
Teaching and Learning Graph Algorithms Using Animation 
 
  
 
 

 
 

Y. Daniel Liang 
Department of Computer Science 

Georgia Southern University 
Savannah Campus, GA 31419  

y.daniel.liang@gmail.com 
 

 
 
 
 
 
 

ABSTRACT 
Graph algorithms have many applications. Many real-world 
problems can be solved using graph algorithms. Graph algorithms 
are commonly taught in the data structures, algorithms, and discrete 
mathematics courses. We have created two animations to visually 
demonstrate the graph algorithms. The first animation is for depth-
first search, breadth-first search, shortest paths, connected 
components, finding bipartite sets, and Hamiltonian path/cycle on 
unweighted graphs. The second animation is for the minimum 
spanning trees, shortest paths, travelling salesman problems on 
weighted graphs. The animations are developed using HTML, CSS, 
and JavaScript and are platform independent. They can be viewed 
from a browser on any device. The animations are useful tools for 
teaching and learning graph algorithms. This paper presents these 
animations.  

Keywords 
Algorithms, animation, data structures, discrete mathematics, 
graphs 

1. INTRODUCTION 
Graphs are simple mathematical structures. A graph consists of a 
set of vertices and a set of edges for connecting vertices. In a 
weighted graph, each edge is assigned with a value, called a weight. 
Graphs have many important applications. For example, a map can 
be modelled using a graph. The cities are the vertices and the roads 
connecting the cities are the edges, and the distances are the weights 
on the edges. The problem of finding the shortest distance between 
two cities can be solved by finding a shortest path between the two 
vertices in the graph. Many algorithms have been developed to 
solve a variety of graph problems. The common graph problems for 
unweighted graphs covered in the data structures, algorithms and 
discrete mathematics courses are depth-first search, breadth-first 
search, shortest paths, connected components, finding bipartite 
sets, and Hamiltonian path/cycle. For weighted graphs, the 
common problems are the minimum spanning trees, shortest paths, 
travelling salesman problems. We have created animations for 
helping instructors and students to teach and learn these algorithms.  
 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee.  

Copyright ©JOCSE, a supported publication of the Shodor Education 
Foundation Inc. DOI: https://doi.org/10.22369/issn.2153-4136/9/2/3  

 

The animations are freely accessible from 
https://yongdanielliang.github.io/animation/animation.html.     The 
animations enable instructors and students to create graphs 
dynamically,   apply   the   graph    algorithms   on   graphs,     and 
immediately see the results. The animations are effective tools for 
teaching and learning graph algorithms. The animations have been 
integrated in the Pearson’s interactive REVEL™ ebooks [5, 6, 7], 
which have received positive reviews [9, 10]. This paper presents 
the graph algorithm animations for unweighted graphs and for 
weighted graphs, respectively. 
 

2. SURVEYS OF GRAPH ALOGRITHM 
ANIMATIONS 
Several graph algorithm animations are available on the Web. The 
most popular graph animations are accessible from http://jhave.org/ 
[8], https://visualgo.net/en [12] and 
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html 
[3]. The first tool [8] is written in Java. Due to security restrictions 
on Java running on the browser, this tool cannot run from a Web 
browser. Neither of the tools allows you to create graphs 
interactively. Because the graphs are pre-created in these tools, the 
instructor cannot create their own graphs for class demonstration. 
Our graph algorithm animation tools enable instructors and 
students to create custom graphs dynamically and easily. 
Additionally, our tools combine all algorithms for unweighted 
graphs in one unified animation and all algorithms for weighted 
graphs in the other unified animation. As a result, it is simple and 
easy to use our graph algorithm animation tools. 
 
 

3. ALGORITHM ANIMATION FOR 
UNWEIGHTED GRAPHS 
The unweighted graph algorithm animation tool can be accessed for 
free from 
https://yongdanielliang.github.io/animation/web/GraphLearningT
ool.html, as shown in Figure 3.1. The process of creating a graph is 
simple. You can add a vertex by clicking the primary button in an 
open area. You can remove a vertex by clicking the vertex using 
the secondary button. You can add an edge between two vertices 
by dragging from one vertex to the other. You can also move a 
vertex by dragging the vertex while pressing the CTRL button. 
 
After creating a graph, you can apply an algorithm on the graph and 
see the result of applying the algorithm interactively. To display a 

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 23



depth-first search tree or breadth-first search tree, specify a starting 
vertex and click the DFS or the BFS button to see the search tree. 
For example, as shown in Figure 3.2, a DFS tree is displayed 
starting from vertex 4. A BFS tree is displayed starting from vertex 
4 in Figure 3.3.  
 

 
Figure 3.1: The graph algorithm animation for unweighted 
graphs. 
 

 
Figure 3.2: A DFS tree starting from vertex 4 is displayed. 
 
The shortest path between two vertices in an unweighted graph can 
be obtained using the breadth-first search from a vertex. As shown 
in Figure 3.4, the user enters the starting vertex 2 and the ending 

vertex 5 and clicks the Shortest Path button to display a shortest 
path from 2 to 5. 
 

 
Figure 3.3: A BFS tree starting from vertex 4 is displayed. 
 

 
Figure 3.4: The shortest path from vertex 2 to vertex 5 is 
displayed. 
 
The Hamiltonian path is a path that traverses all vertices in the 
graph exactly once. As shown in Figure 3.5, clicking the 
Hamiltonian Path button displays a Hamiltonian path. The 
Hamiltonian cycle is a Hamiltonian path in which the starting 
vertex and the ending vertex are connected. As shown in Figure 3.6, 
clicking the Hamiltonian Cycle button displays a Hamiltonian 
cycle. 

Volume 9, Issue 2 Journal of Computational Science Education

24 ISSN 2153-4136 December 2018



 
Figure 3.5: The animation displays a Hamiltonian path. 
 
 
 

 
Figure 3.6: The animation displays a Hamiltonian cycle. 
 
 
A connected component is a maximal connected subgraph in which 
every two vertices is connected by a path. You can find all 
connected components in the graph by clicking the Find Connected 
Components button as shown in Figure 3.7. Two connected 
components [0, 1, 4, 3, 2] and [5, 7, 6] are displayed for the graph 
in Figure 3.7. 
 

 
Figure 3.7: The connected components are displayed in the 
dialog box. 
 
You can find a cycle in the graph by clicking the Find a Cycle 
button, as shown in Figure 3.8. A cycle 0, 1, 4, 3 is displayed in the 
dialog box.  
 

 
Figure 3.8: A cycle is displayed. 
 
The bipartite sets are the two sets of vertices obtained from the 
graph such that no vertices in a set is connected. This type of the 
graph is called a bipartite graph. When you click the Find Bipartite 
Sets button for the graph in Figure 3.9, the animation displays that 
the graph is not bipartite, because no bipartite sets can be found for 
the graph. 

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 25



 
Figure 3.9: The graph is not bipartite. 
 

  
Figure 4.1: The graph algorithm animation for weighted 
graphs. 

4. ALGORITHM ANIMATION FOR 
WEIGHTED GRAPHS 

The weighted graph algorithm animation can be accessed from 
https://yongdanielliang.github.io/animation/web/WeightedGraphL
earningTool.html, as shown in Figure 4.1. The process of creating 
a weighted graph is similar to creating an unweighted graph. You 
can add/remove a vertex in the same way as in the unweighted 
graph algorithm animation. You can add an edge by dragging from 

one vertex to the other. The weight of the edge is the distance 
between the two vertices.  

 
Figure 4.2: A minimum spanning tree is displayed. 
 
A spanning tree of a graph is a connected subgraph that contains all 
the vertices in the graph and the subgraph is a tree. A minimum 
spanning tree of a graph is a spanning tree with the minimum total 
weights. You can obtain the minimum spanning tree by clicking the 
MST button, as shown in Figure 4.2. 
 
A shortest path tree can be found using the Dijkstra’s algorithm. 
The tree represents a single source all shortest paths. For example, 
Figure 4.3 shows the shortest path tree starting from vertex 1. 

 
Figure 4.3: A shortest path tree starts from vertex 1.  

Volume 9, Issue 2 Journal of Computational Science Education

26 ISSN 2153-4136 December 2018



A shortest path between two vertices can be found after a shortest 
path tree is constructed. To find a shortest path from vertex u to v, 
first create a shortest path tree starting from vertex u. A path from 
u to v in the tree is the shortest path from u to v. For example, Figure 
4.4 shows the shortest path from vertex 1 to vertex 5. 
  

 
Figure 4.4: A shortest path from vertex 1 to vertex 5 is 
displayed. 
 
 
 

 
Figure 4.5: A solution for the travelling salesman problem is 
found with the total weights displayed in the dialog box. 
 

The travelling salesman problem is to find a shortest path that starts 
from a vertex and visits each vertex exactly once and returns back 
to the original vertex. Figure 4.5 shows a solution to the problem 
for the graph in the figure. 
 

5. BENEFITS OF USING GRAPH 
ALGORITHM ANIMATION 

 
Here are the major benefits for instructors and students to use our 
tool. 
 
Benefit 1: In a typical lecture for the graph algorithms, the 
instructor draws various types of graphs on the board and shows the 
result of applying the algorithms by hand. This is a tedious and 
time-consuming process. This tool enables the instructor to create 
a graph dynamically and show the results of applying the algorithm 
spontaneously. The instructor can draw any type of graph using this 
tool. The instructor can create vertices anywhere on the screen and 
can move it to a new location after it is created. The vertices can 
also be deleted. By dragging the mouse from one vertex to another, 
an edge between the two vertices can be created. All these 
interactive features also work on mobile devices. 
 
Benefit 2: Once a graph is created, the tool can show the result of 
applying the algorithm on the graph interactively. After a graph is 
modified, with a click of button, the tool can show the new result 
of applying the algorithm on the new graph. This is tremendously 
helpful to show students different scenarios. 
 
Benefit 3: A picture is worth a thousand words. An interactive 
animation is worth more than pictures. The interactive animation 
not only catches student attention in the class, it also engages the 
student with visual interaction. Students can use the tool to study 
before and after the lectures to see how an algorithm works on 
different graphs.  
 
Benefit 4: Our animation also serves as examples for students to 
write their own programs to visualize the graph algorithms. This 
gives students the opportunity to get deeper into the algorithms and 
see how the algorithms work in their own animation. In our data 
structures and algorithms courses, we assign projects for students 
to write their own code for graph algorithm animation. Students like 
the algorithm animation projects.  As supported in [11], students 
learn better, when they actually implement the algorithms using 
animation.  
 

6. EVALUATION  
Many algorithm animation tools are available. It is safe to say that 
algorithm animation assists instruction, but whether it helps 
students to learn is a mixed bag. Some experiments show positive 
student outcome [1, 8], while others say there are no significant 
difference to students whether animations are used or not [2]. An 
experiment conducted at George Washington University [4] 
showed that the students who used an interactive version of 
courseware spent more time and performed worse overall than 
those who used the non-interactive version of the courseware. The 
reason behind this is that the tools are ineffective and difficult to 
use. Our goal is to develop a simple tool that is effective and easy 
to use. First, our tool is free and directly accessible on the Web and 

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 27



can run on any device from a Web browser. There is no need to 
install any software. Second, our tool is intuitive. It has only four 
lines of instructions on how to use it. Third, we combined all the 
algorithms for unweighted graphs into one application and all the 
algorithms for the weighted graph into another application, rather 
to have a separate application for each algorithm. Once a graph is 
created, the user can apply different algorithms on the same graph. 
 
We use the animation in our data structures and algorithm course 
in Java. The course covers recursion, Java generics, use of Java 
collections framework for array lists, linked lists, stacks, queues, 
priority queues, sets, and maps, implementation of array lists, 
linked lists, stacks, queues, and priority queues, binary search trees, 
AVL trees, hashing, and graphs applications for unweighted graphs 
and weighted graphs. The graph algorithms is a small part in the 
course, which is covered at the end of the semester. The course is 
offered every semester.  
 
In the spring of 2015, we conducted a survey for a class of 26 
students. The survey has many questions. Two questions related to 
the graph algorithm animation are the following: 
 

1. Does the graph algorithm animation help you learn graph 
algorithms? 20 answered yes, 2 answered no, and 4 
answered “not sure”.  

2. Is the graph algorithm animation intuitive and easy to 
use? All answered yes.  

 
In the fall of 2015, we conducted a second survey for a class of 22 
students. This time, we used a scale of 1 to 10 for answers, where 
1 is poor and 10 is excellent. The result is as follows: 
 

1. Does the graph algorithm animation help you learn graph 
algorithms? The average answer is 7.4.  

2. Is the graph algorithm animation intuitive and easy to 
use? The average answer is 9.1. 
 

The survey strongly suggests that the tool is easy to use and helps 
students learn graph algorithms.  
 

7. IMPLEMENTATION OF THE 
ANIMATION  

The animations are implemented using HTML, CSS, and 
JavaScript. The user interface is created using HTML. The style is 
defined in CSS. The user interaction and algorithms are 
implemented using JavaScript. We define the classes Graph and 
WeightedGraph to model unweighted graphs and weighted graphs. 
WeightedGraph is a subtype of Graph. The algorithms such as DFS, 
BFS, minimum spanning tree, and shortest path are implemented in 
these classes. The complete code for these classes can be obtained 
from https://yongdanielliang.github.io/animation/web/Graph.js 
and 
https://yongdanielliang.github.io/animation/web/WeightedGraph.j
s. When the user clicks the right mouse button on the canvas, a new 
vertex is created. The addVertex method in the Graph class is 
invoked to add the vertex to the graph. When the user clicks the left 
mouse button on a vertex, the vertex is removed. The removeVertex 
method in the Graph class is invoked to remove the vertex from the 
graph. When the user drags the mouse button from one vertex to 
another, an edge between the two vertices is created. The program 
invokes the addEdge method in the Graph class to add the edge to 

the graph. Each button on the user interface corresponds to an 
algorithm. For example, when the user clicks the DFS button in 
Figure 3.2, the program invokes the dfs method in the Graph class 
to find a depth-first search tree. The tree is then displayed on the 
canvas in the user interface.  
 
The system is built using a modular approach. An animation for a 
new algorithm can be easily added by creating a button in the user 
interface and implementing the algorithm in the Graph class for 
unweighted graphs or in the WeightedGraph class for weighted 
graphs. 
 
The source code (HTML, CSS, JavaScript) for the animations can 
be viewed using the “view page source” function in the browser. 
With the knowledge of HTML, CSS, JavaScript, and graph 
algorithms, one can modify the code to add new animations for 
custom algorithms. 
 

8. LESSONS LEARNED 
We started the project to develop the animations for graph 
algorithms in 2008. Over the years, we have created the animations 
for many graph algorithms and continuously improved the 
animation based on the feedback from the students and instructors. 
There are several lessons learned from developing the animations 
and from using the animations in classrooms.  
 

• The first lesson learned is to make the animation easy to 
access. We initially developed the animation using Java 
applets. Due to security restrictions, many users cannot 
access the animation. We recreated the animation using 
HTML, CSS, and JavaScript. The animations now can be 
viewed anywhere from a browser on a computer and on 
a mobile device.  

 
• The second lesson learned is to make the animation 

simple to deploy. We initially developed the animation 
for each algorithm. We had a total of thirteen animations: 
an animation for DFS, an animation for BFS, an 
animation for finding a shortest path, etc. With so many 
animations, it is difficult to deploy and the user has to 
click many links to access the animation. Later we 
combined all the animations into two animations: one for 
unweighted graph algorithms and the other for the 
weighted graph algorithms. Now we just need to deploy 
two animations rather than thirteen separate animations. 

 
• The third lesson learned is to make the animation easy to 

use. In the early version, the animation lets the user enter 
the coordinates for each vertex and specify the edges in 
text boxes in order to create a graph. This proved to be 
difficult and time-consuming for the user to create a 
graph. Later we improved it by letting the user use the 
mouse gestures to add and remove vertices and create the 
edges. With the mouse gestures, the user can create a 
graph quickly and easily.  

 

9. FUTURE WORK 
We have improved the tool over the years. At present, the tool 
enables the user to create a graph, apply the algorithm on the graph, 

Volume 9, Issue 2 Journal of Computational Science Education

28 ISSN 2153-4136 December 2018



and show the result of applying the algorithm. However, it does not 
show the intermediate steps to obtain the result. The future work is 
to expand the animation to show the user the step-by-step procedure 
for obtaining the results while still retaining the tool’s simplicity.  

10. CONCLUSIONS 
This paper presented graph algorithm animation that is a useful tool 
for teaching and learning graph algorithms. It enables instructors 
and students to create custom graphs and see how the graph 
algorithms work. We developed two animations: one for the 
unweighted graphs and the other for the weighted graphs. For the 
unweighted graph, our algorithm animation supports the depth-first 
search, breadth-first search, shortest path, Hamiltonian path/cycle, 
finding connected components, finding a cycle, and finding 
bipartite sets. For the weighted graph, our animation supports 
minimum spanning trees, shortest path trees, shortest path, and 
travelling salesman problem. The animations are freely accessible 
from https://yongdanielliang.github.io/animation/animation.html. 
  

11. ACKNOWLEDGEMENTS 
Many thanks to Dr. Steven Gordon and the anonymous reviewers 
for their careful reading and constructive suggestions for improving 
the presentation of the paper. 
 

12. REFERENCES 
[1] Bazik, J., Tamassia, R., Reiss, S.P., van Dam A., "Software 

Visualization in Teaching at Brown University," in Software 
Visualization: Programming as a Multimedia Experience, 
The MIT Press, pp. 383-398, 1998. 

[2] Byrne, M.D., Catrambone, R. and Stasko, J.T., "Do 
Algorithm Animations Aid Learning?", Tech. Rep. No. GIT-
GVU-96-18, Georgia Tech Graphics, Visualization, and 
Usability Center, 1996. 

[3] David Galles, Data Structure Visualizations, 
https://www.cs.usfca.edu/~galles/visualization/Algorithms.ht

ml. Computer Science Department, University of San 
Francisco. 

[4] Jarc, D.J., M.B. Feldman, and R.S. Heller, "Accessing the 
Benefits of Interactive Prediction Using Web-based 
Algorithm Animation Courseware," in Proceedings of the 
ACM SIGCSE Technical Session, Austin, Texas, March 
2000. 

[5] Liang, Y. Daniel, REVEL™ for Introduction to Java 
Programming and Data Structures. ISBN-13: 978-
0134167008. Pearson Education, 2016. 

[6] Liang, Y. Daniel, REVEL™ for Introduction to C++ 
Programming and Data Structures. ISBN-13: 978-
0134669854. Pearson Education, 2018. 

[7] Liang, Y. Daniel, REVEL™ for Introduction to Python 
Programming and Data Structures. ISBN-13: 978-
0135187753. Pearson Education, 2018. 

[8] Naps, T., Eagan, J, and Norton, L. 2000. "JHAVÉ – An 
Environment to Actively Engage Students in Web-based 
Algorithm Visualizations", in Proceedings of the SIGCSE 
Session, ACM Meetings, Austin, Texas.Visualgo.net, 
Algorithm and Data Structure Animations, visualgo.net/en. 

[9] REVEL™ educator study observes homework and exam 
grades at University of Louisiana, Spring 2016, 
http://www.pearsoned.com/results/revel-educator-study-
observes-homework-exam-grades-university-louisiana/. 

[10] REVEL educator study assesses quiz, exam, and final course 
grades at Central Michigan University, Fall 2015, 
http://www.pearsoned.com/results/revel-educator-study-
assesses-quiz-exam-final-course-grades-central-michigan-
university/. 

[11] Stasko, John, “Using Student-Built Algorithm Animations as 
Learning Aids” in Proceedings of the ACM SIGCSE 
Technical Session, San Jose, CA., February, 1997. 

[12] Visualgo.net, Algorithm and Data Structure Animations, 
visualgo.net/en. 

 

 

Journal of Computational Science Education Volume 9, Issue 2

December 2018 ISSN 2153-4136 29


	0-EditorIntro
	1-Armoni
	2-Chen_Diwarkar
	Abstract
	1 Introduction
	2 Theory and Methods
	3 Results
	3.1 Our GA-based method proved effectiveness in generating GMRQ scores that are close to the highest possible values given by all contacts featurizer.
	3.2 Implied timescale plots show that predicted optimal sets of residue pair distances are able to successfully capture the slowest dynamics in the proteins.
	3.3 Number of selected distances may reflect the degree of complexity of the protein folding mechanism.

	4 Conclusions
	5 Reflection
	Acknowledgments
	References

	3-liang
	4-Svojanovsky
	5-vasquez
	Parsing Next Generation Sequencing Data in Parallel Environments for Downstream Genetic Variation Analysis


