Issue 2 Journal of Computational Science Education

6 ISSN 2153-4136 December 2018

change in velocity of an object yields a change in its
position over time. Other links, however, stem from

physics definitions. For example, the link - = /0
/1 shows

that the velocity is the derivative of the position with
respect to the time.

3. Drawing an expert's concept map expressing the
concepts and links in (1) and (2).

4. Drawing concept maps that represent the students'
knowledge of these concepts in several points along of
the learning process: initial, final, and at least one point
in between.

5. Comparing between the students' initial and final
concept maps to evaluate the evolution in their
conceptual knowledge (relevant to their project).

6. Comparing between the expert's concept map and the
students' final concept map to evaluate the level of the
students' conceptual knowledge (relevant to their
project).

Actions (1)-(6) were applied twice (for validation purposes) by
the third researcher, by a physics educator and by a physicist who
is also a computer scientist. Disagreements were discussed and
resolved, and the maps were changed accordingly.

4 FINDINGS
The choice of which physics phenomena to simulate was done
independently by the students and ranged over many topics. Still,
it was possible to identify some general findings that repeated
themselves in several different projects. This section opens with
two case studies (two projects) exemplifying in detail the analysis
process and its outcomes. Then we presents the general findings
of our overall analysis of all seven projects.

4.1 Case Studies
This section focuses on two projects, describing their analysis in
detail and presenting its results. These case studies enable a
deeper insight of the concept-map-based analysis process and its
rationale. The first project was developed by two 11th-students
simulating a Frisbee game. The second was developed by two
10th-grade students, simulating an electric charge moving in a
magnetic field.

4.1.1 Case Study 1. Students S5 and S6 (11th grade) decided
to develop a simulation of a discus thrown at a specific initial
velocity and moving in the air, affected by the wind. The physics
description of the motion relates to:

1. Projectile motion of the discus under the effect of the
forces exerted by gravity, aerodynamic lift,
aerodynamic drag (air resistance), and the wind.

2. Spinning of the discus due to an angular momentum
provided by the thrower.

Developing such a simulation is challenging for high-school
students since the high-school physics syllabus that they study is
limited to motion primarily under the effect of a constant force
such as $2. Varying forces that the students encounter are the
harmonic force, inverse square forces (such as the electrostatic

force), and the magnetic force (" = 3-´4). The syllabus does
not, however, treat motion under other varying forces that are
exerted, for example, by the air on a moving object. Moreover, the
syllabus does not include the physics of spinning objects.
Accordingly, the teacher advised the students to first simulate the
projectile motion of the discus under the effect of the constant and
varying forces, and only later on to add its spinning. As it turned
out, developing the simulation of projectile motion was
challenging enough for them and lasted five lessons
(approximately twelve hours), leaving no time for the spinning
force. For this reason, the new physics material that the students
had to study was dealing with the effect of the forces mentioned in
item (1) above on the motion of the discus.

The conceptual knowledge required in order to develop such a
simulation appears in Fig. 2 represented as a (high-level) expert's
concept map.

The discus is being thrown at an initial velocity -). Four forces
affect the motion of the discus: gravitation (assumed to be
constant), aerodynamic lift and drag, and the wind. The students
assumed the wind to have a constant velocity. The net of these
forces generate an acceleration as expressed by Newton's second

law " = $% = $ /5
/1 . Since the velocity is a vector, it is

represented by magnitude and angle (- ,	 a). The velocity is
defined as the derivative of (, the position of the discus. For each
∆& , the drag and lift forces are being changed because of change
in the velocity, leading to a new net force, changing the velocity
and accordingly the position of the discus.

Figure 2: Expert's concept map representing the conceptual
knowledge of the physics involved in the project of S5 and S6.

Here we focus on an example demonstrating the development
of a subset of the physics involved, relying on data taken from
several episodes scattered along the full work on this project,
which lasted about 12 hours.

The example deals with the interrelationships between the net
force and the velocity of the discus, repeatedly calculated every
∆&. Figure 3 presents the relevant parts of the expert's concept
map. This map is more detailed than the previous one. It shows, as
previously, the effect of the net force on the velocity. In addition,
it shows that the observed velocity of the discus (-) is the sum of
the discus' velocity relative to the air and the velocity of the wind
(assumed by the students to be constant and in the direction of the
x axis). The speed of the discus relative to the air changes the
forces of aerodynamic lift and drag.

Since this example focuses on this aspect of the project, the
students' evolving concept maps will be compared to the expert
map in Fig. 3, and not to the wider map of Fig. 2.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 7

Figure 3: Expert's concept map of the interrelationships
between the net force and the velocity of the discus.

The students started the project by studying the relevant
physics principles and formulas from a scientific paper the teacher
gave them. The relevant material that was explained in this paper
includes: (a) the observed velocity of the discus is the sum of the
velocity of the discus relative to the air and of the velocity of the
wind; (b) the calculations of the discus' velocity and position are
time dependent; and (c) the velocity of the discus relative to the
air affects the aerodynamic forces of drag and lift.

In what follows we describe three learning episodes. We will
see that the students did not understand these issues very well, and
that their understanding evolved while developing the simulation.

Episode 1: After reading the paper given to them by the
teacher, the students said:

S5: I don't understand the meaning of Vrel [velocity of the
discus relative to the air].

S6: I want to start programming; we'll figure it out later.
S5 and S6 began with declaring the program variables

corresponding to the physics variables. They started with Vd and
Rd, the variables corresponding to the magnitude and angle of the
velocity of the discus relative to the air. They continued by
declaring Vrel and R, corresponding to the magnitude and angle of
the observed velocity of the discus. The reason they chose to
name the variable Vrel and not Vobserved was that they referred
to this velocity as relative to the ground. Choosing such variable
names was the first step in confusing between the two kinds of
velocities of the discus.

The students wrote the programming segment corresponding
to the physics formulas that appeared in the scientific paper (Fig.
4). It started with calculating Vrel, the observed velocity of the
discus by summing the wind velocity and the discus velocity
relative to the air. It continued with calculating the x and y
components of the acceleration.

Two logical errors exist in this segment. First, it is written just
once, thus it will be executed only once and will not cause a
change in velocity over time. Second, the calculation of the
contribution of the aerodynamic drag and lift forces to the
acceleration (based on Newton's second law) is affected by Vrel,
which is the sum of the velocity relative to the air and the wind
velocity. Instead, it was supposed to be affected only by the
discus' velocity relative to the air.

 Figure 4: Code of the calculation of the discus' observed
velocity and of the x and y components of the acceleration.

We conclude that the students correctly perceived the observed
velocity of the discus as including its velocity relative to the air
and the wind velocity. They incorrectly thought that the discus
observed velocity affects the forces and thus the acceleration and
they did not see the dependence of the velocity on time.

The concept map that describes the students' understanding
appears at Fig. 5. It shows the students' perception of the effect of
the sum of the velocities on the aerodynamic forces. However, it
does not contain a time loop, indicating the students' lack of
understanding of the time dependency of the process.

Figure 5: First concept map of the students S5 and S6.

Episode 2: Executing the simulation led S6 to understand that
there are problems in the program they wrote. She re-checked it
several times, reflecting on what they wanted to achieve:

S6: In order to calculate the velocity I need to first calculate
the acceleration and then calculate its anti-derivative.

She then suddenly said:
S6: Wait, does that mean that I need to calculate it every time?
S5: Hmmm… I don't know.
S6: Do I actually need to calculate all the previous values and

use them for calculating the velocity repeating it again and again?
The above excerpt indicates that S6 gained a new insight,

regarding the time dependency of the calculation of the velocity
(proving that she did not understand it in the previous episode).
These desired repetitions are the algorithmic description of a
programing loop which calculates the physical change in the
acceleration and consequently in the velocity of the discus.

After several more discussions, the students programmed a
for-loop (Fig. 6) representing the progress of time (t=0 to t=10). It
includes a repetitive calculation of the: acceleration of the discus
(as was explained for Fig. 5), the discus velocity relative to the
air, and the observed discus velocity including the wind. Although
here the students understood the dependency of the calculation on
time, they were still in error in that they calculated the
acceleration according to the discus observed velocity and not the
relative velocity.

The concept map that describes the students' conceptual
knowledge at this stage appears at Figure 7. Again, it shows the
students' perception on the effect of the sum of the velocities on

Volume 9, Issue 2 Journal of Computational Science Education

8 ISSN 2153-4136 December 2018

the aerodynamic forces. It differs from the previous map,
however, in that it contains a time loop, indicating an
understanding of the time dependency of the calculations.

 Figure 6: The for-loop written by the students.

Figure 7: The second concept map of the students S5 and S6.

Episode 3: S5 and S6 faced many difficulties when trying to
execute their program, debug and understand it. Significant effort
was invested trying to understand the meaning of each of the
velocities:

S6: There are the wind's velocity, the discus velocity, and Vrel.
S5: Wait, what was our meaning here [pointing on the segment

of calculating the anti-derivative of the acceleration]? Which
velocity is it?

S6: I can't remember.
At this point the students consulted their teacher for help in

writing a correct program. Since they still did not understand the
meaning of each velocity, they tried to copy the components of
the formulas into the program without understanding them. This
led to long sessions of correcting the code, the students trying
again and again to understand the variables. Eventually, S6 said:

S6: Oh! Vrel is equal to Vdiscus minus Vwind.
In this excerpt S6 means that Vrel is not what they previously

thought— the observed discus velocity, summing the velocity
relative to the air and the wind velocity. Instead, it is the velocity

relative to the air, that is, the observed velocity minus the velocity
of the wind. The following method was generated (Fig. 8):

 Figure 8: Code of calculation of relative to the air discus'
velocity.

The relevant concept map describing the students' current
conceptual knowledge is now equivalent to the expert's one (Fig.
9).

Figure 9: Third concept map of the students S5 and S6.

To summarize this case study, S5 and S6 achieved three main
insights:

1. The dependence of the calculation of the discus velocity
on time. The students understood the need to repeatedly
calculate the velocity based on its previous values.

2. The difference between the variables of the observed
velocity of the discus and one the relative to the air.
After confusing the two variables for three lessons, the
students finally understood which of the discus
velocities is the observed and which is relative to the
air.

3. The cause and effect relationships between the discus
velocity relative to the air and the aerodynamic forces.
After achieving the second insight of the difference
between the two discus' velocities, the students correctly
understood that only the discus relative velocity affects
the aerodynamic forces and hence the acceleration.

Many factors affected the development in the students'
conceptual understanding: the computational environment, the
scientific paper, the teacher, the conversations between the
students and more. It is not clear which one of these affected each
one of the described episodes. Still, during observations, we
noticed the following:

The students did not understand the physics formulas well
enough before programming them; they simply copied parts of the
formulas. The statement of S6 in the first lesson clearly
demonstrates this point: "I want to start programming; we'll figure
it [the meaning of the variables in the formula] out later." The

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 9

reason may be that the students preferred implementing the
formulas as programming segments instead of properly
understanding them. Or, they may have thought that programming
the formulas will assist them in understanding them. Either way, it
seems reasonable to conclude that the need to program prevented
the student from achieving understanding, at least initially.

The students used names of programming variables that were
very hard to distinguish from each other. For example, they used
Vd, Vx, Vy, and Vrel to represent different kinds of velocities.
Since programming the simulation was a long process that lasted
around twelve hours, the students could not remember the
meaning of each variable. This made the process of debugging the
code quite challenging. For example, when debugging, S5 asked:
"Which velocity is it?" We believe that using more meaningful
names may have assisted the processes of understanding both the
physics and the programming.

On the other hand, it was clear that the students have gone
through deep learning processes. The relevant physics material
was challenging. The need to represent it in a program forced the
students to explore the meaning of each concept and the
interrelationships among the physics concepts. Moreover, the fact
that the simulation was time dependent encouraged the students to
understand the time dependency of the process. An analysis of the
learning processes that occurred during the course and the
interrelations between CS and physics during these learning
processes was the focus of another publication (removed for
anonymity) in which we used the perspective of Knowledge
Integration [23, 24].

Another interesting observation concerns the students' strong
motivation to accomplish their mission and develop a correct
simulation. This motivation was expressed, for example, in their
use of several sources for learning the relevant physics material,
among which are the scientific paper, the teacher and the internet.
Most of their time was used for independent learning and very
little irrelevant activities such as chatting with friends. We believe
that the type of the mission the students confronted yielded both
enthusiasm and obligation. However, the interrelations between
students' motivation and learning are not at the focus of this paper.

4.1.2 Case Study 2. S7 and S8 (10th grade) simulated an
electric charge entering a force-free region and then moving into a
constant magnetic field. The students decided that the charge
would start moving along a straight line in the force-free region
and then circulate in the magnetic field. The physics equations the
students relied on were (= -& for the force-free region and " =
3-×4 for the magnetic field. They programmed the two motions
of the charge. When executing the simulation they discovered that
the circular motion did not appear as they expected. They tried
various ways to solve this problem, but after two more lessons
(approx. 5 hours) the students reached a dead end and decided to
abandon the project. Despite their lack of success, they did gain
physics knowledge while working on the project.

Fig. 10 presents the expert's concept-map of the formula " =
3-×4 , underlying the mechanism of the motion of an electric
charge in a magnetic field.

It contains three vectors, each with direction and magnitude: -,
the velocity of the electric charge, 4the magnetic field, and ", the
magnetic force acting on the electric charge. The fourth concept is
3, the charge of the particle, which has magnitude and a sign (plus
or minus).

The velocity - and the charge 3 of the electric charge entering
a magnetic field, jointly with the magnetic field 4, set the size and
direction of the force ". The force, (which is the net force in this
case), in turn (according to Newton's second law) changes the
velocity of the charge and consequently its location. For each ∆&
the force repeatedly changes the velocity causing the process to
repeat itself as long as the charge moves in the magnetic field.

Figure 10: Expert's concept map representing the conceptual
knowledge of the physics involved in the project of S7 and S8.

At the beginning of the episode taken from the second lesson
of the project, the students demonstrated a vague understanding of
the equation " = 3-×4 , but they did not understand the
meaning of the concepts denoted by the equation nor the
relationships among them. At the end of this episode they were
able to explain the meaning of the concepts, and the casual
relationships among them. Three concept maps representing the
evolution in the students' understanding during this episode are
presented.

This description starts at the stage when the students
discovered that the circular phase of the motion is wrong, that is,
the charge entered the magnetic field, "jumped" upwards, moved
down and only then started the circle. The students debugged the
simulation, but did not succeed in correcting it.

At this stage they consulted the teacher and clarified the
physical meaning of the equations they wrote as programming
code:

S7: What do we have here? v? What is v? [...] B is the
magnetic field.

Teacher: What is the direction of the field?
S7: I don't care, we haven't decided yet.
According to the formula, the direction of the magnetic field

affects the direction of the circular motion of the charge;
therefore, in order to present this motion the direction of the field
should be pre-set, though S7 did not think that this was necessary.

Volume 9, Issue 2 Journal of Computational Science Education

10 ISSN 2153-4136 December 2018

Fig. 11 presents the concept map representing the students'
knowledge at this stage.

Figure 11: First concept map of the students S7 and S8.

This map shows that the students did not know the meaning of
some of the concepts denoted in the equation. Moreover, although
they knew that 4 is the magnetic field, they did not understand
that its direction affects the direction of the force, thus affecting
the direction of the charge's motion. Having to concretely
represent the direction of the charge's motion in the visual
simulation led the students to discuss the factors that influence it.
They arrived at the following conclusion:

S7: The simulation is two dimensional; therefore, the charge
cannot circulate inward. The magnetic field, therefore, has to be
directed outward. It affects the direction of the force which in turn
changes v every time, resulting in a circle.

The above understanding is expressed in the following concept
map (Fig. 12):

Figure 12: Second concept map of the students S7 and S8.

This map shows that the students understood the meaning of
the variables and the relationships among them. Still, it is not
complete, since q is missing. After discussing it some more with
the teacher, S8 stated the following:

S8: The sign of the charge [the sign of q] affects the direction
of the circle, as well.

The concept map representing the students' current
understanding (Fig. 13) is similar to the expert's map (Fig. 10)

with one exception. The expert's map includes % = /5
/1 but the

students' map does not. This is because 10th-grade students have
not yet learned derivatives.

Figure 13: Third concept map of the students S7 and S8.

Although gaining a better understanding of the meaning of the
equation, the students did not solve the problem of the charge
"jumping" before circling in the magnetic field region. Their error
was in another equation used for the circular motion inside the
magnetic field: 8 = 9& , where θ is the angle, 9 is the angular
velocity, & is the time. The variable t is assumed to be equal to
zero when starting the circular motion. In their simulation, on the
other hand, the time was greater than zero, since the charge was
moving in the force-free region first.

The students kept making minor changes to the program and
executed the simulation to check whether the problem was solved.
After two more lessons they decided to abandon the subject and
develop a new simulation.

4.2 General Findings
The other five projects were analyzed in a manner similar to that
of the two case studies. In all projects a development of students'
conceptual knowledge was evident. As the work on the projects
progressed, students' concept maps improved and became more
similar to the corresponding expert map. Our findings indicated
that this development was fostered by the need to program a
physics phenomenon and represent it as a simulation. In
particular, the following patterns, which were demonstrated in the
two case studies above, were also found in other projects:

Understanding the time dependency of physical processes. In
both case studies, the students' initial concept map did not contain
a link representing time dependency, but such a link was present
in the consequent maps. This was the also case for other projects.
Most of the simulations designed by the students represented
physical processes that progress in time. For this reason,
simulations' design demands an explicit use of the time variable
and loops. The loops may be implicit in the software (as in EJS)
or explicitly written by the students (as in Maxima). In both cases,
recognizing the need for such loops is related to students' better

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 11

understanding of time dependency, an understanding that is
known to be hard for physics students [2].

Understanding the meaning of the components in a formula. In
both case studies, the students' concept maps depicted a
misunderstanding or a partial understanding of the meaning of a
certain variable (which represents a component in the formula that
corresponds to the simulation) that was later resolved. This was
also evident in the other projects. All the students worked with
formal physics formulas that they later translated into
programming statements. One of the initial phases in program
design is declaring the variables that represent the physics
variables, and deciding on their type (integer or float). Even this
simple action forced the students to try and understand the
meaning of the programming variables and consequently the
physics ones.

Understanding the cause and effect relationships in the
formula. In both case studies an understanding of the cause and
effect relationships in the formula developed during the work on
the project. In the first case study these were cause and effect
relationships between the discus velocity relative to the air and the
aerodynamic forces. In the second case study these were the cause
and effect relationships between the direction of the magnetic
field, the direction of the force, and the direction of the charge's
motion. Many times students started the projects with a vague
understanding of the physics formulas, as also reported in the
literature [2]. The "step by step" nature of the algorithm and the
resulting program, in which a single-line physics equation needs
to be implemented in several program lines, forces the students to
decide what is the cause in the formula and what is the effect. This
is in contrast with the mathematical notation that uses the equality
sign and does not indicate the direction of the causality.

5 DISCUSSION
This research focused on gifted high-school students who
participated after regular school hours in an elective 3-year
computational-science course (for which they earned credit
reflected in their matriculation diploma). They combined physics,
mathematics, and computer science in order to learn
computational models and computational methods. We
investigated the relationships between the computational
environment, CS and the physics conceptual knowledge that the
students gained.

Programming physical phenomena is a complex activity. On
the one hand, it puts an extra load on the students. It may confuse
the students and prevent them from focusing on aspects of
physics. Evidence for this claim was included in the descriptions
of both case studies presented in the paper and was found in other
cases that we analyzed. Using improper names for programming
variables, lack of debugging skills, and more were found to
prevent the students from achieving some physical insights.

On the other hand, programming forces the students to unfold
the physical meanings and relationships expressed in the
formulas. It motivates students to deal with difficult physics
knowledge and causes them to feel obligated to design correct

simulations. Moreover, programming simulations provides
context-rich problems similar to real-life situations. Students'
conceptual knowledge in physics was found to develop even
regarding concepts that are known in the literature to be difficult.
Within the limitations of an exploratory qualitative study, it is
reasonable to attribute this learning to the computational science
course and the unique learning scenarios it has enabled.

Physics and computational-science instructors face a dilemma
when considering the inclusion of programming sessions in
physics classes. Our observations lead us to hypothesize that one
of the major problems students face when combining these three
disciplines is related to cognitive load [6]. Three types of
cognitive load are described in the literature: intrinsic, extraneous
[6], and germane [44]. Intrinsic load is the level of difficulty
inherent to the learning task, extraneous load is generated by the
manner in which the information is presented to the learner, and
germane load is the load devoted to the processing, construction
and automation of schemata. Thus, intrinsic and extraneous are
the "bad" loads and germane is the "good" one, since instructional
effort should be put in creating schemata of information to make
the learning efficient.

Learning within multiple disciplines (CS, physics and
mathematics) may cause intrinsic load, since each discipline is
difficult by itself. Moreover, it may cause extraneous load as well,
due to the instruction of three different disciplines at the same
time.

One of the possible ways to reduce the extraneous load would
be to provide the students with more intensive physics training.
Some of the training may take place apart from programming, so
that students would have a chance to understand the physics
aspects before they mix it with programming. This
recommendation is compatible with the teacher's claim that the
students lacked proper physics knowledge when programming the
simulations. Similarly, the students should be taught CS strategies
separately, possibly after learning some of the physics content.

The research presented in this paper explored the evolution of
conceptual knowledge in physics during the programming of
computational models. Other studies explored what elements in
the computational-science environment affected this evolution
(removed for anonymity). We did not, however, refer to other
factors that may have been related to the students' learning.
Further research is needed to explore the possible relationships
among other factors and the students' learning, such as them being
gifted or learning in pairs.

Another important aspect that was not addressed here is the
evolution of the students' CS learning. A large portion of the class
time was spent on learning programming aspects. The question of
the influence of the physics context on CS learning is one that
would definitely interest CS educators and may affect the
instruction of the discipline.

REFERENCES
[1] Abelson, Harold, Sussman, Gerald Jay, and Sussman, Julie. 1996. Structure and

interpretation of computer programs (2nd Ed.). Cambridge, MA: MIT Press,
Cambridge, MA, USA.

[2] Bagno, Esther, Berger, Hana, and Eylon, Bat Sheva. 2008. Meeting the
challenge of students' understanding of formulae in high-school physics: a

Volume 9, Issue 2 Journal of Computational Science Education

12 ISSN 2153-4136 December 2018

learning tool. Physics Education, 43, 1 (Jan. 2008), 75-82.
[3] Bagno, Esther, and Eylon, Bat Sheva. 1997. From problem solving to a

knowledge structure: An example from the domain of electromagnetism.
American Journal of Physics, 65, 8 (Aug. 1997), 726-736.

[4] Chabay, Ruth, & Sherwood, Bruce. 2008. Computational physics in the
introductory calculus-based course. American Journal of Physics, 76, 4 (Apr.
2008), 307–313.

[5] Chabay, Ruth. W., and Sherwood, Bruce. A. 1994. Electric and magnetic
interactions. Wiley, New York.

[6] Chandler, Paul, and Sweller, John. 1991. Cognitive load theory and the format of
instruction. Cognition and Instruction, 8, 4, 293–332.

[7]

Chang, Huey-Por, Chen, Jun-Yi, Guo, Chorng-Jee, Chen, Chung-Chih, Chang,
Ching-Yi, Lin, Shean-Huey, . . . Tseng, Yaw-Teng. 2007. Investigating primary
and secondary students’ learning of physics concepts in Taiwan. International
Journal of Science Education, 29, 4, 465-482.

[8] Chi, Michelene T. H., Feltovich, Paul J., and Glaser, Robert. 1981.
Categorization and representation of physics problems by experts and novices.
Cognitive Science, 5, (Apr.-Jun. 1981), 121-152.

[9] Christian, Wolfgang, and Esquembre, Francisco. 2007. Modeling
physics with easy Java simulations. The Physics Teacher, 45, 8 (Nov. 2007), 475-
480.
[10] De Jong, Ton, and Van Joolingen, Wouter R. 1998. Scientific discovery
learning with computer simulations of conceptual domains. Review of Educational
Research, 68, 2 (Jun. 1998), 179–201.
[11] Détienne, Françoise. 1990. Expert programming knowledge: a schema-
based approach. In J-M Hoc, T.R.G. Green, R. Samurcay, and D. Gilmore (Eds.),
Psychology of Programming. Academic press, London, 205-222.
[12] Esquembre, Francisco. 2004. Easy Java Simulations: A software tool to
create scientific simulations in Java. Computer Physics Communications, 156, 2 (Jan.
2004), 199-204.
[13] Eylon, Bat Sheva, and Ganiel, Uri. 1990. Macro- micro relationships:
the missing link between electrostatics and electrodynamics in students’ reasoning.
International Journal of Science Education, 12, 1, 79-94.
[14] Galili, Igal. 1996. Students’ conceptual change in geometrical optics.
International Journal of Science Education, 18, 7, 847-868.
[15] Galili, Igal, and Hazan, Amnon. 2000. Learners’ knowledge in optics:
interpretation, structure and analysis. International Journal of Science Education, 22,
1, 57–88.
[16] Ghaffar, Munazzah Abdul., Iqbal, M. Ashraf., and Hashmi, Yasser.
2007. Meaningful learning of problem transformations for a grid graph. In
Proceedings of the International Conference on Engineering Education (ICEE
2007).
[17] Guisasola, Jenaro, Almudi, Jose M., and Zuza, Kristina. 2013.
University students’ understanding of electromagnetic induction. International
Journal of Science Education, 35, 16, 2692–2717.
[18] Gunstone, Richard F., and White, Richard. T. 1981. Understanding of
gravity. Science Education, 65, 3 (Jul.. 1981), 291-299.
[19] Halloun, Ibrahim Abou, and Hestenes, David. 1985. The initial
knowledge state of college physics students. American Journal of Physics, 53, 11
(Nov. 1985), 1043–1055.
[20] Hasemann, Klaus, and Mansfield, Helen. 1995. Concept mapping in
research on mathematical knowledge development: backgrounds, methods, findings
and conclusions. Educational Studies in Mathematics 29 (Jul.. 1995), 45-72.
[21] Jacobs-Lawson, Joy M. and Hershey, Douglas. A. 2002. Concept maps
as an assessment tool in psychology courses. Teaching of Psychology, 29, 1 (Jan.
2002), 25-29.
[22] Jasien, Paul. G., and Oberem, Graham. E. 2002. Understanding of
elementary concepts in heat and temperature among college students and K-12
teachers. Journal of Chemical Education, 79, 7 (Jul. 2002), 889.
[23] Linn, Marcia C., and Eylon, Bat Sheva. 2006. Science education:
integrating views of learning and instruction. In Handbook in Educational
Psychology, Patricia. A. Alexander and Philip. H. Winne (Eds.). Lawrence Erlbaum
Associates, Mahwah, NJ, USA, 511-544.
[24] Linn, Marcia C., and Eylon, Bat Sheva. 2011. Science Learning and
Instruction: Taking Advantage of Technology to Promote Knowledge Integration.
Routledge, New York.
[25] Lomask, M., Baron, J.B., Greig, J., and Harrison, C. 1992. ConnMap:
Connecticut’s use of concept mapping to assess the structure of students’ knowledge
of science. Presented at the Annual Meeting of the National Association of Research
in Teaching (March, 1992, Cambridge, MA, USA).
[26] McCloskey, Michael. 1983. Naive theories of motion. In Mental models,
Dedre Gentner and Albert L. Stevens (Eds.). Lawrence Erlbaum Associates,
Hillsdale, NJ, USA, 299–324.
[27] McClure, John R., Sonak, Brian, and Suen, Hoy. K. 1999. Concept map
assessment of classroom learning: Reliability, validity, and logistical practicality.
Journal of Research in Science Teaching, 36, 4 (Mar. 1999), 475-492.
[28] McDermott, Lillian. C. 1984. Research on conceptual understanding in
mechanics. Physics Today, 37, 7 (Jul. 1984), 24–32.

[29] Novak, Joseph D., and Cañas, Alberto. J. 2008. The theory underlying
concept maps and how to construct and use them. Florida Institute for Human and
Machine Cognition Pensacola. Retreived August 29, 2017, from
http://cmap.ihmc.us/docs/theory-of-concept-maps.
[30] Novak, Joseph D., and Gowin, D. Bob. 1984. Learning how to learn.
Cambridge University, Cambridge, UK.
[31] Papert, Seymour. 1981. Mindstorms: children, computers, and powerful
ideas. Basic Books, New York.
[32] Pearsall, N. Renne, Skipper, Jo. El J., and Mintzes, Joel. J. 1997.
Knowledge restructuring in the life sciences: A longitudinal study of conceptual
change in biology. Science Education, 81, 2 (Apr., 1997), 193-215.
[33] Peterson, Ray, and Treagust, David, F. 1995. Developing preservice
teachers’ pedagogical reasoning ability. Research in Science Education, 25 (Sep.
1995), 291-305.
[34] Peterson, Ray, and Treagust, David, F. 1998. Learning to teach primary
science through problem-based learning. Science Education, 82, 2 (Dec. 1998), 215-
237.
[35] Redish, Edward F., and Wilson, Jack M. 1993. Student programming in
the introductory physics course: MUPPET. American Journal of Physics, 61, 3 (Mar.
1993), 222-232.
[36] Ruiz-Primo, Maria. 2000. On the use of concept maps as an assessment
tool in science: What we have learned so far. Revista Electrónica de Investigación
Educativa, 2, 1, 1-24.
[37] Rutten, Nico, van Joolingen, Wouter R., and van der Veen, Jan T. 2012.
The learning effects of computer simulations in science education. Computers &
Education, 58, 1 (Jan. 2012), 136-153.
[38] Savinainen, Antti, Mäkynen, Asko, Nieminen, Pasi, and Viiri, Jouni.
2012. An intervention using an Interaction Diagram for teaching Newton’s third law
in upper secondary school. In Physics Alive. Proceedings of the GIREP-EPEC 2011
Conference. (Aug., 2012), 123-128.
[39] Shaffer, Peter. S., and McDermott, Lillian. C. 1992. Research as a guide
for curriculum development: An example from introductory electricity. Part II:
Design of instructional strategies. American Journal of Physics, 60, 11 (Nov. 1992),
1003-1013.
[40] Shaffer, Peter S., and McDermott, Lillian C. 2005. A research-based
approach to improving student understanding of the vector nature of kinematical
concepts. American Journal of Physics, 73, 10 (Oct. 2005), 921-931.
[41] Sherin, Bruce. L. 2001. A comparison of programming languages and
algebraic notation as expressive languages for physics. International Journal of
Computers for Mathematical Learning, 6, 1 (May. 2001), 1-61.
[42] Sloot, Peter. (n.d.). Aims & scope of the Journal of Computational
Science. Retreived August 29, 2017, from
http://www.elsevier.com/wps/find/journaldescription.cws_home/721195/description.
[43] Stoddart, Trish, Abrams, Robert, Gasper, Erika, and Canaday, Dana.
2000. Concept maps as assessment in science inquiry learning - a report of
methodology. International Journal of Science Education, 22, 12 (Dec. 2000), 1221-
1246.
[44] Sweller, John, van Merriënboer, Jeroen J. G., and Paas, Fred. 1998
Cognitive architecture and instructional design. Educational Psychology Review 10,
3 (Sep. 1998), 251-296.
[45] Thomaz, Marília F., Malaquias, I. M., Valente, M. C., and Antunes, M.
J. 1995. An attempt to overcome alternative conceptions related to heat and
temperature. Physics Education, 30, 1 (Jan. 1995), 19-26.
[46] Trowbridge, David E., and McDermott, Lillian C. 1980. Investigation of
student understanding of the concept of velocity in one dimension. American Journal
of Physics, 48, 12 (Dec. 1980), 1020-1028.
[47] Yasar, Osman, and Landau, Rubin. 2003. Elements of computational
science & engineering education. SIAM Review 45, 4, 787-805.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 13

Automatic Feature Selection in Markov State Models Using
Genetic Algorithm

Qihua Chen*
University of Illinois at Urbana-Champaign

Urbana, IL
Qihua.chen06@gmail.com

Jiangyan Feng∗
University of Illinois at Urbana-Champaign

Urbana, IL
jf8@illinois.edu

Shriyaa Mittal
University of Illinois at Urbana-Champaign

Urbana, IL
smittal6@illinois.edu

Diwakar Shukla†
University of Illinois at Urbana-Champaign

Urbana, IL
diwakar@illinois.edu

ABSTRACT
Markov State Models (MSMs) are a powerful framework to repro-
duce the long-time conformational dynamics of biomolecules using
a set of short Molecular Dynamics (MD) simulations. However,
precise kinetics predictions of MSMs heavily rely on the features
selected to describe the system. Despite the importance of feature
selection for large system, determining an optimal set of features re-
mains a di�cult unsolved problem. Here, we introduce an automatic
approach to optimize feature selection based on genetic algorithms
(GA), which adaptively evolves the most �tted solution according
to natural selection laws. The power of the GA-based method is
illustrated on long atomistic folding simulations of four proteins,
varying in length from 28 to 80 residues. Due to the diversity of
tested proteins, we expect that our method will be extensible to
other proteins and drive MSM building to a more objective protocol.

KEYWORDS
Genetic algorithm, feature selection, markov state model, molecular
dynamics simulation, generalized matrix Rayleigh quotient

1 INTRODUCTION
Molecular Dynamics (MD) simulation, �rst introduced by Alder
and Wainwright[2] in the late 1950’s, has evolved into a major tech-
nique to study the detailed actions and mechanisms of proteins[10,
23, 26, 35, 39]. Based on Newton’s equations of motion, MD sim-
ulations can describe protein dynamics in unprecedented spatial
and temporal resolution. However, one of the major challenges
for MD simulations are the analysis of high dimensional data and
the incompatibility between timescales accessible to MD simula-
tion and that are functionally relevant[22, 25, 45, 46, 50]. Markov
State Models (MSMs)[20, 37, 44] have recently been used to address

∗Qihua Chen and Jiangyan Feng contributed equally to this work.
†Correspondence and requests for materials should be addressed to D.S. (email:

diwakar.shukla@shuklagroup.org)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full
citation on the �rst page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2018 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/9/2/2

the aforementioned issues by predicting protein dynamics at long
timescales from a pool of short MD simulations. The MSM itself is
a "transition probability matrix"[6], describing mathematically the
memoryless transitions between metastable states. To construct a
MSM, raw MD trajectories are �rst transformed from their Carte-
sian coordinates to features, such as dihedral angles[18, 33] or
pairwise contact distances of a protein. This step is often called
"featurization". The dimensionality of these features may be further
reduced through dimensionality reduction step. One commonly
used method is time-structure independent components analysis
(tICA), which creates linear combinations of input features by max-
imizing their decorrelation time[24, 27, 38, 41, 42]. With a properly
constructed MSM, useful thermodynamic and kinetic properties of
the dynamic process can be extracted. Despite the attractive feature
of MSMs, the thermodynamics and kinetics predicted by MSMs
are highly sensitive to which features are selected to discretize the
con�guration space[4, 10, 28]. Ideally, features should be chosen to
capture the slowest motions of the protein, which are usually the
most interesting or important processes. However, determining an
optimal set of features remains a considerable challenge especially
when a protein system is su�ciently complex.

Currently, there are twomajor ways of selecting features in terms
of "contact featurization", where pairwise contact distances of a pro-
tein are used as features. One is using all pairwise contact distances
of a protein as features. In principle, no important information
about the system is missed out since all the contact distances are
considered. However, it is costly to calculate all distances even for a
small protein. For a protein system with R residues, the total num-
ber of distances among each other will be R(R-1)/2, which creates
a heavy load of calculation on computers. In addition, irrelevant
features that do not contribute to the dynamics process may lead to
the poor generalization performance of the model. Thus, using all
available features may degrade the performance of the MSM both in
speed (due to high dimensionality) and accuracy (due to irrelevant
information). Alternatively, the most commonly used method is
choosing a subset of contact distances based on human intuition
[20]. Consequently, the thermodynamics and kinetics extracted
from MSMs can be biased by the manually chosen features. In sum-
mary, either way is not appropriate for the selection of features
and a more convenient, accurate and automated method for feature
selection is necessary. A variety of machine learning methods have
been recently reported for dimensionality reduction and/or feature

Volume 9, Issue 2 Journal of Computational Science Education

14 ISSN 2153-4136 December 2018

selection for molecular dynamics datasets[33]. However, the use of
these ideas for automatic feature selection in building MSMs has
not been explored.

Here, we present a genetic-algorithm based method to select
an optimal set of residue pair distances for contact featurization.
Genetic algorithm (GA) is one of the advanced methods to help with
dealing feature selection problems in data science. First proposed
by John H. Holland[13, 15], GA is a heuristic and adaptive simula-
tion algorithm that evolves the most �tted solution to a problem
based on Darwinian natural selection laws. GA has been broadly
applied to help with function optimization[48], protein folding
prediction[21, 49], multiple sequence alignment[14] and more sci-
enti�c investigations[16]. In nature, useful traits in genes tend to
be preserved in o�spring because of a higher survival probability.
Like the real cases in nature, better solutions to a problem can be
derived by GA according to this principal. In our case, each "gene"
represents the alpha carbon distance between a residue pair, and
"chromosomes" are combinations of residue pair distances. To seed
the whole process, we randomly select one residue pair distance
as the starting point of the GA. The adaptability of each "chromo-
some" (a set of residue pair distances) is quantitatively expressed
as �tness scores in GA. In this study, we use generalized matrix
Rayleigh quotient (GMRQ) score as the �tness score. GMRQ was
recently introduced to quantitatively evaluate MSMs based on its
distance from a theoretical upper limit[19, 30, 36]. The higher the
GMRQ score is, the more prominent the MSM is to capture the slow
underlying dynamical motions while a low GMRQ score indicates
that the MSM is not able to reveal the slow dynamics of the system.
Therefore, the goal of our method is optimizing a set of residue
pairs that gives the highest GMRQ score. The framework of our
GA-based method is adapted from the "Optimal Probes" method
proposed byMittal and Shukla[32]. In their study, an optimal choice
of residue pairs, capturing the slow conformational dynamics, is
successfully predicted for double electron-election resonance spec-
troscopy, an experimental technique capable of detecting confor-
mational changes by monitoring the distance between electron
spins.

In this method, we (1) perform contact featurization for each
set of residue pair alpha carbon distances, (2) use tICA to further
reduce the dimensionality of the data, (3) construct MSMs based
on the reduced dimensionality, and (4) calculate GMRQ for each
set of residue pair distances to evaluate the MSMs. Based on the
GMRQ score, the combination of residue pair distances will be
updated. The algorithm will then go back to step (1) to repeat the
whole process until reaching user speci�ed number of iterations.
In the end, the set of distances with the maximum GMRQ score is
chosen as an optimal set of residues for the construction of the "best
MSM". To evaluate of our method, we test the GA-based method
on four folding proteins with the size ranging from 28 residues
to 80 residues. Our experimental results show that the method
yields comparable and even better accuracy compared with using
all available features. To our knowledge, this is the �rst attempt
to automatically select proper MSM features for analysis. The GA-
based method described here can be extended to larger proteins
undergoing conformational changes.

2 THEORY AND METHODS
MolecularDynamics (MD) SimulationDataset.MD simulation
datasets of the four folding proteins for analysis were generated
by Lindor�-Larsen et al[26]. The four proteins (BBA, Villin, WW
domain and �-repressor) vary in length from 28 to 80 amino acids.
More details of the simulations are summarized in Table 1. For the
analysis, we retain all the trajectory frames. Three small proteins
(BBA, Villin and WW domain) are chosen to evaluate the proposed
method and the best GMRQ achieved using all contact distances
serves as the benchmark. The 80-amino-acid �-repressor is used
to test the feasibility of the method on large proteins, as using all
distances is impractical.

Table 1: Protein and Trajectory Information.

Protein PDB Residues Total simulation time (µs)
BBA 1FME 28 325
Villin 2F4K 47 429
WW domain 2F21 35 1137
�-repressor 1LMB 80 643

Markov State Models (MSMs). In this study, the goal is optimiz-
ing a set of residue pair distances to build the best MSM based
GMRQ. MSMs are kinetic models that reveal the dynamics of a
system[6, 17, 37, 39, 40]. AnMSM describes a network of metastable
conformational states and reveals the probabilities of each state
performing jumps from one to another over an appropriate time
resolution (� , also called lag time). The jumps are memoryless,
which means the probability to transit to the present state is not
dependent on the previous ones. Such information is presented in
a "transition probability matrix" by MSM, where an n ⇥ n square
matrix depicts the transitions among n states[6]. The probability of
each jump can be expressed according to the equation below:

pj (t + �) =
n’
i=1

pi (t)Ti j (�) (1)

The equation can also be expressed in a matrix form:

pT (t + �) = pT (t)T (�) (2)

where pi (t) is a population vector whose elements show the proba-
bility at time t , pj (t + �) is a population vector after time � , Ti j (�)
is the probability to jump from state i to state j and T (�) is the
transition probability matrix that T (�) 2 Rn⇥n . Further details of
the transition matrix can be found in literatures[6, 44].

The transition probability matrix can be decomposed into eigen-
functions and eigenvalues shown below:

T (�) ��i = �i�i (3)

where�i is the eigenfunction and �i are the real eigenvalues that
�i 1, arranged in descending order.

Here, each step of the MSM building process used in this study
is described in detail. All the hyperparameters (e.g. the number of
tICA components, tICA lagtime, the number of clusters, the number
of MSM timescales and MSM lagtime) are shown in Table 2.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 15

(1) Featurization. To construct an MSM, the �rst step is to pro-
cess the datasets that we plan to work on. In our case, we use
the MD simulation data sets listed in Table 1. The datasets
are given in the form of MD trajectories, which present series
of motion of the protein atoms in a frame-wise arrangement.
Because the simulated movements recorded in Cartesian co-
ordinates are not ideal for analysis, and too much noise not
relevant to our study may be included, it is better to interpret
the data in other ways. As a result, a lot of reasonable metrics
such as dihedral angle[18] and contact distances between
residue pairs are used to featurize the data. The featurization
method we choose here is contact distance analysis. By using
such technique, more useful information can be extracted
from the redundant MD trajectories. Again, our goal of this
study is to optimize the choice of residue pairs for contact
distance calculation, so that an MSM with more information
and less noise can be found by this method. The method
outlined in this study could be applied to any chosen set of
features calculated using simulation data.

(2) Dimensionality reduction. We further processed our featur-
ized data by tICA so as to reduce the dimensionality of the
data. After featurization, the featurized data were projected
onto linear subspaces of the slowest dynamics. The compo-
nents of tICA are termed time structure-based independent
components (tICs), which are linear combination of the in-
put features (a set of contact distances in our case). Top tICs
capture the slowest motion captured by tICA and usually
represent the most interesting dynamics[24, 27, 38, 41, 42].

(3) Clustering. We perform mini-batch k-means clustering on
the processed data. Clustering refers to the coarse graining
analysis that groups certain datasets based on their simi-
larities, so that macrostates can be formed to be better un-
derstood. Commonly used clustering algorithms, such as
mini-batch k-means[6, 30, 34], mini-batch k-medoids[8, 12]
and k-centers[5, 24], have shown similar performance when
the data is preprocessed with tICA[27, 33, 38, 41].

(4) MSM construction. After the clustering, a MSM can be built
based on the processed datasets. The process was imple-
mented in a Python environment and the software involved
to produce the analysis above includeNumpy[3],MDTraj[28]
and MSMBuilder3.8[4].

GeneralizedRayleighQuotient (GMRQ). In short, an idealMSM
should successfully identify the slowest dynamics of the protein.
Because the state decomposition mentioned above reveals the dy-
namical processes in the system, the identi�cation of true eigen-
function and eigenvalues become the major problem for scientists
to solve. A more quantitative method is needed to help evaluate
and �nd the true state decomposition, which is directly related to
the choice of metrics in the featurization stage.

To help solve this problem, GMRQ was introduced as a quantita-
tive way of evaluating the quality of an MSM[30, 30, 36]. GMRQ
is derived from the variational principle that adds up the �rstm
eigenvalues, which denote the slowestm dynamical processes in the
system. The variational principles set an upper boundary[19, 30, 36]

for the total sum of real eigenvalues shown below:

GMRQ ⌘
m’
i=1

�̂i
m’
i=1

�i (4)

where the �̂i is the estimated eigenvalue and the �i is the real
eigenvalue. In this study, as we try to maximize GMRQ score to
approach the upper boundary, the larger the GMRQ score we get,
the closer we are to the slowest dynamics of the protein.

To help avoid over�tting, cross-validation must be applied to
evaluate our GMRQ scores. The dataset from the MD simulation is
split into a training set and a test set. The training set is �rst used
to estimate the model parameters such as the eigenvalues, then the
estimated model is applied to score its performance in the test set.
In this way, the model will not be biased by over�tting the data
onto the model. The process of deriving GMRQ scores is achieved
by Osprey package[29] and the recruited parameters are shown in
Table 2. Mean GMRQ of �ve cross-validation iterations are used for
the analysis.

Figure 1: The �ow chart showing the whole process of our
GA-based method.

Volume 9, Issue 2 Journal of Computational Science Education

16 ISSN 2153-4136 December 2018

Genetic-algorithm-based Method for automatic feature se-
lection in Markov State Models (MSMs). To simulate the nat-
ural selection process according to the Darwinian law, we must
decide how the natural selection principles are implemented in our
algorithm. In this section, we introduce our basic operators of GA,
the framework that we follow to perform GA, and the protocol we
adopt to �nally generate optimal residue pairs. The construction of
the GA is based on the work of Mittal and Shukla[32].

In the �eld of programming, operators refer to the actions to
take during each step of execution of the algorithm. The basic
operators in our study are composed of natural selection, mutation,
and crossover. In the following section, we discuss our method to
help predict an optimized set of residue pair distances for MSM
construction using genetic algorithm. We also provide the series of
steps as a �ow chart shown in Figure 1. Some important parameters
that are involved in these steps are: populationSize, percentMutation
and percentCrossover. These parameters can be changed according
to user’s need.

(1) A set of all possible residue pairs is identi�ed.R(R-1)/2 residue
pairs for a protein with R residues.

(2) populationSize preliminary sets of residue pair are randomly
selected from the set of all possible residue pairs for the
�rst iteration. Each set contains only one residue pair as the
starting point for selection. These sets of residue pairs serve
as the initial generation G0 and are assigned �tness scores
of 0.

(3) Natural selection is performed to choose the new generation
of residue pairs according to their �tness scores. The natural
selection operator corresponds to the reproductive process in
nature, which selects genomes with ideal traits for breeding
o�spring. In our case, we de�ne a parameter populationSize
that describes the number of elements randomly chosen from
the parental set for a new generation Gnew .

(4) Mutation is performed to maintain diversity to the current
generation of residue pair selections. The mutation operator
corresponds to the mutation process in nature to increase
genetic diversity. In our version of GA, we de�ne a parame-
ter percentMutation to maintain a ratio of mutation in our
combination of residue pairs. During the mutation step, the
number of residue pairs to be mutated are generated by (per-
centMutation ⇥ populationSize)/100 from Gnew and those
residue pairs are randomly replaced by other residue pairs
that are excluded in the Gnew .

(5) Crossover is performed to add more diversity to the cur-
rent generation. The crossover operator corresponds to the
natural recombination process of chromosomes. Here, we
de�ne another parameter percentCrossover as the percent-
age of crossover in our combination of residue pairs. The
number of residue pairs to perform crossover is generated
by (percentCrossover ⇥ populationSize)/100 from Gnew . The
residue pair distance sets will then be swapped according to
the number calculated before to create a new combination
of residue pair distances.

(6) Evaluations are performed to assign �tness scores to the
newly generated residue pairs. MSMs are constructed based
on contact featurization using the current generation of

residue pairs, and GMRQ scores are calculated accordingly
to serve as �tness scores.

(7) If more iterations are designed to be �nished, the next itera-
tion should restart at step (3) and use the current generation
of residue pairs asG0. As the iteration number increases, the
�tness scores for the selection of residue pairs should show
a convergence of �tness scores.

All the parameters used in this study are organized in Table 2.

Table 2: Model Hyperparameteres.

Featurization
�-carbon contact distances
Decomposition Components Lag time (ns)
tICA 5 0.2
Clustering Clusters
Mini-batch k-means 200
Model �tting N_timescales Lag time (ns)
MSM 5 50
Scoring
GMRQ
Cross-validation Iterations Test set size
Shu�e & Split 5 0.5
Genetic algorithm
Iterations 40
populationSize 20%
percentMutation 50%
percentCrossover 20%

3 RESULTS
In this section, we discuss the optimized set of residue pair distances
obtained from our GA-based approach. As described in the method
part, the unbiased and extensive MD simulation data (>100µs) simu-
lating the folding process of the proteins is taken from literature[26].
Preliminary sets of residue pair distance are randomly selected from
the set of all the possible residue pairs as the starting point of the
genetic algorithms. These sets go through selection, mutation and
crossover steps to provide a new generation of residue pair dis-
tances. In the setting of GA, we choose a population size of 10%,
mutation percentage of 50% and crossover percentage of 20%. Next,
the newly generated residue pair distances are used to build MSMs
and assign new GMRQ scores (�tness scores) for evaluation. The
next iteration will then go back to the selection step and select
according to the newly assigned �tness scores. As the process goes
through more iterations, the GMRQ scores will converge and a best
GMRQ score can be found.

This method is applied to 4 proteins for demonstration of its
functionality: BBA, Villin, WW domain and �-repressor. Among
the proteins, 3 proteins (BBA, Villin and WW domain) are small
proteins, each of which has a residue number that smaller than 40
(R < 40). To examine the e�ectiveness of our method, we compare
the GMRQ scores and implied timescales with their corresponding
benchmark values (using all contact distances as features). In the
end, we show the ability of our GA-based method to process larger

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 17

Table 3: Comparison of the best GMRQ scores generated and benchmark GMRQ scores from all contact featurization. The
fraction of all residue pairs is the fraction of chosen residue pairs in all residue pairs. The best GMRQ refers to the highest
GMRQ score that we obtain fromMSMs using residue pair distance features given by our genetic algorithm approach, and the
benchmark GMRQ score is the GMRQ provided by the MSM constructed with all contact featurization. The deviation column
if the deviation of our best GMRQ score from the benchmark GMRQ score.

Protein Residues Number of chosen Fraction of Best Benchmark Deviation (%)
distances pairs (%) GMRQ GMRQ

BBA (1FME) 28 47 12.43 4.445 4.239 +4.80
Villin (2F4K) 35 61 10.25 3.203 3.705 -13.5
WW domain (2F21) 35 4 0.67 4.198 4.111 +2.12
�-repressor (1LMB) 80 60 1.90 4.956 N/A N/A

Figure 2: GMRQ scores re�ecting the MSMs based on the GA-predicted residue pairs. (A) BBA (PDB ID: 1FME), (B) Villin
(PDB ID: 2F4K), (C) WW domain (PDB ID: 2F21), (D) �-repressor (PDB ID: 1LMB). Green, dashed lines indicate the best GMRQ
score corresponding to MSMs based on all contact featurization. Each violin plot shows the increase of GMRQ scores over 40
iterations. In each set of data, the center dot shows the mean values and the vertical line shows the range of this GMRQ data
set.

proteins such as �-repressor, a protein with 80 residues, which
cannot be featurized using all contact distances.

3.1 Our GA-based method proved e�ectiveness
in generating GMRQ scores that are close to
the highest possible values given by all
contacts featurizer.

We featurize the small proteins (BBA, Villin, WW domain) using
all contacts featurization to produce benchmark GMRQ scores for
comparison. Benchmark GMRQ scores will serve as a compara-
ble reference to evaluate the performance of our method of using

GA to generate optimal residue pairs as featurization metrics. By
comparing the best GMRQ scores from our GA-based method to
the benchmark GMRQ scores, we are able to check whether our
method successfully provides the residue pair sets that depict the
slowest process of the protein dynamics. We also apply this method
to �-repressor, a medium sized protein with 80 residues, to show
its ability to process larger proteins. The GMRQ scores are calcu-
lated by adding up the eigenvalues of the transition probability
matrix provided by MSMs[30, 36]. The theoretical upper limit of
GMRQ score is 6 in all cases[19, 30, 36], due to the fact that the
number of MSM timescales is chosen to be 5 in the MSM settings.
Therefore, in our case, high GMRQ score that approaches 6 usually

Volume 9, Issue 2 Journal of Computational Science Education

18 ISSN 2153-4136 December 2018

Figure 3: The �rst three slowest implied timescales as a function of MSM lag time. (A) BBA (PDB ID: 1FME), (B) Villin (PDB
ID: 2F4K), (C) WW domain (PDB ID: 2F21). The red, yellow and cyan colored lines indicate the slowest, second slowest and
third slowest implied timescales, respectively. Dashed lines correspond to the reference value given by the MSMs built on
all contacts featurization. Solid lines correspond to the implied timescales given by the MSMs achieved by using the set of
distances optimally chosen by our GA-based method.

suggests a better ability of an MSM to capture the slowest process,
whereas low GMRQ score implies ine�ective state decomposition
during the MSM construction process. All information regarding
the GMRQ scores and residue pair selection is summarized in Table
3. As shown in Figure 2, all GMRQ scores converged over 40 iter-
ations. In Figure 2A, the highest GMRQ score for BBA is around
4.445, which is higher than the benchmark GMRQ score (4.239).
Similar traits are shown by WW domain in Figure 2C that the best
GMRQ from GA (4.198) is higher than the benchmark (4.111). How-
ever, one exception happens in Villin, shown in Figure 2B. In Figure
2B, the best predicted GMRQ (3.203) does not reach the benchmark
(3.705). More iterations for Villin are needed to reach a best GMRQ
score that is higher than the benchmark, but there exists a trade-o�
between the accuracy and computational resource needed. Overall,
the percent variances between our predicted GMRQ score and the
benchmark GMRQ score are +4.8% for BBA, -13.5% for Villin and
+2.12% for WW domain, in which Villin has the highest di�erence
compared to the other two proteins.

Similar analysis is applied to �-repressor, except that �-repressor
lacks a benchmark GMRQ score due to its higher number of residues.
Hence, there is no reference value to compare in this case. The best
GMRQ score given over 40 iterations is around 4.956. Considering
that the upper limit of the GMRQ score in this system is 6, we believe
that a score of 4.956 is a relatively high GMRQ that e�ectively
captures the slow dynamics of the protein folding mechanisms.
Therefore, we can conclude that the method proves its ability to
provide the optimal selection of residue pairs for the construction
of the best MSM.

3.2 Implied timescale plots show that predicted
optimal sets of residue pair distances are
able to successfully capture the slowest
dynamics in the proteins.

By plotting lag time dependent implied timescale plots, we can
quantitatively visualize the slow modes of protein dynamics. Figure
3 shows the comparison between the converged slowest implied
timescales provided by all contact featurization and our GA-based
method. Again, the reference values are provided by utilizing all
residue pair distances as features. Since �-repressor is too big for all

contacts featurization, there is no benchmark data available and its
implied timescale is not shown. In Figure 3A, the slowest implied
timescales (solid and dashed red lines) of BBA nearly overlap with
each other, indicating that our method has chosen a set residue
pair distances that captures the slowest process. In addition, the
predicted second and third slowest implied timescales (yellow and
cyan) are slower than the corresponding timescale for the bench-
marks. In Figure 3B, the predicted implied timescales of Villin has
a larger deviation. This inconsistency will be explained and justi-
�ed in the next paragraph. In the case of WW domain (Figure 3C),
we capture a slower timescale than the benchmarks. We �nd that
inclusion of all residue pair distances can add noises to the model,
and our GA-based method helps improve the MSM construction by
excluding those irrelevant features.

3.3 Number of selected distances may re�ect
the degree of complexity of the protein
folding mechanism.

Other than the GMRQ scores and implied timescale plots, more
information can be obtained from the sets of residue pair distances.
In Table 2, we collect and summarize the number of distances
selected by GA and the actual residue numbers in each protein.
One interesting thing is that the number of residues in a protein
is not necessary correlated to the number of distances needed to
capture its slowest dynamics. For example, it can be observed in
Table 2 that although both Villin and WW domain have 35 residues
in their sequences, WW domain only needs 4 distances of residue
pairs while Villin requires 61 distances. This may be due to the
complex folding mechanism of Villin. Though both proteins are
fast-folding proteins with small numbers of residues, the secondary
structure elements in Villin fold more independently without much
interactions[31]. Such minimized interaction or minimal frustration
makes the folding kinetics fast for Villin, according to the folding
funnel theory[7]. Consequently, because the protein folds quickly,
this phenomenon suggests a continuous reduction in energy in
the folding funnel[7, 9], which implies multiple parallel pathways
during the folding hypothesis[51]. On the other hand, WW domain
folds much slower than Villin[6] and has more consistent folding

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 19

Figure 4: GA-chosen residue pairs visualized on the unfolded MD structures and folded crystal structures. (A) BBA (PDB ID:
1FME), (B) Villin (PDB ID: 2F4K), (C) WW domain (PDB ID: 2F21), (D) �-repressor (PDB ID: 1LMB). The black lines specify the
distances between residue pairs chosen by our GA-based method, which capture the slowest dynamics of the proteins.

pathways[1]. The independent features in Villin make it hard for
GA to fully capture its slowest dynamics.

In a previous study, Feng and Shukla[11] utilized evolution cou-
plings (ECs) as functional features to capture protein folding and
conformational dynamics, which gives the similar results for Villin
and WW domain. Their work identi�ed that Villin needs 73 ECs
and WW domain only needs 5 ECs to fully describe the protein
dynamics. They stated that more ECs are needed if the ECs has
low correlation. Here, our results show the same trait that Villin
requires more features for identi�cation of its slowest dynamic pro-
cesses, which is reasonable due to the folding complexity of Villin
comparing to other fast-folding small proteins. To fully capture the
slow dynamics of proteins like Villin, a large number of features
should be included from its whole dataset. This is a di�erent sce-
nario comparing to capturing the dynamics of the proteins that
needs small numbers of features, which is a problem easier for GA
to solve. For proteins like Villin, other methods needs to be explored
for a more e�cient way to capture the slowest dynamics. Although
our method results in some degrees of deviations from the bench-
marks (shown in Figure 2B and 3B), it still shows e�ectiveness in
dealing with proteins with complicated kinetics.

To present our predicted results in a more understandable way,
we visualize the optimal sets of residue pairs for all four proteins
in Figure 4. Each section (A, B, C and D) of Figure 4 consists of two
parts, representing the unfolded and folded structure of the protein
respectively. It is easy to notice that the residue pair distances
chosen by our method spread out in the protein to capture the
complex dynamics of protein folding.

4 CONCLUSIONS
Feature selection of MSM construction determines the accuracy of
predicted kinetics properties. Currently, the selection of features is

done using trial and error. The utilization of GMRQ score enables a
quantitative description of the accuracy of MSMs in representing
the molecular dynamics observed in a simulation dataset. Using
GMRQ score as �tness score, we introduce a GA-based method
in order to optimize a set of residue pair distances that produce
superior MSMs. In this study, we have shown that our method
can provide an automatic, e�cient and accurate way to choose the
optimal residue pair distances as features for MSMs construction.
This signi�cantly improves the e�ciency in the overall process
of building MSMs while still guarantees the quality of MSMs to
capture the slowest protein dynamics. Due to the diversity of tested
proteins, our method can be widely applied to other proteins to
help with the feature selection process and we anticipate that this
method will shift MSM building one step closer to a systemic and
objective protocol. It is important to be aware that the underlying
assumption of this approach is that the slowest dynamic processes
correspond to the process of interest. However, this assumption
can be challenged in the case of insu�cient sampling or inaccurate
force �eld.

However, the method also has some limitations. The proposed
method belongs to the class of wrapper methods for feature selec-
tion that �nd the “optimal" feature subset by iteratively selecting
features based on the classi�er performance. The performance of
these methods drops signi�cantly for datasets with large number
of important but uncorrelated features. Our method also does not
perform well on systems with complex dynamics that requires a
large number of features to capture the underlying dynamics. In
other words, the e�ectiveness partially depends on the complexity
of the conformational changes in the protein, which is shown in the
discussion of Villin. As the folding complexity increases, more path-
ways are available for the protein, so the selection of residue pairs
may not fully depict the slowest dynamics of the protein. However, a
large number of biologically relevant dynamic processes have been

Volume 9, Issue 2 Journal of Computational Science Education

20 ISSN 2153-4136 December 2018

shown to involve only a few important features[11, 22, 25, 43, 45–
47, 50]. In addition, sequence information and crystal structure of
the protein should be known, and su�cient amount of MD simula-
tion data should be generated to apply our method. In conclusion,
the proposed algorithm, can help identify essential residue pair dis-
tances for featurization and exclude noises for MSM construction
with high e�ciency.

5 REFLECTION
The year-long Blue Waters Internship enriched my experience in
many aspects. This opportunity was rare and precious, especially
because I can utilize one of the leading-edge petascale computa-
tional resources on the BlueWaters Supercomputer. I was excited to
be o�ered the opportunity to meet other interns to study and prac-
tice computational skills together. Starting last summer, I have been
involved in a variety of activities, including a two-week educational
workshop at University of Illinois at Urbana-Champaign, regular
webinars, monthly reports and preparing a manuscript. Majoring in
Material Science, I joined the internship with limited computational
experience. However, I quickly gained essential skills and became
adept with the help of internship coordinators, my research advisor
and mentors in the lab. In addition, working on the projects helped
me to be familiar with the life in a research group and be better
prepared for the graduate school. My presentation skills were im-
proved through attending group meetings and poster sessions. I
also practiced my writing skills through regular progress reports
and writing this manuscript. Overall, the past year was a busy year,
but it has became a unique experience in my undergraduate studies.

ACKNOWLEDGMENTS
The authors thank D. E. Shaw Research for MD simulation trajec-
tories (BBA, Villin, WW domain and �-repressor). Q.C. would like
to thank the support of the Shodor Education Foundation and the
Blue Waters Student Internship Program. J.F. would like to thank
Chia-chen Chu fellowship for support. S.M. is supported by the
CSE Fellows Program, Computational Science and Engineering
at University of Illinois, Urbana-Champaign, Urbana, IL. D. S. ac-
knowledges support from the Foundation for Food and Agriculture
Research via the new innovator program.

REFERENCES
[1] Silvio a Beccara, Tatjana Škrbić, Roberto Covino, and Pietro Faccioli. 2012. Domi-

nant folding pathways of a WW domain. Proc. Natl. Acad. Sci. U.S.A 109, 7 (2012),
2330–2335.

[2] BJ Alder and TEf Wainwright. 1957. Phase transition for a hard sphere system. J.
Chem. Phys. 27, 5 (1957), 1208–1209.

[3] David Ascher, Paul F Dubois, Konrad Hinsen, Jim Hugunin, Travis Oliphant, et al.
2001. Numerical python.

[4] Kyle A Beauchamp, Gregory R Bowman, Thomas J Lane, Lutz Maibaum, Imran S
Haque, and Vijay S Pande. 2011. MSMBuilder2: modeling conformational dy-
namics on the picosecond to millisecond scale. J. Chem. Theory. Comput. 7, 10
(2011), 3412–3419.

[5] Kyle A Beauchamp, Daniel L Ensign, Rhiju Das, and Vijay S Pande. 2011. Quanti-
tative comparison of villin headpiece subdomain simulations and triplet–triplet
energy transfer experiments. Proc. Natl. Acad. Sci. U.S.A 108, 31 (2011), 12734–
12739.

[6] Gregory R Bowman, Vijay S Pande, and Frank Noé. 2014. Introduction and
overview of this book. In An introduction to Markov state models and their
application to long timescale molecular simulation. Springer, 1–6.

[7] Joseph D Bryngelson, Jose Nelson Onuchic, Nicholas D Socci, and Peter G
Wolynes. 1995. Funnels, pathways, and the energy landscape of protein folding:
a synthesis. Proteins: Struct., Funct., Bioinf. 21, 3 (1995), 167–195.

[8] John D Chodera, Nina Singhal, Vijay S Pande, Ken A Dill, and William C Swope.
2007. Automatic discovery of metastable states for the construction of Markov
models of macromolecular conformational dynamics. J. Chem. Phys. 126, 15
(2007), 04B616.

[9] Ken A Dill and Hue Sun Chan. 1997. From Levinthal to pathways to funnels. Nat.
Struct. Mol. Biol. 4, 1 (1997), 10.

[10] S Doerr, MJ Harvey, Frank Noé, and GDe Fabritiis. 2016. HTMD: high-throughput
molecular dynamics for molecular discovery. J. Chem. Theory. Comput. 12, 4
(2016), 1845–1852.

[11] Jiangyan Feng and Diwakar Shukla. 2018. Characterizing Conformational Dy-
namics of Proteins Using Evolutionary Couplings. J. Phys. Chem. B (2018).

[12] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The elements of
statistical learning. Vol. 1. Springer Series in Statistics New York.

[13] David E Goldberg and John H Holland. 1988. Genetic algorithms and machine
learning. Mach. Learn. 3, 2 (1988), 95–99.

[14] Cedric Gondro and Brian P Kinghorn. 2007. A simple genetic algorithm for
multiple sequence alignment. Genet. Mol. Res. 6, 4 (2007), 964–982.

[15] John Henry Holland. 1992. Adaptation in natural and arti�cial systems: an in-
troductory analysis with applications to biology, control, and arti�cial intelligence.
MIT press.

[16] Md Tamjidul Hoque and Sumaiya Iqbal. 2017. Genetic algorithm-based improved
sampling for protein structure prediction. Int. J. Bio. Inspir. Com. 9, 3 (2017),
129–141.

[17] Gerhard Hummer and Attila Szabo. 2014. Optimal dimensionality reduction
of multistate kinetic and Markov-state models. J. Phys. Chem. B 119, 29 (2014),
9029–9037.

[18] Brooke E Husic, Robert T McGibbon, Mohammad M Sultan, and Vijay S Pande.
2016. Optimized parameter selection reveals trends in Markov state models for
protein folding. J. Chem. Phys. 145, 19 (2016), 194103.

[19] Brooke E Husic and Vijay S Pande. 2017. Note: MSM lag time cannot be used for
variational model selection. J. Chem. Phys. 147, 17 (2017), 176101.

[20] Brooke E Husic and Vijay S Pande. 2018. Markov state models: From an art to a
science. J. Am. Chem. Soc. 140, 7 (2018), 2386–2396.

[21] M Kenneth Jr, Scott M LeGrand, et al. 2012. The protein folding problem and
tertiary structure prediction. Springer Science & Business Media.

[22] Kai J Kohlho�, Diwakar Shukla, Morgan Lawrenz, Gregory R Bowman, David E
Konerding, Dan Belov, Russ B Altman, and Vijay S Pande. 2014. Cloud-based
simulations on Google Exacycle reveal ligand modulation of GPCR activation
pathways. Nature chemistry 6, 1 (2014), 15.

[23] Thomas J Lane, Diwakar Shukla, Kyle A Beauchamp, and Vijay S Pande. 2013. To
milliseconds and beyond: challenges in the simulation of protein folding. Curr.
Opin. Struct. Biol. 23, 1 (2013), 58–65.

[24] Lisa J Lapidus, Srabasti Acharya, Christian R Schwantes, Ling Wu, Diwakar
Shukla, Michael King, Stephen J DeCamp, and Vijay S Pande. 2014. Complex
pathways in folding of protein G explored by simulation and experiment. Biophys.
J. 107, 4 (2014), 947–955.

[25] Morgan Lawrenz, Diwakar Shukla, and Vijay S Pande. 2015. Cloud computing
approaches for prediction of ligand binding poses and pathways. Scienti�c reports
5 (2015), 7918.

[26] Kresten Lindor�-Larsen, Stefano Piana, Ron O Dror, and David E Shaw. 2011.
How fast-folding proteins fold. Science 334, 6055 (2011), 517–520.

[27] MohammadM. Sultan and Vijay S Pande. 2017. tICA-Metadynamics: Accelerating
Metadynamics by using kinetically selected collective variables. J. Chem. Theory.
Comput. 13, 6 (2017), 2440–2447.

[28] Robert T McGibbon, Kyle A Beauchamp, Matthew P Harrigan, Christoph Klein,
Jason M Swails, Carlos X Hernández, Christian R Schwantes, Lee-Ping Wang,
Thomas J Lane, and Vijay S Pande. 2015. MDTraj: a modern open library for the
analysis of molecular dynamics trajectories. Biophys. J. 109, 8 (2015), 1528–1532.

[29] Robert T McGibbon, Carlos X Hernández, Matthew P Harrigan, Steven Kearnes,
Mohammad M Sultan, Stanislaw Jastrzebski, Brooke E Husic, and Vijay S Pande.
2016. Osprey: Hyperparameter optimization for machine learning. J. O. S. S 1
(2016), 00034.

[30] Robert T McGibbon and Vijay S Pande. 2015. Variational cross-validation of slow
dynamical modes in molecular kinetics. J. Chem. Phys. 142, 12 (2015), 03B621_1.

[31] James C McKnight, Don S Doering, Paul T Matsudaira, and Peter S Kim. 1996. A
thermostable 35-residue subdomain within villin headpiece. Mol. Biol. (1996).

[32] Shriyaa Mittal and Diwakar Shukla. 2017. Predicting Optimal DEER Label Posi-
tions to Study Protein Conformational Heterogeneity. J. Phys. Chem. B 121, 42
(2017), 9761–9770.

[33] Shriyaa Mittal and Diwakar Shukla. 2018. Recruiting machine learning methods
for molecular simulations of proteins. Mol. Simul. 44, 11 (2018), 891–904.

[34] Alexander S Mo�ett, Kyle W Bender, Steven C Huber, and Diwakar Shukla.
2017. Allosteric Control of a Plant Receptor Kinase through S-Glutathionylation.
Biophys. J. 113, 11 (2017), 2354–2363.

[35] Alexander S Mo�ett and Diwakar Shukla. 2018. Using molecular simulation to
explore the nanoscale dynamics of the plant kinome. Biochem J 475, 5 (2018),
905–921.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 21

[36] Frank Noé and Feliks Nuske. 2013. A variational approach to modeling slow
processes in stochastic dynamical systems. Multiscale Model Simul. 11, 2 (2013),
635–655.

[37] Vijay S Pande, Kyle Beauchamp, and Gregory R Bowman. 2010. Everything you
wanted to know about Markov State Models but were afraid to ask. Methods 52,
1 (2010), 99–105.

[38] Guillermo Pérez-Hernández, Fabian Paul, Toni Giorgino, Gianni De Fabritiis, and
Frank Noé. 2013. Identi�cation of slow molecular order parameters for Markov
model construction. J. Chem. Phys. 139, 1 (2013), 015102.

[39] Nuria Plattner, Stefan Doerr, Gianni De Fabritiis, and Frank Noé. 2017. Com-
plete protein–protein association kinetics in atomic detail revealed by molecular
dynamics simulations and Markov modelling. Nat. Chem. 9, 10 (2017), 1005.

[40] Jan-Hendrik Prinz, Hao Wu, Marco Sarich, Bettina Keller, Martin Senne, Martin
Held, John D Chodera, Christof Schütte, and Frank Noé. 2011. Markov models
of molecular kinetics: Generation and validation. J. Chem. Phys. 134, 17 (2011),
174105.

[41] Christian R Schwantes and Vijay S Pande. 2013. Improvements in Markov state
model construction reveal many non-native interactions in the folding of NTL9.
J. Chem. Theory. Comput. 9, 4 (2013), 2000–2009.

[42] Christian R Schwantes, Diwakar Shukla, and Vijay S Pande. 2016. Markov state
models and tICA reveal a nonnative folding nucleus in simulations of NUG2.
Biophysical journal 110, 8 (2016), 1716–1719.

[43] Zahra Shamsi, Alexander S Mo�ett, and Diwakar Shukla. 2017. Enhanced un-
biased sampling of protein dynamics using evolutionary coupling information.
Scienti�c Reports 7, 1 (2017), 12700.

[44] Diwakar Shukla, Carlos X Hernández, Je�rey K Weber, and Vijay S Pande. 2015.
Markov state models provide insights into dynamic modulation of protein func-
tion. Acc. Chem. Res. 48, 2 (2015), 414–422.

[45] Diwakar Shukla, Yilin Meng, Benoît Roux, and Vijay S Pande. 2014. Activation
pathway of Src kinase reveals intermediate states as targets for drug design. Nat.
Commun. 5 (2014), 3397.

[46] Diwakar Shukla, Ariana Peck, and Vijay S Pande. 2016. Conformational hetero-
geneity of the calmodulin binding interface. Nat. Commun. 7 (2016), 10910.

[47] Mohammad M Sultan, Gert Kiss, Diwakar Shukla, and Vijay S Pande. 2014.
Automatic selection of order parameters in the analysis of large scale molecular
dynamics simulations. J. Chem. Theory. Comput. 10, 12 (2014), 5217–5223.

[48] Mohammad Taherdangkoo, Mahsa Paziresh, Mehran Yazdi, and Mohammad Hadi
Bagheri. 2013. An e�cient algorithm for function optimization: modi�ed stem
cells algorithm. Cent. Eur. J. Eng. 1, 3 (2013), 36–50.

[49] Ron Unger and John Moult. 1993. Genetic algorithms for protein folding simula-
tions. Biochem Mol Biol J. 231, 1 (1993), 75–81.

[50] Dan K Vanatta, Diwakar Shukla, Morgan Lawrenz, and Vijay S Pande. 2015. A
network of molecular switches controls the activation of the two-component
response regulator NtrC. Nat. Commun. 6 (2015), 7283.

[51] Li Zhu, Kingshuk Ghosh, Michael King, Troy Cellmer, Olgica Bakajin, and Lisa J
Lapidus. 2011. Evidence of multiple folding pathways for the villin headpiece
subdomain. J. Phys. Chem. B 115, 43 (2011), 12632–12637.

Volume 9, Issue 2 Journal of Computational Science Education

22 ISSN 2153-4136 December 2018

Teaching and Learning Graph Algorithms Using Animation

Y. Daniel Liang
Department of Computer Science

Georgia Southern University
Savannah Campus, GA 31419

y.daniel.liang@gmail.com

ABSTRACT
Graph algorithms have many applications. Many real-world
problems can be solved using graph algorithms. Graph algorithms
are commonly taught in the data structures, algorithms, and discrete
mathematics courses. We have created two animations to visually
demonstrate the graph algorithms. The first animation is for depth-
first search, breadth-first search, shortest paths, connected
components, finding bipartite sets, and Hamiltonian path/cycle on
unweighted graphs. The second animation is for the minimum
spanning trees, shortest paths, travelling salesman problems on
weighted graphs. The animations are developed using HTML, CSS,
and JavaScript and are platform independent. They can be viewed
from a browser on any device. The animations are useful tools for
teaching and learning graph algorithms. This paper presents these
animations.

Keywords
Algorithms, animation, data structures, discrete mathematics,
graphs

1. INTRODUCTION
Graphs are simple mathematical structures. A graph consists of a
set of vertices and a set of edges for connecting vertices. In a
weighted graph, each edge is assigned with a value, called a weight.
Graphs have many important applications. For example, a map can
be modelled using a graph. The cities are the vertices and the roads
connecting the cities are the edges, and the distances are the weights
on the edges. The problem of finding the shortest distance between
two cities can be solved by finding a shortest path between the two
vertices in the graph. Many algorithms have been developed to
solve a variety of graph problems. The common graph problems for
unweighted graphs covered in the data structures, algorithms and
discrete mathematics courses are depth-first search, breadth-first
search, shortest paths, connected components, finding bipartite
sets, and Hamiltonian path/cycle. For weighted graphs, the
common problems are the minimum spanning trees, shortest paths,
travelling salesman problems. We have created animations for
helping instructors and students to teach and learn these algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright ©JOCSE, a supported publication of the Shodor Education
Foundation Inc. DOI: https://doi.org/10.22369/issn.2153-4136/9/2/3

The animations are freely accessible from
https://yongdanielliang.github.io/animation/animation.html. The
animations enable instructors and students to create graphs
dynamically, apply the graph algorithms on graphs, and
immediately see the results. The animations are effective tools for
teaching and learning graph algorithms. The animations have been
integrated in the Pearson’s interactive REVEL™ ebooks [5, 6, 7],
which have received positive reviews [9, 10]. This paper presents
the graph algorithm animations for unweighted graphs and for
weighted graphs, respectively.

2. SURVEYS OF GRAPH ALOGRITHM
ANIMATIONS
Several graph algorithm animations are available on the Web. The
most popular graph animations are accessible from http://jhave.org/
[8], https://visualgo.net/en [12] and
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
[3]. The first tool [8] is written in Java. Due to security restrictions
on Java running on the browser, this tool cannot run from a Web
browser. Neither of the tools allows you to create graphs
interactively. Because the graphs are pre-created in these tools, the
instructor cannot create their own graphs for class demonstration.
Our graph algorithm animation tools enable instructors and
students to create custom graphs dynamically and easily.
Additionally, our tools combine all algorithms for unweighted
graphs in one unified animation and all algorithms for weighted
graphs in the other unified animation. As a result, it is simple and
easy to use our graph algorithm animation tools.

3. ALGORITHM ANIMATION FOR
UNWEIGHTED GRAPHS
The unweighted graph algorithm animation tool can be accessed for
free from
https://yongdanielliang.github.io/animation/web/GraphLearningT
ool.html, as shown in Figure 3.1. The process of creating a graph is
simple. You can add a vertex by clicking the primary button in an
open area. You can remove a vertex by clicking the vertex using
the secondary button. You can add an edge between two vertices
by dragging from one vertex to the other. You can also move a
vertex by dragging the vertex while pressing the CTRL button.

After creating a graph, you can apply an algorithm on the graph and
see the result of applying the algorithm interactively. To display a

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 23

depth-first search tree or breadth-first search tree, specify a starting
vertex and click the DFS or the BFS button to see the search tree.
For example, as shown in Figure 3.2, a DFS tree is displayed
starting from vertex 4. A BFS tree is displayed starting from vertex
4 in Figure 3.3.

Figure 3.1: The graph algorithm animation for unweighted
graphs.

Figure 3.2: A DFS tree starting from vertex 4 is displayed.

The shortest path between two vertices in an unweighted graph can
be obtained using the breadth-first search from a vertex. As shown
in Figure 3.4, the user enters the starting vertex 2 and the ending

vertex 5 and clicks the Shortest Path button to display a shortest
path from 2 to 5.

Figure 3.3: A BFS tree starting from vertex 4 is displayed.

Figure 3.4: The shortest path from vertex 2 to vertex 5 is
displayed.

The Hamiltonian path is a path that traverses all vertices in the
graph exactly once. As shown in Figure 3.5, clicking the
Hamiltonian Path button displays a Hamiltonian path. The
Hamiltonian cycle is a Hamiltonian path in which the starting
vertex and the ending vertex are connected. As shown in Figure 3.6,
clicking the Hamiltonian Cycle button displays a Hamiltonian
cycle.

Volume 9, Issue 2 Journal of Computational Science Education

24 ISSN 2153-4136 December 2018

Figure 3.5: The animation displays a Hamiltonian path.

Figure 3.6: The animation displays a Hamiltonian cycle.

A connected component is a maximal connected subgraph in which
every two vertices is connected by a path. You can find all
connected components in the graph by clicking the Find Connected
Components button as shown in Figure 3.7. Two connected
components [0, 1, 4, 3, 2] and [5, 7, 6] are displayed for the graph
in Figure 3.7.

Figure 3.7: The connected components are displayed in the
dialog box.

You can find a cycle in the graph by clicking the Find a Cycle
button, as shown in Figure 3.8. A cycle 0, 1, 4, 3 is displayed in the
dialog box.

Figure 3.8: A cycle is displayed.

The bipartite sets are the two sets of vertices obtained from the
graph such that no vertices in a set is connected. This type of the
graph is called a bipartite graph. When you click the Find Bipartite
Sets button for the graph in Figure 3.9, the animation displays that
the graph is not bipartite, because no bipartite sets can be found for
the graph.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 25

Figure 3.9: The graph is not bipartite.

Figure 4.1: The graph algorithm animation for weighted
graphs.

4. ALGORITHM ANIMATION FOR
WEIGHTED GRAPHS

The weighted graph algorithm animation can be accessed from
https://yongdanielliang.github.io/animation/web/WeightedGraphL
earningTool.html, as shown in Figure 4.1. The process of creating
a weighted graph is similar to creating an unweighted graph. You
can add/remove a vertex in the same way as in the unweighted
graph algorithm animation. You can add an edge by dragging from

one vertex to the other. The weight of the edge is the distance
between the two vertices.

Figure 4.2: A minimum spanning tree is displayed.

A spanning tree of a graph is a connected subgraph that contains all
the vertices in the graph and the subgraph is a tree. A minimum
spanning tree of a graph is a spanning tree with the minimum total
weights. You can obtain the minimum spanning tree by clicking the
MST button, as shown in Figure 4.2.

A shortest path tree can be found using the Dijkstra’s algorithm.
The tree represents a single source all shortest paths. For example,
Figure 4.3 shows the shortest path tree starting from vertex 1.

Figure 4.3: A shortest path tree starts from vertex 1.

Volume 9, Issue 2 Journal of Computational Science Education

26 ISSN 2153-4136 December 2018

A shortest path between two vertices can be found after a shortest
path tree is constructed. To find a shortest path from vertex u to v,
first create a shortest path tree starting from vertex u. A path from
u to v in the tree is the shortest path from u to v. For example, Figure
4.4 shows the shortest path from vertex 1 to vertex 5.

Figure 4.4: A shortest path from vertex 1 to vertex 5 is
displayed.

Figure 4.5: A solution for the travelling salesman problem is
found with the total weights displayed in the dialog box.

The travelling salesman problem is to find a shortest path that starts
from a vertex and visits each vertex exactly once and returns back
to the original vertex. Figure 4.5 shows a solution to the problem
for the graph in the figure.

5. BENEFITS OF USING GRAPH
ALGORITHM ANIMATION

Here are the major benefits for instructors and students to use our
tool.

Benefit 1: In a typical lecture for the graph algorithms, the
instructor draws various types of graphs on the board and shows the
result of applying the algorithms by hand. This is a tedious and
time-consuming process. This tool enables the instructor to create
a graph dynamically and show the results of applying the algorithm
spontaneously. The instructor can draw any type of graph using this
tool. The instructor can create vertices anywhere on the screen and
can move it to a new location after it is created. The vertices can
also be deleted. By dragging the mouse from one vertex to another,
an edge between the two vertices can be created. All these
interactive features also work on mobile devices.

Benefit 2: Once a graph is created, the tool can show the result of
applying the algorithm on the graph interactively. After a graph is
modified, with a click of button, the tool can show the new result
of applying the algorithm on the new graph. This is tremendously
helpful to show students different scenarios.

Benefit 3: A picture is worth a thousand words. An interactive
animation is worth more than pictures. The interactive animation
not only catches student attention in the class, it also engages the
student with visual interaction. Students can use the tool to study
before and after the lectures to see how an algorithm works on
different graphs.

Benefit 4: Our animation also serves as examples for students to
write their own programs to visualize the graph algorithms. This
gives students the opportunity to get deeper into the algorithms and
see how the algorithms work in their own animation. In our data
structures and algorithms courses, we assign projects for students
to write their own code for graph algorithm animation. Students like
the algorithm animation projects. As supported in [11], students
learn better, when they actually implement the algorithms using
animation.

6. EVALUATION
Many algorithm animation tools are available. It is safe to say that
algorithm animation assists instruction, but whether it helps
students to learn is a mixed bag. Some experiments show positive
student outcome [1, 8], while others say there are no significant
difference to students whether animations are used or not [2]. An
experiment conducted at George Washington University [4]
showed that the students who used an interactive version of
courseware spent more time and performed worse overall than
those who used the non-interactive version of the courseware. The
reason behind this is that the tools are ineffective and difficult to
use. Our goal is to develop a simple tool that is effective and easy
to use. First, our tool is free and directly accessible on the Web and

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 27

can run on any device from a Web browser. There is no need to
install any software. Second, our tool is intuitive. It has only four
lines of instructions on how to use it. Third, we combined all the
algorithms for unweighted graphs into one application and all the
algorithms for the weighted graph into another application, rather
to have a separate application for each algorithm. Once a graph is
created, the user can apply different algorithms on the same graph.

We use the animation in our data structures and algorithm course
in Java. The course covers recursion, Java generics, use of Java
collections framework for array lists, linked lists, stacks, queues,
priority queues, sets, and maps, implementation of array lists,
linked lists, stacks, queues, and priority queues, binary search trees,
AVL trees, hashing, and graphs applications for unweighted graphs
and weighted graphs. The graph algorithms is a small part in the
course, which is covered at the end of the semester. The course is
offered every semester.

In the spring of 2015, we conducted a survey for a class of 26
students. The survey has many questions. Two questions related to
the graph algorithm animation are the following:

1. Does the graph algorithm animation help you learn graph
algorithms? 20 answered yes, 2 answered no, and 4
answered “not sure”.

2. Is the graph algorithm animation intuitive and easy to
use? All answered yes.

In the fall of 2015, we conducted a second survey for a class of 22
students. This time, we used a scale of 1 to 10 for answers, where
1 is poor and 10 is excellent. The result is as follows:

1. Does the graph algorithm animation help you learn graph
algorithms? The average answer is 7.4.

2. Is the graph algorithm animation intuitive and easy to
use? The average answer is 9.1.

The survey strongly suggests that the tool is easy to use and helps
students learn graph algorithms.

7. IMPLEMENTATION OF THE
ANIMATION

The animations are implemented using HTML, CSS, and
JavaScript. The user interface is created using HTML. The style is
defined in CSS. The user interaction and algorithms are
implemented using JavaScript. We define the classes Graph and
WeightedGraph to model unweighted graphs and weighted graphs.
WeightedGraph is a subtype of Graph. The algorithms such as DFS,
BFS, minimum spanning tree, and shortest path are implemented in
these classes. The complete code for these classes can be obtained
from https://yongdanielliang.github.io/animation/web/Graph.js
and
https://yongdanielliang.github.io/animation/web/WeightedGraph.j
s. When the user clicks the right mouse button on the canvas, a new
vertex is created. The addVertex method in the Graph class is
invoked to add the vertex to the graph. When the user clicks the left
mouse button on a vertex, the vertex is removed. The removeVertex
method in the Graph class is invoked to remove the vertex from the
graph. When the user drags the mouse button from one vertex to
another, an edge between the two vertices is created. The program
invokes the addEdge method in the Graph class to add the edge to

the graph. Each button on the user interface corresponds to an
algorithm. For example, when the user clicks the DFS button in
Figure 3.2, the program invokes the dfs method in the Graph class
to find a depth-first search tree. The tree is then displayed on the
canvas in the user interface.

The system is built using a modular approach. An animation for a
new algorithm can be easily added by creating a button in the user
interface and implementing the algorithm in the Graph class for
unweighted graphs or in the WeightedGraph class for weighted
graphs.

The source code (HTML, CSS, JavaScript) for the animations can
be viewed using the “view page source” function in the browser.
With the knowledge of HTML, CSS, JavaScript, and graph
algorithms, one can modify the code to add new animations for
custom algorithms.

8. LESSONS LEARNED
We started the project to develop the animations for graph
algorithms in 2008. Over the years, we have created the animations
for many graph algorithms and continuously improved the
animation based on the feedback from the students and instructors.
There are several lessons learned from developing the animations
and from using the animations in classrooms.

• The first lesson learned is to make the animation easy to
access. We initially developed the animation using Java
applets. Due to security restrictions, many users cannot
access the animation. We recreated the animation using
HTML, CSS, and JavaScript. The animations now can be
viewed anywhere from a browser on a computer and on
a mobile device.

• The second lesson learned is to make the animation

simple to deploy. We initially developed the animation
for each algorithm. We had a total of thirteen animations:
an animation for DFS, an animation for BFS, an
animation for finding a shortest path, etc. With so many
animations, it is difficult to deploy and the user has to
click many links to access the animation. Later we
combined all the animations into two animations: one for
unweighted graph algorithms and the other for the
weighted graph algorithms. Now we just need to deploy
two animations rather than thirteen separate animations.

• The third lesson learned is to make the animation easy to

use. In the early version, the animation lets the user enter
the coordinates for each vertex and specify the edges in
text boxes in order to create a graph. This proved to be
difficult and time-consuming for the user to create a
graph. Later we improved it by letting the user use the
mouse gestures to add and remove vertices and create the
edges. With the mouse gestures, the user can create a
graph quickly and easily.

9. FUTURE WORK
We have improved the tool over the years. At present, the tool
enables the user to create a graph, apply the algorithm on the graph,

Volume 9, Issue 2 Journal of Computational Science Education

28 ISSN 2153-4136 December 2018

and show the result of applying the algorithm. However, it does not
show the intermediate steps to obtain the result. The future work is
to expand the animation to show the user the step-by-step procedure
for obtaining the results while still retaining the tool’s simplicity.

10. CONCLUSIONS
This paper presented graph algorithm animation that is a useful tool
for teaching and learning graph algorithms. It enables instructors
and students to create custom graphs and see how the graph
algorithms work. We developed two animations: one for the
unweighted graphs and the other for the weighted graphs. For the
unweighted graph, our algorithm animation supports the depth-first
search, breadth-first search, shortest path, Hamiltonian path/cycle,
finding connected components, finding a cycle, and finding
bipartite sets. For the weighted graph, our animation supports
minimum spanning trees, shortest path trees, shortest path, and
travelling salesman problem. The animations are freely accessible
from https://yongdanielliang.github.io/animation/animation.html.

11. ACKNOWLEDGEMENTS
Many thanks to Dr. Steven Gordon and the anonymous reviewers
for their careful reading and constructive suggestions for improving
the presentation of the paper.

12. REFERENCES
[1] Bazik, J., Tamassia, R., Reiss, S.P., van Dam A., "Software

Visualization in Teaching at Brown University," in Software
Visualization: Programming as a Multimedia Experience,
The MIT Press, pp. 383-398, 1998.

[2] Byrne, M.D., Catrambone, R. and Stasko, J.T., "Do
Algorithm Animations Aid Learning?", Tech. Rep. No. GIT-
GVU-96-18, Georgia Tech Graphics, Visualization, and
Usability Center, 1996.

[3] David Galles, Data Structure Visualizations,
https://www.cs.usfca.edu/~galles/visualization/Algorithms.ht

ml. Computer Science Department, University of San
Francisco.

[4] Jarc, D.J., M.B. Feldman, and R.S. Heller, "Accessing the
Benefits of Interactive Prediction Using Web-based
Algorithm Animation Courseware," in Proceedings of the
ACM SIGCSE Technical Session, Austin, Texas, March
2000.

[5] Liang, Y. Daniel, REVEL™ for Introduction to Java
Programming and Data Structures. ISBN-13: 978-
0134167008. Pearson Education, 2016.

[6] Liang, Y. Daniel, REVEL™ for Introduction to C++
Programming and Data Structures. ISBN-13: 978-
0134669854. Pearson Education, 2018.

[7] Liang, Y. Daniel, REVEL™ for Introduction to Python
Programming and Data Structures. ISBN-13: 978-
0135187753. Pearson Education, 2018.

[8] Naps, T., Eagan, J, and Norton, L. 2000. "JHAVÉ – An
Environment to Actively Engage Students in Web-based
Algorithm Visualizations", in Proceedings of the SIGCSE
Session, ACM Meetings, Austin, Texas.Visualgo.net,
Algorithm and Data Structure Animations, visualgo.net/en.

[9] REVEL™ educator study observes homework and exam
grades at University of Louisiana, Spring 2016,
http://www.pearsoned.com/results/revel-educator-study-
observes-homework-exam-grades-university-louisiana/.

[10] REVEL educator study assesses quiz, exam, and final course
grades at Central Michigan University, Fall 2015,
http://www.pearsoned.com/results/revel-educator-study-
assesses-quiz-exam-final-course-grades-central-michigan-
university/.

[11] Stasko, John, “Using Student-Built Algorithm Animations as
Learning Aids” in Proceedings of the ACM SIGCSE
Technical Session, San Jose, CA., February, 1997.

[12] Visualgo.net, Algorithm and Data Structure Animations,
visualgo.net/en.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 29

Identification of Active Oligonucleotide Sequences
Using Artificial Neural Network

Alex Luke1, Sarah Fergione1, Riley Wilson1, Brady Gunn1,
Missouri Western State University,

Department of Chemistry
4525 Downs Drive

St. Joseph, MO 64507
aluke2, sfergione, rwilson26, bgunn1,

@missouriwestern.edu

Stan Svojanovsky2
Missouri Western State University

Department of Chemistry
4525 Downs Drive

St. Joseph, MO 64507
ssvojano@missouriwestern.edu

ABSTRACT
In this project we designed an Artificial Neural Network (ANN)
computational model to predict the activity of short
oligonucleotide sequences (octamers) with important biological
role as exonic splicing enhancers (ESE) motifs recognized by
human SR protein SC35. Since only active sequences were
available from the literature as our initial data set, we generated
an additional set of complementary sequences to the original set.
We used back-propagation neural network (BPNN) with
MATLAB® Neural Network Toolbox™ on our research
designated computer. In Stage I of our project we trained,
validated and tested the BPNN prototype. We started with 20
samples in the training and 8 samples in the validation sets.
Trained and validated BPNN prototype was then used to test the
unique set of 10 octamer sequences with 5 active samples and
their 5 complementary sequences. The test showed 2
classification errors, one false positive and the other false
negative. We used the test data and moved into Stage II of the
project. First, we analyzed the initial DNA numerical
representation (DNR) and changed the scheme to achieve higher
difference between the subsets of active and complementary
sequences. We compared the BPNN results with different
numbers of nodes in the second hidden layer to optimize model
accuracy. To estimate future model performance we needed to
test the classifier on newly collected data from another paper.
This practical application included the testing of 41 published,
non-repeating SC35 ESE motif octamers, together with 41
complementary sequences. The test showed high BPNN accuracy
in the predictive power for both (active and inactive) categories.

This study shows the potential for using a BPNN to screen SC35
ESE motif candidates.

Categories and Subject Descriptors
J.3 [Life and Medical Science]: Biology and genetics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Copyright ©JOCSE, a supported publication of the Shodor Education
Foundation Inc.
DOI: https://doi.org/10.22369/issn.2153-4136/9/2/4

Keywords
Artificial neural network (ANN), back-propagation neural
network (BPNN), nucleotide sequences, exonic splicing
enhancers (ESE), DNA numerical representation (DNR).

1. INTRODUCTION
1.1 Artificial Neural Networks (ANN)
Over the past few decades, machine learning processes have
become more sophisticated and useful in many different fields of
theoretical and applied science, such as applied biology,
biomedical research, medicine, and drug discoveries. These
methods are based on pattern recognition capabilities [1, 2].

The new and more advanced applications of these models now
achieved a major growing momentum.

They are now incorporated in text (spam filtering) and voice
recognition (Alexa, Siri and Cortana), virtual video games, self-
driving cars, economic forecasting, health related scans and
images to reveal any abnormal patterns related to different
symptoms and many other fields.
Among other computer-assisted approaches such as machine-
learning Decision Trees and Nearest Neighbors algorithms, the
ANN–based schemes have gained probably the most attention
and are now widely applied.
The initial information (signal) is entering the network of
‘neurons’ called nodes that is programmed to react to this initial
signal and passed the transformed signal to other cluster of nodes
so that other signal transformation could be performed. Part of the
ANN design is to assign a finite number of these clusters (layers)
together with the number of nodes in each layer. The general
process of turning the initial input into the output information is
the result of ANN program and model design. So, the computer
is actually allowed to ‘learn’ specific information by repeating the
very same process, and adjusting the connections intensity
between the nodes till the required output is reached. ANNs are
then used to solve the problems that are too difficult for both:
people and our digital computers. Since these models work on
pattern recognition they do not need any underlying data
distribution function that is usually required prior to any statistical
data analysis and the requirement of data normality before
hypotheses testing.

1 Undergraduate Student
2 Corresponding Author

Volume 9, Issue 2 Journal of Computational Science Education

30 ISSN 2153-4136 December 2018

1.2 Biological Aspects
Literature [3, 4] and personal communication are the sources of
active oligonucleotide sequences (class=1) used in this project.
The authors used the SELEX [5] method to generate a set of
sequences with 8 nucleotides (octamers) that were originally
evaluated by calculated scores.

Only unique octamers, each with the non-repeating sequence
pattern were used in our project. Nucleotide frequencies of a
single position of each individual active sequence were then
combined into score matrix resulting in an assembly of more
general, biologically active SC35 motif [GGCCCCTG] called
consensus sequence that we also incorporated into our BPNN
model.
These active octamers (also named SC35 ESE motifs) play a
major biological role during the process of exon splicing process
as exonic splicing enhancers (ESE) that are recognized by human
SR protein SC35. This protein is responsible for splicing of
another enzyme called pyruvate dehydrogenase (PDH). Any
significant deficiency in the process of producing PDH complex
is a major cause of lactic acidosis and mental retardation in
childhood. SR proteins are involved in proper RNA splicing.
They are named SR since this family of proteins is rather
conserved and contains many repeats of serine (S) and arginine
(R) amino acids [6].

1.3 Goals
The major objective of our project was to apply ANN concept and
design the back-propagation neural network (BPNN) on available
SC35 ESE motifs. DNA numerical representation (DNR) scheme
was then applied to encode the nucleotide bases into numerical
values representing each sequence. The set of signals was
normalized and partitioned into two major subgroups:

1. training and validation (train+val) subsets
2. testing (test) subset

Both of these subsets contained only unique signals, i.e. none of
the test sequences were included in train+val subsets and vice
versa.

If the ANN prototype shows high accuracy in sequence
classification into active (1) and non-active (0) groups then it
might be potentially used as the screening tool for SC35 ESE
motifs.

2. METHODS
The very first step was to extract active unique sequences in their
letter description format as shown in Tables 1 and 2. It means the
sequences of 8 letters combination of A, C, G, and T described as
SC35 ECE motif. The letter format represents different types of
nucleotides based on their chemical structure and biochemical
properties:

A = adenine
C = cytosine
G = guanine
T = thymine

Computer-assisted BPNN is usually considered at least 2-class
pattern recognition system with one class representing active (1)

feature vectors and the other class holding the non-active (0)
feature vectors. In order to satisfy these criteria and make
balanced model we generated the matrices with complementary
sequences representing non-active output. It is based on the
general biological rule that complementary sequences would not
fit as SC35 ESE motifs. This process was a part of our BPNN
script, so the complementary matrix was computationally
generated according to the basic biology principles, where G is
the complementary (or antisense) base of C and A is a
complement to T.
The conversion could be expressed by G ↔ C and A ↔ T.

We started with 20 active sequences in training and 8 active
octamers in the validation set with generated complementary non-
active sequences as shown in Tables 1 and 2.

Table 1. Training set of 20 unique sequences

ID	 Active	(1)	 Non-active	(0)	

1.	 GATCCCCG	 CTAGGGGC	

2.	 GGCTCGTG	 CCGAGCAC	

3.	 GGCCGCAG	 CCGGCGTC	

4.	 GGCCCACA	 CCGGGTGT	

5.	 GGTTGGCG	 CCAACCGC	

6.	 GTCCTCCG	 CAGGAGGC	

7.	 GTCCCCTG	 CAGGGGAC	

8.	 GTTCTGTA	 CAAGACAT	

9.	 GAATACCG	 CTTATGGC	

10.	 GGACCGTA	 CCTGGCAT	

11.	 GTCTAACG	 CAGATTGC	

12.	 AGCCTCAG	 TCGGAGTC	

13.	 GGATGGAG	 CCTACCTC	

14.	 GGACTGTA	 CCTGACAT	

15.	 GGTTGTTG	 CCAACAAC	

16.	 GAGCACTG	 CTCGTGAC	

17.	 TGTTACTA	 ACAATGAT	

18.	 GGCTCCAA	 CCGAGGTT	

19.	 GGATCCGG	 CCTAGGCC	

20.	 GACCTGCT	 CTGGACGA	

Table 2. Validation set of 8 unique sequences

ID	 Active	(1)	 Non-active	(0)	

1.	 GTTTCGAG	 CAAAGCTC	

2.	 GGTCGCCG	 CCAGCGGC	

3.	 GGTCAGTG	 CCAGTCAC	

4.	 GGCTGATG	 CCGACTAC	

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 31

5.	 CGCCCTTG	 GCGGGAAC	

6.	 AGCTCCCA	 TCGAGGGT	

7.	 GACCGGTG	 CTGGCCAC	

8.	 GACTAGAA	 CTGATCTT	

In any machine learning process, DNA sequence are converted to
numerical values for data representation and feature learning
related to specific biological or biochemical application. The
distinct nature of the DNA sequence being discrete in the
‘amplitude’ and ‘time’ offers multiple DNA numerical
representation (DNR) techniques in the form of single or
multidimensional array. Current DNR techniques could be
divided into three main categories: single-value mapping,
multidimensional sequence mapping, and cumulative sequence
mapping [7].

 Integer, real number, and measurement representations
are still frequently used encoding schemes. In many scenarios of
single-value mapping A, C, G, and T are assigned to a single
indicator such as 1, 2, 3, and 4. This scheme (also called Galois
field) is also feasible for a complementary encoding because it
provides symmetric deviations between both groups. Also, it was
used in the past for DNA barcode in large-scale screening of
multiple genomic core databases. Other direct encoding schemes
include Atomic representation, where each nucleotide is assigned
its atomic number (i.e. number of protons) [C=58, T=66, A=70,
and G=70]. Calculated electron energies for each nucleotide
[C=0.1340, T=0.1335, A=0.1260 and G=0.0806] are the core of
Electron-Ion Interaction Pseudopotential (EIIP) single-value
scheme, while the Molecular Mass encoding is applied in
mapping DNA sequences based on molecular mass of different
nucleobases [C=110, T=125, A=134, and G=150] with atomic
mass units.

 Multidimensional sequence mapping include binary
sequence indicators such as A=[00], C=[11], G=[10], and T=[01];
4-bit representation with A=[1000], C=[0100], G=[0010], and
T=[0001].

 Cumulative representation include Z-curve, DNA walk
and other more complex DNA encoding schemes.

Currently, no DNR is considered to be the ‘gold standard’ and the
choice is usually driven by the applicable biological aspects and
the specific goals of the machine learning project.

We selected direct, single-mapping Galois field encoding method
because it provides uniform distance between active and non-
active (complementary) sequences with symmetric deviations.
Other advantage is to use simple barcode method to label each
sequence for automated sequence screening. It also supports our
biological goals of the project to separate the signals for active
and non-active octamers. However, this structure might imply
that pyrimidines (C and T) are in some respect ‘greater than’
purines (A and G), which is a disadvantage of this encoding
method.

Table 3 represents 10 octamers that we used to test BPNN model.
This is a data set of unique sequences with known activities. Five
of them are active and five of them are from the non-active group.
None of these sequences were previously used in training and

validation subset. Active samples (1, 4, 5 and 10) are from the
published article [3], sample 9 was added based on the private
communication [Luke, personal communication].

Table 3. Testing subset of 10 unique sequences

ID	 Designation	 Class	
1.	 GATCGCTG	 1	
2.	 AGTCGGAT	 0	
3.	 CTCATTGC	 0	
4.	 GGCCCCTG	 1	
5.	 GGACGCTG	 1	
6.	 CCGGGGAC	 0	
7.	 CTAGCGAC	 0	
8.	 CCTGCGAC	 0	
9.	 TCAGCCTA	 1	
10.	 GAGTAACG	 1	

Figure 1 shows the general ANN based on one-layer hidden units,
where all nodes have the same number of weights (synapses) and
all receive the input signal simultaneously.

Figure 1. General assembly of neural network processing

Action of formal neuron (node) consists in summing all weighted
inputs (wi) transformed via activation function into output signals
(oj). BPNN default is the sigmoid function.

Volume 9, Issue 2 Journal of Computational Science Education

32 ISSN 2153-4136 December 2018

Figure 2. ANN node action with sigmoid transformation
 function

3. RESULTS AND DISCUSSION
3.1 Project Stage I
The initial step in BPNN design was to generate Galois field
numerical encoding for A = 1, T = 2, C = 3, and G = 4.
Active sequences were added into BPNN MATLAB script with
activity equal to 1. The next part of the script generated the
complementary, non-active sequences that were used to balance
the BPNN model. All data went through the normalization into
[0, 1] interval across each feature matrix.

In this project we used a supervised training where both the input
signal and the output activity are provided. The network
transforms the inputs with connection weights through the nodes
and layers and calculate the errors between the resulting and
desired outputs. Errors are then propagated back through the
network to adjust the weights which control the network
assembly. During this learning process the training data set is
processed many times as the connection weights are continually
adjusted and finally refined.

Validation process that is parallel to training enables to validate
the final model specification with the validation data set. The
model is trained on the training set and the error is calculated on
the validation set multiple times while adjusting the weights. It is
used to analyze the value of parameters in the model which
usually results in less error on validation set.

Testing provides then an unbiased evaluation of a final model fit
on the training dataset.

For our BPNN model we used the seed for the random number
generator applied for the initial weights to be equal 1.

BPNN component was applied with multiple variables:

• Convergence error (SSE): usually about 0.0001
• Number of iterations: 100

Samples not previously included in training process were used for
the validation.
Finally, we tested the BPNN classifier with test data set (i.e. 10
unique octamers with known output 0 or 1) in specific model
conditions with 8 nodes in the first layer and 6 nodes in the second
hidden layer.

Table 4. BPNN classification of test sequences

ID	 Letter	
Designation	

Known	
classification	

BPNN	
classification	

1.	 GATCGCTG	 1	 0.9935	
2.	 AGTCGGAT	 0	 0.8843	
3.	 CTCATTGC	 0	 0.0046	
4.	 GGCCCCTG	 1	 0.9934	

5.	 GGACGCTG	 1	 0.9949	
6.	 CCGGGGAC	 0	 0.0028	
7.	 CTAGCGAC	 0	 0.0043	
8.	 CCTGCGAC	 0	 0.0044	
9.	 TCAGCCTA	 1	 0.0027	
10.	 GAGTAACG	 1	 0.9958	

Training	error	 0.0144	
Validation1	error	 0.9769	
Validation0	error	 0.9821	
Testing	error	 2	

Classification with the BPNN model under the specific conditions
revealed 2 errors. Non-active sample 2 was predicted to be active
(false positive), while the active sequence 9 was misplaced by
BPNN model into the cluster of non-active sequences (false
negative). We were not satisfied with model performance and
moved into Stage II of the project.

3.2 Project Stage II
We started this stage with graphical interpretation of active and
non-active feature vectors that provided the partial key to the
problem. Our computer script generated the matrix of
complementary (non-active) sequences based on the given
instructions with the application of the existing biology rules. Our
complementary sequences were generated with the absolute
difference of 1 between nucleobases A and T and C and G.

 | A – T | = | 1 – 2 | = | C – G | = | 3 – 4 | = 1

The data analysis of the initial train+val sequence subsets showed
that the majority of the active sequences (86%) started with the
first nucleotide G (C for complementary sequences). All tested
sequences starting with G or C were then correctly classified by
BPNN model. However, in the initial train+val subsets we also
had total of 3 sequences starting with A nucleotide (2 active and
1 non-active). The active sequences started with AG and non-
active AC dinucleotide. Size limitation of the training set could
be the potential reason of the lower performance of our BPNN
model resulting in misclassification of 2 tested sequences.

In attempt to reduce misclassification error we applied higher
resolution between the active and non-active categories to further
separate both of these subsets in their space. We went back and
changed the initial single-value DNR scheme to achieve higher
and constant difference between both groups.

 If A = 2, T = 4, C = 3, and G = 1, then
 | A – T | = | 2 – 4 | = 2 and | C – G | = | 3 – 1 | = 2

We also created a 2-D distribution chart to differentiate between
active and non-active categories. Graph 1 displayed a complete
overlap of both groups at position 3 and some partial overlaps at
positions 2, 4, and 5, respectively.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 33

Graph 1. Distribution of 10 tested sequences

In the following step of Stage II we tried different numbers of
nodes in the second hidden layer in order to find an optimal
estimate.
The results are summarized in Table 5 together with training,
validation, and test errors.

Table 5. BPNN outputs for tested sequences with variable
 number of nodes in the second hidden layer

ID	 Class	 #	
nodes	1	

#	
nodes	2	

#	
nodes	3	

#	
nodes	4	

1.	 1	 0.9946	 0.9964	 0.9963	 0.9970	
2.	 0	 0.0589	 0.1048	 0.0371	 0.0291	
3.	 0	 0.0091	 0.0064	 0.0014	 0.0033	
4.	 1	 0.9948	 0.9966	 0.9970	 0.9967	
5.	 1	 0.9940	 0.9963	 0.9967	 0.9964	
6.	 0	 0.0075	 0.0043	 0.0013	 0.0023	
7.	 0	 0.0077	 0.0050	 0.0013	 0.0028	
8.	 0	 0.0084	 0.0045	 0.0013	 0.0035	
9.	 1	 0.0094	 0.0051	 0.0014	 0.0058	
10.	 1	 0.9930	 0.9971	 0.9967	 0.9969	
Training	error	 0.0292	 0.0104	 0.0125	 0.0113	

Validation1	error	 0.0086	 0.0054	 0.0063	 0.0048	
Validation0	error	 0.0163	 0.0114	 0.0020	 0.0082	
Testing	error	 1	 1	 1	 1	

ID	 Class	 #	
nodes	5	

#	
nodes	6	

#	
nodes	7		

#	
nodes	8	

1.	 1	 0.9962	 0.9969	 0.9891	 0.9951	
2.	 0	 0.3789	 0.0129	 0.4544	 0.0792	
3.	 0	 0.0070	 0.0042	 0.0048	 0.0051	
4.	 1	 0.9972	 0.9968	 0.9894	 0.9955	
5.	 1	 0.9966	 0.9971	 	0.9894	 0.9951	
6.	 0	 0.0040	 0.0043	 0.0044	 0.0053	
7.	 0	 0.0042	 0.0041	 0.0045	 0.0048	

8.	 0	 0.0049	 0.0044	 0.0055	 0.0059	
9.	 1	 0.0043	 0.0047	 0.0057	 0.0070	
10.	 1	 0.9974	 0.9963	 0.9896	 0.9948	
Training	error	 0.0141	 0.0084	 0.0170	 0.0216	

Validation1	error	 0.0062	 0.0046	 0.0125	 0.0082	
Validation0	error	 0.0087	 0.0078	 0.0121	 0.0141	
Testing	error	 1	 1	 1	 1	

Based on calculated training, validation, testing errors and the
BPNN overall performance, the optimal estimate is represented
by 6 nodes in the second hidden layer.
Variables of the optimal BPNN prototype:

• Convergence error (SSE): 0.0001
• Number of iterations: 100
• Number of nodes in the first layer: 8
• Number of nodes in second (hidden) layer: 6

3.3 Testing larger database
We used Stage I test data to initiate Stage II and to optimize the
number of nodes in the second hidden layer, so the test
performance is likely an optimal estimate. To evaluate future
performance, we needed to test the classifier on newly collected
data from another paper [6]. The authors provided the list of 128
active SC35 ESE motif sequences specifically arranged by
different tissues, genes, and selected organs. They proposed
highly conserved SC35 motif between tissues, among different
genes, and within the same chromosome. They showed a slight
variation in the SC35 ESE sequence motif among human
chromosomes, with the conserved G nucleotide at the very first
position of all active sequences.

The set included multiple sequence duplicates as they occurred in
several tissues and various genes, and chromosomes. Prior to the
test we removed all duplicates (87 sequences) and used the total
of 41 unique active sequences together with 41 complementary
non-active sequences with our optimal BPNN classifier. Again,
none of these tested sequences were included in our BPNN
train+val sets.

Model classification, together with training, validation and test
errors are summarized in Table 6.

Table 6. Prediction for 41 active and complementary
 sequences with the optimal BPNN model

ID	 Class	(1)	 BPNN	 Class	(0)	 BPNN	

1.	 GACCCCTG	 0.9917	 CTGGGGAC	 0.0039	

2.	 GACCTCTG	 0.9916	 CTGGAGAC	 0.0034	

3.	 GACCACTG	 0.9917	 CTGGTGAC	 0.0027	

4.	 GATCACTG	 0.9920	 CTAGTGAC	 0.0033	

5.	 GATCCCTG	 0.9922	 CTAGGGAC	 0.0050	

6.	 GGCCCCTG	 0.9922	 CCGGGGAC	 0.0053	

7.	 GGCTCCTG	 0.9920	 CCGAGGAC	 0.0122	

8.	 GACTCCTG	 0.9920	 CTGAGGAC	 0.0058	

9.	 GACTCCCG	 0.9917	 CTGAGGGC	 0.0048	

10.	 GACCCCCG	 0.9917	 CTGGGGGC	 0.0035	

1

2

3

4

1 2 3 4 5 6 7 8

N
uc

le
ot

id
e d

es
ig

na
tio

n

Nucleotide position

Active vs. non-active tested sequences

Volume 9, Issue 2 Journal of Computational Science Education

34 ISSN 2153-4136 December 2018

11.	 GACCACCG	 0.9922	 CTGGTGGC	 0.0025	

12.	 GGCCCCCG	 0.9913	 CCGGGGGC	 0.0046	

13.	 GGCCTCTA	 0.9921	 CCGGAGAT	 0.0032	

14.	 GGCCTCTG	 0.9913	 CCGGAGAC	 0.0047	

15.	 GGCCTCCA	 0.9921	 CCGGAGGT	 0.0029	

16.	 GGCCTCCG	 0.9915	 CCGGAGGC	 0.0041	

17.	 GGCCCCTA	 0.9907	 CCGGGGAT	 0.0036	

18.	 GTCTCCTG	 0.9888	 CAGAGGAC	 0.0433	

19.	 GTCCCCTA	 0.9923	 CAGGGGAT	 0.0090	

20.	 GGCTCCAG	 0.9922	 CCGAGGTC	 0.0205	

21.	 GGCCCCAG	 0.9915	 CCGGGGTC	 0.0068	

22.	 GGCCCCCA	 0.9924	 CCGGGGGT	 0.0032	

23.	 GGCTACTG	 0.9920	 CCGATGAC	 0.0121	

24.	 GGCTTCTG	 0.9925	 CCGAAGAC	 0.0119	

25.	 GGCTGCTG	 0.9922	 CCGACGAC	 0.0118	

26.	 GGCCACTG	 0.9922	 CCGGTGAC	 0.0039	

27.	 GGCCGCTG	 0.9922	 CCGGCGAC	 0.0042	

28.	 GGCTCCTA	 0.9916	 CCGAGGAT	 0.0057	

29.	 GGCTCCCG	 0.9923	 CCGAGGGC	 0.0093	

30.	 GGCTCCCA	 0.9917	 CCGAGGGT	 0.0047	

31.	 GACTCCCA	 0.9912	 CTGAGGGT	 0.0032	

32.	 GATTTCCG	 0.9921	 CTAAAGGC	 0.0059	

33.	 GATTCCCG	 0.9923	 CTAAGGGC	 0.0065	

34.	 GACTTCCG	 0.9917	 CTGAAGGC	 0.0044	

35.	 GACCTCCG	 0.9916	 CTGGAGGC	 0.0031	

36.	 GACCTCCA	 0.9904	 CTGGAGGT	 0.0024	

37.	 GACCTCTA	 0.9904	 CTGGAGAT	 0.0026	

38.	 GACCCCCA	 0.9906	 CTGGGGGT	 0.0027	

39.	 GACCCCTA	 0.9907	 CTGGGGAT	 0.0029	

40.	 GACTTCTG	 0.9916	 CTGAAGAC	 0.0052	

41.	 GGCCTCAG	 0.9920	 CCGGAGTC	 0.0063	

Training	error	 0.0205	

Validation1	error	 0.0107	

Validation0	error	 0.8008	

Testing	error	 0	

The test confirmed that the BPNN prototype satisfactory
distinguishes between all 41 proposed SC35 ESE active motifs
and their compliments with high accuracy in BPNN classification
performance.

4. CONCLUSION
In our research project we used ANN script to construct a
functional back-propagation neural network (BPNN) model. We
designed this model in order to classify the short oligonucleotide

sequences with 8 nucleotide elements (octamers) into two
categories: active (1) and non-active (0) clusters. The visual
interpretation of the data (Graph 1) shows some partial overlaps
of both groups on multiple feature vector elements, which
supports our decision to apply neural network concept. Statistical
data analysis requires a prior knowledge of data distribution,
which could be very complex in case of any overlap. Also, all
elements of the feature vector are discrete values in relatively
small data set which will most likely require non-parametric
statistical analysis.

We used single-value scheme to encode sequence letter
description into numerical designation. The model was trained
with 20 active sequences and validated with the set of 8 active
sequences. In order to keep the model balanced the
complementary, non-active sequences were generated. The initial
virtual screen included 10 unique sequences from the testing data
set (5 active and 5 non-active sequences) used to assess the model
accuracy and overall performance. After the BPNN model update
we tried different number of nodes (1-8) in the second hidden
layer to determine the optimal model.

We tested our optimal BPNN prototype on larger data set of 82
unique (41 active and 41 non-active) sequences and the results of
the data classification revealed high model accuracy for this data
set.

5. FUTURE WORK
For future work we could test any proposed CS35 ESE motif
candidate or use the BPNN prototype to screen any sequence
database for a potential match. We might also draw random
biological sequences that are not known to be SC35 ESE motif
candidates and detect how many of them are classified by BPNN
as active.
The initial published data were listed with their scores that were
calculated using a score matrix. Another type of future work
would be to incorporate this information into our model, i.e. not
just to classify the data into active and non-active subsets but add
some degree to the activity and answer the question: “If active,
how much activity is predicted?”
Also, it would be beneficial to create and compare additional
classification prototypes based on different DNA numerical
representation (DNR) methods such as binary indicators and
OneHot Encoder and additional classification procedures such as
decision trees or k-nearest neighbor algorithm.

6. REFLECTIONS
The project described in this paper was the very first research
project for all undergraduate students in my research group. They
all actively participated on this project as each of them designed
their own ANN model. The major attraction for all students was
the introduction of artificial intelligence in the computer-assisted
model and the practical application of the BPNN prototype on real
SC35 ESE motif sequences.
This project provided the students with multiple opportunities to
participate on each stage of the project, starting with the literature
research, learning the basics of MATLAB computing together
with Neural Network Toolbox, join the time consuming journey
to design the proper ANN model through the training, validation,
and testing procedures. They were all rather skeptical after the
Stage I about the real possibility to enhance model 80% accuracy.
The first run after model update in Stage II showing improved to

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 35

90% accuracy on small tested data was accepted with contagious
joy and new motivation to continue and apply BPNN prototype
on larger data set. I know that during this project all students
learned many invaluable skills that they could apply to their future
education or work. They all have a better understanding of the
advantages of applied neural network models as well as the
limitation of such models. Students also used this research
opportunity and presented their work during all project stages in
multiple forums, including poster and oral presentations at local,
state and national conferences. Their poster was accepted for an
oral presentation on ACS National Meeting & Exposition, as well
as on ASBMB National Meeting.

7. ACKNOWLEDGMENTS
We would like to thank Dr. Swapan Chakrabarti, Department of
Electrical Engineering and Computer Science, University of
Kansas, Lawrence KS 66045 for his expertise and support.

This work was supported by PORTAL, The Program of Research,
Teaching, and Applied Learning at Missouri Western State
University, St. Joseph, MO 64507.

8. REFERENCES
[1] Chakrabarti S., Svojanovsky S., Slavik R., Georg G. I.,

Wilson G. S., and Smith P. G. 2009. Artificial Neural
Network Based Analysis of High-Throughput Screening
Data for Improved Prediction of Active Compounds. J.
Biomol. Screen 2009 Dec; 14 (10):1236-44
DOI: 10.1177/1087057109351312

[2] Oyedotun O.K., and Khashman A., 2017 Prototype-
Incorporated Emotional Neural Network. IEEE Trans
Neural Netw Learn Syst. 2017 Aug 15. PMID: 28816677
DOI:10.1109/TNNLS.2017.2730179

[3] Liu, H-X., Chew S. L., Cartegni L., Zhang M. Q., and
Krainer A. R. 2000. Exonic Splicing Enhancer Motif
Recognized by Human SC35 under Splicing Conditions
Mol. Cel. Biol. 20 (Feb 2000), 1063-1071. PMID:
10629063

[4] Siala, O., et al., 2014. Slight variations in the SC35 ESE
sequence motif among human chromosomes: a
computational approach, Gene (2014),
http://dx.doi.org/10.1016/j.gene.2014.04.075

[5] Kim, Soyoun, Shi, Hua, Lee, Dong-kee, and Lis, John T.
2003. Specific SR protein-dependent splicing substrates
identified through genomic SELEX. Nucleic Acids Res. 31,
7 (Feb. 2003), 1955-61

[6] Shepard, Peter J. and Hertel, Klemens J. 2009. The SR
Protein Family. Genome Biol. 242, 10 (Oct. 2009), 242.1-
242.9.

[7] Gerardo Mendizabal-Ruiz, Israel Román-Godínez, Sulema
Torres-Ramos, Ricardo A. Salido-Ruiz, J. Alejandro
Morales, 2017, 'On DNA numerical representations for
genomic similarity computation', (2017) PLOS ONE, vol.
12, no. 3, p. e0173288
https://doi.org/10.1371/journal.pone.0173288

Volume 9, Issue 2 Journal of Computational Science Education

36 ISSN 2153-4136 December 2018

Parsing Next Generation Sequencing Data in Parallel Environments for
Downstream Genetic Variation Analysis

Mariana Vasquez
Bioinformatics Program,

The University of Texas at El Paso,
El Paso, TX 79968

mvasquez16@miners.utep.edu

Jonathon Mohl
Border Biomedical Research Center
and Computational Science Program,
The University of Texas at El Paso,

El Paso, TX 79968
jemohl@utep.edu

Ming-Ying Leung
Bioinformatics Program,

Border Biomedical Research Center,
Computational Science Program, and

Department of Mathematical Sciences,
The University of Texas at El Paso,

El Paso, TX 79968
mleung@utep.edu

ABSTRACT

With the recent advances in next generation sequencing
technology, analysis of prevalent DNA sequence variants from
patients with a particular disease has become an important tool
for understanding the associations between the disease and
genetic mutations. A publicly accessible bioinformatics pipeline,
called OncoMiner (http://oncominer.utep.edu), was implemented
in 2016 to help biomedical researchers analyze large genomic
datasets from patients with cancer. However, the current version
of OncoMiner can only accept input files with a highly specific
format for sequence variant description. In order to handle data
from a broader range of sequencing platforms, a data
preprocessing tool is necessary. We have therefore implemented
the OncoMiner Preprocessing (OP) program for parsing data files
in the popular FastQ and BAM formats to generate an OncoMiner
input file. OP involves using the open source Bowtie2 and
SAMtools software, followed by a python script we developed for
genetic sequence variant identification. To preprocess very large
datasets efficiently, the OP program has been parallelized on two
local computers and the Blue Waters system at the National
Center for Supercomputing Applications using a multiprocessing
approach. Although reasonable parallelization efficiency has
been obtained on the local computers, the OP program’s speedup
on Blue Waters has been limited, possibly due to I/O issues and
individual node memory constraints. Despite these, Blue Waters
has provided the necessary resources to process 35 datasets from
patients with acute myeloid leukemia and demonstrated
significant correlation of OP runtimes with the BAM input size
and chromosome diversity.

Keywords
Next generation sequencing, Genetic sequence variants, Cancer,
OncoMiner pipeline, Data preprocessing, Acute myeloid
leukemia, High performance computing, Blue Waters,
Multiprocessing, Python scripts.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Copyright ©JOCSE, a supported publication of the Shodor Education
Foundation Inc. DOI: https://doi.org/10.22369/issn.2153-4136/9/2/5

1 INTRODUCTION

Many serious diseases, such as cancer [1], cystic fibrosis [2] and
multiple sclerosis [3], are often linked to genetic mutations in the
human genome. Identification of mutations prevalent in
individuals with a given illness helps establish associations
between the mutations and the disease. This is exemplified in
acute myeloid leukemia (AML) with the genes DNMT3A,
ASKL1, TET2, IDH1 and IDH2 linked to early disease
progression [1]. With the recent advances in next generation
sequencing (NGS), genomic sequences of an increasing number
of cases have been made available. These data have enabled
scientists to perform detailed data analyses to look for
associations between diseases and DNA mutations, called genetic
sequence variants (GSVs).

OncoMiner [4] (http://oncominer.utep.edu) is a publicly
accessible bioinformatics pipeline developed at the University of
Texas at El Paso (UTEP) for analyzing large genomic datasets
from patients with cancer. OncoMiner’s functionalities include
linking GSVs with published research literature, visualization of
their chromosomal locations, and performing statistical
comparisons of their occurrence frequencies among different
groups of subjects. As OncoMiner was originally developed for
analyzing the GSVs from NGS and GSV identification services
provided by Otogenetics Corporation, the input files for the
OncoMiner pipeline were restricted to a particular format with a
set of specific terms describing the type and location of each
GSV. In order to utilize OncoMiner on more general datasets
coming from other NGS platforms (e.g., the Illumina NextSeq
sequencer in the UTEP Genomic Analysis Core Facility), data
preprocessing needs to be performed in order to provide an input
file that can be passed to OncoMiner for GSV analysis.

The purpose of this project was to develop an efficient program
to preprocess NGS data, extract the necessary information and
write it in a suitable format to be inputted to OncoMiner for
further analysis. NGS data files are typically large, in the order of
tens of gigabytes (GBs) and downstream analysis in OncoMiner
usually involves multiple samples from the cancer group and the
control group. Serial preprocessing of such datasets on our local
computers would take excessive amount of time to complete all
the tasks. A high performance computing system such as Blue

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 37

Waters that allow multiple samples to be processed
simultaneously would be essential.

In this paper, we describe the implementation of a program to
preprocess NGS data files in the popular FastQ and BAM
formats, converting them to files in csv format that can be
inputted to the OncoMiner pipeline on three parallel computing
platforms. Some background information about NGS data and the
OncoMiner input requirements is given in the next section. The
Methods section describes the steps taken to complete the data
preprocessing using a multiprocessing approach. This
preprocessing program is tested with a collection of 35 datasets
from patients with AML. The resulting runtimes, speedup, and
efficiencies are presented in Section 4, where we also discuss
various issues encountered during the parallelization process. The
conclusion and our ongoing investigations are given in section 5.

2 BACKGROUND

Human genetic information is stored in DNA molecules
contained inside 23 pairs of chromosomes, designated
chromosomes 1, 2,…, 22, and X. Each chromosome contains a
DNA molecule represented by a very long string of letters from
the four-letter alphabet denoting the nucleotide bases adenine (A),
cytosine (C), guanine (G), and thymine (T). The lengths of
human DNA molecules are in the range of approximately 48
million - 250 million nucleotides. DNA has a double stranded,
antiparallel structure. One end of each strand is labeled 5’ and the
other labeled 3’. Genetic information in DNA can be found on
either strand and is always read from the 5’ end to 3’ end.

There are three common types of point mutations that cause
genetic information changes: (1) substitution occurs when a
nucleotide is substituted by another; (2) insertions are “extra”
nucleotides inserted into the sequence; (3) deletions are the
removal of nucleotides. An example of each type is shown in

Figure 1. The top line is the reference sequence. A substitution of
nucleotide “C” by “A” occurs at position 7 of line 2. In line 3, the
nucleotide “A” is inserted after position 25. The four nucleotides
“AACC” at position 13 – 16 are deleted in line 4.

A gene comprises multiple segments of DNA that are necessary
to transcribe and translate encoded genetic information into a
protein. DNA is transcribed into RNA containing both exons and
introns initially. During the process of RNA splicing, introns are
removed and the exons are joined to form a continuous, mature
mRNA. Except for the small stretch of nucleotides at the 5’ end
and the 3’ end of the mRNA, the rest of the transcript form the
coding sequence (CDS) that will be translated into a protein. A
description of the organization of DNA transcriptional elements
can be found at http://www.scfbio-iitd.res.in/research/orf.html.
GSVs within the CDS of a gene can either be synonymous or non-
synonymous. Synonymous variants do not change the resulting
protein, but non-synonymous variants do. Non-synonymous
GSVs can directly affect biological functions and are generally of
greater biomedical concern.

NGS is a high-throughput technology for DNA sequencing. It
allows for large amounts of sequences to be obtained much faster
and cheaper than the traditional Sanger sequencing procedure that
produces one sequence at a time. Some NGS platforms can
generate up to 20 billion reads or 6 TB of data per run. The results
are often stored in FastQ format (Figure 2A), which contains
nucleotide sequences and their respective sequencing quality
scores. Programs like Bowtie2 [5] and Burrows-Wheeler Aligner
(BWA) [6] align the sequences obtained by NGS to a reference
human genome and store the results in a sequence alignment map
(SAM) file or its binary equivalent BAM file. The SAM format
(Figure 2B) contains information about the location and nature of
the differences from the reference sequence, and quality scores
among other things.

Currently, a number of open-source programs are available for
GSV identification and analysis. For example, ANNOVAR [7] is
a tool for ANNotation Of genetic VARiants. VEP (Variant Effect
Predictor) uses different scoring schemes to evaluate

Figure 1. Three types of point mutations in DNA:
substitution, insertion, and deletion.

ATCGGGCCAAAAAACCCCCGCGCGCGAAAAATTTTT Ref Sequence
ATCGGGACAAAAAACCCCCGCGCGCGAAAAATTTTT Substitution
ATCGGGCCAAAAAACCCCCGCGCGACGAAAAATTTTT Insertion
ATCGGGCCAAAA____CCCGCGCGCGAAAAATTTTT Deletion

A

B

Figure 2. Examples of FastQ (panel A) and SAM (panel B) input files.

Volume 9, Issue 2 Journal of Computational Science Education

38 ISSN 2153-4136 December 2018

consequences of genetic mutations. SNPeff [8] is a set of tools for
annotating and predicting the effects of GSVs on genes. MuSiC
[9] is a package that provides statistical methods to identify
significantly mutated genes. Each of these program packages
contains their own preprocessing procedures for converting NGS
data files to the required format for downstream analysis.

The OncoMiner pipeline [4] was originally developed in support
of researchers in the UTEP Border Biomedical Research Center
for the investigation of GSVs from a group of patients with
leukemia in the El Paso Children’s Hospital. The current
OncoMiner pipeline provides the necessary tools for literature
search, visualization, and statistical analysis with control of false
discovery rates in one package, but it can only accept input files
in a specific format that comes from the NGS and GSV
identification services provided by Otogenetics Corporation.
However, as the scope of the study expands and more genome
sequencing is now being done at different locations by different
sequencers, an additional data preprocessing step is needed to
obtain the required information to generate an OncoMiner input
(OMI) file.

At a minimum, an OMI file requires 11 data items for each variant
as shown in Figure 3. These include a unique numeric identifier
(var_index), its position on the reference genome (chrom, left and
right), gene name (gene_name), the nucleotides involved (ref_seq
and var_seq1), the number of sequences obtained (count) and an
averaged sequencing quality score over those sequences
(var_score). Additionally, if a variant is within a transcript, the
where_in_transcript field states whether the variant falls on a
CDS, an intron, or an untranslated region. The field change_type1
tells whether the variant is synonymous or nonsynonymous if it
is within a CDS. In the next section, we will describe the steps
involved to get the above information from an NGS dataset of an
individual in FastQ or BAM format and prepare the OMI file.

3 METHODS

3.1 Overall Workflow

The OncoMiner Preprocessing (OP) program has three
components. First, the open-source Bowtie2 aligner [5] is used to
align the sequence data in a FastQ file to a reference human
genome to produce a BAM file. Second, we use the SAMtools
software toolkit [10], along with our file-splitting awk script to
sort the aligned data and separate them by chromosomes. Finally,
we have developed a mutation-calling (MC) python script to
identify GSVs and generate the OMI file for input into
OncoMiner. The overall workflow is displayed in Figure 4 and it

has been implemented on two Linux-based local computers as
well as the Blue Waters system at the National Center of
Supercomputing Applications (NCSA).

3.2 Alignment by Bowtie2

An NGS data file, in FastQ format (Figure 2A), would first go
through Bowtie2 [5], which aligns sequences in the FastQ file to
the reference human genome version GRCh38 (Genome
Reference Consortium human build 38), available at the

Figure 4. Workflow through which a FastQ or BAM file is
processed to become an OncoMiner Input (OMI) file.

Figure 3. OncoMiner Input (OMI) file example

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 39

University of California at Santa Cruz (UCSC) Genome Browser
[11]. These alignments are stored as a sequence alignment map
(SAM) file as shown in Figure 2B or its binary equivalent BAM
file. The SAM file contains readable text with the DNA sequence
fragments as well as descriptions that include read lengths,
ASCII-encoded quality scores of each nucleotide, chromosomal
positions and mutation information in comparison to the reference
sequence. The corresponding BAM file contains the same
information in binary format, and has a much smaller file size.

3.3 File Sorting using SAMtools

The SAMtools sort and index functions are used on the BAM file
generated by the alignment step above in order to group the GSVs
on the same chromosome together and sort them by their positions
on the chromosome. At this point, the SAMtools view function is
used to extract information from the sorted BAM file and write
them to 23 readable SAM files each containing the sorted,
chromosome specific GSVs. These 23 chromosome specific
SAM files are named Chr1, Chr2,…, Chr22, and ChrX in Figure
4, where Cn stands for chromosome n for n = 1,…, 22, and ChrX
the sex chromosome (generally only chromosome X is sequenced
even for a male subject as the chromosome Y is considered
sufficiently similar to a portion of chromosome X).

When handling large BAM files on computers with limited
memory (e.g., 32 GB), out-of-memory (OOM) errors sometimes
occur when running the SAMtools sort function. This problem is
circumvented by using an awk script to split a BAM file with size
exceeding a threshold (e.g., 5 GB) into four pieces, each of which
is then sorted by chromosome as described above. The threshold
can be adjusted by the user according to the available amount of
memory in the particular machine running the program. The four
files associated with each chromosome are then joined back
together by the cat command before feeding into the next step for
GSV identification.

3.4 GSV Identification and Mutation-Calling

To identify GSVs and build the OMI file for input into
OncoMiner, we have developed the mutation-calling (MC) script
to parse the information contained in the chromosome specific
SAM files from the previous sorting step. Information for most of
the required fields in the OMI file, such as the GSV location,
nucleotides involved, gene name, can be parsed directly from the
SAM files. However, classifying the genomic region type for
each variant is not as straightforward. GSVs have to be classified
based on information obtained from the UCSC Genome Browser
in the form of a refflat file (Figure 5) [12], which contains

reference information for the start and end positions of various
genes, introns, exons, and untranscribed regions.

Using this information, each GSV can be classified according to
the decision tree shown in Figure 6. Each unique GSV is given an
identifier consisting of the chromosome number and the position
of the GSV within the chromosome. It is then added to the GSV
dictionary. For each sequence containing the GSV, the site is
counted and the sequence quality is tracked. Once all the
sequences have been processed, GSVs that fail to meet minimum
quality scores and sequence depth specified by the user are
removed.

3.5 Parallelization

Bowtie2 is an open-source program that can run in parallel by
simply specifying the number of processors in the command. In
contrast, the SAMtools functions are designed to run in serial so
we have not attempted any parallelization for them. However, the
process of extracting GSV information from the sorted BAM file
to produce the chromosome specific SAM files has been
parallelized using different processors to extract the information
for different chromosomes and write to different files.

For GSV identification, we have created the GSVId function that
makes use of the Python multiprocessing module to run the MC
script in parallel, distributing the chromosome specific files to run
on different cores. Since the first two chromosomes contain the
largest number of genes and are likely to take the longest to run,
we start with assigning these two chromosomes to two cores first,
and then the others to the remaining available cores.

3.6 Implementation and Testing

Position	of	
GSV

Within	
transcript	

Exon

Translated

Synonymous Non-
synonymous

Not	
translated

Intron

Outside	
transcript

Not	close	
to	gene

Close	to	
gene

5’	untranscribed 3’	untranscribed

Figure 6. GSVId decision tree. The MC script classifies
mutations according to their positions in relation to genetic

transcripts. All decisions are based on gene information
within the refflat file except for “Close to gene” which is a

tunable parameter set as a default of 5000 nucleotides from
either beginning or end of transcript.

cv

Figure 5. Example of a refflat file.

Volume 9, Issue 2 Journal of Computational Science Education

40 ISSN 2153-4136 December 2018

The OP program has been implemented on two local computers
at UTEP. The first one is BioTower, a Dell Precision 5810
containing an Intel Xeon E5-1650 with a 12-core processor and
32 GB memory. The second machine is BinfCompute, a more
powerful Dell PowerEdge R730 with 32 cores (dual Intel Xeon
E5-2667 processors with 16 cores) and 256 GB memory. Both
computers have CentOS 7 as operating system and use the OS
default version of Python (v2.7). The required Python modules,
Bowtie2, SAMtools and reference files are locally available on
these machines.

For initial testing of OP, we used a FastQ file generated by our
local DNA sequencer in the Genomics Core Facility in the Border
Biomedical Research Center at UTEP. The file was 7.3 GB in
size containing 29 million 100-base long sequences spanning all
23 human chromosomes. OP was run on both machines using
varying number of cores to check that parallelization of each step
has been achieved. The final output file of OP was inputted to
OncoMiner to check that a legitimate OMI file was produced.

For further performance testing, we have also implemented OP
on the Blue Waters system, a Cray XE/XK hybrid machine
composed of AMD 6276 Interlagos processors running the
Cray Linux Environment. Our OP program implementation uses
only one high memory XE node with 128 GB total memory to
process the dataset from one individual. The Blue Waters Python
software stack bwpy and PrgEnv-gnu modules have to be loaded
in order to use Python and the GNU programming environment
respectively.

A collection of BAM files containing the aligned sequence
information of 35 patients with AML was obtained from The
Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) for
testing [13]. These file sizes range from 15 to 54 GB. In all the
test runs, runtimes were determined using the Linux time
command and internally using Python’s time module. Internal
memory usage was determined using Python’s getrusage()
function.

We have assessed the performance of the parallelization on the
local machines by calculating the efficiency of core usage as
T(1)/[pT(p)] where T(p) is the measured runtime using p cores
with varying p = 1, 2, 4, 8, 16, and 24. Statistical analysis of
efficiencies and runtimes were performed using the functions for
t-tests and linear models in the statistical software package R [14].

4 RESULTS AND DISCUSSION

4.1 The OP program

The OP program has been successfully implemented on both of
our local machines BioTower and BinfCompute. It can take FastQ
files as input and produce OMI files as output in the correct
format that can then be fed into OncoMiner for downstream
analysis. Because many datasets in public databases such as
TCGA are already stored in the form of BAM files, our OP
program has been set up to also take input in BAM format.

To set a baseline for parallelization performance assessment, we
first conducted runtime measurements of OP using the locally
generated 7.3 GB FastQ file on a single core in the two local
machines. The runtimes of the various steps on BinfCompute are
displayed in Table 1 (the run time distribution on BioTower is
similar). These results show that about 80% of the total OP
runtime is taken by Bowtie2 in the alignment step. Fortunately,
Bowtie2 is designed to run in parallel, and the speedup using
multiple cores seems quite substantial. While the SAMtools sort
and index functions must run serially, parallelization of the
extraction process to produce chromosome specific SAM files by
the SAMtools view function has reduced the runtime somewhat.

Table 1. Runtimes (in minutes) of different steps of OP on
BinfCompute using 1, 8, and 24 cores.

Function 1 Core 8 Cores 24 Cores
Alignment
(Bowtie2) 145.16 22.39 10.08

File sorting
(SAMtools) 13.12 6.33 5.85

GSVId
(MC script)

19.17 3.30 2.56

Others 0.32 0.29 0.29

Total 177.76 32.31 18.78

As the GSV identification part of the OP program was developed
entirely by our group, we examined the MC script performance
more carefully. Figure 7 displays the runtimes for our test dataset
on BioTower and BinfCompute, showing substantial speedups as
the number of cores increases from 1 to 8 on both machines. For
BioTower with only 32 GB of RAM, the execution speed
deteriorated sharply beyond 8 cores as swap memory started to be
used. We therefore stopped the BioTower runtime measurements
at that point, but continued the measurements on BinfCompute
using higher number of cores. Overall, the best average MC script
speedup achieved on BioTower was 3.32 using 6 cores, and on
BinfCompute was 9.29 using 16 cores.

Aside from the locally generated 7.3 GB FastQ file, we also
selected 9 datasets from our AML collection obtained from
TCGA to run on the two local machines. These data files were
already in BAM format but were much larger than our test dataset.
OOM errors were encountered on BioTower during the execution
of the SAMTools sort function. Such problems did not occur on
BinfCompute though. Given that BioTower has only 32 GB of
memory while BinfCompute has 256 GB, this is not surprising. It
has, however, suggested that memory requirement is an issue at
this point of the OP program.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 41

With the expectation that the OP program might need to be run
on other computers without large amounts of memory, we used
awk to split the large BAM files exceeding a cutoff file size into
four pieces and let each piece be sorted one at a time. The cutoff
file size can be set by the user with consideration to the available
memory of the specific computer running OP. For BioTower, we
found that a 5 GB cutoff worked well. The splitting slowed down
the file sorting step substantially, but OOM errors were avoided.

We further examined the overall parallelization efficiency of the
OP program on BinfCompute for the 9 selected AML dataset. If
no speedup were achieved at all by the parallelization, the
efficiency would have a baseline value of 1/p. Figure 8 shows the
average efficiency of the OP program on BinfCompute with p =
2, 4, 8, 16, 24. In each case, a t-test confirmed statistically that the
average efficiency was at least 20% higher than the baseline
values at significance level α = 0.05.

In the test runs of these 9 files, the runtimes required ranged from
around 15 minutes to almost 9 hours. It seemed not practical to
run the OP program for all the TCGA datasets on our local
computers as each run would tie up the computer for a substantial
amount of time and prevent others from running their jobs on
these machines that were used heavily. We therefore turned to
Blue Waters to utilize the allocated resources to complete this
project.

4.2 Running OP on Blue Waters

The OP program was installed on Blue Waters using one high
memory XE node with 128 GB memory to process each of the 35
datasets from the AML collection. While Blue Waters allows

multiple nodes to be used at one time, we decided to process a
dataset in a single node, as the shared memory within the same
node made it easier to construct the dictionary of GSVs and kept
communication time to a minimum. However, we were able to
use multiple nodes to independently process multiple datasets
simultaneously.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30

Av
er
ag
e	
Ru

nt
im

e	
Ef
fic
ie
nc
y

Number	of	Cores

BinfCompute
Baseline

Figure 9. OP runtimes versus input file size for 35 datasets in
AML collection

Figure 7. Runtimes for test dataset on two local
computers: BioTower and BinfCompute.

Figure 8. Average efficiencies ± standard deviation for
2, 4, 8, 16, 24 cores on BinfCompute. Dashed curve

indicates baseline efficiencies.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60

Ru
nt
im

e	
(m

in
ut
es
)

Input	BAM	File	Size	(GB)

0

5

10

15

20

25

0 5 10 15 20 25

Av
er
ag
e	
Ru

nt
im

e	
(m

in
ut
es
)

Number	of	Cores

BioTower

BinfCompute

Volume 9, Issue 2 Journal of Computational Science Education

42 ISSN 2153-4136 December 2018

OOM errors occurred in the MC script on Blue Waters for a few
datasets when the node could not provide sufficient memory for
processing all the chromosome files at once. In those cases, we
had to reduce the number of cores used so that fewer
chromosomes were processed at one time. On hindsight after
understanding the shared memory constraints, a better approach
to parallelize the OP program on Blue Waters would be to couple
MPI to our script and allocate a node to process each of the four
pieces of one chromosome-specific file, and then join the four
dictionaries afterwards. We plan to implement this approach in
the next version of OP.

Furthermore, we observed that using more than one core in the
node produced no speedup in runtime. After monitoring the
memory usage on Blue Waters, the reading and writing (I/O) of
the utilized files was believed to be the cause of this lack in
speedup because of the data transfer to and from the compute
node. This would not have readily been seen on the BinfCompute
and BioTower machines using local storage of the data but is a
known issue for HPC systems analyzing large datasets [15].

Despite these issues, Blue Waters was the only platform that
provided us with sufficient resources to process our complete
AML dataset collection. From the recorded runtimes on Blue
Waters, we were also able to investigate which characteristics of
the datasets would influence the runtimes significantly, as
described below.

4.3 Runtime correlates with input file size and
chromosome diversity

The runtimes for our 35 AML datasets using one core varied from
53 minutes to over 30 hours. One would expect larger input files
to require longer runtime. Surprisingly, a simple linear regression
analysis indicated that the correlation r = 0.152 was not
significant (p value = 0.385). Looking at the scatter plot in Figure
9, we noticed a few outliers that might have contributed to the
unexpected result. For example, the largest input file (54 GB) ran
very quickly. On closer examination, we found that this dataset
contains GSVs from only one chromosome of the patient.

This prompted us to look into how the number of chromosomes
in the input file might affect the OP runtime (Figure 10). This
time, regression analysis showed a highly significant linear
correlation (r = 0.762, p value = 1.07e-07). The correlation was
even stronger (r = 0.858) when only the datasets with no more
than 22 chromosomes were considered. This result suggested that
chromosome diversity could be an important factor that
influenced the OP runtime. The I/O involved in the analysis of
individual chromosome files is believed to drive the major
difference in runtimes of files with different numbers of
chromosomes. Having multiple cores trying to access the larger
files from a network drive at the same time could create a
bottleneck in the accessibility of the data and thus causing the
individual processes to slow down. This would not be as much of
a factor when pulling data from a local hard drive.

When the OP runtimes for only those files with complete sets of
23 chromosomes are analyzed, we then see a significant positive

Figure 10. OP runtimes versus the number of chromosomes
contained within the files. The solid regression line was

determined with all data points while the dashed line used
only the data points with no more than 22 chromosomes.

Figure 11. OP runtimes versus input file size for datasets
with 23 chromosomes

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 15 20 25 30 35

Ru
nt
im

e	
(m

in
ut
es
)

Input	BAM	Size	(GB)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25

Ru
nt
im

e	
(m

in
ut
es
)

Number	of	Chromosomes

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 43

correlation with input file size (see Figure 11, r = 0.509, p value
= 0.031). This implies that a strong relationship between input
file size and runtime indeed exists once the number of
chromosomes is fixed.

To complete the runtime analysis, a multiple regression model
was fit to our runtime data with the number of chromosomes and
input file size as covariates, producing the regression equation:

Runtime = 94.8 + 20.3 * (# chromosomes) + 22.3 * (file size)

with coefficient of determination 0.749, implying that almost
75% of the variations in runtime can be explained by input file
size and chromosome diversity together. This regression equation
will allow OP runtimes to be estimated when we process new data
files in the future.

5. CONCLUSION AND FUTURE WORK

We have implemented the OP program, which comprises the open
source Bowtie2 and SAMtools programs, as well as our GSVId
function, on two local computers at UTEP and on Blue Waters at
the NCSA. The OP program can preprocess NGS data stored in
either FastQ or BAM format and obtain the necessary information
to produce an OMI file to be inputted to OncoMiner for
downstream genetic variation analysis.

We have demonstrated that our multiprocessing parallelization
approach in GSVId for the MC script works with reasonable
efficiencies on our local computers. However, the same
parallelization using multiple cores on one node in Blue Waters
did not produce any substantial speedup of the OP program. We
have identified possible factors involving memory constraints and
I/O issues that limit the OP program’s performance on Blue
Waters and will continue to develop a better approach using MPI
to distribute the analysis of a single dataset to multiple nodes. We
also plan to test the script on other high performance platforms
with more memory in a single node and internal solid state drives
for the I/O intensive portions of the code.

Despite the memory and I/O issues encountered, Blue Waters
provided the necessary resources for us to process our entire
collection of datasets from 35 patients with AML and showed that
OP runtimes were correlated not only with the input data file size,
but also with chromosomes diversity.

Aside from the most popular FastQ and BAM formats, genome
sequence variant data may also come in other file formats such as
the variant call format (VCF). The OP program framework set up
in this project now allows us to adapt and extend our code
relatively easily to process files in other formats to produce OMI
files for input to OncoMiner.

6. REFLECTIONS

The Blue Waters Student Internship Program (BWSIP) allowed
me to learn about parallel computing, which I had not been
previously introduced to. I am glad to have attended the two-week

Petascale Institute 2016 workshop. What I learned during the
workshop and internship will be useful in the future for
performing bioinformatics analysis. The NCSA and Shodor staff
was very helpful and explained the concepts of parallel
computing clearly. I had an eye-opening experience in the BW
Symposium in May of 2017 as I got to see how HPC was used in
so many different fields with methodologies that I had not
encountered in bioinformatics related projects.

Due to parallelization of the MC script having been effective on
the local machines, memory usage was a suspected cause of static
runtime on Blue Waters. The process of ruling out possible causes
for the lack of speedup was an invaluable lesson. Looking at the
memory usage of the MC script helped me better understand
memory related issues in parallel programming and taught me
how to monitor the usage at different points in the script.
Although the runtime remained static, I now have a better feel for
how to check to see if our current suspect, I/O, is behind it. In this,
the future work will revolve around machines with higher
memory and designed for I/O intensive programs.

The research experience also allowed for a local collaboration at
UTEP. While working with my group, I learned about version
control and improved on communication with other group
members. I learned the value in clarifying tasks at the onset and
in keeping track of changes to allow easier modifications during
debugging. In conclusion, the internship has not only made me
more knowledgeable in the use of HPC systems, but also trained
me to become a better researcher.

7. ACKNOWLEDGMENTS

This research is funded in part by the Blue Waters sustained-
petascale computing project, which is supported by the National
Science Foundation (awards OCI-0725070 and ACI-1238993)
and the state of Illinois. Blue Waters is a joint effort of the
University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications. This project was also in
part supported by NIH Grant #5G12RR007592 from the National
Center for Research Resources (NCRR)/NIH to the Border
Biomedical Research Center at The University of Texas at El
Paso. The results published here are in whole or part based upon
data generated by the TCGA Research
Network: http://cancergenome.nih.gov/.

8. REFERENCES
[1] Bullinger, L., Dohner, K. and Dohner, H. Genomics of Acute

Myeloid Leukemia Diagnosis and Pathways. J Clin Oncol,
35, 9 (Mar 20 2017), 934-946.

[2] Corvol, H., Blackman, S. M., Boelle, P. Y., Gallins, P. J.,
Pace, R. G., Stonebraker, J. R., Accurso, F. J., Clement, A.,
Collaco, J. M., Dang, H., Dang, A. T., Franca, A., Gong, J.,
Guillot, L., Keenan, K., Li, W., Lin, F., Patrone, M. V.,
Raraigh, K. S., Sun, L., Zhou, Y. H., O'Neal, W. K.,
Sontag, M. K., Levy, H., Durie, P. R., Rommens, J. M.,
Drumm, M. L., Wright, F. A., Strug, L. J., Cutting, G. R.
and Knowles, M. R. Genome-wide association meta-
analysis identifies five modifier loci of lung disease

Volume 9, Issue 2 Journal of Computational Science Education

44 ISSN 2153-4136 December 2018

severity in cystic fibrosis. Nat Commun, 6 (Sep 29 2015),
8382.

[3] Hilven, K., Vandebergh, M., Smets, I., Mallants, K., Goris,
A. and Dubois, B. Genetic basis for relapse rate in multiple
sclerosis: Association with LRP2 genetic variation. Mult
Scler (Jan 1 2018), 1352458517749894.

[4] Leung, M.-Y., Knapka, J. A., Wagler, A. E., Rodriguez, G.
and Kirken, R. A. OncoMiner: A Pipeline for
Bioinformatics Analysis of Exonic Sequence Variants in
Cancer. In: Big Data Analytics in Genomics, Wong, K.C.
(Ed.), Springer, New York, USA (2016), 373-396.

[5] Langmead, B. and Salzberg, S. L. Fast gapped-read
alignment with Bowtie 2. Nat Methods, 9, 4 (Mar 4 2012),
357-359.

[6] Li, H. and Durbin, R. Fast and accurate short read alignment
with Burrows–Wheeler transform. Bioinformatics, 25, 14
(2009), 1754-1760.

[7] Wang, K., Li, M. and Hakonarson, H. ANNOVAR:
functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res, 38, 16 (Sep
2010), e164.

[8] Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T.,
Wang, L., Land, S. J., Lu, X. and Ruden, D. M. A program
for annotating and predicting the effects of single
nucleotide polymorphisms, SnpEff: SNPs in the genome of
Drosophila melanogaster strain w1118; iso-2; iso-3. Fly
(Austin), 6, 2 (Apr-Jun 2012), 80-92.

[9] McKenna, A., Hanna, M., Banks, E., Sivachenko, A.,
Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D.,
Gabriel, S., Daly, M. and DePristo, M. A. The Genome
Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res, 20, 9
(Sep 2010), 1297-1303.

[10] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J.,
Homer, N., Marth, G., Abecasis, G. and Durbin, R. The
Sequence Alignment/Map format and SAMtools.
Bioinformatics, 25, 16 (Aug 15 2009), 2078-2079.

[11] Karolchik, D., Baertsch, R., Diekhans, M., Furey, T. S.,
Hinrichs, A., Lu, Y. T., Roskin, K. M., Schwartz, M.,
Sugnet, C. W., Thomas, D. J., Weber, R. J., Haussler, D.

and Kent, W. J. The UCSC Genome Browser Database.
Nucleic Acids Res, 31, 1 (Jan 1 2003), 51-54.

[12] Tyner, C., Barber, G. P., Casper, J., Clawson, H., Diekhans,
M., Eisenhart, C., Fischer, C. M., Gibson, D., Gonzalez, J.
N., Guruvadoo, L., Haeussler, M., Heitner, S., Hinrichs, A.
S., Karolchik, D., Lee, B. T., Lee, C. M., Nejad, P., Raney,
B. J., Rosenbloom, K. R., Speir, M. L., Villarreal, C.,
Vivian, J., Zweig, A. S., Haussler, D., Kuhn, R. M. and
Kent, W. J. The UCSC Genome Browser database: 2017
update. Nucleic Acids Res, 45, D1 (Jan 4 2017), D626-
d634.

[13] Ley, T. J., Miller, C., Ding, L., Raphael, B. J., Mungall, A.
J., Robertson, A., Hoadley, K., Triche, T. J., Jr., Laird, P.
W., Baty, J. D., Fulton, L. L., Fulton, R., Heath, S. E.,
Kalicki-Veizer, J., Kandoth, C., Klco, J. M., Koboldt, D.
C., Kanchi, K. L., Kulkarni, S., Lamprecht, T. L., Larson,
D. E., Lin, L., Lu, C., McLellan, M. D., McMichael, J. F.,
Payton, J., Schmidt, H., Spencer, D. H., Tomasson, M. H.,
Wallis, J. W., Wartman, L. D., Watson, M. A., Welch, J.,
Wendl, M. C., Ally, A., Balasundaram, M., Birol, I.,
Butterfield, Y., Chiu, R., Chu, A., Chuah, E., Chun, H. J.,
Corbett, R., Dhalla, N., Guin, R., He, A., Hirst, C., Hirst,
M., Holt, R. A., Jones, S., Karsan, A., Lee, D., Li, H. I.,
Marra, M. A., Mayo, M., Moore, R. A., Mungall, K.,
Parker, J., Pleasance, E., Plettner, P., Schein, J., Stoll, D.,
Swanson, L., Tam, A., Thiessen, N., Varhol, R., Wye, N.,
Zhao, Y., Gabriel, S., Getz, G., Sougnez, C., Zou, L.,
Leiserson, M. D., Vandin, F., Wu, H. T., Applebaum, F.,
Baylin, S. B., Akbani, R., Broom, B. M., Chen, K., Motter,
T. C., Nguyen, K., Weinstein, J. N., Zhang, N., Ferguson,
M. L., Adams, C., Black, A., Bowen, J., Gastier-Foster, J.,
Grossman, T., Lichtenberg, T., Wise, L., Davidsen, T.,
Demchok, J. A., Shaw, K. R., Sheth, M., Sofia, H. J., Yang,
L., Downing, J. R. and Eley, G. Genomic and epigenomic
landscapes of adult de novo acute myeloid leukemia. N
Engl J Med, 368, 22 (May 30 2013), 2059-2074.

[14] R Core Team. R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. (2017).

[15] Reed, D. A. and Dongarra, J. Exascale computing and big
data. Communications of the ACM, 58, 7 (2015), 56-68.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 45

	

	

Volume 9 Issue 2

December 2018

1

2

14

23

30

37

	01-frontcover
	02-blankpage
	03-titlepage
	04-blankpage
	05-contents
	06-blankpage
	07-body
	0-EditorIntro
	0-EditorIntro
	1-Armoni
	2-Chen_Diwarkar
	Abstract
	1 Introduction
	2 Theory and Methods
	3 Results
	3.1 Our GA-based method proved effectiveness in generating GMRQ scores that are close to the highest possible values given by all contacts featurizer.
	3.2 Implied timescale plots show that predicted optimal sets of residue pair distances are able to successfully capture the slowest dynamics in the proteins.
	3.3 Number of selected distances may reflect the degree of complexity of the protein folding mechanism.

	4 Conclusions
	5 Reflection
	Acknowledgments
	References

	3-liang
	4-Svojanovsky
	5-vasquez
	Parsing Next Generation Sequencing Data in Parallel Environments for Downstream Genetic Variation Analysis

	1-Armoni_numbered
	0-EditorIntro
	1-Armoni
	2-Chen_Diwarkar
	Abstract
	1 Introduction
	2 Theory and Methods
	3 Results
	3.1 Our GA-based method proved effectiveness in generating GMRQ scores that are close to the highest possible values given by all contacts featurizer.
	3.2 Implied timescale plots show that predicted optimal sets of residue pair distances are able to successfully capture the slowest dynamics in the proteins.
	3.3 Number of selected distances may reflect the degree of complexity of the protein folding mechanism.

	4 Conclusions
	5 Reflection
	Acknowledgments
	References

	3-liang
	4-Svojanovsky
	5-vasquez
	Parsing Next Generation Sequencing Data in Parallel Environments for Downstream Genetic Variation Analysis

	2-Chen_Diwarkar_numbered
	0-EditorIntro
	1-Armoni
	2-Chen_Diwarkar
	Abstract
	1 Introduction
	2 Theory and Methods
	3 Results
	3.1 Our GA-based method proved effectiveness in generating GMRQ scores that are close to the highest possible values given by all contacts featurizer.
	3.2 Implied timescale plots show that predicted optimal sets of residue pair distances are able to successfully capture the slowest dynamics in the proteins.
	3.3 Number of selected distances may reflect the degree of complexity of the protein folding mechanism.

	4 Conclusions
	5 Reflection
	Acknowledgments
	References

	3-liang
	4-Svojanovsky
	5-vasquez
	Parsing Next Generation Sequencing Data in Parallel Environments for Downstream Genetic Variation Analysis

	3-liang_numbered
	0-EditorIntro
	1-Armoni
	2-Chen_Diwarkar
	Abstract
	1 Introduction
	2 Theory and Methods
	3 Results
	3.1 Our GA-based method proved effectiveness in generating GMRQ scores that are close to the highest possible values given by all contacts featurizer.
	3.2 Implied timescale plots show that predicted optimal sets of residue pair distances are able to successfully capture the slowest dynamics in the proteins.
	3.3 Number of selected distances may reflect the degree of complexity of the protein folding mechanism.

	4 Conclusions
	5 Reflection
	Acknowledgments
	References

	3-liang
	4-Svojanovsky
	5-vasquez
	Parsing Next Generation Sequencing Data in Parallel Environments for Downstream Genetic Variation Analysis

	4-Svojanovsky_numbered
	0-EditorIntro
	1-Armoni
	2-Chen_Diwarkar
	Abstract
	1 Introduction
	2 Theory and Methods
	3 Results
	3.1 Our GA-based method proved effectiveness in generating GMRQ scores that are close to the highest possible values given by all contacts featurizer.
	3.2 Implied timescale plots show that predicted optimal sets of residue pair distances are able to successfully capture the slowest dynamics in the proteins.
	3.3 Number of selected distances may reflect the degree of complexity of the protein folding mechanism.

	4 Conclusions
	5 Reflection
	Acknowledgments
	References

	3-liang
	4-Svojanovsky
	5-vasquez
	Parsing Next Generation Sequencing Data in Parallel Environments for Downstream Genetic Variation Analysis

	5-vasquez_numbered

	08-blankpage
	09-blankpage
	10-backcover

