
Parsing Next Generation Sequencing Data in Parallel Environments for
Downstream Genetic Variation Analysis

Mariana Vasquez
Bioinformatics Program,

The University of Texas at El Paso,
El Paso, TX 79968

mvasquez16@miners.utep.edu

Jonathon Mohl
Border Biomedical Research Center
and Computational Science Program,
The University of Texas at El Paso,

El Paso, TX 79968
jemohl@utep.edu

Ming-Ying Leung
Bioinformatics Program,

Border Biomedical Research Center,
Computational Science Program, and

Department of Mathematical Sciences,
The University of Texas at El Paso,

El Paso, TX 79968
mleung@utep.edu

ABSTRACT

With the recent advances in next generation sequencing
technology, analysis of prevalent DNA sequence variants from
patients with a particular disease has become an important tool
for understanding the associations between the disease and
genetic mutations. A publicly accessible bioinformatics pipeline,
called OncoMiner (http://oncominer.utep.edu), was implemented
in 2016 to help biomedical researchers analyze large genomic
datasets from patients with cancer. However, the current version
of OncoMiner can only accept input files with a highly specific
format for sequence variant description. In order to handle data
from a broader range of sequencing platforms, a data
preprocessing tool is necessary. We have therefore implemented
the OncoMiner Preprocessing (OP) program for parsing data files
in the popular FastQ and BAM formats to generate an OncoMiner
input file. OP involves using the open source Bowtie2 and
SAMtools software, followed by a python script we developed for
genetic sequence variant identification. To preprocess very large
datasets efficiently, the OP program has been parallelized on two
local computers and the Blue Waters system at the National
Center for Supercomputing Applications using a multiprocessing
approach. Although reasonable parallelization efficiency has
been obtained on the local computers, the OP program’s speedup
on Blue Waters has been limited, possibly due to I/O issues and
individual node memory constraints. Despite these, Blue Waters
has provided the necessary resources to process 35 datasets from
patients with acute myeloid leukemia and demonstrated
significant correlation of OP runtimes with the BAM input size
and chromosome diversity.

Keywords
Next generation sequencing, Genetic sequence variants, Cancer,
OncoMiner pipeline, Data preprocessing, Acute myeloid
leukemia, High performance computing, Blue Waters,
Multiprocessing, Python scripts.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Copyright ©JOCSE, a supported publication of the Shodor Education
Foundation Inc. DOI: https://doi.org/10.22369/issn.2153-4136/9/2/5

1 INTRODUCTION

Many serious diseases, such as cancer [1], cystic fibrosis [2] and
multiple sclerosis [3], are often linked to genetic mutations in the
human genome. Identification of mutations prevalent in
individuals with a given illness helps establish associations
between the mutations and the disease. This is exemplified in
acute myeloid leukemia (AML) with the genes DNMT3A,
ASKL1, TET2, IDH1 and IDH2 linked to early disease
progression [1]. With the recent advances in next generation
sequencing (NGS), genomic sequences of an increasing number
of cases have been made available. These data have enabled
scientists to perform detailed data analyses to look for
associations between diseases and DNA mutations, called genetic
sequence variants (GSVs).

OncoMiner [4] (http://oncominer.utep.edu) is a publicly
accessible bioinformatics pipeline developed at the University of
Texas at El Paso (UTEP) for analyzing large genomic datasets
from patients with cancer. OncoMiner’s functionalities include
linking GSVs with published research literature, visualization of
their chromosomal locations, and performing statistical
comparisons of their occurrence frequencies among different
groups of subjects. As OncoMiner was originally developed for
analyzing the GSVs from NGS and GSV identification services
provided by Otogenetics Corporation, the input files for the
OncoMiner pipeline were restricted to a particular format with a
set of specific terms describing the type and location of each
GSV. In order to utilize OncoMiner on more general datasets
coming from other NGS platforms (e.g., the Illumina NextSeq
sequencer in the UTEP Genomic Analysis Core Facility), data
preprocessing needs to be performed in order to provide an input
file that can be passed to OncoMiner for GSV analysis.

The purpose of this project was to develop an efficient program
to preprocess NGS data, extract the necessary information and
write it in a suitable format to be inputted to OncoMiner for
further analysis. NGS data files are typically large, in the order of
tens of gigabytes (GBs) and downstream analysis in OncoMiner
usually involves multiple samples from the cancer group and the
control group. Serial preprocessing of such datasets on our local
computers would take excessive amount of time to complete all
the tasks. A high performance computing system such as Blue

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 37

Waters that allow multiple samples to be processed
simultaneously would be essential.

In this paper, we describe the implementation of a program to
preprocess NGS data files in the popular FastQ and BAM
formats, converting them to files in csv format that can be
inputted to the OncoMiner pipeline on three parallel computing
platforms. Some background information about NGS data and the
OncoMiner input requirements is given in the next section. The
Methods section describes the steps taken to complete the data
preprocessing using a multiprocessing approach. This
preprocessing program is tested with a collection of 35 datasets
from patients with AML. The resulting runtimes, speedup, and
efficiencies are presented in Section 4, where we also discuss
various issues encountered during the parallelization process. The
conclusion and our ongoing investigations are given in section 5.

2 BACKGROUND

Human genetic information is stored in DNA molecules
contained inside 23 pairs of chromosomes, designated
chromosomes 1, 2,…, 22, and X. Each chromosome contains a
DNA molecule represented by a very long string of letters from
the four-letter alphabet denoting the nucleotide bases adenine (A),
cytosine (C), guanine (G), and thymine (T). The lengths of
human DNA molecules are in the range of approximately 48
million - 250 million nucleotides. DNA has a double stranded,
antiparallel structure. One end of each strand is labeled 5’ and the
other labeled 3’. Genetic information in DNA can be found on
either strand and is always read from the 5’ end to 3’ end.

There are three common types of point mutations that cause
genetic information changes: (1) substitution occurs when a
nucleotide is substituted by another; (2) insertions are “extra”
nucleotides inserted into the sequence; (3) deletions are the
removal of nucleotides. An example of each type is shown in

Figure 1. The top line is the reference sequence. A substitution of
nucleotide “C” by “A” occurs at position 7 of line 2. In line 3, the
nucleotide “A” is inserted after position 25. The four nucleotides
“AACC” at position 13 – 16 are deleted in line 4.

A gene comprises multiple segments of DNA that are necessary
to transcribe and translate encoded genetic information into a
protein. DNA is transcribed into RNA containing both exons and
introns initially. During the process of RNA splicing, introns are
removed and the exons are joined to form a continuous, mature
mRNA. Except for the small stretch of nucleotides at the 5’ end
and the 3’ end of the mRNA, the rest of the transcript form the
coding sequence (CDS) that will be translated into a protein. A
description of the organization of DNA transcriptional elements
can be found at http://www.scfbio-iitd.res.in/research/orf.html.
GSVs within the CDS of a gene can either be synonymous or non-
synonymous. Synonymous variants do not change the resulting
protein, but non-synonymous variants do. Non-synonymous
GSVs can directly affect biological functions and are generally of
greater biomedical concern.

NGS is a high-throughput technology for DNA sequencing. It
allows for large amounts of sequences to be obtained much faster
and cheaper than the traditional Sanger sequencing procedure that
produces one sequence at a time. Some NGS platforms can
generate up to 20 billion reads or 6 TB of data per run. The results
are often stored in FastQ format (Figure 2A), which contains
nucleotide sequences and their respective sequencing quality
scores. Programs like Bowtie2 [5] and Burrows-Wheeler Aligner
(BWA) [6] align the sequences obtained by NGS to a reference
human genome and store the results in a sequence alignment map
(SAM) file or its binary equivalent BAM file. The SAM format
(Figure 2B) contains information about the location and nature of
the differences from the reference sequence, and quality scores
among other things.

Currently, a number of open-source programs are available for
GSV identification and analysis. For example, ANNOVAR [7] is
a tool for ANNotation Of genetic VARiants. VEP (Variant Effect
Predictor) uses different scoring schemes to evaluate

Figure 1. Three types of point mutations in DNA:
substitution, insertion, and deletion.

ATCGGGCCAAAAAACCCCCGCGCGCGAAAAATTTTT Ref Sequence
ATCGGGACAAAAAACCCCCGCGCGCGAAAAATTTTT Substitution
ATCGGGCCAAAAAACCCCCGCGCGACGAAAAATTTTT Insertion
ATCGGGCCAAAA____CCCGCGCGCGAAAAATTTTT Deletion

A

B

Figure 2. Examples of FastQ (panel A) and SAM (panel B) input files.

Volume 9, Issue 2 Journal of Computational Science Education

38 ISSN 2153-4136 December 2018

consequences of genetic mutations. SNPeff [8] is a set of tools for
annotating and predicting the effects of GSVs on genes. MuSiC
[9] is a package that provides statistical methods to identify
significantly mutated genes. Each of these program packages
contains their own preprocessing procedures for converting NGS
data files to the required format for downstream analysis.

The OncoMiner pipeline [4] was originally developed in support
of researchers in the UTEP Border Biomedical Research Center
for the investigation of GSVs from a group of patients with
leukemia in the El Paso Children’s Hospital. The current
OncoMiner pipeline provides the necessary tools for literature
search, visualization, and statistical analysis with control of false
discovery rates in one package, but it can only accept input files
in a specific format that comes from the NGS and GSV
identification services provided by Otogenetics Corporation.
However, as the scope of the study expands and more genome
sequencing is now being done at different locations by different
sequencers, an additional data preprocessing step is needed to
obtain the required information to generate an OncoMiner input
(OMI) file.

At a minimum, an OMI file requires 11 data items for each variant
as shown in Figure 3. These include a unique numeric identifier
(var_index), its position on the reference genome (chrom, left and
right), gene name (gene_name), the nucleotides involved (ref_seq
and var_seq1), the number of sequences obtained (count) and an
averaged sequencing quality score over those sequences
(var_score). Additionally, if a variant is within a transcript, the
where_in_transcript field states whether the variant falls on a
CDS, an intron, or an untranslated region. The field change_type1
tells whether the variant is synonymous or nonsynonymous if it
is within a CDS. In the next section, we will describe the steps
involved to get the above information from an NGS dataset of an
individual in FastQ or BAM format and prepare the OMI file.

3 METHODS

3.1 Overall Workflow

The OncoMiner Preprocessing (OP) program has three
components. First, the open-source Bowtie2 aligner [5] is used to
align the sequence data in a FastQ file to a reference human
genome to produce a BAM file. Second, we use the SAMtools
software toolkit [10], along with our file-splitting awk script to
sort the aligned data and separate them by chromosomes. Finally,
we have developed a mutation-calling (MC) python script to
identify GSVs and generate the OMI file for input into
OncoMiner. The overall workflow is displayed in Figure 4 and it

has been implemented on two Linux-based local computers as
well as the Blue Waters system at the National Center of
Supercomputing Applications (NCSA).

3.2 Alignment by Bowtie2

An NGS data file, in FastQ format (Figure 2A), would first go
through Bowtie2 [5], which aligns sequences in the FastQ file to
the reference human genome version GRCh38 (Genome
Reference Consortium human build 38), available at the

Figure 4. Workflow through which a FastQ or BAM file is
processed to become an OncoMiner Input (OMI) file.

Figure 3. OncoMiner Input (OMI) file example

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 39

University of California at Santa Cruz (UCSC) Genome Browser
[11]. These alignments are stored as a sequence alignment map
(SAM) file as shown in Figure 2B or its binary equivalent BAM
file. The SAM file contains readable text with the DNA sequence
fragments as well as descriptions that include read lengths,
ASCII-encoded quality scores of each nucleotide, chromosomal
positions and mutation information in comparison to the reference
sequence. The corresponding BAM file contains the same
information in binary format, and has a much smaller file size.

3.3 File Sorting using SAMtools

The SAMtools sort and index functions are used on the BAM file
generated by the alignment step above in order to group the GSVs
on the same chromosome together and sort them by their positions
on the chromosome. At this point, the SAMtools view function is
used to extract information from the sorted BAM file and write
them to 23 readable SAM files each containing the sorted,
chromosome specific GSVs. These 23 chromosome specific
SAM files are named Chr1, Chr2,…, Chr22, and ChrX in Figure
4, where Cn stands for chromosome n for n = 1,…, 22, and ChrX
the sex chromosome (generally only chromosome X is sequenced
even for a male subject as the chromosome Y is considered
sufficiently similar to a portion of chromosome X).

When handling large BAM files on computers with limited
memory (e.g., 32 GB), out-of-memory (OOM) errors sometimes
occur when running the SAMtools sort function. This problem is
circumvented by using an awk script to split a BAM file with size
exceeding a threshold (e.g., 5 GB) into four pieces, each of which
is then sorted by chromosome as described above. The threshold
can be adjusted by the user according to the available amount of
memory in the particular machine running the program. The four
files associated with each chromosome are then joined back
together by the cat command before feeding into the next step for
GSV identification.

3.4 GSV Identification and Mutation-Calling

To identify GSVs and build the OMI file for input into
OncoMiner, we have developed the mutation-calling (MC) script
to parse the information contained in the chromosome specific
SAM files from the previous sorting step. Information for most of
the required fields in the OMI file, such as the GSV location,
nucleotides involved, gene name, can be parsed directly from the
SAM files. However, classifying the genomic region type for
each variant is not as straightforward. GSVs have to be classified
based on information obtained from the UCSC Genome Browser
in the form of a refflat file (Figure 5) [12], which contains

reference information for the start and end positions of various
genes, introns, exons, and untranscribed regions.

Using this information, each GSV can be classified according to
the decision tree shown in Figure 6. Each unique GSV is given an
identifier consisting of the chromosome number and the position
of the GSV within the chromosome. It is then added to the GSV
dictionary. For each sequence containing the GSV, the site is
counted and the sequence quality is tracked. Once all the
sequences have been processed, GSVs that fail to meet minimum
quality scores and sequence depth specified by the user are
removed.

3.5 Parallelization

Bowtie2 is an open-source program that can run in parallel by
simply specifying the number of processors in the command. In
contrast, the SAMtools functions are designed to run in serial so
we have not attempted any parallelization for them. However, the
process of extracting GSV information from the sorted BAM file
to produce the chromosome specific SAM files has been
parallelized using different processors to extract the information
for different chromosomes and write to different files.

For GSV identification, we have created the GSVId function that
makes use of the Python multiprocessing module to run the MC
script in parallel, distributing the chromosome specific files to run
on different cores. Since the first two chromosomes contain the
largest number of genes and are likely to take the longest to run,
we start with assigning these two chromosomes to two cores first,
and then the others to the remaining available cores.

3.6 Implementation and Testing

Position	of	
GSV

Within	
transcript	

Exon

Translated

Synonymous Non-
synonymous

Not	
translated

Intron

Outside	
transcript

Not	close	
to	gene

Close	to	
gene

5’	untranscribed 3’	untranscribed

Figure 6. GSVId decision tree. The MC script classifies
mutations according to their positions in relation to genetic

transcripts. All decisions are based on gene information
within the refflat file except for “Close to gene” which is a

tunable parameter set as a default of 5000 nucleotides from
either beginning or end of transcript.

cv

Figure 5. Example of a refflat file.

Volume 9, Issue 2 Journal of Computational Science Education

40 ISSN 2153-4136 December 2018

The OP program has been implemented on two local computers
at UTEP. The first one is BioTower, a Dell Precision 5810
containing an Intel Xeon E5-1650 with a 12-core processor and
32 GB memory. The second machine is BinfCompute, a more
powerful Dell PowerEdge R730 with 32 cores (dual Intel Xeon
E5-2667 processors with 16 cores) and 256 GB memory. Both
computers have CentOS 7 as operating system and use the OS
default version of Python (v2.7). The required Python modules,
Bowtie2, SAMtools and reference files are locally available on
these machines.

For initial testing of OP, we used a FastQ file generated by our
local DNA sequencer in the Genomics Core Facility in the Border
Biomedical Research Center at UTEP. The file was 7.3 GB in
size containing 29 million 100-base long sequences spanning all
23 human chromosomes. OP was run on both machines using
varying number of cores to check that parallelization of each step
has been achieved. The final output file of OP was inputted to
OncoMiner to check that a legitimate OMI file was produced.

For further performance testing, we have also implemented OP
on the Blue Waters system, a Cray XE/XK hybrid machine
composed of AMD 6276 Interlagos processors running the
Cray Linux Environment. Our OP program implementation uses
only one high memory XE node with 128 GB total memory to
process the dataset from one individual. The Blue Waters Python
software stack bwpy and PrgEnv-gnu modules have to be loaded
in order to use Python and the GNU programming environment
respectively.

A collection of BAM files containing the aligned sequence
information of 35 patients with AML was obtained from The
Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) for
testing [13]. These file sizes range from 15 to 54 GB. In all the
test runs, runtimes were determined using the Linux time
command and internally using Python’s time module. Internal
memory usage was determined using Python’s getrusage()
function.

We have assessed the performance of the parallelization on the
local machines by calculating the efficiency of core usage as
T(1)/[pT(p)] where T(p) is the measured runtime using p cores
with varying p = 1, 2, 4, 8, 16, and 24. Statistical analysis of
efficiencies and runtimes were performed using the functions for
t-tests and linear models in the statistical software package R [14].

4 RESULTS AND DISCUSSION

4.1 The OP program

The OP program has been successfully implemented on both of
our local machines BioTower and BinfCompute. It can take FastQ
files as input and produce OMI files as output in the correct
format that can then be fed into OncoMiner for downstream
analysis. Because many datasets in public databases such as
TCGA are already stored in the form of BAM files, our OP
program has been set up to also take input in BAM format.

To set a baseline for parallelization performance assessment, we
first conducted runtime measurements of OP using the locally
generated 7.3 GB FastQ file on a single core in the two local
machines. The runtimes of the various steps on BinfCompute are
displayed in Table 1 (the run time distribution on BioTower is
similar). These results show that about 80% of the total OP
runtime is taken by Bowtie2 in the alignment step. Fortunately,
Bowtie2 is designed to run in parallel, and the speedup using
multiple cores seems quite substantial. While the SAMtools sort
and index functions must run serially, parallelization of the
extraction process to produce chromosome specific SAM files by
the SAMtools view function has reduced the runtime somewhat.

Table 1. Runtimes (in minutes) of different steps of OP on
BinfCompute using 1, 8, and 24 cores.

Function 1 Core 8 Cores 24 Cores
Alignment
(Bowtie2) 145.16 22.39 10.08

File sorting
(SAMtools) 13.12 6.33 5.85

GSVId
(MC script)

19.17 3.30 2.56

Others 0.32 0.29 0.29

Total 177.76 32.31 18.78

As the GSV identification part of the OP program was developed
entirely by our group, we examined the MC script performance
more carefully. Figure 7 displays the runtimes for our test dataset
on BioTower and BinfCompute, showing substantial speedups as
the number of cores increases from 1 to 8 on both machines. For
BioTower with only 32 GB of RAM, the execution speed
deteriorated sharply beyond 8 cores as swap memory started to be
used. We therefore stopped the BioTower runtime measurements
at that point, but continued the measurements on BinfCompute
using higher number of cores. Overall, the best average MC script
speedup achieved on BioTower was 3.32 using 6 cores, and on
BinfCompute was 9.29 using 16 cores.

Aside from the locally generated 7.3 GB FastQ file, we also
selected 9 datasets from our AML collection obtained from
TCGA to run on the two local machines. These data files were
already in BAM format but were much larger than our test dataset.
OOM errors were encountered on BioTower during the execution
of the SAMTools sort function. Such problems did not occur on
BinfCompute though. Given that BioTower has only 32 GB of
memory while BinfCompute has 256 GB, this is not surprising. It
has, however, suggested that memory requirement is an issue at
this point of the OP program.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 41

With the expectation that the OP program might need to be run
on other computers without large amounts of memory, we used
awk to split the large BAM files exceeding a cutoff file size into
four pieces and let each piece be sorted one at a time. The cutoff
file size can be set by the user with consideration to the available
memory of the specific computer running OP. For BioTower, we
found that a 5 GB cutoff worked well. The splitting slowed down
the file sorting step substantially, but OOM errors were avoided.

We further examined the overall parallelization efficiency of the
OP program on BinfCompute for the 9 selected AML dataset. If
no speedup were achieved at all by the parallelization, the
efficiency would have a baseline value of 1/p. Figure 8 shows the
average efficiency of the OP program on BinfCompute with p =
2, 4, 8, 16, 24. In each case, a t-test confirmed statistically that the
average efficiency was at least 20% higher than the baseline
values at significance level α = 0.05.

In the test runs of these 9 files, the runtimes required ranged from
around 15 minutes to almost 9 hours. It seemed not practical to
run the OP program for all the TCGA datasets on our local
computers as each run would tie up the computer for a substantial
amount of time and prevent others from running their jobs on
these machines that were used heavily. We therefore turned to
Blue Waters to utilize the allocated resources to complete this
project.

4.2 Running OP on Blue Waters

The OP program was installed on Blue Waters using one high
memory XE node with 128 GB memory to process each of the 35
datasets from the AML collection. While Blue Waters allows

multiple nodes to be used at one time, we decided to process a
dataset in a single node, as the shared memory within the same
node made it easier to construct the dictionary of GSVs and kept
communication time to a minimum. However, we were able to
use multiple nodes to independently process multiple datasets
simultaneously.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30

Av
er
ag
e	
Ru

nt
im

e	
Ef
fic
ie
nc
y

Number	of	Cores

BinfCompute
Baseline

Figure 9. OP runtimes versus input file size for 35 datasets in
AML collection

Figure 7. Runtimes for test dataset on two local
computers: BioTower and BinfCompute.

Figure 8. Average efficiencies ± standard deviation for
2, 4, 8, 16, 24 cores on BinfCompute. Dashed curve

indicates baseline efficiencies.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60

Ru
nt
im

e	
(m

in
ut
es
)

Input	BAM	File	Size	(GB)

0

5

10

15

20

25

0 5 10 15 20 25

Av
er
ag
e	
Ru

nt
im

e	
(m

in
ut
es
)

Number	of	Cores

BioTower

BinfCompute

Volume 9, Issue 2 Journal of Computational Science Education

42 ISSN 2153-4136 December 2018

OOM errors occurred in the MC script on Blue Waters for a few
datasets when the node could not provide sufficient memory for
processing all the chromosome files at once. In those cases, we
had to reduce the number of cores used so that fewer
chromosomes were processed at one time. On hindsight after
understanding the shared memory constraints, a better approach
to parallelize the OP program on Blue Waters would be to couple
MPI to our script and allocate a node to process each of the four
pieces of one chromosome-specific file, and then join the four
dictionaries afterwards. We plan to implement this approach in
the next version of OP.

Furthermore, we observed that using more than one core in the
node produced no speedup in runtime. After monitoring the
memory usage on Blue Waters, the reading and writing (I/O) of
the utilized files was believed to be the cause of this lack in
speedup because of the data transfer to and from the compute
node. This would not have readily been seen on the BinfCompute
and BioTower machines using local storage of the data but is a
known issue for HPC systems analyzing large datasets [15].

Despite these issues, Blue Waters was the only platform that
provided us with sufficient resources to process our complete
AML dataset collection. From the recorded runtimes on Blue
Waters, we were also able to investigate which characteristics of
the datasets would influence the runtimes significantly, as
described below.

4.3 Runtime correlates with input file size and
chromosome diversity

The runtimes for our 35 AML datasets using one core varied from
53 minutes to over 30 hours. One would expect larger input files
to require longer runtime. Surprisingly, a simple linear regression
analysis indicated that the correlation r = 0.152 was not
significant (p value = 0.385). Looking at the scatter plot in Figure
9, we noticed a few outliers that might have contributed to the
unexpected result. For example, the largest input file (54 GB) ran
very quickly. On closer examination, we found that this dataset
contains GSVs from only one chromosome of the patient.

This prompted us to look into how the number of chromosomes
in the input file might affect the OP runtime (Figure 10). This
time, regression analysis showed a highly significant linear
correlation (r = 0.762, p value = 1.07e-07). The correlation was
even stronger (r = 0.858) when only the datasets with no more
than 22 chromosomes were considered. This result suggested that
chromosome diversity could be an important factor that
influenced the OP runtime. The I/O involved in the analysis of
individual chromosome files is believed to drive the major
difference in runtimes of files with different numbers of
chromosomes. Having multiple cores trying to access the larger
files from a network drive at the same time could create a
bottleneck in the accessibility of the data and thus causing the
individual processes to slow down. This would not be as much of
a factor when pulling data from a local hard drive.

When the OP runtimes for only those files with complete sets of
23 chromosomes are analyzed, we then see a significant positive

Figure 10. OP runtimes versus the number of chromosomes
contained within the files. The solid regression line was

determined with all data points while the dashed line used
only the data points with no more than 22 chromosomes.

Figure 11. OP runtimes versus input file size for datasets
with 23 chromosomes

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 15 20 25 30 35

Ru
nt
im

e	
(m

in
ut
es
)

Input	BAM	Size	(GB)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25

Ru
nt
im

e	
(m

in
ut
es
)

Number	of	Chromosomes

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 43

correlation with input file size (see Figure 11, r = 0.509, p value
= 0.031). This implies that a strong relationship between input
file size and runtime indeed exists once the number of
chromosomes is fixed.

To complete the runtime analysis, a multiple regression model
was fit to our runtime data with the number of chromosomes and
input file size as covariates, producing the regression equation:

Runtime = 94.8 + 20.3 * (# chromosomes) + 22.3 * (file size)

with coefficient of determination 0.749, implying that almost
75% of the variations in runtime can be explained by input file
size and chromosome diversity together. This regression equation
will allow OP runtimes to be estimated when we process new data
files in the future.

5. CONCLUSION AND FUTURE WORK

We have implemented the OP program, which comprises the open
source Bowtie2 and SAMtools programs, as well as our GSVId
function, on two local computers at UTEP and on Blue Waters at
the NCSA. The OP program can preprocess NGS data stored in
either FastQ or BAM format and obtain the necessary information
to produce an OMI file to be inputted to OncoMiner for
downstream genetic variation analysis.

We have demonstrated that our multiprocessing parallelization
approach in GSVId for the MC script works with reasonable
efficiencies on our local computers. However, the same
parallelization using multiple cores on one node in Blue Waters
did not produce any substantial speedup of the OP program. We
have identified possible factors involving memory constraints and
I/O issues that limit the OP program’s performance on Blue
Waters and will continue to develop a better approach using MPI
to distribute the analysis of a single dataset to multiple nodes. We
also plan to test the script on other high performance platforms
with more memory in a single node and internal solid state drives
for the I/O intensive portions of the code.

Despite the memory and I/O issues encountered, Blue Waters
provided the necessary resources for us to process our entire
collection of datasets from 35 patients with AML and showed that
OP runtimes were correlated not only with the input data file size,
but also with chromosomes diversity.

Aside from the most popular FastQ and BAM formats, genome
sequence variant data may also come in other file formats such as
the variant call format (VCF). The OP program framework set up
in this project now allows us to adapt and extend our code
relatively easily to process files in other formats to produce OMI
files for input to OncoMiner.

6. REFLECTIONS

The Blue Waters Student Internship Program (BWSIP) allowed
me to learn about parallel computing, which I had not been
previously introduced to. I am glad to have attended the two-week

Petascale Institute 2016 workshop. What I learned during the
workshop and internship will be useful in the future for
performing bioinformatics analysis. The NCSA and Shodor staff
was very helpful and explained the concepts of parallel
computing clearly. I had an eye-opening experience in the BW
Symposium in May of 2017 as I got to see how HPC was used in
so many different fields with methodologies that I had not
encountered in bioinformatics related projects.

Due to parallelization of the MC script having been effective on
the local machines, memory usage was a suspected cause of static
runtime on Blue Waters. The process of ruling out possible causes
for the lack of speedup was an invaluable lesson. Looking at the
memory usage of the MC script helped me better understand
memory related issues in parallel programming and taught me
how to monitor the usage at different points in the script.
Although the runtime remained static, I now have a better feel for
how to check to see if our current suspect, I/O, is behind it. In this,
the future work will revolve around machines with higher
memory and designed for I/O intensive programs.

The research experience also allowed for a local collaboration at
UTEP. While working with my group, I learned about version
control and improved on communication with other group
members. I learned the value in clarifying tasks at the onset and
in keeping track of changes to allow easier modifications during
debugging. In conclusion, the internship has not only made me
more knowledgeable in the use of HPC systems, but also trained
me to become a better researcher.

7. ACKNOWLEDGMENTS

This research is funded in part by the Blue Waters sustained-
petascale computing project, which is supported by the National
Science Foundation (awards OCI-0725070 and ACI-1238993)
and the state of Illinois. Blue Waters is a joint effort of the
University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications. This project was also in
part supported by NIH Grant #5G12RR007592 from the National
Center for Research Resources (NCRR)/NIH to the Border
Biomedical Research Center at The University of Texas at El
Paso. The results published here are in whole or part based upon
data generated by the TCGA Research
Network: http://cancergenome.nih.gov/.

8. REFERENCES
[1] Bullinger, L., Dohner, K. and Dohner, H. Genomics of Acute

Myeloid Leukemia Diagnosis and Pathways. J Clin Oncol,
35, 9 (Mar 20 2017), 934-946.

[2] Corvol, H., Blackman, S. M., Boelle, P. Y., Gallins, P. J.,
Pace, R. G., Stonebraker, J. R., Accurso, F. J., Clement, A.,
Collaco, J. M., Dang, H., Dang, A. T., Franca, A., Gong, J.,
Guillot, L., Keenan, K., Li, W., Lin, F., Patrone, M. V.,
Raraigh, K. S., Sun, L., Zhou, Y. H., O'Neal, W. K.,
Sontag, M. K., Levy, H., Durie, P. R., Rommens, J. M.,
Drumm, M. L., Wright, F. A., Strug, L. J., Cutting, G. R.
and Knowles, M. R. Genome-wide association meta-
analysis identifies five modifier loci of lung disease

Volume 9, Issue 2 Journal of Computational Science Education

44 ISSN 2153-4136 December 2018

severity in cystic fibrosis. Nat Commun, 6 (Sep 29 2015),
8382.

[3] Hilven, K., Vandebergh, M., Smets, I., Mallants, K., Goris,
A. and Dubois, B. Genetic basis for relapse rate in multiple
sclerosis: Association with LRP2 genetic variation. Mult
Scler (Jan 1 2018), 1352458517749894.

[4] Leung, M.-Y., Knapka, J. A., Wagler, A. E., Rodriguez, G.
and Kirken, R. A. OncoMiner: A Pipeline for
Bioinformatics Analysis of Exonic Sequence Variants in
Cancer. In: Big Data Analytics in Genomics, Wong, K.C.
(Ed.), Springer, New York, USA (2016), 373-396.

[5] Langmead, B. and Salzberg, S. L. Fast gapped-read
alignment with Bowtie 2. Nat Methods, 9, 4 (Mar 4 2012),
357-359.

[6] Li, H. and Durbin, R. Fast and accurate short read alignment
with Burrows–Wheeler transform. Bioinformatics, 25, 14
(2009), 1754-1760.

[7] Wang, K., Li, M. and Hakonarson, H. ANNOVAR:
functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res, 38, 16 (Sep
2010), e164.

[8] Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T.,
Wang, L., Land, S. J., Lu, X. and Ruden, D. M. A program
for annotating and predicting the effects of single
nucleotide polymorphisms, SnpEff: SNPs in the genome of
Drosophila melanogaster strain w1118; iso-2; iso-3. Fly
(Austin), 6, 2 (Apr-Jun 2012), 80-92.

[9] McKenna, A., Hanna, M., Banks, E., Sivachenko, A.,
Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D.,
Gabriel, S., Daly, M. and DePristo, M. A. The Genome
Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res, 20, 9
(Sep 2010), 1297-1303.

[10] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J.,
Homer, N., Marth, G., Abecasis, G. and Durbin, R. The
Sequence Alignment/Map format and SAMtools.
Bioinformatics, 25, 16 (Aug 15 2009), 2078-2079.

[11] Karolchik, D., Baertsch, R., Diekhans, M., Furey, T. S.,
Hinrichs, A., Lu, Y. T., Roskin, K. M., Schwartz, M.,
Sugnet, C. W., Thomas, D. J., Weber, R. J., Haussler, D.

and Kent, W. J. The UCSC Genome Browser Database.
Nucleic Acids Res, 31, 1 (Jan 1 2003), 51-54.

[12] Tyner, C., Barber, G. P., Casper, J., Clawson, H., Diekhans,
M., Eisenhart, C., Fischer, C. M., Gibson, D., Gonzalez, J.
N., Guruvadoo, L., Haeussler, M., Heitner, S., Hinrichs, A.
S., Karolchik, D., Lee, B. T., Lee, C. M., Nejad, P., Raney,
B. J., Rosenbloom, K. R., Speir, M. L., Villarreal, C.,
Vivian, J., Zweig, A. S., Haussler, D., Kuhn, R. M. and
Kent, W. J. The UCSC Genome Browser database: 2017
update. Nucleic Acids Res, 45, D1 (Jan 4 2017), D626-
d634.

[13] Ley, T. J., Miller, C., Ding, L., Raphael, B. J., Mungall, A.
J., Robertson, A., Hoadley, K., Triche, T. J., Jr., Laird, P.
W., Baty, J. D., Fulton, L. L., Fulton, R., Heath, S. E.,
Kalicki-Veizer, J., Kandoth, C., Klco, J. M., Koboldt, D.
C., Kanchi, K. L., Kulkarni, S., Lamprecht, T. L., Larson,
D. E., Lin, L., Lu, C., McLellan, M. D., McMichael, J. F.,
Payton, J., Schmidt, H., Spencer, D. H., Tomasson, M. H.,
Wallis, J. W., Wartman, L. D., Watson, M. A., Welch, J.,
Wendl, M. C., Ally, A., Balasundaram, M., Birol, I.,
Butterfield, Y., Chiu, R., Chu, A., Chuah, E., Chun, H. J.,
Corbett, R., Dhalla, N., Guin, R., He, A., Hirst, C., Hirst,
M., Holt, R. A., Jones, S., Karsan, A., Lee, D., Li, H. I.,
Marra, M. A., Mayo, M., Moore, R. A., Mungall, K.,
Parker, J., Pleasance, E., Plettner, P., Schein, J., Stoll, D.,
Swanson, L., Tam, A., Thiessen, N., Varhol, R., Wye, N.,
Zhao, Y., Gabriel, S., Getz, G., Sougnez, C., Zou, L.,
Leiserson, M. D., Vandin, F., Wu, H. T., Applebaum, F.,
Baylin, S. B., Akbani, R., Broom, B. M., Chen, K., Motter,
T. C., Nguyen, K., Weinstein, J. N., Zhang, N., Ferguson,
M. L., Adams, C., Black, A., Bowen, J., Gastier-Foster, J.,
Grossman, T., Lichtenberg, T., Wise, L., Davidsen, T.,
Demchok, J. A., Shaw, K. R., Sheth, M., Sofia, H. J., Yang,
L., Downing, J. R. and Eley, G. Genomic and epigenomic
landscapes of adult de novo acute myeloid leukemia. N
Engl J Med, 368, 22 (May 30 2013), 2059-2074.

[14] R Core Team. R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. (2017).

[15] Reed, D. A. and Dongarra, J. Exascale computing and big
data. Communications of the ACM, 58, 7 (2015), 56-68.

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 45

