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ABSTRACT
Markov State Models (MSMs) are a powerful framework to repro-
duce the long-time conformational dynamics of biomolecules using
a set of short Molecular Dynamics (MD) simulations. However,
precise kinetics predictions of MSMs heavily rely on the features
selected to describe the system. Despite the importance of feature
selection for large system, determining an optimal set of features re-
mains a di�cult unsolved problem. Here, we introduce an automatic
approach to optimize feature selection based on genetic algorithms
(GA), which adaptively evolves the most �tted solution according
to natural selection laws. The power of the GA-based method is
illustrated on long atomistic folding simulations of four proteins,
varying in length from 28 to 80 residues. Due to the diversity of
tested proteins, we expect that our method will be extensible to
other proteins and drive MSM building to a more objective protocol.

KEYWORDS
Genetic algorithm, feature selection, markov state model, molecular
dynamics simulation, generalized matrix Rayleigh quotient

1 INTRODUCTION
Molecular Dynamics (MD) simulation, �rst introduced by Alder
and Wainwright[2] in the late 1950’s, has evolved into a major tech-
nique to study the detailed actions and mechanisms of proteins[10,
23, 26, 35, 39]. Based on Newton’s equations of motion, MD sim-
ulations can describe protein dynamics in unprecedented spatial
and temporal resolution. However, one of the major challenges
for MD simulations are the analysis of high dimensional data and
the incompatibility between timescales accessible to MD simula-
tion and that are functionally relevant[22, 25, 45, 46, 50]. Markov
State Models (MSMs)[20, 37, 44] have recently been used to address
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the aforementioned issues by predicting protein dynamics at long
timescales from a pool of short MD simulations. The MSM itself is
a "transition probability matrix"[6], describing mathematically the
memoryless transitions between metastable states. To construct a
MSM, raw MD trajectories are �rst transformed from their Carte-
sian coordinates to features, such as dihedral angles[18, 33] or
pairwise contact distances of a protein. This step is often called
"featurization". The dimensionality of these features may be further
reduced through dimensionality reduction step. One commonly
used method is time-structure independent components analysis
(tICA), which creates linear combinations of input features by max-
imizing their decorrelation time[24, 27, 38, 41, 42]. With a properly
constructed MSM, useful thermodynamic and kinetic properties of
the dynamic process can be extracted. Despite the attractive feature
of MSMs, the thermodynamics and kinetics predicted by MSMs
are highly sensitive to which features are selected to discretize the
con�guration space[4, 10, 28]. Ideally, features should be chosen to
capture the slowest motions of the protein, which are usually the
most interesting or important processes. However, determining an
optimal set of features remains a considerable challenge especially
when a protein system is su�ciently complex.

Currently, there are twomajor ways of selecting features in terms
of "contact featurization", where pairwise contact distances of a pro-
tein are used as features. One is using all pairwise contact distances
of a protein as features. In principle, no important information
about the system is missed out since all the contact distances are
considered. However, it is costly to calculate all distances even for a
small protein. For a protein system with R residues, the total num-
ber of distances among each other will be R(R-1)/2, which creates
a heavy load of calculation on computers. In addition, irrelevant
features that do not contribute to the dynamics process may lead to
the poor generalization performance of the model. Thus, using all
available features may degrade the performance of the MSM both in
speed (due to high dimensionality) and accuracy (due to irrelevant
information). Alternatively, the most commonly used method is
choosing a subset of contact distances based on human intuition
[20]. Consequently, the thermodynamics and kinetics extracted
from MSMs can be biased by the manually chosen features. In sum-
mary, either way is not appropriate for the selection of features
and a more convenient, accurate and automated method for feature
selection is necessary. A variety of machine learning methods have
been recently reported for dimensionality reduction and/or feature
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selection for molecular dynamics datasets[33]. However, the use of
these ideas for automatic feature selection in building MSMs has
not been explored.

Here, we present a genetic-algorithm based method to select
an optimal set of residue pair distances for contact featurization.
Genetic algorithm (GA) is one of the advanced methods to help with
dealing feature selection problems in data science. First proposed
by John H. Holland[13, 15], GA is a heuristic and adaptive simula-
tion algorithm that evolves the most �tted solution to a problem
based on Darwinian natural selection laws. GA has been broadly
applied to help with function optimization[48], protein folding
prediction[21, 49], multiple sequence alignment[14] and more sci-
enti�c investigations[16]. In nature, useful traits in genes tend to
be preserved in o�spring because of a higher survival probability.
Like the real cases in nature, better solutions to a problem can be
derived by GA according to this principal. In our case, each "gene"
represents the alpha carbon distance between a residue pair, and
"chromosomes" are combinations of residue pair distances. To seed
the whole process, we randomly select one residue pair distance
as the starting point of the GA. The adaptability of each "chromo-
some" (a set of residue pair distances) is quantitatively expressed
as �tness scores in GA. In this study, we use generalized matrix
Rayleigh quotient (GMRQ) score as the �tness score. GMRQ was
recently introduced to quantitatively evaluate MSMs based on its
distance from a theoretical upper limit[19, 30, 36]. The higher the
GMRQ score is, the more prominent the MSM is to capture the slow
underlying dynamical motions while a low GMRQ score indicates
that the MSM is not able to reveal the slow dynamics of the system.
Therefore, the goal of our method is optimizing a set of residue
pairs that gives the highest GMRQ score. The framework of our
GA-based method is adapted from the "Optimal Probes" method
proposed byMittal and Shukla[32]. In their study, an optimal choice
of residue pairs, capturing the slow conformational dynamics, is
successfully predicted for double electron-election resonance spec-
troscopy, an experimental technique capable of detecting confor-
mational changes by monitoring the distance between electron
spins.

In this method, we (1) perform contact featurization for each
set of residue pair alpha carbon distances, (2) use tICA to further
reduce the dimensionality of the data, (3) construct MSMs based
on the reduced dimensionality, and (4) calculate GMRQ for each
set of residue pair distances to evaluate the MSMs. Based on the
GMRQ score, the combination of residue pair distances will be
updated. The algorithm will then go back to step (1) to repeat the
whole process until reaching user speci�ed number of iterations.
In the end, the set of distances with the maximum GMRQ score is
chosen as an optimal set of residues for the construction of the "best
MSM". To evaluate of our method, we test the GA-based method
on four folding proteins with the size ranging from 28 residues
to 80 residues. Our experimental results show that the method
yields comparable and even better accuracy compared with using
all available features. To our knowledge, this is the �rst attempt
to automatically select proper MSM features for analysis. The GA-
based method described here can be extended to larger proteins
undergoing conformational changes.

2 THEORY AND METHODS
MolecularDynamics (MD) SimulationDataset.MD simulation
datasets of the four folding proteins for analysis were generated
by Lindor�-Larsen et al[26]. The four proteins (BBA, Villin, WW
domain and �-repressor) vary in length from 28 to 80 amino acids.
More details of the simulations are summarized in Table 1. For the
analysis, we retain all the trajectory frames. Three small proteins
(BBA, Villin and WW domain) are chosen to evaluate the proposed
method and the best GMRQ achieved using all contact distances
serves as the benchmark. The 80-amino-acid �-repressor is used
to test the feasibility of the method on large proteins, as using all
distances is impractical.

Table 1: Protein and Trajectory Information.

Protein PDB Residues Total simulation time (µs)
BBA 1FME 28 325
Villin 2F4K 47 429
WW domain 2F21 35 1137
�-repressor 1LMB 80 643

Markov State Models (MSMs). In this study, the goal is optimiz-
ing a set of residue pair distances to build the best MSM based
GMRQ. MSMs are kinetic models that reveal the dynamics of a
system[6, 17, 37, 39, 40]. AnMSM describes a network of metastable
conformational states and reveals the probabilities of each state
performing jumps from one to another over an appropriate time
resolution (� , also called lag time). The jumps are memoryless,
which means the probability to transit to the present state is not
dependent on the previous ones. Such information is presented in
a "transition probability matrix" by MSM, where an n ⇥ n square
matrix depicts the transitions among n states[6]. The probability of
each jump can be expressed according to the equation below:

pj (t + � ) =
n’
i=1

pi (t)Ti j (� ) (1)

The equation can also be expressed in a matrix form:

pT (t + � ) = pT (t)T (� ) (2)

where pi (t) is a population vector whose elements show the proba-
bility at time t , pj (t + � ) is a population vector after time � , Ti j (� )
is the probability to jump from state i to state j and T (� ) is the
transition probability matrix that T (� ) 2 Rn⇥n . Further details of
the transition matrix can be found in literatures[6, 44].

The transition probability matrix can be decomposed into eigen-
functions and eigenvalues shown below:

T (� ) ��i = �i�i (3)

where�i is the eigenfunction and �i are the real eigenvalues that
�i  1, arranged in descending order.

Here, each step of the MSM building process used in this study
is described in detail. All the hyperparameters (e.g. the number of
tICA components, tICA lagtime, the number of clusters, the number
of MSM timescales and MSM lagtime) are shown in Table 2.
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(1) Featurization. To construct an MSM, the �rst step is to pro-
cess the datasets that we plan to work on. In our case, we use
the MD simulation data sets listed in Table 1. The datasets
are given in the form of MD trajectories, which present series
of motion of the protein atoms in a frame-wise arrangement.
Because the simulated movements recorded in Cartesian co-
ordinates are not ideal for analysis, and too much noise not
relevant to our study may be included, it is better to interpret
the data in other ways. As a result, a lot of reasonable metrics
such as dihedral angle[18] and contact distances between
residue pairs are used to featurize the data. The featurization
method we choose here is contact distance analysis. By using
such technique, more useful information can be extracted
from the redundant MD trajectories. Again, our goal of this
study is to optimize the choice of residue pairs for contact
distance calculation, so that an MSM with more information
and less noise can be found by this method. The method
outlined in this study could be applied to any chosen set of
features calculated using simulation data.

(2) Dimensionality reduction. We further processed our featur-
ized data by tICA so as to reduce the dimensionality of the
data. After featurization, the featurized data were projected
onto linear subspaces of the slowest dynamics. The compo-
nents of tICA are termed time structure-based independent
components (tICs), which are linear combination of the in-
put features (a set of contact distances in our case). Top tICs
capture the slowest motion captured by tICA and usually
represent the most interesting dynamics[24, 27, 38, 41, 42].

(3) Clustering. We perform mini-batch k-means clustering on
the processed data. Clustering refers to the coarse graining
analysis that groups certain datasets based on their simi-
larities, so that macrostates can be formed to be better un-
derstood. Commonly used clustering algorithms, such as
mini-batch k-means[6, 30, 34], mini-batch k-medoids[8, 12]
and k-centers[5, 24], have shown similar performance when
the data is preprocessed with tICA[27, 33, 38, 41].

(4) MSM construction. After the clustering, a MSM can be built
based on the processed datasets. The process was imple-
mented in a Python environment and the software involved
to produce the analysis above includeNumpy[3],MDTraj[28]
and MSMBuilder3.8[4].

GeneralizedRayleighQuotient (GMRQ). In short, an idealMSM
should successfully identify the slowest dynamics of the protein.
Because the state decomposition mentioned above reveals the dy-
namical processes in the system, the identi�cation of true eigen-
function and eigenvalues become the major problem for scientists
to solve. A more quantitative method is needed to help evaluate
and �nd the true state decomposition, which is directly related to
the choice of metrics in the featurization stage.

To help solve this problem, GMRQ was introduced as a quantita-
tive way of evaluating the quality of an MSM[30, 30, 36]. GMRQ
is derived from the variational principle that adds up the �rstm
eigenvalues, which denote the slowestm dynamical processes in the
system. The variational principles set an upper boundary[19, 30, 36]

for the total sum of real eigenvalues shown below:

GMRQ ⌘
m’
i=1

�̂i 
m’
i=1

�i (4)

where the �̂i is the estimated eigenvalue and the �i is the real
eigenvalue. In this study, as we try to maximize GMRQ score to
approach the upper boundary, the larger the GMRQ score we get,
the closer we are to the slowest dynamics of the protein.

To help avoid over�tting, cross-validation must be applied to
evaluate our GMRQ scores. The dataset from the MD simulation is
split into a training set and a test set. The training set is �rst used
to estimate the model parameters such as the eigenvalues, then the
estimated model is applied to score its performance in the test set.
In this way, the model will not be biased by over�tting the data
onto the model. The process of deriving GMRQ scores is achieved
by Osprey package[29] and the recruited parameters are shown in
Table 2. Mean GMRQ of �ve cross-validation iterations are used for
the analysis.

Figure 1: The �ow chart showing the whole process of our
GA-based method.
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Genetic-algorithm-based Method for automatic feature se-
lection in Markov State Models (MSMs). To simulate the nat-
ural selection process according to the Darwinian law, we must
decide how the natural selection principles are implemented in our
algorithm. In this section, we introduce our basic operators of GA,
the framework that we follow to perform GA, and the protocol we
adopt to �nally generate optimal residue pairs. The construction of
the GA is based on the work of Mittal and Shukla[32].

In the �eld of programming, operators refer to the actions to
take during each step of execution of the algorithm. The basic
operators in our study are composed of natural selection, mutation,
and crossover. In the following section, we discuss our method to
help predict an optimized set of residue pair distances for MSM
construction using genetic algorithm. We also provide the series of
steps as a �ow chart shown in Figure 1. Some important parameters
that are involved in these steps are: populationSize, percentMutation
and percentCrossover. These parameters can be changed according
to user’s need.

(1) A set of all possible residue pairs is identi�ed.R(R-1)/2 residue
pairs for a protein with R residues.

(2) populationSize preliminary sets of residue pair are randomly
selected from the set of all possible residue pairs for the
�rst iteration. Each set contains only one residue pair as the
starting point for selection. These sets of residue pairs serve
as the initial generation G0 and are assigned �tness scores
of 0.

(3) Natural selection is performed to choose the new generation
of residue pairs according to their �tness scores. The natural
selection operator corresponds to the reproductive process in
nature, which selects genomes with ideal traits for breeding
o�spring. In our case, we de�ne a parameter populationSize
that describes the number of elements randomly chosen from
the parental set for a new generation Gnew .

(4) Mutation is performed to maintain diversity to the current
generation of residue pair selections. The mutation operator
corresponds to the mutation process in nature to increase
genetic diversity. In our version of GA, we de�ne a parame-
ter percentMutation to maintain a ratio of mutation in our
combination of residue pairs. During the mutation step, the
number of residue pairs to be mutated are generated by (per-
centMutation ⇥ populationSize)/100 from Gnew and those
residue pairs are randomly replaced by other residue pairs
that are excluded in the Gnew .

(5) Crossover is performed to add more diversity to the cur-
rent generation. The crossover operator corresponds to the
natural recombination process of chromosomes. Here, we
de�ne another parameter percentCrossover as the percent-
age of crossover in our combination of residue pairs. The
number of residue pairs to perform crossover is generated
by (percentCrossover ⇥ populationSize)/100 from Gnew . The
residue pair distance sets will then be swapped according to
the number calculated before to create a new combination
of residue pair distances.

(6) Evaluations are performed to assign �tness scores to the
newly generated residue pairs. MSMs are constructed based
on contact featurization using the current generation of

residue pairs, and GMRQ scores are calculated accordingly
to serve as �tness scores.

(7) If more iterations are designed to be �nished, the next itera-
tion should restart at step (3) and use the current generation
of residue pairs asG0. As the iteration number increases, the
�tness scores for the selection of residue pairs should show
a convergence of �tness scores.

All the parameters used in this study are organized in Table 2.

Table 2: Model Hyperparameteres.

Featurization
�-carbon contact distances
Decomposition Components Lag time (ns)
tICA 5 0.2
Clustering Clusters
Mini-batch k-means 200
Model �tting N_timescales Lag time (ns)
MSM 5 50
Scoring
GMRQ
Cross-validation Iterations Test set size
Shu�e & Split 5 0.5
Genetic algorithm
Iterations 40
populationSize 20%
percentMutation 50%
percentCrossover 20%

3 RESULTS
In this section, we discuss the optimized set of residue pair distances
obtained from our GA-based approach. As described in the method
part, the unbiased and extensive MD simulation data (>100µs) simu-
lating the folding process of the proteins is taken from literature[26].
Preliminary sets of residue pair distance are randomly selected from
the set of all the possible residue pairs as the starting point of the
genetic algorithms. These sets go through selection, mutation and
crossover steps to provide a new generation of residue pair dis-
tances. In the setting of GA, we choose a population size of 10%,
mutation percentage of 50% and crossover percentage of 20%. Next,
the newly generated residue pair distances are used to build MSMs
and assign new GMRQ scores (�tness scores) for evaluation. The
next iteration will then go back to the selection step and select
according to the newly assigned �tness scores. As the process goes
through more iterations, the GMRQ scores will converge and a best
GMRQ score can be found.

This method is applied to 4 proteins for demonstration of its
functionality: BBA, Villin, WW domain and �-repressor. Among
the proteins, 3 proteins (BBA, Villin and WW domain) are small
proteins, each of which has a residue number that smaller than 40
(R < 40). To examine the e�ectiveness of our method, we compare
the GMRQ scores and implied timescales with their corresponding
benchmark values (using all contact distances as features). In the
end, we show the ability of our GA-based method to process larger
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Table 3: Comparison of the best GMRQ scores generated and benchmark GMRQ scores from all contact featurization. The
fraction of all residue pairs is the fraction of chosen residue pairs in all residue pairs. The best GMRQ refers to the highest
GMRQ score that we obtain fromMSMs using residue pair distance features given by our genetic algorithm approach, and the
benchmark GMRQ score is the GMRQ provided by the MSM constructed with all contact featurization. The deviation column
if the deviation of our best GMRQ score from the benchmark GMRQ score.

Protein Residues Number of chosen Fraction of Best Benchmark Deviation (%)
distances pairs (%) GMRQ GMRQ

BBA (1FME) 28 47 12.43 4.445 4.239 +4.80
Villin (2F4K) 35 61 10.25 3.203 3.705 -13.5
WW domain (2F21) 35 4 0.67 4.198 4.111 +2.12
�-repressor (1LMB) 80 60 1.90 4.956 N/A N/A

Figure 2: GMRQ scores re�ecting the MSMs based on the GA-predicted residue pairs. (A) BBA (PDB ID: 1FME), (B) Villin
(PDB ID: 2F4K), (C) WW domain (PDB ID: 2F21), (D) �-repressor (PDB ID: 1LMB). Green, dashed lines indicate the best GMRQ
score corresponding to MSMs based on all contact featurization. Each violin plot shows the increase of GMRQ scores over 40
iterations. In each set of data, the center dot shows the mean values and the vertical line shows the range of this GMRQ data
set.

proteins such as �-repressor, a protein with 80 residues, which
cannot be featurized using all contact distances.

3.1 Our GA-based method proved e�ectiveness
in generating GMRQ scores that are close to
the highest possible values given by all
contacts featurizer.

We featurize the small proteins (BBA, Villin, WW domain) using
all contacts featurization to produce benchmark GMRQ scores for
comparison. Benchmark GMRQ scores will serve as a compara-
ble reference to evaluate the performance of our method of using

GA to generate optimal residue pairs as featurization metrics. By
comparing the best GMRQ scores from our GA-based method to
the benchmark GMRQ scores, we are able to check whether our
method successfully provides the residue pair sets that depict the
slowest process of the protein dynamics. We also apply this method
to �-repressor, a medium sized protein with 80 residues, to show
its ability to process larger proteins. The GMRQ scores are calcu-
lated by adding up the eigenvalues of the transition probability
matrix provided by MSMs[30, 36]. The theoretical upper limit of
GMRQ score is 6 in all cases[19, 30, 36], due to the fact that the
number of MSM timescales is chosen to be 5 in the MSM settings.
Therefore, in our case, high GMRQ score that approaches 6 usually

Volume 9, Issue 2 Journal of Computational Science Education

18 ISSN 2153-4136 December 2018



Figure 3: The �rst three slowest implied timescales as a function of MSM lag time. (A) BBA (PDB ID: 1FME), (B) Villin (PDB
ID: 2F4K), (C) WW domain (PDB ID: 2F21). The red, yellow and cyan colored lines indicate the slowest, second slowest and
third slowest implied timescales, respectively. Dashed lines correspond to the reference value given by the MSMs built on
all contacts featurization. Solid lines correspond to the implied timescales given by the MSMs achieved by using the set of
distances optimally chosen by our GA-based method.

suggests a better ability of an MSM to capture the slowest process,
whereas low GMRQ score implies ine�ective state decomposition
during the MSM construction process. All information regarding
the GMRQ scores and residue pair selection is summarized in Table
3. As shown in Figure 2, all GMRQ scores converged over 40 iter-
ations. In Figure 2A, the highest GMRQ score for BBA is around
4.445, which is higher than the benchmark GMRQ score (4.239).
Similar traits are shown by WW domain in Figure 2C that the best
GMRQ from GA (4.198) is higher than the benchmark (4.111). How-
ever, one exception happens in Villin, shown in Figure 2B. In Figure
2B, the best predicted GMRQ (3.203) does not reach the benchmark
(3.705). More iterations for Villin are needed to reach a best GMRQ
score that is higher than the benchmark, but there exists a trade-o�
between the accuracy and computational resource needed. Overall,
the percent variances between our predicted GMRQ score and the
benchmark GMRQ score are +4.8% for BBA, -13.5% for Villin and
+2.12% for WW domain, in which Villin has the highest di�erence
compared to the other two proteins.

Similar analysis is applied to �-repressor, except that �-repressor
lacks a benchmark GMRQ score due to its higher number of residues.
Hence, there is no reference value to compare in this case. The best
GMRQ score given over 40 iterations is around 4.956. Considering
that the upper limit of the GMRQ score in this system is 6, we believe
that a score of 4.956 is a relatively high GMRQ that e�ectively
captures the slow dynamics of the protein folding mechanisms.
Therefore, we can conclude that the method proves its ability to
provide the optimal selection of residue pairs for the construction
of the best MSM.

3.2 Implied timescale plots show that predicted
optimal sets of residue pair distances are
able to successfully capture the slowest
dynamics in the proteins.

By plotting lag time dependent implied timescale plots, we can
quantitatively visualize the slow modes of protein dynamics. Figure
3 shows the comparison between the converged slowest implied
timescales provided by all contact featurization and our GA-based
method. Again, the reference values are provided by utilizing all
residue pair distances as features. Since �-repressor is too big for all

contacts featurization, there is no benchmark data available and its
implied timescale is not shown. In Figure 3A, the slowest implied
timescales (solid and dashed red lines) of BBA nearly overlap with
each other, indicating that our method has chosen a set residue
pair distances that captures the slowest process. In addition, the
predicted second and third slowest implied timescales (yellow and
cyan) are slower than the corresponding timescale for the bench-
marks. In Figure 3B, the predicted implied timescales of Villin has
a larger deviation. This inconsistency will be explained and justi-
�ed in the next paragraph. In the case of WW domain (Figure 3C),
we capture a slower timescale than the benchmarks. We �nd that
inclusion of all residue pair distances can add noises to the model,
and our GA-based method helps improve the MSM construction by
excluding those irrelevant features.

3.3 Number of selected distances may re�ect
the degree of complexity of the protein
folding mechanism.

Other than the GMRQ scores and implied timescale plots, more
information can be obtained from the sets of residue pair distances.
In Table 2, we collect and summarize the number of distances
selected by GA and the actual residue numbers in each protein.
One interesting thing is that the number of residues in a protein
is not necessary correlated to the number of distances needed to
capture its slowest dynamics. For example, it can be observed in
Table 2 that although both Villin and WW domain have 35 residues
in their sequences, WW domain only needs 4 distances of residue
pairs while Villin requires 61 distances. This may be due to the
complex folding mechanism of Villin. Though both proteins are
fast-folding proteins with small numbers of residues, the secondary
structure elements in Villin fold more independently without much
interactions[31]. Such minimized interaction or minimal frustration
makes the folding kinetics fast for Villin, according to the folding
funnel theory[7]. Consequently, because the protein folds quickly,
this phenomenon suggests a continuous reduction in energy in
the folding funnel[7, 9], which implies multiple parallel pathways
during the folding hypothesis[51]. On the other hand, WW domain
folds much slower than Villin[6] and has more consistent folding
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Figure 4: GA-chosen residue pairs visualized on the unfolded MD structures and folded crystal structures. (A) BBA (PDB ID:
1FME), (B) Villin (PDB ID: 2F4K), (C) WW domain (PDB ID: 2F21), (D) �-repressor (PDB ID: 1LMB). The black lines specify the
distances between residue pairs chosen by our GA-based method, which capture the slowest dynamics of the proteins.

pathways[1]. The independent features in Villin make it hard for
GA to fully capture its slowest dynamics.

In a previous study, Feng and Shukla[11] utilized evolution cou-
plings (ECs) as functional features to capture protein folding and
conformational dynamics, which gives the similar results for Villin
and WW domain. Their work identi�ed that Villin needs 73 ECs
and WW domain only needs 5 ECs to fully describe the protein
dynamics. They stated that more ECs are needed if the ECs has
low correlation. Here, our results show the same trait that Villin
requires more features for identi�cation of its slowest dynamic pro-
cesses, which is reasonable due to the folding complexity of Villin
comparing to other fast-folding small proteins. To fully capture the
slow dynamics of proteins like Villin, a large number of features
should be included from its whole dataset. This is a di�erent sce-
nario comparing to capturing the dynamics of the proteins that
needs small numbers of features, which is a problem easier for GA
to solve. For proteins like Villin, other methods needs to be explored
for a more e�cient way to capture the slowest dynamics. Although
our method results in some degrees of deviations from the bench-
marks (shown in Figure 2B and 3B), it still shows e�ectiveness in
dealing with proteins with complicated kinetics.

To present our predicted results in a more understandable way,
we visualize the optimal sets of residue pairs for all four proteins
in Figure 4. Each section (A, B, C and D) of Figure 4 consists of two
parts, representing the unfolded and folded structure of the protein
respectively. It is easy to notice that the residue pair distances
chosen by our method spread out in the protein to capture the
complex dynamics of protein folding.

4 CONCLUSIONS
Feature selection of MSM construction determines the accuracy of
predicted kinetics properties. Currently, the selection of features is

done using trial and error. The utilization of GMRQ score enables a
quantitative description of the accuracy of MSMs in representing
the molecular dynamics observed in a simulation dataset. Using
GMRQ score as �tness score, we introduce a GA-based method
in order to optimize a set of residue pair distances that produce
superior MSMs. In this study, we have shown that our method
can provide an automatic, e�cient and accurate way to choose the
optimal residue pair distances as features for MSMs construction.
This signi�cantly improves the e�ciency in the overall process
of building MSMs while still guarantees the quality of MSMs to
capture the slowest protein dynamics. Due to the diversity of tested
proteins, our method can be widely applied to other proteins to
help with the feature selection process and we anticipate that this
method will shift MSM building one step closer to a systemic and
objective protocol. It is important to be aware that the underlying
assumption of this approach is that the slowest dynamic processes
correspond to the process of interest. However, this assumption
can be challenged in the case of insu�cient sampling or inaccurate
force �eld.

However, the method also has some limitations. The proposed
method belongs to the class of wrapper methods for feature selec-
tion that �nd the “optimal" feature subset by iteratively selecting
features based on the classi�er performance. The performance of
these methods drops signi�cantly for datasets with large number
of important but uncorrelated features. Our method also does not
perform well on systems with complex dynamics that requires a
large number of features to capture the underlying dynamics. In
other words, the e�ectiveness partially depends on the complexity
of the conformational changes in the protein, which is shown in the
discussion of Villin. As the folding complexity increases, more path-
ways are available for the protein, so the selection of residue pairs
may not fully depict the slowest dynamics of the protein. However, a
large number of biologically relevant dynamic processes have been
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shown to involve only a few important features[11, 22, 25, 43, 45–
47, 50]. In addition, sequence information and crystal structure of
the protein should be known, and su�cient amount of MD simula-
tion data should be generated to apply our method. In conclusion,
the proposed algorithm, can help identify essential residue pair dis-
tances for featurization and exclude noises for MSM construction
with high e�ciency.

5 REFLECTION
The year-long Blue Waters Internship enriched my experience in
many aspects. This opportunity was rare and precious, especially
because I can utilize one of the leading-edge petascale computa-
tional resources on the BlueWaters Supercomputer. I was excited to
be o�ered the opportunity to meet other interns to study and prac-
tice computational skills together. Starting last summer, I have been
involved in a variety of activities, including a two-week educational
workshop at University of Illinois at Urbana-Champaign, regular
webinars, monthly reports and preparing a manuscript. Majoring in
Material Science, I joined the internship with limited computational
experience. However, I quickly gained essential skills and became
adept with the help of internship coordinators, my research advisor
and mentors in the lab. In addition, working on the projects helped
me to be familiar with the life in a research group and be better
prepared for the graduate school. My presentation skills were im-
proved through attending group meetings and poster sessions. I
also practiced my writing skills through regular progress reports
and writing this manuscript. Overall, the past year was a busy year,
but it has became a unique experience in my undergraduate studies.
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