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Steven I. Gordon
Editor

Ohio Supercomputer Center
Columbus, OH

sgordon@osc.edu

Forward
In this issue, Chen presents an approach using Berkeley
Madonna to help students explore chemical kinetics prob-
lems. He presents the nature of the approach used to model
several different chemical systems and the exercises that
were created for students. He then describes the implemen-
tation of the approach in several classes, comparing the re-
sults from using Berkeley Madonna with earlier approaches
using spreadsheets and Vensim.

Hirst describes the use of systems modeling approaches used
in several classes and also used with faculty who attended
summer workshops. She summarizes the reactions of each of
the different audiences to the use of systems models to solve
problems. She also provides a number of example problems
that were used in the various settings.

Ruggiero, Zhao, and Ford Versypt developed a final project
assignment for an interdisciplinary applied numerical com-
puting upper division and graduate elective related to the
solution of ordinary differential equations. Students used
MATLAB to build and test a graphical user interface for
solving ODE’s. The overall design of the assignment is re-
viewed along with the verification case.

Finally, Kopenhafer and O’Shea describe the results of a stu-
dent modeling project testing several star formation models.
Results using the modeling code Enzo to compare various
approaches to modeling this system. Kopenhafer then sum-
marizes the impact of the work on her baccalaureate pro-
gram and beyond.
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ABSTRACT
The alias feature of the Berkeley Madonna platform allows this 
author to create a chemical kinetics project manual for students, 
who create flow charts solving almost all kinetics problems using 
rate equations.  The versatile and powerful platform allows 
students to explore any chemical kinetics problems, from simple 
(e.g. 1st or 2nd order kinetics) to complex (e.g. stratosphere ozone 
depletion, the Lotka–Volterra mechanism), bypassing complicated 
syntax that is required by most of powerful mathematical 
programs.  This kinetics manual has been successfully 
implemented in Physical Chemistry at UW-Green Bay in the fall 
semester of 2017, with the students’ success rate greater than 
80%.  

Categories and Subject Descriptors
Physical Science and Engineering, Education

General Terms
Algorithms, Documentation, Reliability, Experimentation, Theory 

Keywords
Differential equations, Educational Modules, Excel®, Berkeley 
MadonnaTM, Undergraduate, Lower or upper division of 
undergraduate, chemical kinetics. 

1. INTRODUCTION
Although chemical kinetics is an important subject in chemistry 
with many potential practical applications, the subject has a 
lighter coverage than other topics such as equilibrium.  In the 
second semester of general chemistry (Gen-Chem, there is only 
one chapter (out of 8 chapters) dedicated to kinetics.   

Furthermore, when chemical kinetics is introduced to the Gen-
Chem students, they were offered formulas such as first-order and  
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2nd-order equations which students learn through rote memory, 
because most of them had not learned calculus before taking the 
Gen-Chem classes. The upper-division undergraduate students 
who take “Thermodynamics and Kinetics” classes do have more 
opportunity to study the kinetics in more detail and use more 
complex equations.  Those students can use calculus to derive and 
understand kinetic equations.  Because of the resource constraint, 
laboratory experiments that allow students to verify their 
analytical solutions in kinetics are quite limited  

The upper-division students may rely on computer algebra 
software (such as Maple or Mathcad codes) to solve more 
complex and interesting kinetics problems such as the 
Stratospheric Ozone depletion Model. Numerical codes for 
solving chemical kinetics are available in numerous publications 
[1-7].  Bentenitis [8] studied reaction mechanisms based on a 
stochastic simulation approach using the Chemical Kinetics 
Simulator (CKS) program[9]. Bigger [10] guided students to 
explore six fundamental kinetic processes using the ChemKinetics 
software.   

A flow-chart based VensimTM model was presented by Metz [11, 
12] in his “Computational Chemistry” manual under cCWCS
(Chemistry Collaborative Workshop for Community Scholars) in
2015.   Berkeley MadonnaTM [13-14] that includes a chemistry
editor module has also published kinetic application examples.
Applications of system-dynamics based software other than
Vensim and Berkeley Madonna, such as STELLA [15], Simile
[16], VisSim[17], etc have also been published, mostly in Journal
of Chemical Education [18-21]. Almost all the published works
cited use box and pipe diagram methods to solve kinetic
problems. An Alias-like approach was presented by Soltzberg at
219th National American Chemical Society (ACS) meeting in
2000, and his work was cited by Metz [22] in his kinetics
presentation for his Computational Chemistry for Chemical
Educators (CCCE).

In this work, I select Berkeley MadonnaTM as the platform1.  The 
alias2 feature of this platform allows students to create rate-

1 Berkeley Madonna has a free demo version that students can 
download and practice.  Even if students choose to purchase, it 
is relatively low cost.  The website for download is 
http://www.berkeleymadonna.com/index.php?route=informatio
n/static&path=bmdownloads.tpl. 
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equation-constructed flow charts to solve simple or complex 
kinetic problems.  The rate equations that students write on the 
code are exactly the same as they learn from physical chemistry 
textbooks. Students can also by-pass much complicated syntax 
[23] to create the code, unlike other mathematical programs such
as MapleTM, MathematicaTM, or MathcadTM. Once the code is
created with the Berkeley MadonnaTM platform, students can
focus on the interpretations of the results generated from the code
and engage in deep learning based on insights from the results.

The applications of the Berkeley MadonnaTM code for 
pedagogical purposes is illustrated in the following examples.  

2. MODULES AND PEDAGOGIES

The modules3 consist of five initial exercises to assist students in 
understanding the concepts of: (1) first and 2nd order reactions, (2) 
equilibrium, (3) rate-determining step, (4) steady-state 
approximation, (5) enzyme kinetics. The first example is a tutorial 
helping students learn about the Berkeley Madonna code. 
Examples (2) to (5) are the modules for students to gain insights 
through the model outputs of different experimental conditions 
using the code.  As students become more proficient in using the 
dynamic software, they are challenged to develop a dynamic 
system analyzing stratospheric ozone depletion. Each exercise is 
designed to allow students to build a kinetic model based on the 
Berkeley Madonna software, to export the parameters from the 
kinetic model to an Excel spreadsheet, and to explore key kinetic 
concepts from the Excel spreadsheet. 

2.1 First order and 2nd order reaction 
The models I choose to illustrate are purposely different from the 
conventional way of building the models.  For example, for the 
first-order reaction, the conventional way of building the model 
looks like the following graph (Figure-1) 

Figure-1 A conventional Berkeley Madonna model for the 
first-order reaction, AàB with the rate constant k. 

2 It must be acknowledged that dynamic software other than 
Berkeley Madonna also has ‘alias’  like feature such as shadow 
variable in Vensim and ghost variable.  

3 All reactions discussed in this manuscript refers to elementary 
step reactions that actually happen in the molecular level. 
Differential equations to represent the rate of appearance or 
disappearance can therefore be written as represented in each 
molecular elementary step reaction. 

Although the model built this way is quick and intuitive, the 
equation students write for J1 is counter-intuitive: 
J1=k[A]    [Equation 1]

instead of  -k [A].  Most of the flow-chart based kinetic models as 
published [18-21] fall into this category.  

In this module, students will learn to build the model as shown in 
Figure-2 

Figure-2 A tutorial Berkeley Madonna model for the first-
order reaction, AàB with the rate constant k. 
The new model allows students to write d[A]/dt and d[B]/dt 
consistently with what they learn in the classroom: 
d[A]/dt = - k [A]  ; d[B]/dt = k [A]   [Equation 2]

After running the model, a chart of both [A] and [B] as a function 
of time are shown as in Figure-3. 

Figure-3 Concentrations of [A] and [B] as a function of time 
for the first order reaction.  [A]o=10, [B]o=0, k=1. 
When ln([A]) is plotted against time, a straight line is shown in 
Figure 4, indicative that the model built in Figure 2 is correct. 
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Figure-4 A plot of ln([A]) as a function of time for the 1st  
order reaction: A à B;  A  [A]o=10, [B]o=0, k=1.  The slope is -
k, while the intercept is Ln([A]o) 
 

In building the 1st order reaction model shown in Figure-2, 
students need to use the alias icon in Berkeley MadonnaTM. A 
tutorial for building a chemistry reaction model using the alias 
icon is presented in the supplementary material. 
Similarly, the 2nd order kinetics can be built as shown in Figure 5: 

 
Figure-5 A tutorial Berkeley Madonna model for the 2nd order 
reaction, 2AàB with the rate constant k.  [A]o=10, [B]o=0, k=1 
The differential equation expression for the 2nd order reaction is: 
d[A]/dt = - 2 k [A]2  ; d[B]/dt = k [A]2   [Equation 3] 
                                               

The concentrations of both [A] and [B] as a function of time are 
shown in Figure-6. 

 
Figure-6 Concentrations of [A] and [B] as a function of time 
for the 2nd order reaction: 2 A à B;  A  [A]o=10, [B]o=0, k=1. 
A key signature of the 2nd-order reaction is that when 1/[A] is 
plotted against time, a linear plot is obtained.  This is indeed the 
case: 
 

 
Figure-7 A plot of 1/[A] as a function of time for the 2nd order 
reaction: 2 A à B;  A  [A]o=10, [B]o=0, k=1.  The slope is 2 k, 
while the intercept is 1/[A]o 

For upper-level students, the 1st and the 2nd order reactions can be 
used as an initial tutorial for learning Berkeley MadonnaTM code.  
On the other hand, the spreadsheets generated from both models 
can be used as teaching materials for general chemistry students 
learning about the kinetics. 

2.2 Equilibrium concept  
 
The mathematical model to illustrate the equilibrium concept is 
shown in Equation [4]  
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Equation [4] 

 

Following the tutorial presented in the first example for both the 
1st or the 2nd order reactions, the finished flow chart will resemble 
the graph in Figure-8.  The initial conditions and rate constants 
are: [A]o= 10, [B]o=0, k1=2, k2=1. The complete code is attached 
in the supporting materials.   
 
 

 
Figure-8:  A flow chart to illustrate the equilibrium concept. 
 
The differential equations for Equation [4] are: 

d[A]/dt = -k1[A] + k2[B]                   d[B]/dt = k1[A]-k2[B]       
[Equation 5] 

The final chart plotting both [A] and [B] as a function of time is 
shown in Figure-9 
 

 
 

Figure-9 Concentrations of [A] and [B] as a function of time 
for the equilibrium reaction between A and B ;  [A]o=10, 
[B]o=0, k1=2, k2=1 
Madonna allows students to print out results in Excel format.  
When complete, the students are asked to answer the following 
questions: 
[1] What time does the reaction reach equilibrium? 

[2] What are the concentrations of [A] and [B] when the reaction 
reaches equilibrium? What is the equilibrium constant of the 
reaction? 

The spreadsheet can also be used in general chemistry without 
asking students to build the flow chart model. Upper-level 
students can be challenged to build the model from the scratch 
and explain questions [1] and [2] shown above.  

2.3 Rate-determining step 
For a sequential reaction shown in Figure 10, the concept of the 
rate-determining step implies that the rate of the product 
formation is determined by the slowest rate constant in this 
sequential reaction.  For example, in Figure 10, if k2 << k1, or k3, 
then [D] should be determined by k2.  Mathematically, it is 
expressed in Eq. 6. 

)1(][~][ 2tk
o eAD --        [Equation 6] 

                                                                               

 
Figure-10:  A flow chart to illustrate the rate-determining-step 
concept. 
In the flow chart, the initial concentrations are [A]o=100, 
[B]o=[C]o=[D]o=0.  Rate constants are: k1=k3=10, k2=0.1 
The Berkeley Madonna model when finished should look like 
Figure 11 
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Figure-11:  A complete Madonna model to illustrate the rate-
determining-step concept. AàBàCàD in which BàC is the 
rate-determining step with k2=0.1. 
The differential equations that students need to write for the 
success of this model is: 
d[A]/dt = - k1[A],  d[B]/dt = k1[A]-k2[B],  d[C]/dt = k2[B]-k3[C],  
d[D]/dt =k3[C]    [Equation 7] 
                                                                                                                           
When [D] from the Excel spreadsheet (generated from the 
Madonna model) is compared against the plot obtained from 
Equation 5, they are almost identical as shown in Figure 12.  
Upper level students will be asked to generate the model from 
scratch.  They are asked not only to generate the graph as shown 
in Figure 12, but also play with the numerical values of k1, k2, and 
k3 to draw conclusions about under what kind of conditions do 
rate-determining step kinetics exist. 

 
Figure-12:  Excel output graph to illustrate the concentration 
changes of product [D] based on the Madonna output and [D] 
based on Equation 6. 
 

2.4 The steady-state approximation 
 
A flow chart to illustrate steady-state kinetics is illustrated in 
Figure-13, with the constraint that k2>>k1 so that d[B]/dt = 0.   

 

Figure-13:  A flow chart to illustrate the steady-state 
equilibrium concept. 
 
This implies that after an induction period in which the 
concentration of the intermediate, B, rises from zero, and during 
the major part of the reaction, the rate changes of the intermediate 
is negligibly small. The essential part of this exercise is that the 
intermediate concentration [B] should remain constant with time.  
A Berkley Madonna model is presented in Figure 14. 
 

 
Figure-14:  A complete Madonna model to illustrate the 
steady-state kinetics concept. AàBàC in which the rate 
constant k2 for  BàC is much greater than the rate constant 
k1 for AàB.  [A]o =100, [B]o =0, [C]o =0, k1 =0.1, k2 =10. 
The differential equations that student will write are:  d[A]/dt = -
k1[A],  d[B]/dt = k1[A] –k2[B],  d[C]/dt = k2[C].                                                           
[Equation 8] 

Figure-15 illustrates that d[B]/dt = 0 in which [B] is shown as the 
orange plot. 
 

 
Figure-15:  Excel output graph to illustrate the steady-state 
kinetics concept in which d[B]/dt =0 (shown orange).  The 
reactant, [A] (blue) decreases while the product [C] (grey) 
increases with time. 
 
Upper-level students are asked to reproduce this steady-state 
approximation from scratch.  The Excel spreadsheet can be used 
for general chemistry students 
.  

2.5 The enzyme kinetics approximation and 
the Lineweaver-Burk Equation 
A schematic description of enzyme kinetics is illustrated as 
follows:  
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[Equation 9] 

 

In this mechanism, E is the enzyme, S is the substrate, ES is the 
complex, and P is the product.  In the limit where the initial 
substrate concentration is substantially greater than that of the 
enzyme ([S]o>>[E]o), the rate of product formation [24] is given 
by 

[ ] [ ] [ ]
[ ] mo

oo
o KS

ESk
dt
Pd

R
+

== 3       

                                                                          [Equation 10] 
 
The composite constant, Km, in Eq.6 is referred to as the Michaelis 
constant of the enzyme kinetics.  Km is given by [24] 

1

32

k
kkKm

+
=               

                                                                                   [Equation 11] 

Eq.10 is referred to as the Michaelis-Menten rate law. A 
reciprocal plot of the reaction rate can also be constructed by 
inverting Eq.10 which results in the Linderweaver-Burk equation,  

[ ]o
m

o SR
K

RR
111

maxmax

+=          

                                                                         [Equation 12] 
where RMAX=K3 [E]O . 

In this equation form, the plot of 1/Ro against 1/[S]o, will yield a 
straight line with a slope of Km/Rmax and an intercept of 1/Rmax, 
with Rmax = k3 [E]o, and Km given by Equation 11. 
 

 
Figure-16:  A Berkeley Madonna model to illustrate the 
enzyme kinetics mechanism. K1=2, k2=20, k3=2, [E]o=2.3, 
[ES]o=0, [P]o=0, [S]o varies from 2 to 20. 

In this model, the differential equations expressing this kinetics 
are: 
d[E]/dt = -k1 [E][S] +k2 [ES] + k3 [ES] 
d[S]/dt = -k1 [E][S] + k2 [ES]                                                                       
d[P]/dt = k3 [ES] 
d[ES]/dt = k2 [ES] - k3 [ES]  

[Equation 13] 
 

The chart generated from the Excel spreadsheet is shown in 
Figure-17. 

 
Figure-17:  Excel output graph to illustrate the enzyme 
kinetics concept in which d[ES]/dt =0 (shown grey).  Other 
outputs include [S] (substrate, orange), product [P] (yellow), 
enzyme [E] (blue) 
For our Madonna model we have Rmax = 4.6, KM =11. The plot of 
1/R versus 1/[S]o shown in Figure-18 is called the Lineweaver-
Burk plot.  A regression equation of this plot gives a slope of  
1.011, and the intercept = 0.0032.  These results deviate from the 
theoretical value in which the slope (KM/Rmax ) is 2.3913 and the 
intercept (1/Rmax ) is 0.2174. The percent of deviation are 81% for 
the slope and 195% for the intercept.  This deviation becomes 
smaller if we use a smaller initial enzyme concentration.   For 
example, when the initial enzyme concentration is 10-fold 
smaller, or [E]o = 0.23 instead of [E]o = 2.3, then  Rmax = 0.46, 
KM =11, slope= KM/Rmax = 23.913, intercept=1/Rmax = 2.174. The 
new Lineweaver-Burk plot yields a slope of 26.85, an intercept = 
2.0342.  These values only deviate from the theoretical values by 
11.5% for the slope, and 6.6%. for the intercept.  In the laboratory 
set up, usually the enzyme concentration is in the nM range while 
the substrate concentrations are in the mM range, so the 
Lineweaver-Burk equation is a useful approximation for finding 
the Km values. 
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Figure-18:  The Lineweaver-Burk plot of the enzyme kinetics.   
 

2.6 Stratospheric ozone depletion kinetics 
model 
Stratospheric (10-50 km above the sea level) ozone protects living 
beings from the harmful UV radiation from the sun.  It was 
reported [25] that there was a 2.9% decline of stratosphere ozone 
from 1973 to 1997.  The decline was due to the excess 
chlorofluorohydrocarbons (used as a refrigerant) released to the 
stratosphere.  In 1995, a Nobel Prize was awarded to Professors 
Paul Crutzen, Mario Molina, and F. Sherwood Rowland for this 
important discovery.  
 
Understanding the chemistry that controls the formation of the 
ozone layer, and the effects of man-made chemicals on the ozone 
layer, are areas in which physical chemists can impact society. 
Both experimental data from the laboratory and field data 
collected from the atmosphere are available [26].  In this unit, 
students learn to use Berkeley Madonna code to express both the 
flow-charts and differential equations for the depletion of 
stratosphere ozone due to chlorofluorohydrocarbons.  
 
The elementary steps of the chemical reactions are shown as 
follows: 
 
Step 1           O2 + hν à 2 O                                k1 = 3 x 10 -12 s -1 
 
Step 2         M + O + O2 à M + O3              k2 = 1.2 x 10 -33 cm 6 

molecule -2 s -1   
 
Step 3       O3 + hν à O + O2                            k3 = 5.5 x 10 -4 s -1  
 
Step 4         O + O3 à 2 O2                          k4 = 6.9 x 10 -16 cm 3 
molecule -1 s -1 

 

Step 5        O + ClO à Cl + O2                   k5 = 4.12 x 10-11 cm 3 
molecule -1 s -1 
 
Step 6         Cl + O3 à ClO + O2                k6 = 8.89 x 10 -12 cm 3 
molecule -1 s -1 
 

                                                                                            
[Equation 14] 

 
Steps 1-4 are the elementary steps of the Chapman mechanism.  
Step-2 is the essential step of the ozone formation.  Because it 
involves a 3-body collision of O, O2, and an inert solid, M, the 
rate constant k2 is many orders of magnitude smaller than the rate 
constants of other steps.  The much smaller rate constant of ozone 
formation in the Chapman mechanism makes it susceptible to 
depletion in the presence of chlorine oxygen compounds as shown 
in steps 5-6. 
 
The initial concentrations of O, O2, O3, M, ClO, and Cl  taken 
from the same NASA resources [26] are: 
 
[O]o = 1 x 10 7   molecules/cm3 

 
[O2]o = 2 x 10 17  molecules/cm3 
 
[O3]o = 7 x 10 12 molecules/cm3 
 

[M]o = 9 x 10 17 molecules/cm3 
 
[ClO]o = 1 x 10 8 molecules/cm3 
 
[Cl]o = 5 x 10 4 molecules/cm 3 
 
With [Equation 14] and the initial concentrations of each species, 
students are asked to construct two Berkeley Madonna flow 
charts:  One for the Chapman mechanism (Steps 1-4 in Equation 
14); the other including steps 5-6 in addition to the Chapman 
mechanism.   
 
The flow chart for the Chapman mechanism should look like the 
chart shown in Figure 19. 
 

 
 

Figure-19:  A Berkeley Madonna model to illustrate the 
Chapman mechanism. The O1, O2, and O3 shown in the chart 
stand for [O], [O2], and [O3] 
The differential equations for the Chapman mechanism (Step-1 to 
Step-4) are: 
d[O]/dt = 2 k1 [O2] – k2 [M][O][O2] + k3 [O3] – k4 [O][O3] 
d[O2]/dt = -k1 [O2] –k2 [M][O][O2] + k3 [O3] + 2 k4 [O][O3]   

                  [Equation 15] 

Figure-19:  A Berkeley Madonna model to illustrate the 
Chapman mechanism. The O1, O2, and O3 shown in the chart 
stand for [O], [O2], and [O3] 
The differential equations for the Chapman mechanism (Step-1 to 
Step-4) are: 
d[O]/dt = 2 k1 [O2] – k2 [M][O][O2] + k3 [O3] – k4 [O][O3] 

d[O2]/dt = -k1 [O2] –k2 [M][O][O2] + k3 [O3] + 2 k4 [O][O3]                    
[Equation 15] 

The complete mechanism is represented in the Berkeley Madonna 
flow chart attached as supplementary material to this manuscript. 
The Excel output of [O3] in the absence and in the presence of 
ClOx interference is shown in Figure 20. 
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Figure-20:  Ozone concentrations as a function of time in the 
absence and presence of ClOx interference.   
 

3.  PROJECTS AND EXERCISES 
 
A tutorial to use differential-equation constructed flow charts with 
the Berkeley Madonna is presented as supplementary material to 
this manuscript.  Although the following projects and exercises 
are for upper-level students, some of the Excel output can be used 
for general chemistry students. 
 
3.1 First-order kinetics:   AàB with rate 
constant k1=1, and [A]o=10 
 

(1)  Write differential equations for d[A]/dt, and d[B]/dt. 
(2)  Following the tutorial, construct Berkeley Madonna 

flow charts representing d[A]/dt, and d[B]/dt. 
(3) After running the program, proceed to save the results ( 

[A] and [B] as a function of time) in Excel© format. 
(4) Plot [A] and [B] as a function of time, and discuss the 

results. 
(5) Create another column for ln([A]), and plot ln([A]) as a 

function of time.  Discuss the results. 
(6) Create another column for [A]o(1-e-k

1
t). Plot both [B] 

and [A]o(1-e-k
1
t) as a function of time and discuss the 

results. 

3.2 Equilibrium concept 
 

The equilibrium concept is represented as: 
 

 
with k1=2, and k2=1.  The initial concentrations for [A] and [B] 
are:  [A]o=10, and [B]o= 0. 
 
[1] What is an equilibrium?  What is the expected equilibrium 
constant even before running the program? 
[2] Write differential equations for d[A]/dt and d[B]/dt for this 
equilibrium. 
[3] Construct Berkeley Madonna flow charts based on the 
differential equations for d[A]/dt and d[B]/dt.  
[4] Run the code and save the Excel outputs.  Study the Excel 
output and answer the following questions: 

(i) Approximately when do [A] and [B] reach equilibrium? 
(ii) What are the equilibrium concentrations for [A] and [B]  
(iii) What is the equilibrium constant? 
(iv) Show that the equilibrium constant K = k1/k2 

 
3.3 Rate-determining step kinetics 
 
In this exercise, students are ask to construct differential equation-
based Madonna flow charts for the following diagram: 
 

	
The inputs for the rate constants and initial concentrations of 
species are: [A]o=100, [B]o=[C]o=[D]o=0, k1=k3=10, k2=0.1. 

[1] Express in words what ‘the rate-determining-step’ means in 
chemical kinetics. 

[2] Write differential equations for d[A]/dt,  d[B]/dt, d[C]/dt, and 
d[D]/dt. 

[3] Construct Berkeley Madonna flow charts based on this set of 
differential equations with proper inputs for k1, k2, k3, [A]o, [B]o, 
[C]o and [D]o. 

[4] Run the code and study the Excel outputs by creating another 
column with the equation form, [A]o (1- e –k

2
 t).  Plot both [D] and 

[A]o (1- e –k
2
 t) together as a function of time, and discuss the 

results. 
 
3.4 The Steady-state approximation 
 
In this exercise, students are asked to construct a differential 
equation based Berkeley Madonna chart diagram such that d[B]/dt 
=0 in the following flow chart. 
 

	
(1) Write differential equations for d[A]/dt, d[B]/dt, and 

d[C]/dt. 
(2) Construct differential equation-based Berkeley 

Madonna chart diagrams with initial k1=0.5, k2=20, 
[A]o =10, [B]o=0, [C]o=0. 

(3) Run the code, and save the results in Excel format.  Plot 
[A], [B], and [C] with time.  Also record d[B]/dt at time 
= 10 s. 

(4) Change the ratio of k1/k2 and observe how d[B]/dt 
changes with the ratio. 

(5) Change [A]o and observe how d[B]/dt changes with 
[A]o.   

 
3.5 Enzyme kinetics 

 
In this exercise, students are asked to construct a differential 
equation-based Berkeley Madonna chart diagram based on the 
enzyme kinetics flow chart diagram shown below: 
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(1) Write differential equations for d[E]/dt, d[S]/dt, 
d[ES]/dt, and d[P]/dt. 

(2) Construct differential equation based Berkeley Madonna 
chart diagrams with initial inputs of [E]o =2.3, k1=2, 
k2=20, k3=2, [S]o=2. 

(3) Run the code and plot [E], [S], [P], and [ES] with time. 
(4) Record d[P]/dt, and d[ES]/dt at 0.1 s.  
(5) Repeat the procedures of (3) and (4), but with [S]o =5, 

10, 20 then record the new d[P]/dt and d[ES]/dt at 0.1 s 
for each new [S]o.    

(6) Construct a Lineweaver-Burk plot, obtaining the slope 
and the intercept of the plot, and compare the values with 
the theoretical values (slope = Km/Rmax, intercept = 
1/Rmax, Rmax =k3 [E]o, Km =((k2+k3)/k1.).  Calculate the 
percent of error between your experimental value (from 
the chart) and theoretical values (from the rate constants 
and the initial enzyme concentration). 

(7) Repeat procedures (3), (4) (5) and (6) but with the new 
initial enzyme concentration of [E]o = 0.23.   

(8) Report your finding in words that discuss the conditions 
in which the Lineweaver-Burk plot applies to finding Km 
in enzyme kinetics problems. 
 

3.6 Stratospheric Ozone 
 
In this more advanced unit, students are challenged to apply their 
skills to solve the stratospheric ozone depletion problems.  The 
kinetics of stratospheric ozone consists of two parts: The 
Chapman mechanism (step 1-step 4) for the ozone formation, and 
the chloro-carbon ozone depletion (step 5-step 6).  They are 
summarized as follows: 
 

	
(1) Write differential equations for d[O]/dt, d[O2]/dt. 

d{O3]/dt, for Step-1 to Step-4; the other for d[O]/dt, 
d[O2]/dt. d{O3]/dt , d[ClO]/dt and d[Cl]/dt. for Step-1 
to Step-6. 

(2) Construct differential equation-based Berkeley 
Madonna chart diagrams using the rate constants given 
and initial conditions for: [O]o =  1 x 10 7, [O2]o = 2 x 
10 17,[O3]o = 7 x 10 12,  [M]= 9 x 10 17, [ClO]o =  1 x 10 
8  , and [Cl]o = 5 x 10 4 molecules/cm 3. 

(3) Run the code twice, once for Step-1 to Step-4; the other 
for Step-1 to Step- 6.  The parameters used for running 
these two codes are:  Numerical method Rosenbrock 
(stiff), stop-time = 1.5 x 107, ΔT min = 500,  ΔT max 
=1000, ΔT out= 0, tolerance = 0.01. 

(4) Plot [O3] versus t, once for Step 1-Step 4; the other for 
Step-1 to Step-6 

(5) Discuss the results of your plots. 
 

4.  SELECTIVE ANSWERS TO THE 
PROJECTS AND  EXERCISES 
 
4.1 First-order kinetics:   AàB with rate 
constant k1=1, and [A]o=10 
 
d[A]/dt = - k1 [A],  d[B]/dt = k1 [A]  ; [A] = [A]o e –k

1
 t, [B]= [A]o 

(1- e –k
1
 t) 

 
A plot of ln[A] against t will give a straight line with a slope of  
–k1. The Excel output for [B] should be the same as   
[A]o (1- e –k

1
 t). 

 
4.2 Equilibrium concept 
 
An equilibrium is reached when the rates of forward and 
backward reactions are equal.  When k1 =2, and k2 =1, the 
forward rate is k1 [A], and the backward rate is k2 [B],  k1 [A] = k2 
[B].  The equilibrium constant, K, K = [B]/[A] = k1/k2.   
 
4.3 Rate-determining step kinetics 
 
When a given step is the rate-determining step, the rate constant 
for this specific step is many orders of magnitude smaller than the 
rate constants of the other steps.  In this case, the rate of product 
formation is determined by the rate constant for this rate-
determining step.  Thus, if rate constant of the rate-determining 
step is k2, then [P] ~ [A]o (1 – e –k

2
 t). 

 
4.4 The Steady-state approximation 
 
In a mechanism of AàBàC, B is the intermediate.  The steady-
state approximation relies on the premise that d[B]/dt =0. To 
make this approximation valid, as soon as B is formed, it is 
immediately converted into C, or k2 (rate constant for BàC) is 
many orders of magnitude larger than k1 (rate constant for AàB).  
Under this circumstance, d[B]/dt ~0. 
 
4.5 Enzyme kinetics 
 
When differential equations are properly written and the Berkeley 
Madonna chart diagrams are properly constructed, a double 
reciprocal plot of 1/ (d[P]/dt) versus 1/[S]o  will give a straight 
line with a slope = Km/Rmax, and intercept = 1/Rmax in which Rmax = 
k3 [E]o, Km = (k2 + k3)/k1.  The agreement between the 
experimental value (from the double-reciprocal plot) and the 
theoretical plot (from Equation 12) will improve as the initial 
enzyme concentration is reduced. 
 
4.6 Stratosphere ozone 
 
The most important part of this exercise is to properly write the 
differential equations for d[O]/dt, d[O2]/dt, and d[O3]/dt for the 
Chapman mechanism (Step-1 to Step 4) given in the exercises;  
d[O]/dt, d[O2]/dt, d[O3]/dt, d[ClO]/dt, and d[Cl]/dt for the 
complete mechanism (Step-1 to Step-6). 
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The differential equations for the Chapman mechanism (Step-1 to 
Step-4) are: 
d[O]/dt = 2 k1 [O2] – k2 [M][O][O2] + k3 [O3] – k4 [O][O3] 
d[O2]/dt = -k1 [O2] –k2 [M][O][O2] + k3 [O3] + 2 k4 [O][O3]                     
d[O3]/dt = k2[M][O][O2] –k3[O3] –k4 [O][O3] 

When Steps 5-6 are involved, we would modify d[O]/dt, d[O2]/dt, 
and d[O3]/dt to include both Cl and ClO species. 

d[O]/dt = 2 k1 [O2] – k2 [M][O][O2] + k3 [O3] – k4 [O][O3]-
k5[O][ClO] 

d[O2]/dt = -k1 [O2] –k2 [M][O][O2] + k3 [O3] + 2 k4 
[O][O3]+k5[O][ClO]+ k6 [Cl][O3]                     
d[O3]/dt = k2[M][O][O2] –k3[O3] –k4 [O][O3]-k6 [Cl][O3]                     
d[ClO]/dt = -k5[O][ClO] + k6 [Cl] [O3] 

d[Cl]/dt = k5 [O][ClO] –k6 [Cl] [O3] 
 
When Berkeley Madonna chart diagrams are properly constructed 
and the output is saved into an Excel format, a plot of [O3] versus 
time with and without Cl/ClO interference will look like Figure 
20.	
	
5.  TESTING AND EVALUATION 
 
5.1 General chemistry testing and evaluations 
 
During the spring semester of 2017, two weeks before the first 
exam for a general chemistry class, I provided an Excel output of 
first-order kinetics, AàB with rate constant k1.  I asked students to 
plot ln[A] versus t, using the regression equation to find the slope, 
and the rate constant k1.  Fifteen students out of 130 students 
made a mistake of taking the slope (which is a negative number) 
as k1.  After explanations to the class, when a similar question 
appeared in the first exam, only 6 out of 130 students made the 
same mistake. 
 
5.2 Upper-level chemistry testing and 
evaluations  
 
During the fall semester of 2016, I implemented VensimTM 
projects almost exactly the same as what was presented during the 
2015 cCWCS (Chemistry Collaboration and Workshop for 
Community Scholars) to my students of Thermodynamics and 
Kinetics class of 12 students.  In that study, 10 out 12 students 
were able to completely follow the tutorial, create the diagrams 
and answer the questions correctly; 2 out 10 did not answer 
questions related to the equilibrium concept correctly even though 
they had created the model correctly. Even with this success, 
students were unable to obtain a realistic Michaelis constant, KM 
through the Lineweaver-Burk plot. The class soon realized that 
VensimTM was unable to model stratosphere ozone depletion 
problems. 
 
The Berkeley Madonna code was implemented in the fall 
semester of 2017.  The grading rubric is (1) Stratosphere ozone, 
25/60; (2) Enzyme kinetics and Lineweaver-Weaver plot, 15/60; 
(3) First order kinetics, 5/60; (4) Equilibrium Concept, 5/60; (5) 
Rate-Determining Step, 5/60; and (6) Steady-State 
Approximation, 5/60.  The average grade for this project was 

82%. Grade distribution for this project for 26 students is shown 
in Figure-21. 
 

	
	
Figure 21 Grade distribution for the Berkeley Madonna 
Project Introduced at UW-Green Bay in Fall, 2017. 
 
About 5 out of 26 students did not succeed in the Stratospheric 
Ozone problem.  The common mistake was that in creating [O3] 
versus time in the presence of Cl and ClO species, they did not 
create flow charts that include d[Cl]/dt, and d[ClO]/dt.  This 
mistake can be easily remedied by writing instructions in the 
manual if this project manual is introduced in 2018, or adopted by 
other physical chemistry instructors.  Also, approximately 6 
students lost points in the 1st-order kinetics plot to show a match 
between the product [B] versus time and [A]0 (1-exp(-k1t)).  If this 
manual is introduced again in 2018, I would add an additional 
assignment asking students to derive [B(t)] = [A]0 (1-exp(-k1t)).  
This way, students will appreciate why this plot is included in the 
assignment. 
 
At the end of the semester, the final exam (take-home exam) 
included a project of using the Berkeley Madonna code to create 
the Lotka–Volterra mechanism [27] .  A successful code will 
create a chart similar to that shown in Figure 22.  Everyone 
succeeded for this problem in the final exam. 
 

	
 
Figure-22 The oscillation pattern of the [X], and [Y], for the 
Lotka–Volterra mechanism. 
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6. CONCLUSION 
 
Berkeley Madonna code was successfully adopted as a powerful 
and versatile platform that offers substantial pedagogical 
advantages for students to quickly create code and engage in 
interpretations.  The learning outcomes for upper-level students at 
UW-Green Bay are encouraging.  Instructors can also use the 
platform to create Excel spreadsheets for Gen-Chem students 
learning key concepts of chemical kinetics. 
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ABSTRACT
This paper describes introducing rate of change and systems
modeling paradigms and software as tools to increase appre-
ciation for computational science. A similar approach was
used with three different audiences: freshman liberal arts
majors, junior math education majors, and college faculty
teaching introductory science courses. A description of the
implementation used with each audience and their reactions
to the material is discussed, along with some example prob-
lems that could be used in a variety of courses.

Keywords
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1. INTRODUCTION
The concepts of rate of change and modeling are addressed

at many levels in the K-14 mathematics curriculum. Some
example student learning outcomes include:

• “Interpret the rate of change and initial value of a
linear function in terms of the situation it models” –
Eighth Grade (Common Core Math Standards) [1]

• “Calculate and interpret the average rate of change of
a function” – High School (Common Core Math Stan-
dards) [2]

• “Find a derivative interpreted as an instantaneous rate
of change” – AP Calculus (ETS) [4]

• “Analyze growth and decay using absolute and relative
change” – Content Learning Outcome for Quantitative
Reasoning (New Mathways Project) [5]

• “Apply the mathematics they know to solve problems
arising in everyday life, society, and the workplace” –
High School (Common Core Math Standards) [2]

• “When making mathematical models, they know that
technology can enable them to visualize the results of
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varying assumptions, explore consequences, and com-
pare predictions with data” – All Levels (Common
Core Math Standards) [3]

• “Apply simple mathematical methods to the solution
of real-world problems” – Quantitative Reasoning for
College Graduates (MAA) [6]

Meeting these learning outcomes provides opportunities
to introduce computation as a modeling tool to students as
early as middle school. In addition, these students can be
acclimated to the notion that computation is an important
part of doing science, hopefully paving the way for more
students to move into HPC.

In this article an outline of steps for introducing a sys-
tems modeling paradigm is presented, along with results
from using software packages to investigate modeling change
with three different audiences: college freshmen through a
quantitative literacy course; pre-service high school teachers
through a junior level mathematics modeling course; college
faculty in summer workshops. In all three situations, one of
the main goals was to raise the awareness of the importance
of computation in doing science by modeling and solving
non-trivial problems without first teaching the syntax of a
standard programming language. First, consider an example
modeling problem to provide some context.

2. A MOTIVATING EXAMPLE
Suppose rabbits are invading an asparagus patch, and we

wish to investigate how the rabbit population affects the
asparagus patch over time. What assumptions might be
made? While not the only approach, we can start by think-
ing about what might cause increases and decreases in the
number of rabbits and amount of asparagus. Some reason-
able assumptions might be:

1. Rabbits are born, and how many are born depends
upon the number of rabbits present to have offspring
and amount of asparagus present to provide energy
from food.

2. Rabbits die, and more rabbits means more competition
for food, space, etc.

3. Asparagus grows steadily.

4. Asparagus is eaten by rabbits when the rabbits can
find asparagus to eat.

The next step in the process is to “mathematize” these
assumptions about the rates of growth and consumption of
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asparagus and the rates of birth and death of the rabbits.
Refining the assumptions:

1. When the number of rabbits or the amount of aspara-
gus increase, so do the rabbit births.

2. When the number of rabbits increases, so does compe-
tition and hence rabbit deaths.

3. Asparagus grows steadily, so the growth rate is some
constant amount.

4. When the number of rabbits or the amount of aspara-
gus increase, more asparagus gets eaten.

What are some mathematical expressions that capture
these ideas? A very simple proportionality argument yields
the following components of the model. Let R(t) represent
the number of rabbits and A(t) represent the amount of as-
paragus at a particular time t.

1. Rabbit births: proportional to both R and A implies
that the increase due to births can be modeled by rb×
A × R, where the proportionality constant rb can be
interpreted as the factor controlling the rabbits’ rate
of reproduction.

2. Rabbit deaths: proportional to R implies a model of
rd × R, where rd can be interpreted as the fraction of
the rabbit population that dies in a given time period.

3. Asparagus growth: constant ag.

4. Asparagus consumption: ac ×R×A, where ac can be
interpreted as the fraction of interactions between rab-
bits and asparagus that results in a unit of asparagus
being eaten.

Using these expressions we can build a mathematical for-
mulation for our model, which can take several forms de-
pending on the audience. Working with students who have
calculus backgrounds, the model can be presented as a sys-
tem of differential equations:

dR

dt
= rbAR− rdR

dA

dt
= ag − acRA

R(0) = R0;A(0) = A0

where R0 and A0 represent initial quantities of rabbits and
asparagus. While this approach works well for calculus-
ready students, consider how to approach the problem recur-
sively: “The quantity at a later time (t + 1) is the quantity
now (t) ± what changed.”

R(t + 1) = R(t) + rbA(t)R(t)− rdR(t)

A(t + 1) = A(t) + ag − acR(t)A(t)

R(0) = R0;A(0) = A0

If the goal is spreadsheet use, these equations can be im-
plemented a spreadsheet such as Microsoft Excel, produc-
ing a table of values documenting the changing quantities
over time. Alternately, systems modeling tools allow for

Figure 1: Rabbit-asparagus model in Insightmaker

easy construction of the change formulas. Stella (iseesys-
tems.com/), VensimPLE (vensim.com/), and Insightmaker
(insightmaker.com/) all begin with construction of a dia-
gram as in Figure 1.

All of these systems modeling software environments in-
clude primitives similar to those illustrated in Figure 1: The
changing quantities are represented by rectangles (“stocks”),
rates of change are represented by thick arrows (“flows”), and
interdependencies (“links”) are represented as thin or dashed
arrows. Other inputs, such as parameters, are represented
by plain text or circles.

Once the diagram is completed, each primitive can be ini-
tialized for the specific model. Flows require a formula for
the increase or decrease in each full time step. For example,
in Figure 1 the flow labeled“consumption per time unit”that
represents the rate of decrease of the asparagus contains the
expression:

[asparagus consumption factor]*[Asparagus]*[Rabbits]

This expression is a wordier version of the proportionality
description of asparagus consumption arrived at above, and
all of the software packages use a “clickable list” interface
to build these formulas. Stocks require initial values, which
can be input as constants or as mathematical expressions
involving other elements of the model. Parameters also can
be modeled as constants or expressions.

After entering the relevant mathematics, the systems pack-
ages produce solutions in either tabular or graphical form.
Figure 2 shows the output generated by Insightmaker for the
rabbit-asparagus model with parameters: initial quantities
of 2 rabbits and 20 acres of asparagus; a rabbit birth factor
of 0.1; rabbit death factor of 0.3; asparagus growth factor of
0.4; asparagus consumption factor of 0.2.

One other important consideration for the systems ap-
proach to the solution is selection of the time-step. If the
goal is to mimic change that happens more frequently than
once per unit time (e.g., continuous change), all of the soft-
ware environments allow the time-step to be set to a fraction
smaller than one. In the Rabbit-Asparagus model simula-
tion output (Fig. 2), the time-step is set to 0.125 (i.e., 1/23)
to approximate the continual growth of asparagus. All of
the systems modeling software environments adjust the flow
calculations appropriately for time-steps other than one so
that growth and decay parameters do not have to be recal-
culated by hand.
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Figure 2: Graphical solution from Insightmaker

3. IMPLEMENTING SYSTEMS MODELING
IN THE CLASSROOM

The same general outline for introducing systems model-
ing can be used with many types of students:

1. Introduce a scenario, such as the rabbit-asparagus model.
Choosing population growth allows most audiences to
contribute to the discussion.

2. Draw a diagram similar to one that would be produced
by the software on the board, soliciting suggestions
for what might cause the populations to grow and to
shrink, recording ideas on the diagram (Fig. 3).

3. Encourage the group to identify the most important
components to include in the model, adding arrows to
represent the interdependencies (Fig. 4).

4. Determine values for the parameters. In the absence of
scientifically produced estimates for the parameters, a
reasonable first attempt is to set all growth and decay
parameters to be the same (e.g., 0.1). In addition, the
model requires initial values for each of the populations
and also a value for the time step.

5. Build and run the model in the systems software.

Figure 3: Initial brainstorming board work

Once a working model is produced, ask students to discuss
whether the model and the output makes sense. What does

Figure 4: Refining the model board work

the software appear to be doing? What do the parameters
really represent? Does it make sense that the rates are all
the same? Where should parameter values really come from?
Where do scientists get them? What happens to the solution
if we change them? What time-step is most meaningful?
Why is using a power of two as the time step important
computationally?

Since the goal is often for the students to build their own
models, it is helpful to make available a video of building the
same model; a simple approach is to use screen sharing with
Hangouts on Air (via youtube.com/live dashboard) during
the class to capture the entire conversation. That way stu-
dents can view the video again anytime they need to be
reminded of the intricacies of using the software.

This same approach to introducing systems modeling has
been used with a variety of audiences. Sections 3.1, 3.2,
and 3.3 provide detail on how systems modeling was intro-
duced to three different audiences. Several common themes
emerged from observations and discussions with these groups
after the modeling activities were completed.

• Computational tools are crucial for solving problems
in science.

• Mathematical formulas can be used to model real sit-
uations.

• Tools that minimize programming allow more students
to experience using computation to solve problems.

• Tools that incorporate diagrams illustrating individual
model components are more engaging and help stu-
dents to focus on individual components of the model
in the construction process.

3.1 Quantitative Literacy Course
As described in the introduction, students in a quantita-

tive literacy (QL) course should have exposure to solving
real-world problems. Systems modeling environments pro-
vide opportunities for students who are not calculus-ready
to explore interesting models and gain experience with using
computational tools.

3.1.1 Implementation
The approach outlined above was used in a one-week unit

on modeling change in a freshman QL course, after which
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the students were given a week to work in groups of three on
creating and analyzing a model for the “Pollution in a Chain
of Lakes” problem (see Section 5). This problem does not
entail much in the way of background scientific information
for the students, and so all of the students could partici-
pate in conversations about how pollution might disperse
in a lake and whether the assumption of immediate mixing
of pollution throughout the water in a lake would lead to
unreasonable solutions.

Prior to this unit, students had significant experience with
building formulas in a spreadsheet for projects in personal
finance and consumer statistics; the spreadsheet was dis-
cussed as an alternate method for finding solutions to the
chain of lakes problem, but students were required to use
the simulation software (Stella in this particular class).

3.1.2 Reactions
During a class debriefing discussion at the completion of

the project, students were asked to submit a reflection on
what they learned from working on the project. Their re-
sponses indicated that they understood better how mathe-
matical expressions could be used to model real situations
and how computers are an important tool in solving prob-
lems. The students also indicated that they liked working
in the visual, simulation environment more than building
formulas in a spreadsheet; the process helped them to “see”
the parts of the model and work on one part at a time.

3.2 Junior Math Modeling Course
The junior-level modeling course is required for preservice

secondary math teachers, an especially important audience
for exposure to modeling and computation given their fu-
ture interactions with high school students. This course
includes modeling change as a major topic in much more
depth (approximately one-quarter of the course) compared
to the QL course described above. The other topics covered
were data modeling, linear programming, and graph / net-
work modeling–all of which required some use of technology
for solution or visualization. At this level, the students have
a calculus and linear algebra background and are proficient
in the use of a computer math system and a spreadsheet.

3.2.1 Implementation
As with the QL course, the discussion of modeling change

began with the process outlined above for brainstorming
about a scenario and creating mathematical formulas for
components of the model, after which students used both a
spreadsheet (Excel) and a computer math system (Maple)
to implement simulations for several problems. Then stu-
dents were introduced to systems modeling software (in this
case Insightmaker), and asked to implement the same prob-
lems in the new environment. For the culminating project
on modeling change, groups of two or three students were
assigned a project from the problems in Section 4, for which
they had to produce a group poster along with individually
written technical reports. They were given the option of
using any of the tools they wished without any attempt to
influence their choice.

3.2.2 Reactions
Over the past two years, 38 of the 52 students taking the

course opted to use Insightmaker, later citing the ease of
use and the ability to easily incorporate more sophisticated

components in their models, such as if-then, delay, and pulse
functions. Similar to the QL responses, several commented
on the ability to view each component of the model indi-
vidually and make progressive improvements to the model
components. Eight of the remaining 14 students who de-
cided to use a different tool for their mathematical solution
still drew diagrams using Insightmaker to include as part of
the explanation of their model structure in their posters and
reports. Course evaluations were very positive, with several
of the students volunteering comments related to the mod-
eling change portion of the course being their favorite, also
indicating that they saw the relevance of solving problems
computationally and thought that tools like Insightmaker
could be used in their high school classrooms once they be-
came teachers. In comparison, no such comments were made
regarding spreadsheets or computer math systems, although
students also volunteered positive comments on the network
analysis problems and software (another diagram-based sys-
tem).

3.3 Workshops for College Faculty
For two summers, the Computing MATTERS workshops

(computationalscience.net), sponsored by Project XSEDE
and the National Computational Science Institute were held
at several universities in the Eastern and Midwestern US.
During that introductory workshop, college faculty who teach
entry level math and science courses were introduced to com-
puting software, using a context of inquiry-based learning
and modeling change. Most of the participants were already
motivated to incorporate computation into their freshman
courses, but were not sure how to work with students who
may not have any computational background.

3.3.1 Implementation
In three days, the faculty were exposed to a number of

computational tools, including spreadsheets (MS Excel), sys-
tems modeling (Vensim), agent modeling (Agentcubes On-
line), and computer math systems (Sagemath) with approx-
imately one-half of a day spent investigating each tool. As
might be expected, many levels of computational experi-
ence were represented among the participants, but the vast
majority of faculty acquired enough basic knowledge of sys-
tems modeling ideas and software to begin experimenting
with problems from their own fields of study. On the third
day, a portion of the morning and all of the afternoon was
set aside as time for the faculty to experiment more with
tools or material they thought could benefit their teaching.

3.3.2 Reactions
In the flexible time on day three, the majority of faculty

opted to work more on systems modeling ideas, with agent
modeling a close second (both are used to model change).
In discussions with the participants at the end of the work-
shop, it was clear that they saw the value of exposing stu-
dents in introductory courses to these tools as a way to build
understanding of the role computing plays in doing science–
an opinion they came to the workshop with–but now many
were also more confident that they could include compu-
tation without omitting material required by their course
syllabi.

The NCSI follow up survey the for the workshops, admin-
istered by Project XSEDE, revealed that faculty remained
excited about computational thinking and introducing com-
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putational tools to their students even after the end of the
workshop. While the likert scale questions on the survey
did not differentiate between the different types of work-
shops offered, there were a number responses to the open-
ended question, “[W]hat aspect of your experience in NCSI
has most affected your work?”, that could be clearly asso-
ciated with participants from the Computing MATTERS
workshops. All were positive, and several are reprinted be-
low.

• I think about the classroom material more often in
terms of systems and models, and think about how I
might encourage my students to represent it that way.

• I was not aware of it before, and now see an entire new
realm of teaching and research to explore and imple-
ment on our campus.

• After attending the NCSI workshop I have thought
more about and have recognized the importance of de-
veloping activities and lessons that will introduce my
students to Computational Thinking practices. I have
used some of the software applications from the work-
shop with my students.

• Listening to Dr. Panoff discuss how to think about the
processes of computational thinking made me concen-
trate on how I present problem solving in my classes.

• My own personal thought process on what constitutes
a model and how to develop the means of creating
the model using more than one computational tool.
Excel, Agent Sheets, Interactive Physics, NetLogo are
all programs I use in my classes.

• The use of software in my classes. I hace (sic) been us-
ing Vensim to explain physics concepts. Students enjoy
this activity and they improve their concepts compre-
hension.

4. FUTURE DIRECTIONS
As indicated earlier, several common themes emerged from

observations and discussions with these groups after the
modeling activities were completed. In particular, gains
were made in students’ understanding that computation plays
an important role in science and that mathematics can be
used to model real situations. These results have been shared
in several venues: at the 2016 NCCTM State Mathematics
Conference - primarily high school teacher attendees; 2017
NCMATYC Conference - primarily community college fac-
ulty attendees; 2017 ICCS - primarily university faculty at-
tendees. In addition, several follow up activities are planned:

• The success of the material in the QL course has re-
sulted in plans to write a more formal module that
can be used by other faculty teaching the QL course
as either a short (1 week) topic or a longer (3-5 week)
topic.

• The modeling tools will continue to be used in the
junior modeling course, and preservice teachers who
took the junior modeling course will be contacted after
they begin their teaching positions to inquire about the
applicability of the materials to their own classrooms.

5. EXAMPLE SCENARIOS
The following are examples of situations that have been

used in all three implementations. Some are more open
ended than others, but all can be addressed in a manner
similar to that used for the rabbit-asparagus example.

1. Spread of Disease: Consider an island population
and suppose that some small number of people leave
the island and come back, bringing with them an in-
fectious disease. To predict the number of persons at
any time who have the disease, a simple assumption
would be that the change in the number of persons
who catch the disease is some fraction of the number
of possible encounters between susceptible and infected
people. Suppose also that the disease is one for which
recovery results in immunity and it just takes some
set amount of time to recover. Create a model for this
situation.

Here is a data set taken from a (mythical) island of
5000 inhabitants. Do the data support your model,
i.e., are there parameters that make your model come
close to the data)? How long until everyone recovers
and is immune?

t (days) 0 2 6 10
sick people 5 1887 4087 3630

2. Drug Dosage: Clinical studies have shown that a
simple model for the rate at which the concentration of
a drug in the blood stream is decreasing is to assume
the rate is proportional to the concentration of the
drug at that time; the constant of proportionality can
be thought of as the “elimination rate” for the drug. In
addition, it is common for the same amount of a drug
to be administered at regular intervals.

Suppose a certain drug’s elimination rate is 4% per
hour, the minimum effective dosage is 0.1 mg/ml, and
the maximum safe dosage is 0.3 mg/ml. Determine
what size initial dose to deliver via injection and then
how often a repeated dosage of 0.1 milligrams per milliliter
should occur.

3. Pollution in a Chain of Lakes: Suppose a chain of
lakes connects to each other via rivers (like the Great
Lakes) and that there is a pollution source in the inner-
most lake. Suppose we have the following informa-
tion about flow rate / volume: Lake 1 is spring fed
with fresh water; 20% of lake 1 flows into lake 2 each
month, 18% of lake 2 flows into lake 3 each month, and
16% of lake 3 is flushed into the ocean each month.
If 100 kg/month of pollutant is dumped into Lake 1
each month for five months before the leaky pipe is
found, will pollution levels ever exceed 200 kg in any
of the lakes? How long before the pollution is essen-
tially washed out to sea?

4. Harvesting in a Shrimp Farm: Farmed shrimp are
usually raised in an enclosed area, with a known a max-
imum sustainable quantity of shrimp given the amount
of nutrients and the size of the area. Model the rate of
growth of the shrimp population assuming the change
in the size of the population is proportional to the num-
ber of shrimp times a limiting factor that approaches
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0 as the population of shrimp approaches the maxi-
mum sustainable population. Also incorporate plans
to harvest a constant amount of shrimp each month.

Suppose we have the following parameters: maximum
sustainable population = 77000; initial population =
5000. Also experience indicates that for small numbers
of shrimp the population doubles each month. How
does the population grow if we harvest 2000 shrimp
over the course of a month? Can we harvest 5000 each
month without having the population crash? What if
we restock with 500 shrimplets over the course of the
month?

5. Simple Chemical Reaction: A simple chemical re-
action can be thought of as follows: A“reactant”reacts
with an “intermediary” compound to produce a “prod-
uct.” The basic ideas behind the kinetics:

• The rate at which the reactant changes to the
intermediary during the first reaction is propor-
tional to the amount of both the reactant and the
intermediary compounds – both are needed for
the reaction to occur.

• The rate at which the intermediary then converts
to the product during the second reaction is pro-
portional to the amount of the intermediary com-
pound that is present.

• The two reaction rates – usually referred to as
k1 and k2 depend on the specific compounds in-
volved.

Suppose 1000 moles of the reactant and 1 mole of the
intermediary are added to a beaker initially, with re-
action rate constants of 0.005 and 0.05 per second, re-
spectively. How quickly does the reaction occur?
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ABSTRACT
A final project assignment is described for an interdisciplinary ap-
plied numerical computing upper division and graduate elective in
which students develop a GUI for defining and solving a system of
ordinary differential equations (ODEs) and the associated explicit
algebraic equations such as values for parameters. The primary task
is to use the MATLAB built-in graphical user interface development
environment (GUIDE) [16, 17] to develop a graphical user interface
(GUI) that takes a user-specified number of ODEs and explicit alge-
braic equations as input, solves the system of ODEs using ode45,
returns the solution vector, and plots the solution vector compo-
nents vs. the independent variable. The code for the GUI must be
verified by showing that it returns the same results and the same
figures as a system of ODEs with a known solution. The purpose of
the final project assignment is threefold: (1) to practice GUI design
and construction in MATLAB, (2) to verify code implementation,
and (3) to review content covered throughout the course. The manu-
script first introduces the course and the context and motivation for
the project. Then the project assignment is detailed. Two student
project submissions are described. The verification case study is
also provided.

KEYWORDS
numerical methods, graduate education, computational science
elective course

1 INTRODUCTION
The corresponding author of this paper teaches a course titled Ap-
plied Numerical Computing for Scientists and Engineers that she
developed at Oklahoma State University. The course is offered as a
chemical engineering upper division and graduate elective designed
and advertised to be interdisciplinary. Over the first two offerings,
five chemical engineering seniors took the course along with the
∗The first two authors contributed equally to this work.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2018 JOCSE, a supported publication of the Shodor Education Foundation Inc.
DOI: https://doi.org/10.22369/issn.2153-4136/9/1/4

following numbers of graduate students by degree program: eight
in chemical engineering, six in mechanical engineering, two in
chemistry, and one each in environmental engineering, mathemat-
ics, and plant and soil sciences. The first and second authors of this
paper took the course as first year chemical engineering graduate
students in the first and second course offerings, respectively.

The course is designed to train science and engineering seniors
and graduate students to use practical software tools for com-
putational problem solving and research: Git for version control,
LATEX for mathematical and scientific typesetting, and MATLAB
and Python as high level programming languages with libraries of
solvers, visualization tools, and capabilities for designing graphi-
cal user interfaces (GUIs). Throughout the course, the instructor
emphasizes best practices of open-source code development, verifi-
cation, and documentation [2, 3, 8–15, 18, 20–23, 26, 28] and adopts
the Software Carpentry philosophy of providing hands-on training
in very practical computational skills for scientists and engineers
[27]. Rather than covering the basics of computer programming
or details of algorithms for numerical methods, the course focuses
on applying numerical computing methodologies, primarily ordi-
nary differential equation solvers and optimization routines for
parameter estimation to solve realistic continuum scale problems
in science and engineering.

The course consists of ten reading assignments worth 2% each
and six computational assignments. The first assignment is worth
5% and introduces the students to using version control in Git and
document typesetting in LATEX, which are required components in
all subsequent assignments. The second assignment is worth 5%
and gives student practice with programming in MATLAB while
developing best practices for scientific computing. The students are
required to create a function defining a system of ordinary differen-
tial equations (ODEs) and write well-documented code. The third
assignment is worth 10% and involves using built-in functions and
library routines for numerical methods (specifically ODE solvers)
in MATLAB and Python to solve the system of ODEs described in
Appendix A. The fourth assignment is worth 15% and covers pa-
rameter estimation of dynamic models using MATLAB and Python
focusing on a case study from [1]. The fifth assignment is worth 15%
and involves creating a relatively straightforward GUI in MATLAB
to take user inputs and display simulation results from user-defined
functions provided by the instructor for different scientific applica-
tions. The sixth and final computational assignment is worth 30%
of the course grade and is described in detail in this paper.
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The final computational assignment is referred to as the “final
project” to emphasize its significance in the course grade, its compre-
hensive nature, and the time involved to complete the assignment
satisfactorily. The students are allowed one month to work on this
project, and it serves as a take-home final exam. The purpose of this
assignment is threefold: (1) to practice GUI design and construction
in MATLAB, (2) to verify code implementation, and (3) to review
content covered throughout the course. The project builds upon
content from all of the previous assignments. Although it does not
explicitly involve parameter estimation, the systems of ODEs used
for the dynamic models in the fourth assignment from [1] are used
in the final project as two of the three verification cases required.
For brevity we only provide the most complicated of the verification
cases here in Appendix A, which is from the third assignment.

In the chemical reaction engineering course that the correspond-
ing author teaches and many other offerings of the same course
around the U.S., the software POLYMATH [25] is used as recom-
mended by the popular textbook [4], which uses the software
throughout the book in many examples and homework problems.
POLYMATH is a numerical computation package that can solve data
regressions and systems of simultaneous ODEs, linear algebraic
equations, or nonlinear algebraic equations. These are all of the
types of computational science problems encountered in a typical
chemical reaction engineering course. In POLYMATH, equations
are entered through GUIs in formats that look just like the written
form of the equations, so there is not a coding learning curve (Fig.
1 and Fig. 2). After entering equations via GUIs or in lieu of using
the GUIs, users can edit code directly in a script file. For details on
how to use POLYMATH to enter and solve a system of ODEs, a
tutorial document is available on the web [5]. A limitation of the
current POLYMATH educational version is that users can enter
only 30 simultaneous ODEs and 40 explicit algebraic equations.
This is adequate for typical use. However, for the course project
in the author’s chemical reaction engineering course [6], the limit
is often reached. Additionally, POLYMATH cannot combine differ-
ent types of numerical solvers in the same problem unlike other
software programs such as MATLAB and Python. The author origi-
nally started programming MATLAB or Python scripts for working
around the equation number limit in POLYMATH but found the
codes to be challenging for novice users to modify. The final project
discussed here grew out of a need to have a POLYMATH-like GUI-
based platform built into a more sophisticated software platform
when dealing with more than 30 simultaneous ODEs. MATLAB was
selected for this final project because of its relative ease in creating
GUIs and packaging them as apps, which are very user-friendly for
download and installation.

The remainder of this paper provides the required tasks in the
final project assignment in Section 2, gives details of two student
project submissions in Section 3, and offers conclusions in Section
4. The verification case study is presented in Appendix A.

2 PROJECT ASSIGNMENT
In the project assignment, students develop a GUI for defining
and solving a system of ODEs and the associated explicit algebraic
equations (e.g., temperature dependence of rate constants or values
for parameters) for different applications. The primary task is to

Figure 1: Graphical user interface in POLYMATH for enter-
ing a differential equation.

Figure 2: Graphical user interface in POLYMATH for enter-
ing an explicit algebraic equation.

use the MATLAB built-in graphical user interface development
environment (GUIDE) to develop a graphical user interface (GUI)
that takes a user-specified number of differential equations and
explicit algebraic equations as input, solves the system of ODEs
using ode45, returns the solution vector, and plots the solution
vector components vs. the independent variable. The GUI should
work in general for any system of ODEs (specifically initial value
problems not boundary value problems). The code for the GUI must
be verified by showing that it returns the same results and the same
figures as the systems of ODEs defined in Computational Assign-
ments 3 and 4. The more complicated of these verification cases
is provided in detail in Appendix A. Students are not penalized if
their code does not work for arbitrary ODEs beyond the verification
cases.

The GUI can take a variety of layouts, which may involve use
of multiple .m files, if desired. A descriptive file naming system
should be used. Students should design a GUI that is intuitive to
use with the following required as buttons:

• define a system of ODEs
– The numbers of differential equations and algebraic equa-
tions should be solicited either directly or indirectly.
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∗ In the direct method, when this button is clicked, a
window should appear asking the user how many equa-
tions of both types that they want to define. After that
windows should appear recursively for the user to en-
ter the specified numbers of corresponding differential
equations and algebraic equations.

∗ In the indirect method, when this button is clicked, win-
dows should be opened for defining differential or alge-
braic equations one at a time (or in bulk for algebraic
equations). At the end of each input, the user chooses
done or continue to enter another equation of the same
type. The number of equations of that type is then in-
cremented.

– The interfaces for entering the equations should be sim-
ilar to those used in POLYMATH (Figs. 1 and 2), which
can be implemented using one or more windows that are
themselves GUIs and/or dialog boxes.

– The user must be able to enter initial values and limits of
integration.

– The comment section and the buttons labeled Clear and
Cancel shown in the POLYMATH examples (Figs. 1 and 2)
are optional.

– After input is provided by the user, it should be visible to
them as a static textbox, editable textbox, or listbox with
options to edit the input.

• calculate results
– This button should calculate results in preparation for
either exporting to Excel or plotting.

– Something should be output to indicate that the results
were calculated; command window output is acceptable.

• plot results
The plot routine should have options for displaying all or
a subset of the output vectors (dependent variables vs. the
independent variable).

• save plot
– The save plot button should call export_fig.m [19] to
create a .png file of a reasonable size for the output plot
that currently appears on the screen.

– The user should be prompted to specify a filename and
target directory for the plot.

– A sample callback function for a button that saves a plot
with a prescribed name via export_fig.m is shown in
Fig. 3.

• export results as Excel file
The export results button should export all the independent
and dependent variable output from the ODE solver to a
.csv or .xls or .xlsx file (label the type of output on your
GUI) so that the user could view the results in Excel for
creating more elaborate plots.

Additional buttons or other GUI objects may be useful. For ex-
ample, a .mat file is recommended for saving selected variables
from a subsidiary GUI window for defining the ODEs or the explicit
equations. Then this can be loaded in the main GUI file to read
the values after the temporary GUI window closes. A cell array is
a natural way to save the values generated from each of the GUI

1 % Executes on button press in saveplot_button
2 function saveplot_button_Callback(hObject, ...

eventdata, handles)
3 % hObject handle to saveplot_button
4 % eventdata reserved
5 % handles structure with handles and user data
6 if exist('plotName.png', 'file') == 2
7 beep
8 h = msgbox(...
9 'plotName.png already exists. Please rename ...

or delete the existing plotName.png file ...
before trying to save again.',...

10 'Plot NOT Saved');
11 else
12 ax = handles.plotAxes;
13 figure_handle = isolate_axes(ax);
14 export_fig plotName.png
15 h = msgbox(...
16 'The plot was successfully saved as ...

plotName.png. Be careful to rename it if ...
you want to save multiple versions of ...
the plot.',...

17 'Plot Saved');
18 end

Figure 3: saveplot_button_Callback function example.

windows; however, other ways are acceptable. Another useful but-
ton could allow users to edit the axes labels, particularly to include
units. The GUI must be packaged as a MATLAB app and submitted
electronically via the course website.

Students must create a .tex file to document testing that their
GUI works for the verification test cases. A screenshot of the GUI
when all equations have been entered must be included as well as
the output plot with all of the dependent variables plotted together
vs. the independent variable. A verification case is described further
in Appendix A.

String manipulation is not the primary purpose of the final
project, but it is necessary to take input from different windows
and compose strings into equations. To aid students less familiar
with string manipulation, the following tips are provided. If the
code can accept the proper input arranged as cell arrays, the func-
tion shown in Fig. 4 connects the input to the ODE solver. In test
cases, it is clear that the numerator and denominator are not ex-
actly the strings that are needed for ode45(@(t,y)ODE...) and
that the explicit equations and the right hand sides of the ODEs
are not in terms of y and t as desired. It is strongly advised NOT
to use strrep in MATLAB or other find and replace algorithms.
Instead, let MATLAB do that automatically by parsing the strings.
Fig. 4 is a working version of a function ODE that properly reads
cell array inputs stored as variables in handles and converts them
to the equations that define the system of ODEs. ODE is called by
ode45. The only requirement to the user is that they cannot name
a constant parameter y or t . This requirement is not necessary for
independent or dependent variables.

3 STUDENT PROJECT SUBMISSIONS
The top student submissions for the final project from each of
the first two course offerings are presented here as examples. We
have prepared a private Bitbucket version control repository for
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1 function dydt = ODE(t, y, denominators, ...
numerators, RHSs, explicitEqns)

2 % Input: t and y are the independent and
3 % dependent variable values,
4 % denominators, numerators, RHSs, and
5 % explicitEqns are cell arrays with
6 % the first three terms defining the
7 % ODEs of the formă
8 % d(numerators) / d(denominators) = RHSs
9 % and the fourth term defining the associated
10 % explicit equations
11 % Output: the derivative vector dy/dt for
12 % y(1):y(numODEs) where
13 % numODEs = length(numerators) = length(RHSs) =
14 length(denominators)
15 % To be called by ode45(@(t,y)...
16 % ODE(t,y,denominators,numerators,RHSs,...
17 % explicitEqns), tspan, y0)
18
19 % independent variable
20 str0=cell2mat(denominators(1));
21 eval(strcat(str0,'=t;'));
22 % dependent variables
23 for i = 1:length(numerators)
24 str1 = cell2mat(numerators(i));
25 eval(strcat(str1,'=y(i);'));
26 end
27 % explicit equations provided in MATLAB
28 % acceptable order; can be a
29 % semicolon separated list
30 for i = 1:length(explicitEqns)
31 str2 = cell2mat(explicitEqns(i));
32 eval(str2);
33 end
34 % Right-hand sides of ODE definitions
35 for i = 1:length(RHSs)
36 str3 = cell2mat(RHSs(i));
37 dydt(i) = eval(str3);
38 end
39 % output formatting
40 dydt = dydt';

Figure 4: Example ODE function that properly reads cell ar-
ray inputs stored as variables in handles and converts them
to the equations that define the system of ODEs.

archiving the code for these submissions along with the instructor
documents related to the project assignment. The link is not shared
publicly here to prevent future students from simply downloading
the solution without doing the project. Interested educators may
contact the corresponding author by email to request access to the
private repository.

3.1 Submission 1
3.1.1 Overview. The program of Submission 1 is mainly com-

posed of three parts: collecting user inputs to define the system
of ODEs and the explicit equations, solving the system of ODEs
coupled to the explicit equations, and saving simulation results by
exporting calculated values and figures of plots.

3.1.2 GUI Description. The main GUI is composed of ten push
buttons, three listboxes, and one axes (plot) object (Fig. 5). The user
can provide inputs through the push buttons. List boxes are used to
display the ODEs, corresponding initial conditions, and the explicit
equations. The axes object is used to display plots of some or all of
the dependent variables as functions of the independent variable

(Fig. 5 shows only the first dependent variable selected). Multiple
GUI windows are used for this program.

All the push buttons, except Reset and Help, were separated
into three groups based on the objectives of the program.Within the
panel labeled Define/Edit Equations/Parameters, the Define
Equations push button first allows the user to specify the num-
ber of ODEs and gives the user an option to choose whether or
not to define any explicit equations after the system of ODEs is
defined (Fig. 6). If the radio button Add explicit equations is
activated (Fig. 6), a GUI window appears that allows user to enter
the explicit equations in bulk (Fig. 7) after the system of ODEs has
been successfully defined. All the ODEs must have explicit form
of dy

dt = f (t ,y). Based on the input number of ODEs, a for loop
is used to repeatedly pop up the window for defining each ODE
separately along with its initial value (Fig. 8). When the loop is
finished, a new GUI window lets the user define the upper and
lower limits of the integration, with both having default values of
0 (Fig. 9). The specified values and equations all appear in the main
GUI window either in listboxes or as static text (Fig. 5).

The remaining buttons in the first panel in Fig. 5 are used for
editing. The Edit Selected ODE push button enables the user to
edit specific ODE expressions and the corresponding initial value
according to selected line in the ODE(s)Entered list box (Fig. 5).
By clicking the Integration Limits push button, the user can
modify the integration limits via the dialog box (Fig. 9). Through
the Edit Explicit Eqs push button, the user opens a new GUI
window (Fig. 7) to define the explicit equations if they have not
been defined yet or to edit existing explicit equations.

In the Calculate/Plot panel, clicking the push button Calculate
opens a dialog window to require the user to enter the step size for
the numerical integration. The default value is 10−4. Then ode45

is called to solve the system of ODEs. When the Plot Results

button is pushed, the window titled Select Variables Shown

on Plot appears to allow the user to select single or multiple de-
pendent variables to be shown on the axes of the main GUI (Fig. 10).
The user can modify the labels of the independent and dependent
axes via the push button Edit Plot Axes. The default axes labels
are shown in Fig. 11.

The Save Plot push button enables the user to specify a file
name and target local directory for saving the plot currently shown
in the axes area of the main GUI. Similarly, the Save Data to

.csv push button prompts the user to provide a file name and
local directory for saving all the results for the independent and
dependent variable output from the ODE solver to a .csv file.

The program is capable to some extent of checking for the legality
of user inputs. In the window to define a differential equation
(Fig. 8), the numerator and denominator positions are checked for
the presence of characters and the initial condition blank is checked
for a numerical value. The upper limit of integration is required to
be larger than the lower limit. When the user decides to edit the
notation of the independent variable, the program can only change
the left hand side of every ODE; therefore, the user needs to make
sure the notation is also modified on the right hand side of each
ODE to avoid any errors during the calculation.

3.1.3 Program Verification. We entered the system of equations
from Appendix A into the program, calculated the results, and
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Figure 5: Submission 1 main GUI screenshot with plot of the dependent variable T for the verification case in Appendix A.

Figure 6: Submission 1 dialog box for setup of the number
of equations.

plotted two different sets of the dependent variables in Figs. 5 and
12 to see the curves clearly on their different scales.

3.1.4 Program Shortcomings. One major defect of this program
is that after the number of ODEs is defined at the very beginning,
it cannot be changed unless the user redefines the whole system of
equations. This program did not utilize the MATLAB GUI handles
structure for passing arguments between functions. The deficiency
related to not being able to edit the number of equations could
be compensated by adding another function to manipulate the
master ode_eqs.mat file, which stores the expressions for all the
equations. This could be modified carefully by adding another ODE
or deleting one or several existing ODEs. Alternatively, the program

Figure 7: Submission 1 dialog box to enter the explicit equa-
tions.

could be restructured to utilize the handles, in which case an
update to the number of ODEs would not be as tricky to implement.

Another defect is that the program is not capable of accepting
explicit equations in arbitrary order as in POLYMATH, meaning
that a parameter in an explicit equation must be defined before it
is used. This requires extra work from the users as all the explicit
equations have to be listed in a certain order. This is how MATLAB
reads codes, so this is not a serious problem. For possible solutions
to this problem, see Submission 2 presented in Section 3.2.
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Figure 8: Submission 1 dialog box to enter a differential equa-
tion.

Figure 9: Submission 1 dialog box to define limits of integra-
tion.

Figure 10: Submission 1 dialog box to select which variables
to display on the plot.

Figure 11: Submission 1 dialog box to edit axes labels start-
ing from default axes labels.

Figure 12: Submission 1 plots of the dependent variables FA,
FB , and FC for the verification case in Appendix A.

When the user modifies an ODE, only one ODE from the list box
can be selected at one time. Also, items in the Initial Value(s)
list box can be selected; however, they are not related to any push
buttons. In a future version, a new GUI could be added to al-
low the user to edit initial values based on the selected line in
the Initial Value(s) list box independent of editing the corre-
sponding ODE.

3.2 Submission 2
3.2.1 Overview. Submission 2 goes beyond the scope of the

project requirements by allowing the user the capability to freely
edit equations in the GUI and to enter equations in any order
(Fig. 13). Allowing the text to be edited enables the user to wholesale
copy text in order to share, save, and enter equations. Additionally,
if an error is made in entering the equations into the dialog boxes,
the user can quickly fix it by editing the text directly. Furthermore,
if the user is comfortable, they can type their equations directly
without using the dialog boxes. This is very consistent with the
capabilities of POLYMATH.
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Figure 13: Submission 2 main GUI screenshot.

Figure 14: Submission 2 dialog box for entering ODEs.

3.2.2 GUI Description. The main GUI is composed of one ed-
itable textbox, six push buttons, and one axes (plot) object (Fig. 13).
The user can provide inputs through the push buttons in much
the same manner as in Section 3.1 through a GUI for defining a
differential equation (Fig. 14) and a GUI for defining a single explicit
algebraic equation (Fig. 15). The axes object is used to display plots
of some or all of the dependent variables as functions of the indepen-
dent variable (Fig. 13 shows all of the dependent variables selected).
The editable textbox is described in detail in the remainder of this
section.

3.2.3 Equation Parsing. Properly supporting an editable textbox
for equation entry presents some key issues. If the text displayed
in the app cannot be edited, then input can be gathered solely from
dialog boxes in a very structured manner such as in Section 3.1.
Since an editable textbox is a much less structured form of input,
interpreting the input becomes a major challenge. The first step
in handling the input is to parse the text and convert the text into

Figure 15: Submission 2 dialog box for entering algebraic
equations.

a structured format. The second step is to reorder the equations
so that each equation is only dependent on either no equations or
only previously defined equations. This is a requirement because
MATLAB requires a variable to be defined before it can be used.
The GUI does have dialog boxes that can be used to enter equations
(Figs. 14–15); however, these dialog boxes do little more than for-
matting and inserting the appropriate text into the editable textbox
as a template for the user to see how to edit the text.

To parse the text entered into the textbox of the GUI, a custom
function ParseEq.m accepts a string as an argument and returns a
cell array that contains 4 elements. The four elements are the name
of the variable the equation solves for, the independent variable
associated with the equation if the equation is an ODE, a structure
containing the results of parsing the right hand side of the equation,
and the type of equation. The right hand side of the equation is
returned in two parts: a string of code that can be executed to solve
for the dependent variable and a list of variables that need to be
defined before the code can be evaluated.
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At the heart of parsing the entered text is the use of regular
expressions. Regular expressions are useful for finding specific se-
quences of text. Regular expressions make use of wildcards, white-
space characters, alphanumeric ranges, and more to create a very
powerful and flexible syntax for matching text. For example, in the
GUI the left hand side of anODE is in the form of d(y)/d(t), where
y and t can be any variables. The regular expression ‘d\(\w*\)\/d\(
\w*\)’ will match the left hand side of any correctly entered ODE.

The first step in parsing the equations is to break the equation
into two parts for the left- and right-hand sides. This is done by
searching for the ‘=’ character and taking either side as separate
strings. Of the two sides, the left-hand side is evaluated first. The
left-hand side of each equations has a specific structure–the exact
form depends on if the equation is an algebraic equation, ODE, an
initial value, or the range of an independent variable. The structured
left-hand side of each equation lends itself to being easily parsed
through regular expressions.

The main concept used in parsing the right-hand side of an
equation is to build a line of code by following order of operations
to identify the calculation to be done first, producing the code to
evaluate the operation, and then abstracting the evaluated term
from the rest of the equation using a token. For example, the string
`x + y * z' becomes `x + #1', where #1 is placeholder for a
structure containing the results of parsing `y * z'. Parsing the
right-hand side becomes more complex when handling parentheses.
The approach to handling parentheses is to replace the portion
of the equation inside of the parenthesis with a token and then
recursively calling theParseEq.m function with the replaced text.
The result is that for each nested level of parentheses, the function
is recursively called until the innermost level of parentheses is
reached and evaluated normally.

3.2.4 Equation Reordering. The problem of ordering the equa-
tions is reduced to a problem similar to Gaussian elimination. A
matrix is constructed where each row represents a dependent vari-
able, and each column represents a unique variable needed to define
a variable. For each dependent variable, the element in the column
of each variable needed to define the dependent variable is set to 1.
For example, the equations

x = 2 (1)

y = 3 ∗ x (2)

z = 4 ∗ y + x (3)

yield the matrix (with columns and rows labeled for clarity)
x y

x 0 0
y 1 0
z 1 1

Each dependent variable that is defined by an ODE has an asso-
ciated initial value previously defined. Therefore, all of the columns
associated with variables defined in ODEs are zeroed out right
after creating the matrix, representing the fact that the variable
is defined. Each dependent variable has exactly one equation in
which the variable will show up on the left hand side. When a row
corresponding to a variable is zeroed out, the associated equation

is put at the bottom of the list of equations, and the column associ-
ated with the variable is zeroed out. This process repeats until no
changes occur in the matrix after an iteration.

If the matrix is not completely zeroed out, then any rows that are
not entirely zeros represent variables that are not properly defined,
and an error is returned to the user containing the variables that are
improperly defined. If the entire matrix is zeroed out, then the list
of equations recorded while zeroing out the matrix is the correct
order for the equations so that each equation is only dependent on
the previous equation.

4 CONCLUSIONS
The project assignment has been used for 21 total students across
two offerings of the Applied Numerical Computing elective course
at Oklahoma State University. The project has been challenging
and thought provoking for the students in the course without being
unreasonable and overly time-consuming. Each student has typi-
cally visited the instructor’s office hours more than once over the
one month time period allotted for the project. The instructor has
offered assistance with debugging and brainstorming and imple-
menting approaches. The most challenging aspect of the project for
most students is connecting the input from a subsidiary GUI win-
dow back to the main GUI window. The submissions described here
provide two different methods for doing this, and the instructions
and tips from the instructor in the assignment and in Fig. 4 suggest
another alternative using .mat files and cell arrays. Students are
encouraged to discuss ideas with their classmates, but the project
must be an individual effort. The vast majority of the students
have earned an A on the project (all who started early enough to
complete all of the required components, including the verification
cases). The students have given the project a positive reception
as they can clearly see how it connects the prior course content
related to numerical solution of systems of ODEs and development
of GUIs for scientific applications. The project detailed in this paper
can be easily integrated into a variety of computational science and
engineering elective or required courses. The content is approach-
able for both senior undergraduates and graduate students from
a variety of disciplines given sufficient background in MATLAB
programming and GUI design.

Additional cases studies could be used to adapt the project to
other disciplines such as numerical methods, computational physics
or chemistry, mathematical biology, and other fields of engineering.
These case studies could readily be developed from textbook ex-
amples in these fields or published modeling studies such as [1] in
petrochemical manufacturing, [7] in computational pharmacology,
and [24] in mathematical biology.

A VERIFICATION CASE
For the verification case study, a system of ODEs is used as defined
and solved in an example in a chemical reaction engineering text-
book [4]. The equations describe the mass and energy balances for
a pair of gas-phase reactions that occur in a plug flow reactor that
is operated non-isothermally:

A
k1

−−−→ B − r1A = k1ACA (4)

2 A
k2

−−−→ C − r2A = k2AC
2
A (5)
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where A, B, and C are chemical species, ri j is the reaction rate of
the ith reaction with respect to the jth species, and ki j is the kinetic
rate constant for the ith reaction with respect to the jth species.
Pure A is fed at a rate of 100 mol/s, a temperature of 423 K, and a
concentration of 0.1 mol/L. The molar flow rates of each species,
FA, FB , and FC , and the temperature, T , as functions of the reactor
volume, V , are the quantities of interest. Mole balances on each
species A, B, and C give the ODEs

dFA
dV
= rA (6)

dFB
dV
= rB (7)

dFC
dV
= rC (8)

where ri is the net reaction rate of species i . The initial conditions
are FA(0) = 100 mol/s, FB (0) = 0 mol/s, FC (0) = 0 mol/s, and
T (0) = 423 K.

The corresponding elementary rate laws that describe reactions
1 and 2 from (4) and (5), respectively, are

r1A = −k1ACA (9)

r2A = −k2AC
2
A (10)

where CA is the concentration of species A. The relative rates are

r1B = −r1A = k1ACA (11)

r2C = −
1
2
r2A =

k2A
2

C2
A (12)

Equations (9)–(12) are combined to yield the net rates,

rA = r1A + r2A = −k1ACA − k2AC
2
A (13)

rB = r1B = k1ACA (14)

rC = r2C =
k2A
2

C2
A (15)

The gas-phase stoichiometry without pressure drop is used to
define the concentration of species A as

CA = CT (0)
FA
FT

T (0)
T

(16)

where the total flow rate is defined by

FT = FA + FB + FC (17)

The rate constants depend on the temperature through the fol-
lowing Arrhenius functions:

k1A = 10 exp
[
E1
R

(
1

T (0)
−

1
T

)]
s−1 (18)

k2A = 0.09 exp
[
E2
R

(
1

T (0)
−

1
T

)]
L

mol · s
(19)

The energy balance for the reactor is
dT

dV
=
Ua(Ta −T ) + r1A∆HRx1A + r2A∆HRx2A

FACPA + FBCPB + FCCPC
(20)

The values for the remaining parameters representing physical
constants are listed in Table 1.

To summarize, the system of ODEs for the verification case is
given by (6)–(8) and (20) for dFA

dV , dFBdV , dFCdV , and dT
dV , describing

the molar flow rates of species, A, B, and C , in mol/s and tempera-
ture, T , in K in a non-isothermal plug flow reactor. The reactions

Table 1: Values of parameters for the verification case study.

Variable Value Units

E1/R 4000 K
E2/R 9000 K
CT (0) 0.1 mol/L

∆HRx1A -20,000 J/(mol of A reacted in reaction 1)
∆HRx2A -60,000 J/(mol of A reacted in reaction 2)

CPA 90 J/mol· K
CPB 90 J/mol· K
CPC 180 J/mol· K
Ua 4000 J/m3· s· K
Ta 373 K

are at steady-state but vary spatially along the volume of the re-
actor, hence V is the independent variable. The explicit equations
needed to complete the system of equations are given in (9)–(19)
and Table 1.
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ABSTRACT
We implemented two newmodels (an original and a revised) for star

formation and supernova feedback into the astrophysical hydrody-

namics code Enzo. These models are designed to efficiently capture

the bulk properties of galaxies and the influence of the circumgalac-

tic medium (CGM). Unlike Enzo’s existing models, these do not

track stellar populations over time with computationally expensive

particle objects. Instead, supernova explosions immediately follow

stellar birth and their feedback is deposited in a within a predefined

volume of cells. Our models were tested using simulations of Milky

Way-like isolated galaxies, and we found that neither model was

able to produce a realistic, metal-enriched CGM. Our work suggests

that volumetric feedback models are not sufficient replacements

for particle-based star formation and feedback models.

1 INTRODUCTION
The large-scale structure of the universe is dominated by dark mat-

ter and its resulting gravitational potential, and individual galaxies

are no exception. A galaxy’s baryonic components, its stars, gas,

and dust, sit within the potential well of its accompanying dark

matter halo. While the baryons emit all the light we observe from

galaxies, galaxy masses are dominated by the dark matter. Stars

form near the center of the halo, where the gravitational poten-

tial is the strongest. In a spiral galaxy like our Milky Way, which

has a mass of roughly 10
12

M⊙ , most stars and their interstellar

medium form a disk structure because of their angular momentum.

Away from the center of the dark matter halo, the baryon density

is too low to form stars. Instead, there exists the diffuse, multiphase

gas of the circumgalactic medium (CGM). Despite its low density,

the CGM is estimated to contain roughly half of the galaxy’s total

baryons [Tumlinson et al. 2017; Werk et al. 2014]. It is also believed

to substantially impact the bulk properties of the galaxy, such as

its star formation history [Voit et al. 2015a].

While galaxies evolve over time, at a given age of the universe

they are observed to follow strong scaling relations. Properties such

as luminosity and metallicity
1
are highly correlated to the mass of

galaxy’s dark matter halo [Graves et al. 2009; McConnachie 2012;

McGaugh 2005]. These correlations imply galaxies self-regulate

1
Astronomers refer to elements heavier than helium as “metals”. “Metallicity” refers

to the metal fraction of a gas, measured relative to the metal content of the sun.
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themselves to a state that depends primarily on the mass of the

halo and its associated system.

The CGM is believed to be a key player in this process. One

possible mechanism is that of “precipitation” [Voit et al. 2015a] in

which CGM gas cools and falls deeper in to the potential well and

onto the disk. This cold, dense infall encourages star formation.

When massive stars (with mass greater than about 8 M⊙2
) die, they

explode as supernovae, ejecting energy andmetal-enrichedmaterial

into their surroundings. This ejecta is known as feedback, as it

strongly effects the galaxy as a whole. According to the theory of

precipitation, feedback from stellar populations lowers the density

of the CGM by pushing gas to larger radii. This in turn increases

the timescale on which the gas will cool. Once the cooling timescale

exceeds the gas’ freefall timescale by a factor of ∼ 10 [Voit and

Donahue 2015; Voit et al. 2015b,c], cold gas is no longer able to

precipitate and cause further star formation. This decreased ability

to form stars is known as “quenching.”

We would like to examine the plausibility of this theory using nu-

merical simulations; however, current simulations of single galaxies

cannot resolve the scales on which individual star formation occurs.

Star formation cannot be directly modeled in a galactic context, as

we lack the computational resources needed to efficiently resolve

the wide range of spatial and temporal scales that separate star

formation and overall galactic dynamics. Instead, the effects of star

formation and feedback can be modeled with heuristic “subgrid”

models. If galaxy self-regulation by precipitation is to be considered

a plausible explanation for galaxy behavior, galaxy models should

be robust to the exact model of star formation and feedback chosen.

These models, which involve tracking particles throughout the sim-

ulation, also add a good deal of computational expense. Some effects

of precipitation, such as the reproduction of the mass-metallicity

relation predicted in [Voit et al. 2015a], only affect the bulk prop-

erties of the galaxy. In this case it would be preferable to have a

simpler, more idealized model of star formation and feedback.

The development of such a model, with the goal of testing the

scaling relations predicted in [Voit et al. 2015a], is the focus of this

work. Our models were implemented within Enzo. This code, as

well as its existing treatment of star formation and feedback using

particles, is described in Section 2.1. As a computationally cheaper

alternative to particles, we employ a volumetric approach to feed-

back, which is described in Section 2.2. Massive stars are assumed

to immediately result in supernovae in order to avoid tracking their

ages and masses, as the details of the stellar populations are not the

focus of our queries. Twomodels were developed: an original model,

and a revised model. These models are referred to as “volumetric” as

2
A mass measured in solar masses M⊙ is measured with respect to the mass of our

sun.
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they deposit stellar feedback within a predefined simulation volume.

The revised model is an attempt to alter some undesired behaviors

that were observed in the original model. Section 2.3 covers the

details of our simulation initial conditions and parameter sets. Next,

Section 3 covers the simulation behavior over time (3.1 and 3.2)

including the effects of parameter variations. Ultimately, neither

model behaved as desired; exactly how the models failed to meet

the mark and possible reasons why are discussed in Section 4. As

this work resulted from a student project, Section 4.1 is where the

student’s experiences and challenges are discussed. A summary

and concluding remarks are offered in Section 5.

2 METHODS
Before discussing the specific model employed in this work (Section

2.2), we first introduce the code base that is used for our simula-

tions in Section 2.1. Then, in Section 2.3, the initial conditions and

parameter variations are described.

Table 1 contains a list of all relevant simulation parameters.

Those with a symbol listed are used elsewhere in this paper; those

without are included for reference. A list of values indicates a pa-

rameter was varied between different simulation runs; see Table 2

for the exact combinations and more details about the runs.

2.1 Enzo
The models discussed in Section 2.2 below were implemented in

Enzo [Bryan et al. 2014]
3
, a multi-physics hydrodynamics code

designed to simulate astrophysical problems from cosmology to

plasma turbulence. Enzo stores data as either particles or Cartesian

grid cells. For grid data, Enzo employs adaptive mesh refinement

(AMR) to balance accuracy and computational efficiency by im-

proving grid resolution in user-defined areas of interest. An Enzo

user may define these areas using a variety of criteria, such as

baryon or dark matter density, the presence of shocks, or a geomet-

ric region. At the core of Enzo’s physics are gravity and Eulerian

(magneto)hydrodynamics. Gravity acts on both particle and grid

cell data. For ordinary hydrodynamics, which is of interest to this

work, there are two solvers: the ZEUS finite difference method

(adapted from [Stone and Norman 1992]) and the finite-volume

piecewise-parabolic method (PPM) [Colella and Woodward 1984].

Other important physics in Enzo includes radiation transport,

star formation and feedback, primordial chemistry, and radiative

cooling. Support for the latter two is provided by the GRACKLE

library [Smith et al. 2017]
4
. Natively, star formation and feedback

are modeled using particle objects instead of grid cells. These parti-

cles are not constrained to the grid where gas information is stored.

Instead, they are free to move about the simulation volume. A single

particle represents an entire stellar cluster. These particles track the

mass distribution of stars in the cluster, as well as their lifetimes.

All stars in the modeled cluster are assumed to form at the same

time, but more massive stars live shorter lives. It is known from

observations that stars with main-sequence mass ≳ 8 M⊙ die in

supernova explosions, ejecting energy and metal-enriched material

into the surrounding environment. This is referred to as feedback.

In Enzo, feedback from a particle is deposited into the gas in nearby

3
http://enzo-project.org/

4
https://grackle.readthedocs.org/

Parameter Name Symbol Value

Halo Mass 9 × 10
11

M⊙

NFW Concentration 12

Disk Gas Mass MG 5 × 10
10

M⊙

Disk Gas Temperature 2 × 10
5
K

Galaxy Radial Scale Height rs 3.0 kpc

Galaxy Vertical Scale Height zs 0.4 kpc

Galaxy Extent (# of Scale Heights) κ 4

Feedback Region Extent κFB [2, 3]

Star Formation Density Threshold ρSF 1 cm
−3

Feedback Density Threshold ρFB 0.01 cm−3

Star Formation Temperature Thres. TSF 10
4.5

K

Feedback Temperature Threshold TFB 10
7
K

Star Formation Efficiency ϵSF 0.01

Star Formation Timescale τSF 10 Myr

Stellar Mass Removal Factor η [1, 100]

Energy SNe Feedback Efficiency ϵFB 10
−5

Mass SNe Feedback Efficiency ϵFB,M 0.25

Metal SNe Feedback Efficiency ϵFB,Z 0.02

Kinetic Fraction fk [0, 0.25,

0.5, 0.75, 1]

Returned Mass Fraction ηM 0.25

Returned Metal Fraction ηZ 0.2

Table 1: Relevant simulation parameters. Parameters ac-
companied by a symbol are used elsewhere in this work. Val-
ues in brackets correspond to simulation variations; see Ta-
ble 2.

grid cells. Several different star formation and feedback models are

available, which define when particles are created and the mech-

anism by which feedback is deposited into the surrounding grid

cells.

2.2 Volumetric Feedback Models
In our model, star formation and feedback can only occur within a

cylinder of user-defined height and radius. This cylindrical region

is located at the center of the domain, and encompasses the central

region of the initial galactic disk. Within this domain, grid cells are

flagged as being either star-forming or feedback-only depending

on their density and temperature. If a cell has density ρ > ρSF
and temperature T < TSF , where ρSF and TSF are parameters,

it is flagged as a star-forming cell. If a cell has ρFB < ρ < ρSF
and T < TFB , where ρFB and TFB are parameters, it is flagged as

feedback-only. These two categories are constructed to be mutually

exclusive, and most cells are not flagged at all. The temperature

parameters should be set such thatTFB > TSF . The parameterTFB
also controls the energy budget for feedback (see Section 2.2.2).

Figure 1 shows what this flagging looks like for the density and

temperature thresholds in Table 1. The grayscale shows a face-on

density slice through the midplane of the disk. Overlaid in cyan and

yellow are the star-forming and feedback-only cells, respectively.

The red circle indicates the boundary of the star formation and

feedback region. The scale bar corresponds to the radius of this

region.
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Figure 1: Density slice showing an example of star-forming
(cyan) and feedback-only (yellow) cells within the feedback
region (red circle; scale bar). The slice shows the galactic disk
face-on, and passes through the midplane.

In the subsections below, we describe how star formation (2.2.1)

and feedback (2.2.2) are handled with reference to these cell types.

For each process, we first describe the treatment of the original

model. Problems with the results of the original model (see the end

of Section 3.1.1 and Section 4) induced some revisions which will

be discussed later in each section.

2.2.1 Star Formation and Stellar Death. Once star-forming cells

have been flagged, their total massMSF is used to calculate a mass

of stars ∆M∗ formed during that time step ∆t using the following
formula:

ÛM∗ = ϵSFMSF /τSF , (1)

∆M∗ = η ÛM∗∆t . (2)

The star formation efficiency is ϵSF and the formation timescale

is τSF (see Table 1). Stars are never directly modeled by either the

original or revised schemes, because the goal of these models was

to avoid the computational expense of explicitly including stellar

populations via particles. Instead, only the effects of star formation

on the surrounding gas are modeled: ∆M∗ worth of gas is removed

from all star-forming cells. The amount removed from an individual

cells is proportional to its fraction of the total star-forming cell mass

MSF .

The parameter η in Equation 2 allows mass to be removed from

the simulation in excess of what is consumed by star formation.

This mimics the ionization of surrounding gas that occurs when

stars form, which prevents further star formation in the immediate

area of the new stars. This removed mass is negligible compared to

the mass of gas in the disk. Likewise, it has a negligible effect on

the gravitaional potential, which is dominated by the dark matter

and remaining gas. For the original model, η = 1. In the revised

model, η is a tunable parameter (Table 1).

When stellar populations in Enzo are modeled with particles,

these particles keep track of the age and individual masses of their

constituents. For simplicity in these models, stellar death is treated

as though it immediately follows stellar birth. Not all stars are

massive enough to result in supernova explosions; the efficiency

parameters ϵFB , ϵFB,Z and ϵFB,M are chosen to reflect the fraction

that do (see Table 1). The energy, mass, and metal returned by these

supernovae is calculated in bulk:

∆E = ϵFB∆M∗c
2,

∆M = ϵFB,Z∆M∗,

∆Z = ϵFB,M∆M∗.

(3)

For each time step, ∆E, ∆M , and ∆Z are added to “reservoirs” from

which feedback energy andmaterial are drawn. These reservoirs are

maintained throughout the simulation, allowing past star formation

to have some affect on current feedback.

2.2.2 Supernova Feedback. In these models, feedback consti-

tutes the addition of energy, mass, and metal to a certain selection

of cells, which we will refer to as “feedback cells.” For the original

model, feedback cells refer to the feedback-only cells discussed

above in Section 2. In the revised model, feedback cells refer to both
the star-forming and feedback-only cells. Unflagged cells do not

receive feedback.

An “energy budget” eb is calculated for each feedback cell. This

is the amount of energy that would be needed for (1 − fk )eb to

raise the temperature of the cell to TFB , where fk is the kinetic

fraction. The interplay between this energy budget and the feedback

algorithm will be discussed later. Recall from Section 2.2 that all

flagged cells have T < TFB . Feedback will only proceed if there are

feedback cells to receive it, and if the sum of eb for all the feedback

cells is less than the amount of energy Er es in the energy reservoir.

For each cell, the energy budget is divided into thermal and

kinetic energy based on the cell’s height |z | from the galactic mid-

plane. In the original model, every cell receives thermal energy et
of exactly (1− fk )eb (marked by a dashed line). Only the outermost

layer of cells receives kinetic energy ek = fkeb . For the revised
model, the kinetic energy is given by ek = fk tanh(2|z |/zs ) and the
thermal energy is et = eb − ek . The thermal energy is never less

than (1 − fk )eb (shown by the dashed line).

Mass and metal are also returned during feedback, and are pro-

portional to the total amount of energy subtracted from the energy

reservoir:

∆Mr et = ηMeb/Er es , (4)

∆Zr et = ηZ eb/Er es . (5)

This ensures that all three reservoirs - energy, mass, and metal -

remain proportional to each other.

2.3 Simulations
Our simulations are of a single, Milky Way-like disk galaxy. The

galaxy is isolated in a (1 Mpc)3 box whose boundaries are periodic

for baryons but not for gravity. The galactic disk is constructed as a

cylinder of radius κrs and height κzs (see Table 1 for symbol defini-

tions; the values chosen for rs and zs are consistent with Kim et al.

[2016]) placed in a Navarro-Frenk-White, or NFW, dark matter halo

(Navarro et al. [1996]; see Table 1). The disk’s initial temperature is

Journal of Computational Science Education Volume 9, Issue 1

May 2018 ISSN 2153-4136 31



10 27

10 25

10 23

[g
cm

3 ]

105

106

T
[K

]

0 50 100 150 200
r (kpc)

10 3

10 2

10 1

100

101

102

K
[c

m
2

ke
V]

Figure 2: Radial profiles of the simulation initial condi-
tions. Top is density, middle is temperature, and bottom is
entropy (the adiabatic invariant; see text). Profiles are mea-
sured from the center of the galaxy and extend out to 250
kpc (kiloparsecs). They show the average value at that ra-
dius.

uniform, while its density follows the double-exponential profile

used in the AGORA simulation suite [Kim et al. 2016]:

ρ(x ,y, z) =
MG

4πr2s zs
e−r/rs e−|z |/zs . (6)

Surrounding the disk is gas that follows the cored entropy profile

K(r ) = 4 + 20(r/100 kpc )1.15 [Voit et al. 2017]. This profile is used
in conjunction with the assumption of hydrostatic equilibrium

to calculate the density and temperature profiles for the CGM. As

used here, “entropy” refers to the adiabatic invariantK = T /ργ−1 ≈

T /n
2/3
e , where ne is the electron number density and the ratio of

specific heats is γ = 5/3. See Figure 2 for radial profiles of the initial

density, temperature, and entropy out to a radius of 250 kpc. In

addition to the feedback models discussed above, we use Enzo’s

gravity and PPM hydrodynamic solver, as well as radiative cooling

with the GRACKLE library [Smith et al. 2017].

Model fk κFB η

Original 0.5 2 1

0 2 1

0.25 2 1

0.75 2 1

1 2 1

0.5 3 1

Revised 0.5 2 100

Table 2: Parameter variations; each line corresponds to a
different simulation. The first set listed for each model is
fiducial parameter set for that model.

In total, seven simulations were run: six using the original model

and one using the revised model. A summary of the parameter

variations can be found in Table 2. The parameter set listed next

to the model name is the fiducial set for that model. The original

fiducial simulation ran for 8 Gyr of simulation time. The other

non-fiducial simulations were set to run for 5 Gyr; however, only

the model fk = 0.25 reached this mark in a reasonable amount of

time. All others were halted because the evolution slowed to the

point where progress was minimal, with the simulation timesteps

of less than one year. The timestep is constrained by the Courant-

Freidrichs-Levy (CFL) condition for stability and accuracy (see

Bryan et al. [2014], Section 9). Section 3.1.2 has more detail on

where each run was stopped. The fiducial run of the revised model

was stopped at 2 Gyr as it was not producing a more realistic galaxy

than the original model (see sections 3.2 and 4).

3 RESULTS
The results of the fiducial runs for both models are discussed below.

First, we detail the behavior of the original model for its fiducial

run, and then discuss parameter variations. Then we discuss the

behavior of the revised model’s fiducial run. The parameters were

not varied for the revised model, because reasonable parameter

values did not affect the overall outcome of the simulations.

3.1 Original Model
3.1.1 Fiducial Run. The time evolution of the star formation

rate (SFR) for the original fiducial simulation is shown in Figure

3. Note that this plot has been smoothed (original in grey dots)

for easier viewing using a Savitsky-Golay scheme with 4th order

polynomials and a window of 8001 elements. Times of interest are

labeled A–C. These times correspond to the images in Figures 4–6,

which show projections of the edge-on disk and its inner CGM in

four quantities (clockwise from upper left): density, temperature,

metallicity, and radial velocity, with the latter three weighted by

density. The projections are through a slab 40 kpc thick and 100

kpc on a side.

There is an initial burst of star formation seen in Figure 3 that is

triggered by the initial conditions. After this burst, the rate of star

formation drops before rising again. Point A (Figure 4) falls in this

lull. Point B (Figure 5) corresponds to the peak of the SFR curve,

just before the rate begins to slowly fall. The steady-state behavior

of the system is sampled at Point C (Figure 6).
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Figure 3: Star formation rate (SFR) over time for the original fiducial run. For easier viewing, the blue line has been smoothed
with a Savitsky-Golay scheme; see text The dashed grey line underneath shows the original data. The vertical red lines labeled
A–C are at 0.40, 1.84, and 7.00 Gyr, and correspond to Figures 4–6.

Figure 4 shows that at Point A (0.40 Gyr), the cold, dense disk is

metal poor, and surrounded by a hot bubble that arose from earlier

feedback. There is a large amount of material above and below the

disk. Some of this is outflowing gas (coded red in the lower right of

Figure 4). The larger outflows are disconnected from the disk, as

this material was ejected during earlier times when the SFR and

corresponding instantaneous feedback were higher. Newer, smaller

outflows are seen closer to the disk; there is less gas being ejected

because the SFR is lower. When one simultaneously considers the

projections of temperature, metallicity, and radial velocity, infalls of

cold, metal-rich gas can be seen at the edges of the largest outflows.

This gas comes from even earlier stellar feedback injection. Both

infall and outflow are of roughly the same projected metallicity and

temperature.

At Point B (1.84 Gyr), we are at end of the peak in the SFR curve

from Figure 3. We see from Figure 5 that the CGM has become

hotter, but it’s metallicity has not increased in the substantial time

since Point A. The metallicity of the disk, however, is higher than

at A. Highly collimated infalling gas can be seen directly above

and below the gas, with bursts of outflowing material to the sides;

however, the outflows have a smaller radial extent than in Figure 4.

By the time the simulation reaches Point C, it is is approximately

in its steady-state with an SFR of∼ 18 M⊙ yr
1
. This is a significantly

higher SFR than we expect for a Milky Way-like galaxy. In Figure

6 we see that the disk is has been greatly enriched by metals, and

while the CGM has been heated relatively uniformly at this point,

it is unenriched. There are no more large-scale outflows, but there

is still collimated infall. From Figure 3 we see that the SFR has been

decreasing up to this Point; therefore, both the amount of feedback

injected and, by extension, the amount of ejected material has also

been decreasing. There is less older ejecta to fall back on to the

disk, and less star formation and feedback to drive newer outflows.

Overall, activity in and around the galaxy is calming down.

Considering Figures 4–6 together, along with insights from ex-

amining the evolution over each of the 1 Myr time outputs, several

trends emerge. The temperature of the CGM increases over time,

as does the metallicity of the disk. The CGM also becomes hotter;

however, its metallicity never changes. What is especially notice-

able from examining the evolution of the simulation is that all of

the material ejected from the disk eventually falls back onto the

disk without becoming buoyant in the CGM. Therefore, the CGM

remains metal poor, while the disk becomes highly enriched. The

outflows are of a lower entropy than the surrounding CGM gas

(this is visible in Figures 4–6 via the temperature). This entropy

deficiency would explain the lack of buoyancy in the outflowing

gas.

3.1.2 Parameter Variations. Five variations on the fiducial pa-

rameter set were run for the original model. In four of these runs,

the fraction of total energy budget that went into kinetic energy

(fk ) was varied. In the fifth, the kinetic fraction remained at the

fiducial value of fk = 0.5, while the size of the feedback region κFB
was increased from 2 to 3 scale heights in both z and r .

Figure 7 shows how the star formation rate for all the parameter

variations compares to the fiducial value (shown in thin grey dots;

the same curve as Figure 3). These SFR curves have been smoothed

in the same way as Figure 3, and have been limited to 5 Gyr for

clarity. Values near fk = 0.5 (solid lines) did not produce much

variation in the SFR curve. Extreme values (dash-dot lines), however,

differ greatly from the fiducial run. The fully thermal feedback of

the fk = 0 run constantly heated the gas in the disk, making it

increasingly less able to form stars. Interestingly, fk = 1 maintains a

steadier, if lower, SFR than any of the 0 < fk < 1. Lastly, increasing
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Figure 4: Projections of the original fiducial run at 0.40
Gyr, centered on the edge-on disk and inner CGM. This
figure corresponds to Point A in Figure 3. Clockwise from
upper left: density; density-weighted temperature, density-
weighted radial velocity, and density-weighted metallicity.
Negative vr is outward. The galaxy is actively producing
metal-enriched outflows (red), and shows signs of earlier
feedback (hot bubble, blue inflows). Each projection is 100
kpc wide and through a slab 40 kpc thick.

the extent of the feedback region, κFB , leads to an SFR curve with

a similar shape to the fiducial run, but with a larger initial burst

and stretched in time. This is a reasonable result, as increasing κFB
increases the amount of gas that can form stars.

The fk = 0.25 simulation was able to run for the initially planned

length of 5 Gyr, as was fk = 1 (neither was extended to 8 Gyr like

the fiducial run). The run with fk = 0.75 was stopped after 1.8 Gyr

because of its slow progress; because of the resulting high velocities,

the simulation took very small time steps. Similarly, the fk = 0

simulation only ran for about 1 Gyr, as did κFB = 3. For the former,

the elevated temperatures resulting from the completely thermal

feedback greatly restricted the size of the time step that could be

taken.

From Figure 7, it appears that any 0 < fk < 1 will produce an SFR

curve like Figure 3. The exact value has more of an impact on the

evolution of the simulation than its behavior. Varying the size of the

feedback region stretches the SFR curve but slows the simulation’s

evolution. Additionally, runswith fk = 0.25, fk = 0.75, andκFB = 3
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Figure 5: Shows the same quantities as Figure 4, but for Point
B of Figure 3 at 1.84 Gyr. The galaxy is at its peak star for-
mation rate, yet there is more infalling gas (dark blue) from
previous feedback than recent outflows (red). Both outflows
and inflows are the only enriched gas.

reproduce the same overall behavior of the fiducial run: increasing

metallicity in the disk but not the CGM, increasing temperature

and density of the CGM (except the density for fk = 0.25), and all

outflowing gas eventually falling back on to the disk.

3.2 Revised Model
We will now consider the results of the revised feedback model.

Like Figure 3, Figure 8 shows the star formation rate over time

for the revised fiducial model. This model shows much less star

formation overall, as expected: with this revised model, cold gas is

being removed in excess of that used to form stars, diminishing the

galaxy’s gas reserves. This removal of extra gas is analogous to how

cold, dense gas in stellar environments is destroyed by processes

such as OB associations and Type II supernovae.

As before, times of interest are marked by red lines marked D and

E, at 0.25 and 1.15 Gyr, respectively. Figure 9 corresponds to Point

D, showing the simulation during the peak of a small star burst.

Point E marks a quiescent period for the galaxy, and corresponds

to Figure 10.

We see in Figures 9 and 10 that the metallicity of the disk in-

creases over time, while that of the CGM remains constant. This is
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Figure 6: Shows the same quantities as Figure 4, but for Point
C of Figure 3 at 7.00 Gyr. The galaxy has achieved an approx-
imate steady-state. Recent outflows (red) are small, and in-
flows (dark blue) are highly collimated; both are the only
enriched gas.

the same behavior as seen in Section 3.1.1 with the original fidu-

cial models. We also see that the temperature increases over time,

as before. Unlike the original run, however, the density increases

slightly around the disk.

From the radial velocity projections of both Figures 9 and 10, we

see highly collimated material falling onto the galaxy. Just as with

the original simulation, all the material that blows out from the disk

eventually falls back in. Moreover, we again see that the outflows

have a lower entropy than the surrounding CGM. The metal-rich

outflowing gas does not become buoyant, and the CGM remains

unenriched as with the original model.

This simulation was stopped before 5 Gyr, not because of slow

progress, but because of insufficient difference from the original

feedback model in terms of the CGM metallicity and outflow en-

tropy. Additionally, there were also no variations in kinetic fraction

fk tested, because for 0 < fk < 1, the precise value had no effect

on the evolution of the CGM (see Section 3.1.2; values of 0 and 1

for fk do have an effect but are physically unrealistic).
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Figure 7: Star formation rate (SFR) over time for parame-
ter variations of the original model. The fiducial simulation
(Figure 3) is shown as the thin grey dotted line. Extreme vari-
ations in the kinetic fraction fk are shown as dash-dotted
lines. Values near the fiducial fk = 0.5 are solid lines. The
increase in feedback extent κFB is the thick dotted line. All
curves have been smoothed using the same method and pa-
rameters as in Figure 3.

4 DISCUSSION
The aim of this work was to create an idealized, simplified model of

star formation and feedback that does not have the same limitations

as the standard particle-based star formation and feedback models

typically used. Such a model was intended to explore how galaxies

self-regulate themselves in a computationally efficient manner. We

developed two models, an original model and a revised version,

that emulated instantaneous star formation and feedback in a volu-

metric manner. The star formation rate of the original model was

unrealistically high, which is partly why the revised model was de-

veloped. The revised model reduced the star formation rate through

the removal of extra cold gas.

We see in Section 3, however, that these feedback models fail to

produce realistic CGMs. A real CGM has metals [Tumlinson et al.

2017]. Both the original and revised feedback models (Sections 3.1

and 3.2) see a build-up of metal in the disk while their CGMs remain

at the metallicity of the initial conditions. While the feedback is

able to drive enriched outflows, this gas has insufficient entropy

to achieve buoyancy in the CGM and instead falls back on to the

disk. It’s not entirely clear why the entropy of the ejected gas is

so low. With these simulations, enough thermal energy is added

to boost the temperature of the gas to 10
7
K, but the ejecta quickly

fragments and cools. It may be that the gas is in a density and

metallicity regime where it cools very efficiently, so that its entropy

is always below that of the surrounding CGM. If metal enriched

gas is not sufficiently hot, its cooling efficiency only increases as its
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Figure 8: Star formation rate (SFR) over time for the revisedfiducial run. Unlike in Figure 3, the blue line has not been smoothed.
The vertical red lines labeled D and E are at 0.25 and 1.15 Gyr, and correspond to Figures 9 and 10.

temperature drops and runaway cooling occurs. The low entropy

problem is also likely compounded by the continual heating of

the CGM: the temperature difference between the ejecta and its

surroundings is ever increasing, thereby making buoyancy an ever

harder state for the ejecta to achieve.

Further reasonable modifications to the revised model would

result in a method similar to an existing particle method, which is

what this work was trying to avoid. The failure of both the original

and revised models to produce a realistic, enriched CGM strongly

suggests to us that a volumetric feedback scheme cannot replace a

method that directly models stellar populations.

4.1 Student Challenges5

This was my first experience to both inheriting another person’s

code, as well as modifying an existing code base. As a result, the

majority of my time at the beginning of this project was spent

learning the internals of Enzo and logic of the method my prede-

cessor had designed but never tested. As I stepped in to modifying

Enzo for myself, I became much better at debugging and even had

the occasion to use a memory profiler. Many of the error messages

Enzo produces, as is often the case with a complex code, were symp-

toms of the underlying problems rather than directly related to the

bug. This was how I was exposed to the many ways hydrodynamic

solvers can fail, and how to mind Enzo’s AMR hierarchy.

I presented this project at three academic conferences; once

while it was in progress and twice when it was finished. Since this

work took place during my final year of my Bachelor’s degree, the

experience gained from this project was a large component of my

graduate school and fellowship applications. As of this writing I

am a first-year graduate student with the Department of Energy

Computational Science Graduate Fellowship. The work done as a

5
Written from the perspective of C. Kopenhafer.

part of this project has been tremendously helpful in preparing me

for this fellowship.

5 SUMMARY
This work sought to create a volumetric model for star formation

and feedback that was more computationally efficient than existing

particle-based methods. Our goal was to use this model to explore

how galaxies self-regulate themselves by examining the bulk prop-

erties of isolated galaxy simulations. Unfortunately, our volumetric

feedback models failed to produce realistic galaxies:

• In our original model, the star formation rate was unrealisti-

cally high for a Milky Way-like galaxy.

• Additionally, the feedback failed to enrich the CGM with

metals like in a real galaxy, because the ejecta did not become

buoyant.

• The revised model fixed the SFR problem, but not the enrich-

ment problem; ejecta still failed to become buoyant.

• Metal-enriched, ejected gas is likely cooling too efficiently

to attain buoyancy.

Any further modifications we considered moved the models closer

to the existing computationally-expensive particle methods we

were trying to avoid.We therefore found that our volumetric models

are not a plausible way of treating star formation and feedback

in isolated galaxies. A different approach may still yield a model

that avoids the expense of particles, and allow for the efficient

examination of bulk galaxy properties.
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