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ABSTRACT
A �nal project assignment is described for an interdisciplinary ap-
plied numerical computing upper division and graduate elective in
which students develop a GUI for de�ning and solving a system of
ordinary di�erential equations (ODEs) and the associated explicit
algebraic equations such as values for parameters. The primary task
is to use the MATLAB built-in graphical user interface development
environment (GUIDE) [16, 17] to develop a graphical user interface
(GUI) that takes a user-speci�ed number of ODEs and explicit alge-
braic equations as input, solves the system of ODEs using ode45,
returns the solution vector, and plots the solution vector compo-
nents vs. the independent variable. The code for the GUI must be
veri�ed by showing that it returns the same results and the same
�gures as a system of ODEs with a known solution. The purpose of
the �nal project assignment is threefold: (1) to practice GUI design
and construction in MATLAB, (2) to verify code implementation,
and (3) to review content covered throughout the course. The manu-
script �rst introduces the course and the context and motivation for
the project. Then the project assignment is detailed. Two student
project submissions are described. The veri�cation case study is
also provided.

KEYWORDS
numerical methods, graduate education, computational science
elective course

1 INTRODUCTION
The corresponding author of this paper teaches a course titled Ap-
plied Numerical Computing for Scientists and Engineers that she
developed at Oklahoma State University. The course is o�ered as a
chemical engineering upper division and graduate elective designed
and advertised to be interdisciplinary. Over the �rst two o�erings,
�ve chemical engineering seniors took the course along with the
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following numbers of graduate students by degree program: eight
in chemical engineering, six in mechanical engineering, two in
chemistry, and one each in environmental engineering, mathemat-
ics, and plant and soil sciences. The �rst and second authors of this
paper took the course as �rst year chemical engineering graduate
students in the �rst and second course o�erings, respectively.

The course is designed to train science and engineering seniors
and graduate students to use practical software tools for com-
putational problem solving and research: Git for version control,
LATEX for mathematical and scienti�c typesetting, and MATLAB
and Python as high level programming languages with libraries of
solvers, visualization tools, and capabilities for designing graphi-
cal user interfaces (GUIs). Throughout the course, the instructor
emphasizes best practices of open-source code development, veri�-
cation, and documentation [2, 3, 8–15, 18, 20–23, 26, 28] and adopts
the Software Carpentry philosophy of providing hands-on training
in very practical computational skills for scientists and engineers
[27]. Rather than covering the basics of computer programming
or details of algorithms for numerical methods, the course focuses
on applying numerical computing methodologies, primarily ordi-
nary di�erential equation solvers and optimization routines for
parameter estimation to solve realistic continuum scale problems
in science and engineering.

The course consists of ten reading assignments worth 2% each
and six computational assignments. The �rst assignment is worth
5% and introduces the students to using version control in Git and
document typesetting in LATEX, which are required components in
all subsequent assignments. The second assignment is worth 5%
and gives student practice with programming in MATLAB while
developing best practices for scienti�c computing. The students are
required to create a function de�ning a system of ordinary di�eren-
tial equations (ODEs) and write well-documented code. The third
assignment is worth 10% and involves using built-in functions and
library routines for numerical methods (speci�cally ODE solvers)
in MATLAB and Python to solve the system of ODEs described in
Appendix A. The fourth assignment is worth 15% and covers pa-
rameter estimation of dynamic models using MATLAB and Python
focusing on a case study from [1]. The �fth assignment is worth 15%
and involves creating a relatively straightforward GUI in MATLAB
to take user inputs and display simulation results from user-de�ned
functions provided by the instructor for di�erent scienti�c applica-
tions. The sixth and �nal computational assignment is worth 30%
of the course grade and is described in detail in this paper.
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The �nal computational assignment is referred to as the “�nal
project” to emphasize its signi�cance in the course grade, its compre-
hensive nature, and the time involved to complete the assignment
satisfactorily. The students are allowed one month to work on this
project, and it serves as a take-home �nal exam. The purpose of this
assignment is threefold: (1) to practice GUI design and construction
in MATLAB, (2) to verify code implementation, and (3) to review
content covered throughout the course. The project builds upon
content from all of the previous assignments. Although it does not
explicitly involve parameter estimation, the systems of ODEs used
for the dynamic models in the fourth assignment from [1] are used
in the �nal project as two of the three veri�cation cases required.
For brevity we only provide the most complicated of the veri�cation
cases here in Appendix A, which is from the third assignment.

In the chemical reaction engineering course that the correspond-
ing author teaches and many other o�erings of the same course
around the U.S., the software POLYMATH [25] is used as recom-
mended by the popular textbook [4], which uses the software
throughout the book in many examples and homework problems.
POLYMATH is a numerical computation package that can solve data
regressions and systems of simultaneous ODEs, linear algebraic
equations, or nonlinear algebraic equations. These are all of the
types of computational science problems encountered in a typical
chemical reaction engineering course. In POLYMATH, equations
are entered through GUIs in formats that look just like the written
form of the equations, so there is not a coding learning curve (Fig.
1 and Fig. 2). After entering equations via GUIs or in lieu of using
the GUIs, users can edit code directly in a script �le. For details on
how to use POLYMATH to enter and solve a system of ODEs, a
tutorial document is available on the web [5]. A limitation of the
current POLYMATH educational version is that users can enter
only 30 simultaneous ODEs and 40 explicit algebraic equations.
This is adequate for typical use. However, for the course project
in the author’s chemical reaction engineering course [6], the limit
is often reached. Additionally, POLYMATH cannot combine di�er-
ent types of numerical solvers in the same problem unlike other
software programs such as MATLAB and Python. The author origi-
nally started programming MATLAB or Python scripts for working
around the equation number limit in POLYMATH but found the
codes to be challenging for novice users to modify. The �nal project
discussed here grew out of a need to have a POLYMATH-like GUI-
based platform built into a more sophisticated software platform
when dealing with more than 30 simultaneous ODEs. MATLAB was
selected for this �nal project because of its relative ease in creating
GUIs and packaging them as apps, which are very user-friendly for
download and installation.

The remainder of this paper provides the required tasks in the
�nal project assignment in Section 2, gives details of two student
project submissions in Section 3, and o�ers conclusions in Section
4. The veri�cation case study is presented in Appendix A.

2 PROJECT ASSIGNMENT
In the project assignment, students develop a GUI for de�ning
and solving a system of ODEs and the associated explicit algebraic
equations (e.g., temperature dependence of rate constants or values
for parameters) for di�erent applications. The primary task is to

Figure 1: Graphical user interface in POLYMATH for enter-
ing a di�erential equation.

Figure 2: Graphical user interface in POLYMATH for enter-
ing an explicit algebraic equation.

use the MATLAB built-in graphical user interface development
environment (GUIDE) to develop a graphical user interface (GUI)
that takes a user-speci�ed number of di�erential equations and
explicit algebraic equations as input, solves the system of ODEs
using ode45, returns the solution vector, and plots the solution
vector components vs. the independent variable. The GUI should
work in general for any system of ODEs (speci�cally initial value
problems not boundary value problems). The code for the GUI must
be veri�ed by showing that it returns the same results and the same
�gures as the systems of ODEs de�ned in Computational Assign-
ments 3 and 4. The more complicated of these veri�cation cases
is provided in detail in Appendix A. Students are not penalized if
their code does not work for arbitrary ODEs beyond the veri�cation
cases.

The GUI can take a variety of layouts, which may involve use
of multiple .m �les, if desired. A descriptive �le naming system
should be used. Students should design a GUI that is intuitive to
use with the following required as buttons:

• de�ne a system of ODEs
– The numbers of di�erential equations and algebraic equa-
tions should be solicited either directly or indirectly.
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⇤ In the direct method, when this button is clicked, a
window should appear asking the user how many equa-
tions of both types that they want to de�ne. After that
windows should appear recursively for the user to en-
ter the speci�ed numbers of corresponding di�erential
equations and algebraic equations.

⇤ In the indirect method, when this button is clicked, win-
dows should be opened for de�ning di�erential or alge-
braic equations one at a time (or in bulk for algebraic
equations). At the end of each input, the user chooses
done or continue to enter another equation of the same
type. The number of equations of that type is then in-
cremented.

– The interfaces for entering the equations should be sim-
ilar to those used in POLYMATH (Figs. 1 and 2), which
can be implemented using one or more windows that are
themselves GUIs and/or dialog boxes.

– The user must be able to enter initial values and limits of
integration.

– The comment section and the buttons labeled Clear and
Cancel shown in the POLYMATH examples (Figs. 1 and 2)
are optional.

– After input is provided by the user, it should be visible to
them as a static textbox, editable textbox, or listbox with
options to edit the input.

• calculate results
– This button should calculate results in preparation for
either exporting to Excel or plotting.

– Something should be output to indicate that the results
were calculated; command window output is acceptable.

• plot results
The plot routine should have options for displaying all or
a subset of the output vectors (dependent variables vs. the
independent variable).

• save plot
– The save plot button should call export_fig.m [19] to
create a .png �le of a reasonable size for the output plot
that currently appears on the screen.

– The user should be prompted to specify a �lename and
target directory for the plot.

– A sample callback function for a button that saves a plot
with a prescribed name via export_fig.m is shown in
Fig. 3.

• export results as Excel �le
The export results button should export all the independent
and dependent variable output from the ODE solver to a
.csv or .xls or .xlsx �le (label the type of output on your
GUI) so that the user could view the results in Excel for
creating more elaborate plots.

Additional buttons or other GUI objects may be useful. For ex-
ample, a .mat �le is recommended for saving selected variables
from a subsidiary GUI window for de�ning the ODEs or the explicit
equations. Then this can be loaded in the main GUI �le to read
the values after the temporary GUI window closes. A cell array is
a natural way to save the values generated from each of the GUI

1 % Executes on button press in saveplot_button
2 function saveplot_button_Callback(hObject, ...

eventdata, handles)
3 % hObject handle to saveplot_button
4 % eventdata reserved
5 % handles structure with handles and user data
6 if exist('plotName.png', 'file') == 2
7 beep
8 h = msgbox(...
9 'plotName.png already exists. Please rename ...

or delete the existing plotName.png file ...
before trying to save again.',...

10 'Plot NOT Saved');
11 else
12 ax = handles.plotAxes;
13 figure_handle = isolate_axes(ax);
14 export_fig plotName.png
15 h = msgbox(...
16 'The plot was successfully saved as ...

plotName.png. Be careful to rename it if ...
you want to save multiple versions of ...
the plot.',...

17 'Plot Saved');
18 end

Figure 3: saveplot_button_Callback function example.

windows; however, other ways are acceptable. Another useful but-
ton could allow users to edit the axes labels, particularly to include
units. The GUI must be packaged as a MATLAB app and submitted
electronically via the course website.

Students must create a .tex �le to document testing that their
GUI works for the veri�cation test cases. A screenshot of the GUI
when all equations have been entered must be included as well as
the output plot with all of the dependent variables plotted together
vs. the independent variable. A veri�cation case is described further
in Appendix A.

String manipulation is not the primary purpose of the �nal
project, but it is necessary to take input from di�erent windows
and compose strings into equations. To aid students less familiar
with string manipulation, the following tips are provided. If the
code can accept the proper input arranged as cell arrays, the func-
tion shown in Fig. 4 connects the input to the ODE solver. In test
cases, it is clear that the numerator and denominator are not ex-
actly the strings that are needed for ode45(@(t,y)ODE...) and
that the explicit equations and the right hand sides of the ODEs
are not in terms of � and t as desired. It is strongly advised NOT
to use strrep in MATLAB or other �nd and replace algorithms.
Instead, let MATLAB do that automatically by parsing the strings.
Fig. 4 is a working version of a function ODE that properly reads
cell array inputs stored as variables in handles and converts them
to the equations that de�ne the system of ODEs. ODE is called by
ode45. The only requirement to the user is that they cannot name
a constant parameter � or t . This requirement is not necessary for
independent or dependent variables.

3 STUDENT PROJECT SUBMISSIONS
The top student submissions for the �nal project from each of
the �rst two course o�erings are presented here as examples. We
have prepared a private Bitbucket version control repository for
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1 function dydt = ODE(t, y, denominators, ...
numerators, RHSs, explicitEqns)

2 % Input: t and y are the independent and
3 % dependent variable values,
4 % denominators, numerators, RHSs, and
5 % explicitEqns are cell arrays with
6 % the first three terms defining the
7 % ODEs of the formă
8 % d(numerators) / d(denominators) = RHSs
9 % and the fourth term defining the associated
10 % explicit equations
11 % Output: the derivative vector dy/dt for
12 % y(1):y(numODEs) where
13 % numODEs = length(numerators) = length(RHSs) =
14 length(denominators)
15 % To be called by ode45(@(t,y)...
16 % ODE(t,y,denominators,numerators,RHSs,...
17 % explicitEqns), tspan, y0)
18
19 % independent variable
20 str0=cell2mat(denominators(1));
21 eval(strcat(str0,'=t;'));
22 % dependent variables
23 for i = 1:length(numerators)
24 str1 = cell2mat(numerators(i));
25 eval(strcat(str1,'=y(i);'));
26 end
27 % explicit equations provided in MATLAB
28 % acceptable order; can be a
29 % semicolon separated list
30 for i = 1:length(explicitEqns)
31 str2 = cell2mat(explicitEqns(i));
32 eval(str2);
33 end
34 % Right-hand sides of ODE definitions
35 for i = 1:length(RHSs)
36 str3 = cell2mat(RHSs(i));
37 dydt(i) = eval(str3);
38 end
39 % output formatting
40 dydt = dydt';

Figure 4: Example ODE function that properly reads cell ar-
ray inputs stored as variables in handles and converts them
to the equations that de�ne the system of ODEs.

archiving the code for these submissions along with the instructor
documents related to the project assignment. The link is not shared
publicly here to prevent future students from simply downloading
the solution without doing the project. Interested educators may
contact the corresponding author by email to request access to the
private repository.

3.1 Submission 1
3.1.1 Overview. The program of Submission 1 is mainly com-

posed of three parts: collecting user inputs to de�ne the system
of ODEs and the explicit equations, solving the system of ODEs
coupled to the explicit equations, and saving simulation results by
exporting calculated values and �gures of plots.

3.1.2 GUI Description. The main GUI is composed of ten push
buttons, three listboxes, and one axes (plot) object (Fig. 5). The user
can provide inputs through the push buttons. List boxes are used to
display the ODEs, corresponding initial conditions, and the explicit
equations. The axes object is used to display plots of some or all of
the dependent variables as functions of the independent variable

(Fig. 5 shows only the �rst dependent variable selected). Multiple
GUI windows are used for this program.

All the push buttons, except Reset and Help, were separated
into three groups based on the objectives of the program.Within the
panel labeled Define/Edit Equations/Parameters, the Define
Equations push button �rst allows the user to specify the num-
ber of ODEs and gives the user an option to choose whether or
not to de�ne any explicit equations after the system of ODEs is
de�ned (Fig. 6). If the radio button Add explicit equations is
activated (Fig. 6), a GUI window appears that allows user to enter
the explicit equations in bulk (Fig. 7) after the system of ODEs has
been successfully de�ned. All the ODEs must have explicit form
of d�

dt = f (t ,�). Based on the input number of ODEs, a for loop
is used to repeatedly pop up the window for de�ning each ODE
separately along with its initial value (Fig. 8). When the loop is
�nished, a new GUI window lets the user de�ne the upper and
lower limits of the integration, with both having default values of
0 (Fig. 9). The speci�ed values and equations all appear in the main
GUI window either in listboxes or as static text (Fig. 5).

The remaining buttons in the �rst panel in Fig. 5 are used for
editing. The Edit Selected ODE push button enables the user to
edit speci�c ODE expressions and the corresponding initial value
according to selected line in the ODE(s)Entered list box (Fig. 5).
By clicking the Integration Limits push button, the user can
modify the integration limits via the dialog box (Fig. 9). Through
the Edit Explicit Eqs push button, the user opens a new GUI
window (Fig. 7) to de�ne the explicit equations if they have not
been de�ned yet or to edit existing explicit equations.

In the Calculate/Plot panel, clicking the push button Calculate
opens a dialog window to require the user to enter the step size for
the numerical integration. The default value is 10�4. Then ode45
is called to solve the system of ODEs. When the Plot Results
button is pushed, the window titled Select Variables Shown
on Plot appears to allow the user to select single or multiple de-
pendent variables to be shown on the axes of the main GUI (Fig. 10).
The user can modify the labels of the independent and dependent
axes via the push button Edit Plot Axes. The default axes labels
are shown in Fig. 11.

The Save Plot push button enables the user to specify a �le
name and target local directory for saving the plot currently shown
in the axes area of the main GUI. Similarly, the Save Data to
.csv push button prompts the user to provide a �le name and
local directory for saving all the results for the independent and
dependent variable output from the ODE solver to a .csv �le.

The program is capable to some extent of checking for the legality
of user inputs. In the window to de�ne a di�erential equation
(Fig. 8), the numerator and denominator positions are checked for
the presence of characters and the initial condition blank is checked
for a numerical value. The upper limit of integration is required to
be larger than the lower limit. When the user decides to edit the
notation of the independent variable, the program can only change
the left hand side of every ODE; therefore, the user needs to make
sure the notation is also modi�ed on the right hand side of each
ODE to avoid any errors during the calculation.

3.1.3 Program Verification. We entered the system of equations
from Appendix A into the program, calculated the results, and
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Figure 5: Submission 1 main GUI screenshot with plot of the dependent variable T for the veri�cation case in Appendix A.

Figure 6: Submission 1 dialog box for setup of the number
of equations.

plotted two di�erent sets of the dependent variables in Figs. 5 and
12 to see the curves clearly on their di�erent scales.

3.1.4 Program Shortcomings. One major defect of this program
is that after the number of ODEs is de�ned at the very beginning,
it cannot be changed unless the user rede�nes the whole system of
equations. This program did not utilize the MATLAB GUI handles
structure for passing arguments between functions. The de�ciency
related to not being able to edit the number of equations could
be compensated by adding another function to manipulate the
master ode_eqs.mat �le, which stores the expressions for all the
equations. This could be modi�ed carefully by adding another ODE
or deleting one or several existing ODEs. Alternatively, the program

Figure 7: Submission 1 dialog box to enter the explicit equa-
tions.

could be restructured to utilize the handles, in which case an
update to the number of ODEs would not be as tricky to implement.

Another defect is that the program is not capable of accepting
explicit equations in arbitrary order as in POLYMATH, meaning
that a parameter in an explicit equation must be de�ned before it
is used. This requires extra work from the users as all the explicit
equations have to be listed in a certain order. This is how MATLAB
reads codes, so this is not a serious problem. For possible solutions
to this problem, see Submission 2 presented in Section 3.2.
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Figure 8: Submission 1 dialog box to enter a di�erential equa-
tion.

Figure 9: Submission 1 dialog box to de�ne limits of integra-
tion.

Figure 10: Submission 1 dialog box to select which variables
to display on the plot.

Figure 11: Submission 1 dialog box to edit axes labels start-
ing from default axes labels.

Figure 12: Submission 1 plots of the dependent variables FA,
FB , and FC for the veri�cation case in Appendix A.

When the user modi�es an ODE, only one ODE from the list box
can be selected at one time. Also, items in the Initial Value(s)
list box can be selected; however, they are not related to any push
buttons. In a future version, a new GUI could be added to al-
low the user to edit initial values based on the selected line in
the Initial Value(s) list box independent of editing the corre-
sponding ODE.

3.2 Submission 2
3.2.1 Overview. Submission 2 goes beyond the scope of the

project requirements by allowing the user the capability to freely
edit equations in the GUI and to enter equations in any order
(Fig. 13). Allowing the text to be edited enables the user to wholesale
copy text in order to share, save, and enter equations. Additionally,
if an error is made in entering the equations into the dialog boxes,
the user can quickly �x it by editing the text directly. Furthermore,
if the user is comfortable, they can type their equations directly
without using the dialog boxes. This is very consistent with the
capabilities of POLYMATH.
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Figure 13: Submission 2 main GUI screenshot.

Figure 14: Submission 2 dialog box for entering ODEs.

3.2.2 GUI Description. The main GUI is composed of one ed-
itable textbox, six push buttons, and one axes (plot) object (Fig. 13).
The user can provide inputs through the push buttons in much
the same manner as in Section 3.1 through a GUI for de�ning a
di�erential equation (Fig. 14) and a GUI for de�ning a single explicit
algebraic equation (Fig. 15). The axes object is used to display plots
of some or all of the dependent variables as functions of the indepen-
dent variable (Fig. 13 shows all of the dependent variables selected).
The editable textbox is described in detail in the remainder of this
section.

3.2.3 Equation Parsing. Properly supporting an editable textbox
for equation entry presents some key issues. If the text displayed
in the app cannot be edited, then input can be gathered solely from
dialog boxes in a very structured manner such as in Section 3.1.
Since an editable textbox is a much less structured form of input,
interpreting the input becomes a major challenge. The �rst step
in handling the input is to parse the text and convert the text into

Figure 15: Submission 2 dialog box for entering algebraic
equations.

a structured format. The second step is to reorder the equations
so that each equation is only dependent on either no equations or
only previously de�ned equations. This is a requirement because
MATLAB requires a variable to be de�ned before it can be used.
The GUI does have dialog boxes that can be used to enter equations
(Figs. 14–15); however, these dialog boxes do little more than for-
matting and inserting the appropriate text into the editable textbox
as a template for the user to see how to edit the text.

To parse the text entered into the textbox of the GUI, a custom
function ParseEq.m accepts a string as an argument and returns a
cell array that contains 4 elements. The four elements are the name
of the variable the equation solves for, the independent variable
associated with the equation if the equation is an ODE, a structure
containing the results of parsing the right hand side of the equation,
and the type of equation. The right hand side of the equation is
returned in two parts: a string of code that can be executed to solve
for the dependent variable and a list of variables that need to be
de�ned before the code can be evaluated.
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At the heart of parsing the entered text is the use of regular
expressions. Regular expressions are useful for �nding speci�c se-
quences of text. Regular expressions make use of wildcards, white-
space characters, alphanumeric ranges, and more to create a very
powerful and �exible syntax for matching text. For example, in the
GUI the left hand side of anODE is in the form of d(y)/d(t), where
� and t can be any variables. The regular expression ‘d\(\w*\)\/d\(
\w*\)’ will match the left hand side of any correctly entered ODE.

The �rst step in parsing the equations is to break the equation
into two parts for the left- and right-hand sides. This is done by
searching for the ‘=’ character and taking either side as separate
strings. Of the two sides, the left-hand side is evaluated �rst. The
left-hand side of each equations has a speci�c structure–the exact
form depends on if the equation is an algebraic equation, ODE, an
initial value, or the range of an independent variable. The structured
left-hand side of each equation lends itself to being easily parsed
through regular expressions.

The main concept used in parsing the right-hand side of an
equation is to build a line of code by following order of operations
to identify the calculation to be done �rst, producing the code to
evaluate the operation, and then abstracting the evaluated term
from the rest of the equation using a token. For example, the string
`x + y * z' becomes `x + #1', where #1 is placeholder for a
structure containing the results of parsing `y * z'. Parsing the
right-hand side becomes more complex when handling parentheses.
The approach to handling parentheses is to replace the portion
of the equation inside of the parenthesis with a token and then
recursively calling theParseEq.m function with the replaced text.
The result is that for each nested level of parentheses, the function
is recursively called until the innermost level of parentheses is
reached and evaluated normally.

3.2.4 Equation Reordering. The problem of ordering the equa-
tions is reduced to a problem similar to Gaussian elimination. A
matrix is constructed where each row represents a dependent vari-
able, and each column represents a unique variable needed to de�ne
a variable. For each dependent variable, the element in the column
of each variable needed to de�ne the dependent variable is set to 1.
For example, the equations

x = 2 (1)

� = 3 ⇤ x (2)

z = 4 ⇤ � + x (3)

yield the matrix (with columns and rows labeled for clarity)
x y

x 0 0
y 1 0
z 1 1

Each dependent variable that is de�ned by an ODE has an asso-
ciated initial value previously de�ned. Therefore, all of the columns
associated with variables de�ned in ODEs are zeroed out right
after creating the matrix, representing the fact that the variable
is de�ned. Each dependent variable has exactly one equation in
which the variable will show up on the left hand side. When a row
corresponding to a variable is zeroed out, the associated equation

is put at the bottom of the list of equations, and the column associ-
ated with the variable is zeroed out. This process repeats until no
changes occur in the matrix after an iteration.

If the matrix is not completely zeroed out, then any rows that are
not entirely zeros represent variables that are not properly de�ned,
and an error is returned to the user containing the variables that are
improperly de�ned. If the entire matrix is zeroed out, then the list
of equations recorded while zeroing out the matrix is the correct
order for the equations so that each equation is only dependent on
the previous equation.

4 CONCLUSIONS
The project assignment has been used for 21 total students across
two o�erings of the Applied Numerical Computing elective course
at Oklahoma State University. The project has been challenging
and thought provoking for the students in the course without being
unreasonable and overly time-consuming. Each student has typi-
cally visited the instructor’s o�ce hours more than once over the
one month time period allotted for the project. The instructor has
o�ered assistance with debugging and brainstorming and imple-
menting approaches. The most challenging aspect of the project for
most students is connecting the input from a subsidiary GUI win-
dow back to the main GUI window. The submissions described here
provide two di�erent methods for doing this, and the instructions
and tips from the instructor in the assignment and in Fig. 4 suggest
another alternative using .mat �les and cell arrays. Students are
encouraged to discuss ideas with their classmates, but the project
must be an individual e�ort. The vast majority of the students
have earned an A on the project (all who started early enough to
complete all of the required components, including the veri�cation
cases). The students have given the project a positive reception
as they can clearly see how it connects the prior course content
related to numerical solution of systems of ODEs and development
of GUIs for scienti�c applications. The project detailed in this paper
can be easily integrated into a variety of computational science and
engineering elective or required courses. The content is approach-
able for both senior undergraduates and graduate students from
a variety of disciplines given su�cient background in MATLAB
programming and GUI design.

Additional cases studies could be used to adapt the project to
other disciplines such as numerical methods, computational physics
or chemistry, mathematical biology, and other �elds of engineering.
These case studies could readily be developed from textbook ex-
amples in these �elds or published modeling studies such as [1] in
petrochemical manufacturing, [7] in computational pharmacology,
and [24] in mathematical biology.

A VERIFICATION CASE
For the veri�cation case study, a system of ODEs is used as de�ned
and solved in an example in a chemical reaction engineering text-
book [4]. The equations describe the mass and energy balances for
a pair of gas-phase reactions that occur in a plug �ow reactor that
is operated non-isothermally:

A
k1���! B � r1A = k1ACA (4)

2A
k2���! C � r2A = k2AC

2
A (5)
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where A, B, and C are chemical species, ri j is the reaction rate of
the ith reaction with respect to the jth species, and ki j is the kinetic
rate constant for the ith reaction with respect to the jth species.
Pure A is fed at a rate of 100 mol/s, a temperature of 423 K, and a
concentration of 0.1 mol/L. The molar �ow rates of each species,
FA, FB , and FC , and the temperature, T , as functions of the reactor
volume, V , are the quantities of interest. Mole balances on each
species A, B, and C give the ODEs

dFA
dV
= rA (6)

dFB
dV
= rB (7)

dFC
dV
= rC (8)

where ri is the net reaction rate of species i . The initial conditions
are FA(0) = 100 mol/s, FB (0) = 0 mol/s, FC (0) = 0 mol/s, and
T (0) = 423 K.

The corresponding elementary rate laws that describe reactions
1 and 2 from (4) and (5), respectively, are

r1A = �k1ACA (9)

r2A = �k2AC2
A (10)

where CA is the concentration of species A. The relative rates are

r1B = �r1A = k1ACA (11)

r2C = �1
2
r2A =

k2A
2

C2
A (12)

Equations (9)–(12) are combined to yield the net rates,

rA = r1A + r2A = �k1ACA � k2AC
2
A (13)

rB = r1B = k1ACA (14)

rC = r2C =
k2A
2

C2
A (15)

The gas-phase stoichiometry without pressure drop is used to
de�ne the concentration of species A as

CA = CT (0)
FA
FT

T (0)
T

(16)

where the total �ow rate is de�ned by

FT = FA + FB + FC (17)

The rate constants depend on the temperature through the fol-
lowing Arrhenius functions:

k1A = 10 exp

E1
R

✓
1

T (0) �
1
T

◆�
s�1 (18)

k2A = 0.09 exp

E2
R

✓
1

T (0) �
1
T

◆�
L

mol · s (19)

The energy balance for the reactor is
dT

dV
=
Ua(Ta �T ) + r1A�HRx1A + r2A�HRx2A

FACPA + FBCPB + FCCPC
(20)

The values for the remaining parameters representing physical
constants are listed in Table 1.

To summarize, the system of ODEs for the veri�cation case is
given by (6)–(8) and (20) for dFA

dV , dFBdV , dFCdV , and dT
dV , describing

the molar �ow rates of species, A, B, and C , in mol/s and tempera-
ture, T , in K in a non-isothermal plug �ow reactor. The reactions

Table 1: Values of parameters for the veri�cation case study.

Variable Value Units

E1/R 4000 K
E2/R 9000 K
CT (0) 0.1 mol/L

�HRx1A -20,000 J/(mol of A reacted in reaction 1)
�HRx2A -60,000 J/(mol of A reacted in reaction 2)

CPA 90 J/mol· K
CPB 90 J/mol· K
CPC 180 J/mol· K
Ua 4000 J/m3· s· K
Ta 373 K

are at steady-state but vary spatially along the volume of the re-
actor, hence V is the independent variable. The explicit equations
needed to complete the system of equations are given in (9)–(19)
and Table 1.
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