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ABSTRACT 

With the recent advances in next generation sequencing 
technology, analysis of prevalent DNA sequence variants from 
patients with a particular disease has become an important tool 
for understanding the associations between the disease and 
genetic mutations. A publicly accessible bioinformatics pipeline, 
called OncoMiner (http://oncominer.utep.edu), was implemented 
in 2016 to help biomedical researchers analyze large genomic 
datasets from patients with cancer. However, the current version 
of OncoMiner can only accept input files with a highly specific 
format for sequence variant description. In order to handle data 
from a broader range of sequencing platforms, a data 
preprocessing tool is necessary. We have therefore implemented 
the OncoMiner Preprocessing (OP) program for parsing data files 
in the popular FastQ and BAM formats to generate an OncoMiner 
input file. OP involves using the open source Bowtie2 and 
SAMtools software, followed by a python script we developed for 
genetic sequence variant identification. To preprocess very large 
datasets efficiently, the OP program has been parallelized on two 
local computers and the Blue Waters system at the National 
Center for Supercomputing Applications using a multiprocessing 
approach. Although reasonable parallelization efficiency has 
been obtained on the local computers, the OP program’s speedup 
on Blue Waters has been limited, possibly due to I/O issues and 
individual node memory constraints. Despite these, Blue Waters 
has provided the necessary resources to process 35 datasets from 
patients with acute myeloid leukemia and demonstrated 
significant correlation of OP runtimes with the BAM input size 
and chromosome diversity. 
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1 INTRODUCTION 

Many serious diseases, such as cancer [1], cystic fibrosis [2] and 
multiple sclerosis [3], are often linked to genetic mutations in the 
human genome. Identification of mutations prevalent in 
individuals with a given illness helps establish associations 
between the mutations and the disease.  This is exemplified in 
acute myeloid leukemia (AML) with the genes DNMT3A, 
ASKL1, TET2, IDH1 and IDH2 linked to early disease 
progression [1]. With the recent advances in next generation 
sequencing (NGS), genomic sequences of an increasing number 
of cases have been made available. These data have enabled 
scientists to perform detailed data analyses to look for 
associations between diseases and DNA mutations, called genetic 
sequence variants (GSVs). 

OncoMiner [4] (http://oncominer.utep.edu) is a publicly 
accessible bioinformatics pipeline developed at the University of 
Texas at El Paso (UTEP) for analyzing large genomic datasets 
from patients with cancer. OncoMiner’s functionalities include 
linking GSVs with published research literature, visualization of 
their chromosomal locations, and performing statistical 
comparisons of their occurrence frequencies among different 
groups of subjects. As OncoMiner was originally developed for 
analyzing the GSVs from NGS and GSV identification services 
provided by Otogenetics Corporation, the input files for the 
OncoMiner pipeline were restricted to a particular format with a 
set of specific terms describing the type and location of each 
GSV. In order to utilize OncoMiner on more general datasets 
coming from other NGS platforms (e.g., the Illumina NextSeq 
sequencer in the UTEP Genomic Analysis Core Facility), data 
preprocessing needs to be performed in order to provide an input 
file that can be passed to OncoMiner for GSV analysis.  

The purpose of this project was to develop an efficient program 
to preprocess NGS data, extract the necessary information and 
write it in a suitable format to be inputted to OncoMiner for 
further analysis. NGS data files are typically large, in the order of 
tens of gigabytes (GBs) and downstream analysis in OncoMiner 
usually involves multiple samples from the cancer group and the 
control group. Serial preprocessing of such datasets on our local 
computers would take excessive amount of time to complete all 
the tasks. A high performance computing system such as Blue 
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Waters that allow multiple samples to be processed 
simultaneously would be essential.   

In this paper, we describe the implementation of a program to 
preprocess NGS data files in the popular FastQ and BAM 
formats, converting them to files in csv format that can be 
inputted to the OncoMiner pipeline on three parallel computing 
platforms. Some background information about NGS data and the 
OncoMiner input requirements is given in the next section. The 
Methods section describes the steps taken to complete the data 
preprocessing using a multiprocessing approach. This 
preprocessing program is tested with a collection of 35 datasets 
from patients with AML. The resulting runtimes, speedup, and 
efficiencies are presented in Section 4, where we also discuss 
various issues encountered during the parallelization process. The 
conclusion and our ongoing investigations are given in section 5. 

2 BACKGROUND 

Human genetic information is stored in DNA molecules 
contained inside 23 pairs of chromosomes, designated 
chromosomes 1, 2,…, 22, and X. Each chromosome contains a 
DNA molecule represented by a very long string of letters from 
the four-letter alphabet denoting the nucleotide bases adenine (A), 
cytosine (C), guanine (G), and thymine (T).  The lengths of 
human DNA molecules are in the range of approximately 48 
million - 250 million nucleotides. DNA has a double stranded, 
antiparallel structure. One end of each strand is labeled 5’ and the 
other labeled 3’. Genetic information in DNA can be found on 
either strand and is always read from the 5’ end to 3’ end. 

There are three common types of point mutations that cause 
genetic information changes: (1) substitution occurs when a 
nucleotide is substituted by another; (2) insertions are “extra” 
nucleotides inserted into the sequence; (3) deletions are the 
removal of nucleotides. An example of each type is shown in 

Figure 1. The top line is the reference sequence. A substitution of 
nucleotide “C” by “A” occurs at position 7 of line 2. In line 3, the 
nucleotide “A” is inserted after position 25. The four nucleotides 
“AACC” at position 13 – 16 are deleted in line 4. 

A gene comprises multiple segments of DNA that are necessary 
to transcribe and translate encoded genetic information into a 
protein. DNA is transcribed into RNA containing both exons and 
introns initially.  During the process of RNA splicing, introns are 
removed and the exons are joined to form a continuous, mature 
mRNA. Except for the small stretch of nucleotides at the 5’ end 
and the 3’ end of the mRNA, the rest of the transcript form the 
coding sequence (CDS) that will be translated into a protein. A 
description of the organization of DNA transcriptional elements 
can be found at http://www.scfbio-iitd.res.in/research/orf.html. 
GSVs within the CDS of a gene can either be synonymous or non-
synonymous. Synonymous variants do not change the resulting 
protein, but non-synonymous variants do. Non-synonymous 
GSVs can directly affect biological functions and are generally of 
greater biomedical concern. 

NGS is a high-throughput technology for DNA sequencing. It 
allows for large amounts of sequences to be obtained much faster 
and cheaper than the traditional Sanger sequencing procedure that 
produces one sequence at a time.  Some NGS platforms can 
generate up to 20 billion reads or 6 TB of data per run. The results 
are often stored in FastQ format (Figure 2A), which contains 
nucleotide sequences and their respective sequencing quality 
scores. Programs like Bowtie2 [5] and Burrows-Wheeler Aligner 
(BWA) [6] align the sequences obtained by NGS to a reference 
human genome and store the results in a sequence alignment map 
(SAM) file or its binary equivalent BAM file. The SAM format 
(Figure 2B) contains information about the location and nature of 
the differences from the reference sequence, and quality scores 
among other things.  

Currently, a number of open-source programs are available for 
GSV identification and analysis. For example, ANNOVAR [7] is 
a tool for ANNotation Of genetic VARiants. VEP (Variant Effect 
Predictor) uses different scoring schemes to evaluate 

Figure 1. Three types of point mutations in DNA: 
substitution, insertion, and deletion.  

ATCGGGCCAAAAAACCCCCGCGCGCGAAAAATTTTT  Ref Sequence 
ATCGGGACAAAAAACCCCCGCGCGCGAAAAATTTTT  Substitution 
ATCGGGCCAAAAAACCCCCGCGCGACGAAAAATTTTT Insertion 
ATCGGGCCAAAA____CCCGCGCGCGAAAAATTTTT  Deletion 

A 

B 

Figure 2. Examples of FastQ (panel A) and SAM (panel B) input files. 
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consequences of genetic mutations. SNPeff [8] is a set of tools for 
annotating and predicting the effects of GSVs on genes. MuSiC 
[9] is a package that provides statistical methods to identify 
significantly mutated genes. Each of these program packages 
contains their own preprocessing procedures for converting NGS 
data files to the required format for downstream analysis. 

The OncoMiner pipeline [4] was originally developed in support 
of researchers in the UTEP Border Biomedical Research Center 
for the investigation of GSVs from a group of patients with 
leukemia in the El Paso Children’s Hospital. The current 
OncoMiner pipeline provides the necessary tools for literature 
search, visualization, and statistical analysis with control of false 
discovery rates in one package, but it can only accept input files 
in a specific format that comes from the NGS and GSV 
identification services provided by Otogenetics Corporation. 
However, as the scope of the study expands and more genome 
sequencing is now being done at different locations by different 
sequencers, an additional data preprocessing step is needed to 
obtain the required information to generate an OncoMiner input 
(OMI) file. 

At a minimum, an OMI file requires 11 data items for each variant 
as shown in Figure 3. These include a unique numeric identifier 
(var_index), its position on the reference genome (chrom, left and 
right), gene name (gene_name), the nucleotides involved (ref_seq 
and var_seq1), the number of sequences obtained (count) and an 
averaged sequencing quality score over those sequences 
(var_score). Additionally, if a variant is within a transcript, the 
where_in_transcript field states whether the variant falls on a 
CDS, an intron, or an untranslated region. The field change_type1 
tells whether the variant is synonymous or nonsynonymous if it 
is within a CDS. In the next section, we will describe the steps 
involved to get the above information from an NGS dataset of an 
individual in FastQ or BAM format and prepare the OMI file. 

3 METHODS 

3.1 Overall Workflow  

The OncoMiner Preprocessing (OP) program has three 
components. First, the open-source Bowtie2 aligner [5] is used to 
align the sequence data in a FastQ file to a reference human 
genome to produce a BAM file. Second, we use the SAMtools 
software toolkit [10], along with our file-splitting awk script to 
sort the aligned data and separate them by chromosomes. Finally, 
we have developed a mutation-calling (MC) python script to 
identify GSVs and generate the OMI file for input into 
OncoMiner.  The overall workflow is displayed in Figure 4 and it 

has been implemented on two Linux-based local computers as 
well as the Blue Waters system at the National Center of 
Supercomputing Applications (NCSA). 

3.2 Alignment by Bowtie2 

An NGS data file, in FastQ format (Figure 2A), would first go 
through Bowtie2 [5], which aligns sequences in the FastQ file to 
the reference human genome version GRCh38 (Genome 
Reference Consortium human build 38), available at the 

Figure 4. Workflow through which a FastQ or BAM file is 
processed to become an OncoMiner Input (OMI) file.  

 

Figure 3. OncoMiner Input (OMI) file example 
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University of California at Santa Cruz (UCSC) Genome Browser 
[11]. These alignments are stored as a sequence alignment map 
(SAM) file as shown in Figure 2B or its binary equivalent BAM 
file. The SAM file contains readable text with the DNA sequence 
fragments as well as descriptions that include read lengths, 
ASCII-encoded quality scores of each nucleotide, chromosomal 
positions and mutation information in comparison to the reference 
sequence.  The corresponding BAM file contains the same 
information in binary format, and has a much smaller file size. 

3.3 File Sorting using SAMtools 

The SAMtools sort and index functions are used on the BAM file 
generated by the alignment step above in order to group the GSVs 
on the same chromosome together and sort them by their positions 
on the chromosome. At this point, the SAMtools view function is 
used to extract information from the sorted BAM file and write 
them to 23 readable SAM files each containing the sorted, 
chromosome specific GSVs. These 23 chromosome specific 
SAM files are named Chr1, Chr2,…, Chr22, and ChrX in Figure 
4, where Cn stands for chromosome n for n = 1,…, 22, and ChrX 
the sex chromosome (generally only chromosome X is sequenced 
even for a male subject as the chromosome Y is considered 
sufficiently similar to a portion of chromosome X). 

When handling large BAM files on computers with limited 
memory (e.g., 32 GB), out-of-memory (OOM) errors sometimes 
occur when running the SAMtools sort function. This problem is 
circumvented by using an awk script to split a BAM file with size 
exceeding a threshold (e.g., 5 GB) into four pieces, each of which 
is then sorted by chromosome as described above. The threshold 
can be adjusted by the user according to the available amount of 
memory in the particular machine running the program. The four 
files associated with each chromosome are then joined back 
together by the cat command before feeding into the next step for 
GSV identification. 

3.4 GSV Identification and Mutation-Calling  

To identify GSVs and build the OMI file for input into 
OncoMiner, we have developed the mutation-calling (MC) script 
to parse the information contained in the chromosome specific 
SAM files from the previous sorting step. Information for most of 
the required fields in the OMI file, such as the GSV location, 
nucleotides involved, gene name, can be parsed directly from the 
SAM files. However, classifying the genomic region type for 
each variant is not as straightforward. GSVs have to be classified 
based on information obtained from the UCSC Genome Browser 
in the form of a refflat file (Figure 5) [12], which contains 

reference information for the start and end positions of various 
genes, introns, exons, and untranscribed regions.  

Using this information, each GSV can be classified according to 
the decision tree shown in Figure 6. Each unique GSV is given an 
identifier consisting of the chromosome number and the position 
of the GSV within the chromosome. It is then added to the GSV 
dictionary. For each sequence containing the GSV, the site is 
counted and the sequence quality is tracked. Once all the 
sequences have been processed, GSVs that fail to meet minimum 
quality scores and sequence depth specified by the user are 
removed. 

3.5 Parallelization  

Bowtie2 is an open-source program that can run in parallel by 
simply specifying the number of processors in the command. In 
contrast, the SAMtools functions are designed to run in serial so 
we have not attempted any parallelization for them. However, the 
process of extracting GSV information from the sorted BAM file 
to produce the chromosome specific SAM files has been 
parallelized using different processors to extract the information 
for different chromosomes and write to different files.  

For GSV identification, we have created the GSVId function that 
makes use of the Python multiprocessing module to run the MC 
script in parallel, distributing the chromosome specific files to run 
on different cores. Since the first two chromosomes contain the 
largest number of genes and are likely to take the longest to run, 
we start with assigning these two chromosomes to two cores first, 
and then the others to the remaining available cores. 

3.6 Implementation and Testing 

Position	of	
GSV

Within	
transcript	

Exon

Translated

Synonymous Non-
synonymous

Not	
translated

Intron

Outside	
transcript

Not	close	
to	gene

Close	to	
gene

5’	untranscribed 3’	untranscribed

Figure 6. GSVId decision tree. The MC script classifies 
mutations according to their positions in relation to genetic 

transcripts. All decisions are based on gene information 
within the refflat file except for “Close to gene” which is a 

tunable parameter set as a default of 5000 nucleotides from 
either beginning or end of transcript. 

cv 

Figure 5. Example of a refflat file. 

Volume 9, Issue 2 Journal of Computational Science Education

40 ISSN 2153-4136 December 2018



  

The OP program has been implemented on two local computers 
at UTEP. The first one is BioTower, a Dell Precision 5810 
containing an Intel Xeon E5-1650 with a 12-core processor and 
32 GB memory. The second machine is BinfCompute, a more 
powerful Dell PowerEdge R730 with 32 cores (dual Intel Xeon 
E5-2667 processors with 16 cores) and 256 GB memory. Both 
computers have CentOS 7 as operating system and use the OS 
default version of Python (v2.7).  The required Python modules, 
Bowtie2, SAMtools and reference files are locally available on 
these machines.  

For initial testing of OP, we used a FastQ file generated by our 
local DNA sequencer in the Genomics Core Facility in the Border 
Biomedical Research Center at UTEP.  The file was 7.3 GB in 
size containing 29 million 100-base long sequences spanning all 
23 human chromosomes.  OP was run on both machines using 
varying number of cores to check that parallelization of each step 
has been achieved. The final output file of OP was inputted to 
OncoMiner to check that a legitimate OMI file was produced.  

For further performance testing, we have also implemented OP 
on the Blue Waters system, a Cray XE/XK hybrid machine 
composed of AMD 6276 Interlagos processors running the 
Cray Linux Environment. Our OP program implementation uses 
only one high memory XE node with 128 GB total memory to 
process the dataset from one individual. The Blue Waters Python 
software stack bwpy and PrgEnv-gnu modules have to be loaded 
in order to use Python and the GNU programming environment 
respectively.  

A collection of BAM files containing the aligned sequence 
information of 35 patients with AML was obtained from The 
Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) for 
testing [13]. These file sizes range from 15 to 54 GB. In all the 
test runs, runtimes were determined using the Linux time 
command and internally using Python’s time module. Internal 
memory usage was determined using Python’s getrusage() 
function.  

We have assessed the performance of the parallelization on the 
local machines by calculating the efficiency of core usage as 
T(1)/[pT(p)] where T(p) is the measured runtime using p cores 
with varying p = 1, 2, 4, 8, 16, and 24. Statistical analysis of 
efficiencies and runtimes were performed using the functions for 
t-tests and linear models in the statistical software package R [14]. 

4 RESULTS AND DISCUSSION 

4.1 The OP program 

The OP program has been successfully implemented on both of 
our local machines BioTower and BinfCompute. It can take FastQ 
files as input and produce OMI files as output in the correct 
format that can then be fed into OncoMiner for downstream 
analysis. Because many datasets in public databases such as 
TCGA are already stored in the form of BAM files, our OP 
program has been set up to also take input in BAM format.  

To set a baseline for parallelization performance assessment, we 
first conducted runtime measurements of OP using the locally 
generated 7.3 GB FastQ file on a single core in the two local 
machines. The runtimes of the various steps on BinfCompute are 
displayed in Table 1 (the run time distribution on BioTower is 
similar). These results show that about 80% of the total OP 
runtime is taken by Bowtie2 in the alignment step. Fortunately, 
Bowtie2 is designed to run in parallel, and the speedup using 
multiple cores seems quite substantial. While the SAMtools sort 
and index functions must run serially, parallelization of the 
extraction process to produce chromosome specific SAM files by 
the SAMtools view function has reduced the runtime somewhat.  

Table 1. Runtimes (in minutes) of different steps of OP on 
BinfCompute using 1, 8, and 24 cores. 

Function 1 Core 8 Cores 24 Cores 
Alignment 
(Bowtie2) 145.16 22.39 10.08 

File sorting 
(SAMtools) 13.12 6.33 5.85 

GSVId 
(MC script) 

19.17 3.30 2.56 

Others 0.32 0.29 0.29 

Total 177.76 32.31 18.78 

As the GSV identification part of the OP program was developed 
entirely by our group, we examined the MC script performance 
more carefully. Figure 7 displays the runtimes for our test dataset 
on BioTower and BinfCompute, showing substantial speedups as 
the number of cores increases from 1 to 8 on both machines.  For 
BioTower with only 32 GB of RAM, the execution speed 
deteriorated sharply beyond 8 cores as swap memory started to be 
used.  We therefore stopped the BioTower runtime measurements 
at that point, but continued the measurements on BinfCompute 
using higher number of cores. Overall, the best average MC script 
speedup achieved on BioTower was 3.32 using 6 cores, and on 
BinfCompute was 9.29 using 16 cores. 

Aside from the locally generated 7.3 GB FastQ file, we also 
selected 9 datasets from our AML collection obtained from 
TCGA to run on the two local machines. These data files were 
already in BAM format but were much larger than our test dataset. 
OOM errors were encountered on BioTower during the execution 
of the SAMTools sort function. Such problems did not occur on 
BinfCompute though. Given that BioTower has only 32 GB of 
memory while BinfCompute has 256 GB, this is not surprising. It 
has, however, suggested that memory requirement is an issue at 
this point of the OP program. 
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With the expectation that the OP program might need to be run 
on other computers without large amounts of memory, we used 
awk to split the large BAM files exceeding a cutoff file size into 
four pieces and let each piece be sorted one at a time. The cutoff 
file size can be set by the user with consideration to the available 
memory of the specific computer running OP. For BioTower, we 
found that a 5 GB cutoff worked well. The splitting slowed down 
the file sorting step substantially, but OOM errors were avoided.  

We further examined the overall parallelization efficiency of the 
OP program on BinfCompute for the 9 selected AML dataset. If 
no speedup were achieved at all by the parallelization, the 
efficiency would have a baseline value of 1/p. Figure 8 shows the 
average efficiency of the OP program on BinfCompute with p = 
2, 4, 8, 16, 24. In each case, a t-test confirmed statistically that the 
average efficiency was at least 20% higher than the baseline 
values at significance level α = 0.05.  

In the test runs of these 9 files, the runtimes required ranged from 
around 15 minutes to almost 9 hours. It seemed not practical to 
run the OP program for all the TCGA datasets on our local 
computers as each run would tie up the computer for a substantial 
amount of time and prevent others from running their jobs on 
these machines that were used heavily. We therefore turned to 
Blue Waters to utilize the allocated resources to complete this 
project. 

4.2 Running OP on Blue Waters 

The OP program was installed on Blue Waters using one high 
memory XE node with 128 GB memory to process each of the 35 
datasets from the AML collection. While Blue Waters allows 

multiple nodes to be used at one time, we decided to process a 
dataset in a single node, as the shared memory within the same 
node made it easier to construct the dictionary of GSVs and kept 
communication time to a minimum.  However, we were able to 
use multiple nodes to independently process multiple datasets 
simultaneously. 
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Figure 7. Runtimes for test dataset on two local 
computers: BioTower and BinfCompute. 

Figure 8. Average efficiencies ± standard deviation for 
2, 4, 8, 16, 24 cores on BinfCompute. Dashed curve 

indicates baseline efficiencies. 
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OOM errors occurred in the MC script on Blue Waters for a few 
datasets when the node could not provide sufficient memory for 
processing all the chromosome files at once. In those cases, we 
had to reduce the number of cores used so that fewer 
chromosomes were processed at one time. On hindsight after 
understanding the shared memory constraints, a better approach 
to parallelize the OP program on Blue Waters would be to couple 
MPI to our script and allocate a node to process each of the four 
pieces of one chromosome-specific file, and then join the four 
dictionaries afterwards. We plan to implement this approach in 
the next version of OP.  

Furthermore, we observed that using more than one core in the 
node produced no speedup in runtime. After monitoring the 
memory usage on Blue Waters, the reading and writing (I/O) of 
the utilized files was believed to be the cause of this lack in 
speedup because of the data transfer to and from the compute 
node. This would not have readily been seen on the BinfCompute 
and BioTower machines using local storage of the data but is a 
known issue for HPC systems analyzing large datasets [15].    

Despite these issues, Blue Waters was the only platform that 
provided us with sufficient resources to process our complete 
AML dataset collection. From the recorded runtimes on Blue 
Waters, we were also able to investigate which characteristics of 
the datasets would influence the runtimes significantly, as 
described below. 

 

4.3 Runtime correlates with input file size and 
chromosome diversity  

The runtimes for our 35 AML datasets using one core varied from 
53 minutes to over 30 hours. One would expect larger input files 
to require longer runtime. Surprisingly, a simple linear regression 
analysis indicated that the correlation r = 0.152 was not 
significant (p value = 0.385). Looking at the scatter plot in Figure 
9, we noticed a few outliers that might have contributed to the 
unexpected result. For example, the largest input file (54 GB) ran 
very quickly. On closer examination, we found that this dataset 
contains GSVs from only one chromosome of the patient.  

This prompted us to look into how the number of chromosomes 
in the input file might affect the OP runtime (Figure 10). This 
time, regression analysis showed a highly significant linear 
correlation (r = 0.762, p value = 1.07e-07). The correlation was 
even stronger (r = 0.858) when only the datasets with no more 
than 22 chromosomes were considered. This result suggested that 
chromosome diversity could be an important factor that 
influenced the OP runtime. The I/O involved in the analysis of 
individual chromosome files is believed to drive the major 
difference in runtimes of files with different numbers of 
chromosomes. Having multiple cores trying to access the larger 
files from a network drive at the same time could create a 
bottleneck in the accessibility of the data and thus causing the 
individual processes to slow down. This would not be as much of 
a factor when pulling data from a local hard drive.  

When the OP runtimes for only those files with complete sets of 
23 chromosomes are analyzed, we then see a significant positive 

Figure 10. OP runtimes versus the number of chromosomes 
contained within the files.  The solid regression line was 

determined with all data points while the dashed line used 
only the data points with no more than 22 chromosomes. 

Figure 11. OP runtimes versus input file size for datasets 
with 23 chromosomes 
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correlation with input file size (see Figure 11, r = 0.509, p value 
= 0.031).  This implies that a strong relationship between input 
file size and runtime indeed exists once the number of 
chromosomes is fixed.  

To complete the runtime analysis, a multiple regression model 
was fit to our runtime data with the number of chromosomes and 
input file size as covariates, producing the regression equation: 

Runtime = 94.8 + 20.3 * (# chromosomes) + 22.3 * (file size) 

with coefficient of determination 0.749, implying that almost 
75% of the variations in runtime can be explained by input file 
size and chromosome diversity together. This regression equation 
will allow OP runtimes to be estimated when we process new data 
files in the future. 

5. CONCLUSION AND FUTURE WORK 

We have implemented the OP program, which comprises the open 
source Bowtie2 and SAMtools programs, as well as our GSVId 
function, on two local computers at UTEP and on Blue Waters at 
the NCSA. The OP program can preprocess NGS data stored in 
either FastQ or BAM format and obtain the necessary information 
to produce an OMI file to be inputted to OncoMiner for 
downstream genetic variation analysis.  

We have demonstrated that our multiprocessing parallelization 
approach in GSVId for the MC script works with reasonable 
efficiencies on our local computers. However, the same 
parallelization using multiple cores on one node in Blue Waters 
did not produce any substantial speedup of the OP program. We 
have identified possible factors involving memory constraints and 
I/O issues that limit the OP program’s performance on Blue 
Waters and will continue to develop a better approach using MPI 
to distribute the analysis of a single dataset to multiple nodes. We 
also plan to test the script on other high performance platforms 
with more memory in a single node and internal solid state drives 
for the I/O intensive portions of the code.  

Despite the memory and I/O issues encountered, Blue Waters 
provided the necessary resources for us to process our entire 
collection of datasets from 35 patients with AML and showed that 
OP runtimes were correlated not only with the input data file size, 
but also with chromosomes diversity.  

Aside from the most popular FastQ and BAM formats, genome 
sequence variant data may also come in other file formats such as 
the variant call format (VCF). The OP program framework set up 
in this project now allows us to adapt and extend our code 
relatively easily to process files in other formats to produce OMI 
files for input to OncoMiner.   

6. REFLECTIONS 

The Blue Waters Student Internship Program (BWSIP) allowed 
me to learn about parallel computing, which I had not been 
previously introduced to. I am glad to have attended the two-week 

Petascale Institute 2016 workshop. What I learned during the 
workshop and internship will be useful in the future for 
performing bioinformatics analysis. The NCSA and Shodor staff 
was very helpful and explained the concepts of parallel 
computing clearly. I had an eye-opening experience in the BW 
Symposium in May of 2017 as I got to see how HPC was used in 
so many different fields with methodologies that I had not 
encountered in bioinformatics related projects.  

Due to parallelization of the MC script having been effective on 
the local machines, memory usage was a suspected cause of static 
runtime on Blue Waters. The process of ruling out possible causes 
for the lack of speedup was an invaluable lesson. Looking at the 
memory usage of the MC script helped me better understand 
memory related issues in parallel programming and taught me 
how to monitor the usage at different points in the script. 
Although the runtime remained static, I now have a better feel for 
how to check to see if our current suspect, I/O, is behind it. In this, 
the future work will revolve around machines with higher 
memory and designed for I/O intensive programs. 

The research experience also allowed for a local collaboration at 
UTEP. While working with my group, I learned about version 
control and improved on communication with other group 
members. I learned the value in clarifying tasks at the onset and 
in keeping track of changes to allow easier modifications during 
debugging. In conclusion, the internship has not only made me 
more knowledgeable in the use of HPC systems, but also trained 
me to become a better researcher.  
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