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ABSTRACT
This paper describes introducing rate of change and systems
modeling paradigms and software as tools to increase appre-
ciation for computational science. A similar approach was
used with three di↵erent audiences: freshman liberal arts
majors, junior math education majors, and college faculty
teaching introductory science courses. A description of the
implementation used with each audience and their reactions
to the material is discussed, along with some example prob-
lems that could be used in a variety of courses.
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1. INTRODUCTION
The concepts of rate of change and modeling are addressed

at many levels in the K-14 mathematics curriculum. Some
example student learning outcomes include:

• “Interpret the rate of change and initial value of a
linear function in terms of the situation it models” –
Eighth Grade (Common Core Math Standards) [1]

• “Calculate and interpret the average rate of change of
a function” – High School (Common Core Math Stan-
dards) [2]

• “Find a derivative interpreted as an instantaneous rate
of change” – AP Calculus (ETS) [4]

• “Analyze growth and decay using absolute and relative
change” – Content Learning Outcome for Quantitative
Reasoning (New Mathways Project) [5]

• “Apply the mathematics they know to solve problems
arising in everyday life, society, and the workplace” –
High School (Common Core Math Standards) [2]

• “When making mathematical models, they know that
technology can enable them to visualize the results of
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varying assumptions, explore consequences, and com-
pare predictions with data” – All Levels (Common
Core Math Standards) [3]

• “Apply simple mathematical methods to the solution
of real-world problems” – Quantitative Reasoning for
College Graduates (MAA) [6]

Meeting these learning outcomes provides opportunities
to introduce computation as a modeling tool to students as
early as middle school. In addition, these students can be
acclimated to the notion that computation is an important
part of doing science, hopefully paving the way for more
students to move into HPC.

In this article an outline of steps for introducing a sys-
tems modeling paradigm is presented, along with results
from using software packages to investigate modeling change
with three di↵erent audiences: college freshmen through a
quantitative literacy course; pre-service high school teachers
through a junior level mathematics modeling course; college
faculty in summer workshops. In all three situations, one of
the main goals was to raise the awareness of the importance
of computation in doing science by modeling and solving
non-trivial problems without first teaching the syntax of a
standard programming language. First, consider an example
modeling problem to provide some context.

2. A MOTIVATING EXAMPLE
Suppose rabbits are invading an asparagus patch, and we

wish to investigate how the rabbit population a↵ects the
asparagus patch over time. What assumptions might be
made? While not the only approach, we can start by think-
ing about what might cause increases and decreases in the
number of rabbits and amount of asparagus. Some reason-
able assumptions might be:

1. Rabbits are born, and how many are born depends
upon the number of rabbits present to have o↵spring
and amount of asparagus present to provide energy
from food.

2. Rabbits die, and more rabbits means more competition
for food, space, etc.

3. Asparagus grows steadily.

4. Asparagus is eaten by rabbits when the rabbits can
find asparagus to eat.

The next step in the process is to “mathematize” these
assumptions about the rates of growth and consumption of
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asparagus and the rates of birth and death of the rabbits.
Refining the assumptions:

1. When the number of rabbits or the amount of aspara-
gus increase, so do the rabbit births.

2. When the number of rabbits increases, so does compe-
tition and hence rabbit deaths.

3. Asparagus grows steadily, so the growth rate is some
constant amount.

4. When the number of rabbits or the amount of aspara-
gus increase, more asparagus gets eaten.

What are some mathematical expressions that capture
these ideas? A very simple proportionality argument yields
the following components of the model. Let R(t) represent
the number of rabbits and A(t) represent the amount of as-
paragus at a particular time t.

1. Rabbit births: proportional to both R and A implies
that the increase due to births can be modeled by rb⇥
A ⇥ R, where the proportionality constant rb can be
interpreted as the factor controlling the rabbits’ rate
of reproduction.

2. Rabbit deaths: proportional to R implies a model of
rd ⇥ R, where rd can be interpreted as the fraction of
the rabbit population that dies in a given time period.

3. Asparagus growth: constant ag.

4. Asparagus consumption: ac ⇥R⇥A, where ac can be
interpreted as the fraction of interactions between rab-
bits and asparagus that results in a unit of asparagus
being eaten.

Using these expressions we can build a mathematical for-
mulation for our model, which can take several forms de-
pending on the audience. Working with students who have
calculus backgrounds, the model can be presented as a sys-
tem of di↵erential equations:

dR
dt

= rbAR� rdR

dA
dt

= ag � acRA

R(0) = R0;A(0) = A0

where R0 and A0 represent initial quantities of rabbits and
asparagus. While this approach works well for calculus-
ready students, consider how to approach the problem recur-
sively: “The quantity at a later time (t+ 1) is the quantity
now (t) ± what changed.”

R(t+ 1) = R(t) + rbA(t)R(t)� rdR(t)

A(t+ 1) = A(t) + ag � acR(t)A(t)

R(0) = R0;A(0) = A0

If the goal is spreadsheet use, these equations can be im-
plemented a spreadsheet such as Microsoft Excel, produc-
ing a table of values documenting the changing quantities
over time. Alternately, systems modeling tools allow for

Figure 1: Rabbit-asparagus model in Insightmaker

easy construction of the change formulas. Stella (iseesys-
tems.com/), VensimPLE (vensim.com/), and Insightmaker
(insightmaker.com/) all begin with construction of a dia-
gram as in Figure 1.

All of these systems modeling software environments in-
clude primitives similar to those illustrated in Figure 1: The
changing quantities are represented by rectangles (“stocks”),
rates of change are represented by thick arrows (“flows”), and
interdependencies (“links”) are represented as thin or dashed
arrows. Other inputs, such as parameters, are represented
by plain text or circles.

Once the diagram is completed, each primitive can be ini-
tialized for the specific model. Flows require a formula for
the increase or decrease in each full time step. For example,
in Figure 1 the flow labeled“consumption per time unit”that
represents the rate of decrease of the asparagus contains the
expression:

[asparagus consumption factor]*[Asparagus]*[Rabbits]

This expression is a wordier version of the proportionality
description of asparagus consumption arrived at above, and
all of the software packages use a “clickable list” interface
to build these formulas. Stocks require initial values, which
can be input as constants or as mathematical expressions
involving other elements of the model. Parameters also can
be modeled as constants or expressions.

After entering the relevant mathematics, the systems pack-
ages produce solutions in either tabular or graphical form.
Figure 2 shows the output generated by Insightmaker for the
rabbit-asparagus model with parameters: initial quantities
of 2 rabbits and 20 acres of asparagus; a rabbit birth factor
of 0.1; rabbit death factor of 0.3; asparagus growth factor of
0.4; asparagus consumption factor of 0.2.

One other important consideration for the systems ap-
proach to the solution is selection of the time-step. If the
goal is to mimic change that happens more frequently than
once per unit time (e.g., continuous change), all of the soft-
ware environments allow the time-step to be set to a fraction
smaller than one. In the Rabbit-Asparagus model simula-
tion output (Fig. 2), the time-step is set to 0.125 (i.e., 1/23)
to approximate the continual growth of asparagus. All of
the systems modeling software environments adjust the flow
calculations appropriately for time-steps other than one so
that growth and decay parameters do not have to be recal-
culated by hand.
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Figure 2: Graphical solution from Insightmaker

3. IMPLEMENTING SYSTEMS MODELING
IN THE CLASSROOM

The same general outline for introducing systems model-
ing can be used with many types of students:

1. Introduce a scenario, such as the rabbit-asparagus model.
Choosing population growth allows most audiences to
contribute to the discussion.

2. Draw a diagram similar to one that would be produced
by the software on the board, soliciting suggestions
for what might cause the populations to grow and to
shrink, recording ideas on the diagram (Fig. 3).

3. Encourage the group to identify the most important
components to include in the model, adding arrows to
represent the interdependencies (Fig. 4).

4. Determine values for the parameters. In the absence of
scientifically produced estimates for the parameters, a
reasonable first attempt is to set all growth and decay
parameters to be the same (e.g., 0.1). In addition, the
model requires initial values for each of the populations
and also a value for the time step.

5. Build and run the model in the systems software.

Figure 3: Initial brainstorming board work

Once a working model is produced, ask students to discuss
whether the model and the output makes sense. What does

Figure 4: Refining the model board work

the software appear to be doing? What do the parameters
really represent? Does it make sense that the rates are all
the same? Where should parameter values really come from?
Where do scientists get them? What happens to the solution
if we change them? What time-step is most meaningful?
Why is using a power of two as the time step important
computationally?

Since the goal is often for the students to build their own
models, it is helpful to make available a video of building the
same model; a simple approach is to use screen sharing with
Hangouts on Air (via youtube.com/live dashboard) during
the class to capture the entire conversation. That way stu-
dents can view the video again anytime they need to be
reminded of the intricacies of using the software.

This same approach to introducing systems modeling has
been used with a variety of audiences. Sections 3.1, 3.2,
and 3.3 provide detail on how systems modeling was intro-
duced to three di↵erent audiences. Several common themes
emerged from observations and discussions with these groups
after the modeling activities were completed.

• Computational tools are crucial for solving problems
in science.

• Mathematical formulas can be used to model real sit-
uations.

• Tools that minimize programming allow more students
to experience using computation to solve problems.

• Tools that incorporate diagrams illustrating individual
model components are more engaging and help stu-
dents to focus on individual components of the model
in the construction process.

3.1 Quantitative Literacy Course
As described in the introduction, students in a quantita-

tive literacy (QL) course should have exposure to solving
real-world problems. Systems modeling environments pro-
vide opportunities for students who are not calculus-ready
to explore interesting models and gain experience with using
computational tools.

3.1.1 Implementation

The approach outlined above was used in a one-week unit
on modeling change in a freshman QL course, after which
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the students were given a week to work in groups of three on
creating and analyzing a model for the “Pollution in a Chain
of Lakes” problem (see Section 5). This problem does not
entail much in the way of background scientific information
for the students, and so all of the students could partici-
pate in conversations about how pollution might disperse
in a lake and whether the assumption of immediate mixing
of pollution throughout the water in a lake would lead to
unreasonable solutions.

Prior to this unit, students had significant experience with
building formulas in a spreadsheet for projects in personal
finance and consumer statistics; the spreadsheet was dis-
cussed as an alternate method for finding solutions to the
chain of lakes problem, but students were required to use
the simulation software (Stella in this particular class).

3.1.2 Reactions

During a class debriefing discussion at the completion of
the project, students were asked to submit a reflection on
what they learned from working on the project. Their re-
sponses indicated that they understood better how mathe-
matical expressions could be used to model real situations
and how computers are an important tool in solving prob-
lems. The students also indicated that they liked working
in the visual, simulation environment more than building
formulas in a spreadsheet; the process helped them to “see”
the parts of the model and work on one part at a time.

3.2 Junior Math Modeling Course
The junior-level modeling course is required for preservice

secondary math teachers, an especially important audience
for exposure to modeling and computation given their fu-
ture interactions with high school students. This course
includes modeling change as a major topic in much more
depth (approximately one-quarter of the course) compared
to the QL course described above. The other topics covered
were data modeling, linear programming, and graph / net-
work modeling–all of which required some use of technology
for solution or visualization. At this level, the students have
a calculus and linear algebra background and are proficient
in the use of a computer math system and a spreadsheet.

3.2.1 Implementation

As with the QL course, the discussion of modeling change
began with the process outlined above for brainstorming
about a scenario and creating mathematical formulas for
components of the model, after which students used both a
spreadsheet (Excel) and a computer math system (Maple)
to implement simulations for several problems. Then stu-
dents were introduced to systems modeling software (in this
case Insightmaker), and asked to implement the same prob-
lems in the new environment. For the culminating project
on modeling change, groups of two or three students were
assigned a project from the problems in Section 4, for which
they had to produce a group poster along with individually
written technical reports. They were given the option of
using any of the tools they wished without any attempt to
influence their choice.

3.2.2 Reactions

Over the past two years, 38 of the 52 students taking the
course opted to use Insightmaker, later citing the ease of
use and the ability to easily incorporate more sophisticated

components in their models, such as if-then, delay, and pulse
functions. Similar to the QL responses, several commented
on the ability to view each component of the model indi-
vidually and make progressive improvements to the model
components. Eight of the remaining 14 students who de-
cided to use a di↵erent tool for their mathematical solution
still drew diagrams using Insightmaker to include as part of
the explanation of their model structure in their posters and
reports. Course evaluations were very positive, with several
of the students volunteering comments related to the mod-
eling change portion of the course being their favorite, also
indicating that they saw the relevance of solving problems
computationally and thought that tools like Insightmaker
could be used in their high school classrooms once they be-
came teachers. In comparison, no such comments were made
regarding spreadsheets or computer math systems, although
students also volunteered positive comments on the network
analysis problems and software (another diagram-based sys-
tem).

3.3 Workshops for College Faculty
For two summers, the Computing MATTERS workshops

(computationalscience.net), sponsored by Project XSEDE
and the National Computational Science Institute were held
at several universities in the Eastern and Midwestern US.
During that introductory workshop, college faculty who teach
entry level math and science courses were introduced to com-
puting software, using a context of inquiry-based learning
and modeling change. Most of the participants were already
motivated to incorporate computation into their freshman
courses, but were not sure how to work with students who
may not have any computational background.

3.3.1 Implementation

In three days, the faculty were exposed to a number of
computational tools, including spreadsheets (MS Excel), sys-
tems modeling (Vensim), agent modeling (Agentcubes On-
line), and computer math systems (Sagemath) with approx-
imately one-half of a day spent investigating each tool. As
might be expected, many levels of computational experi-
ence were represented among the participants, but the vast
majority of faculty acquired enough basic knowledge of sys-
tems modeling ideas and software to begin experimenting
with problems from their own fields of study. On the third
day, a portion of the morning and all of the afternoon was
set aside as time for the faculty to experiment more with
tools or material they thought could benefit their teaching.

3.3.2 Reactions

In the flexible time on day three, the majority of faculty
opted to work more on systems modeling ideas, with agent
modeling a close second (both are used to model change).
In discussions with the participants at the end of the work-
shop, it was clear that they saw the value of exposing stu-
dents in introductory courses to these tools as a way to build
understanding of the role computing plays in doing science–
an opinion they came to the workshop with–but now many
were also more confident that they could include compu-
tation without omitting material required by their course
syllabi.

The NCSI follow up survey the for the workshops, admin-
istered by Project XSEDE, revealed that faculty remained
excited about computational thinking and introducing com-
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putational tools to their students even after the end of the
workshop. While the likert scale questions on the survey
did not di↵erentiate between the di↵erent types of work-
shops o↵ered, there were a number responses to the open-
ended question, “[W]hat aspect of your experience in NCSI
has most a↵ected your work?”, that could be clearly asso-
ciated with participants from the Computing MATTERS
workshops. All were positive, and several are reprinted be-
low.

• I think about the classroom material more often in
terms of systems and models, and think about how I
might encourage my students to represent it that way.

• I was not aware of it before, and now see an entire new
realm of teaching and research to explore and imple-
ment on our campus.

• After attending the NCSI workshop I have thought
more about and have recognized the importance of de-
veloping activities and lessons that will introduce my
students to Computational Thinking practices. I have
used some of the software applications from the work-
shop with my students.

• Listening to Dr. Pano↵ discuss how to think about the
processes of computational thinking made me concen-
trate on how I present problem solving in my classes.

• My own personal thought process on what constitutes
a model and how to develop the means of creating
the model using more than one computational tool.
Excel, Agent Sheets, Interactive Physics, NetLogo are
all programs I use in my classes.

• The use of software in my classes. I hace (sic) been us-
ing Vensim to explain physics concepts. Students enjoy
this activity and they improve their concepts compre-
hension.

4. FUTURE DIRECTIONS
As indicated earlier, several common themes emerged from

observations and discussions with these groups after the
modeling activities were completed. In particular, gains
were made in students’ understanding that computation plays
an important role in science and that mathematics can be
used to model real situations. These results have been shared
in several venues: at the 2016 NCCTM State Mathematics
Conference - primarily high school teacher attendees; 2017
NCMATYC Conference - primarily community college fac-
ulty attendees; 2017 ICCS - primarily university faculty at-
tendees. In addition, several follow up activities are planned:

• The success of the material in the QL course has re-
sulted in plans to write a more formal module that
can be used by other faculty teaching the QL course
as either a short (1 week) topic or a longer (3-5 week)
topic.

• The modeling tools will continue to be used in the
junior modeling course, and preservice teachers who
took the junior modeling course will be contacted after
they begin their teaching positions to inquire about the
applicability of the materials to their own classrooms.

5. EXAMPLE SCENARIOS
The following are examples of situations that have been

used in all three implementations. Some are more open
ended than others, but all can be addressed in a manner
similar to that used for the rabbit-asparagus example.

1. Spread of Disease: Consider an island population
and suppose that some small number of people leave
the island and come back, bringing with them an in-
fectious disease. To predict the number of persons at
any time who have the disease, a simple assumption
would be that the change in the number of persons
who catch the disease is some fraction of the number
of possible encounters between susceptible and infected
people. Suppose also that the disease is one for which
recovery results in immunity and it just takes some
set amount of time to recover. Create a model for this
situation.

Here is a data set taken from a (mythical) island of
5000 inhabitants. Do the data support your model,
i.e., are there parameters that make your model come
close to the data)? How long until everyone recovers
and is immune?

t (days) 0 2 6 10
sick people 5 1887 4087 3630

2. Drug Dosage: Clinical studies have shown that a
simple model for the rate at which the concentration of
a drug in the blood stream is decreasing is to assume
the rate is proportional to the concentration of the
drug at that time; the constant of proportionality can
be thought of as the “elimination rate” for the drug. In
addition, it is common for the same amount of a drug
to be administered at regular intervals.

Suppose a certain drug’s elimination rate is 4% per
hour, the minimum e↵ective dosage is 0.1 mg/ml, and
the maximum safe dosage is 0.3 mg/ml. Determine
what size initial dose to deliver via injection and then
how often a repeated dosage of 0.1 milligrams per milliliter
should occur.

3. Pollution in a Chain of Lakes: Suppose a chain of
lakes connects to each other via rivers (like the Great
Lakes) and that there is a pollution source in the inner-
most lake. Suppose we have the following informa-
tion about flow rate / volume: Lake 1 is spring fed
with fresh water; 20% of lake 1 flows into lake 2 each
month, 18% of lake 2 flows into lake 3 each month, and
16% of lake 3 is flushed into the ocean each month.
If 100 kg/month of pollutant is dumped into Lake 1
each month for five months before the leaky pipe is
found, will pollution levels ever exceed 200 kg in any
of the lakes? How long before the pollution is essen-
tially washed out to sea?

4. Harvesting in a Shrimp Farm: Farmed shrimp are
usually raised in an enclosed area, with a known a max-
imum sustainable quantity of shrimp given the amount
of nutrients and the size of the area. Model the rate of
growth of the shrimp population assuming the change
in the size of the population is proportional to the num-
ber of shrimp times a limiting factor that approaches
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0 as the population of shrimp approaches the maxi-
mum sustainable population. Also incorporate plans
to harvest a constant amount of shrimp each month.

Suppose we have the following parameters: maximum
sustainable population = 77000; initial population =
5000. Also experience indicates that for small numbers
of shrimp the population doubles each month. How
does the population grow if we harvest 2000 shrimp
over the course of a month? Can we harvest 5000 each
month without having the population crash? What if
we restock with 500 shrimplets over the course of the
month?

5. Simple Chemical Reaction: A simple chemical re-
action can be thought of as follows: A“reactant”reacts
with an “intermediary” compound to produce a “prod-
uct.” The basic ideas behind the kinetics:

• The rate at which the reactant changes to the
intermediary during the first reaction is propor-
tional to the amount of both the reactant and the
intermediary compounds – both are needed for
the reaction to occur.

• The rate at which the intermediary then converts
to the product during the second reaction is pro-
portional to the amount of the intermediary com-
pound that is present.

• The two reaction rates – usually referred to as
k1 and k2 depend on the specific compounds in-
volved.

Suppose 1000 moles of the reactant and 1 mole of the
intermediary are added to a beaker initially, with re-
action rate constants of 0.005 and 0.05 per second, re-
spectively. How quickly does the reaction occur?
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