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ABSTRACT
The alias feature of the Berkeley Madonna platform allows this 
author to create a chemical kinetics project manual for students, 
who create flow charts solving almost all kinetics problems using 
rate equations.  The versatile and powerful platform allows 
students to explore any chemical kinetics problems, from simple 
(e.g. 1st or 2nd order kinetics) to complex (e.g. stratosphere ozone 
depletion, the Lotka–Volterra mechanism), bypassing complicated 
syntax that is required by most of powerful mathematical 
programs.  This kinetics manual has been successfully 
implemented in Physical Chemistry at UW-Green Bay in the fall 
semester of 2017, with the students’ success rate greater than 
80%.  

Categories and Subject Descriptors
Physical Science and Engineering, Education

General Terms
Algorithms, Documentation, Reliability, Experimentation, Theory 

Keywords
Differential equations, Educational Modules, Excel®, Berkeley 
MadonnaTM, Undergraduate, Lower or upper division of 
undergraduate, chemical kinetics. 

1. INTRODUCTION
Although chemical kinetics is an important subject in chemistry 
with many potential practical applications, the subject has a 
lighter coverage than other topics such as equilibrium.  In the 
second semester of general chemistry (Gen-Chem, there is only 
one chapter (out of 8 chapters) dedicated to kinetics.   

Furthermore, when chemical kinetics is introduced to the Gen-
Chem students, they were offered formulas such as first-order and  
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2nd-order equations which students learn through rote memory, 
because most of them had not learned calculus before taking the 
Gen-Chem classes. The upper-division undergraduate students 
who take “Thermodynamics and Kinetics” classes do have more 
opportunity to study the kinetics in more detail and use more 
complex equations.  Those students can use calculus to derive and 
understand kinetic equations.  Because of the resource constraint, 
laboratory experiments that allow students to verify their 
analytical solutions in kinetics are quite limited  

The upper-division students may rely on computer algebra 
software (such as Maple or Mathcad codes) to solve more 
complex and interesting kinetics problems such as the 
Stratospheric Ozone depletion Model. Numerical codes for 
solving chemical kinetics are available in numerous publications 
[1-7].  Bentenitis [8] studied reaction mechanisms based on a 
stochastic simulation approach using the Chemical Kinetics 
Simulator (CKS) program[9]. Bigger [10] guided students to 
explore six fundamental kinetic processes using the ChemKinetics 
software.   

A flow-chart based VensimTM model was presented by Metz [11, 
12] in his “Computational Chemistry” manual under cCWCS
(Chemistry Collaborative Workshop for Community Scholars) in
2015.   Berkeley MadonnaTM [13-14] that includes a chemistry
editor module has also published kinetic application examples.
Applications of system-dynamics based software other than
Vensim and Berkeley Madonna, such as STELLA [15], Simile
[16], VisSim[17], etc have also been published, mostly in Journal
of Chemical Education [18-21]. Almost all the published works
cited use box and pipe diagram methods to solve kinetic
problems. An Alias-like approach was presented by Soltzberg at
219th National American Chemical Society (ACS) meeting in
2000, and his work was cited by Metz [22] in his kinetics
presentation for his Computational Chemistry for Chemical
Educators (CCCE).

In this work, I select Berkeley MadonnaTM as the platform1.  The 
alias2 feature of this platform allows students to create rate-

1 Berkeley Madonna has a free demo version that students can 
download and practice.  Even if students choose to purchase, it 
is relatively low cost.  The website for download is 
http://www.berkeleymadonna.com/index.php?route=informatio
n/static&path=bmdownloads.tpl. 
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equation-constructed flow charts to solve simple or complex 
kinetic problems.  The rate equations that students write on the 
code are exactly the same as they learn from physical chemistry 
textbooks. Students can also by-pass much complicated syntax 
[23] to create the code, unlike other mathematical programs such
as MapleTM, MathematicaTM, or MathcadTM. Once the code is
created with the Berkeley MadonnaTM platform, students can
focus on the interpretations of the results generated from the code
and engage in deep learning based on insights from the results.

The applications of the Berkeley MadonnaTM code for 
pedagogical purposes is illustrated in the following examples.  

2. MODULES AND PEDAGOGIES

The modules3 consist of five initial exercises to assist students in 
understanding the concepts of: (1) first and 2nd order reactions, (2) 
equilibrium, (3) rate-determining step, (4) steady-state 
approximation, (5) enzyme kinetics. The first example is a tutorial 
helping students learn about the Berkeley Madonna code. 
Examples (2) to (5) are the modules for students to gain insights 
through the model outputs of different experimental conditions 
using the code.  As students become more proficient in using the 
dynamic software, they are challenged to develop a dynamic 
system analyzing stratospheric ozone depletion. Each exercise is 
designed to allow students to build a kinetic model based on the 
Berkeley Madonna software, to export the parameters from the 
kinetic model to an Excel spreadsheet, and to explore key kinetic 
concepts from the Excel spreadsheet. 

2.1 First order and 2nd order reaction 
The models I choose to illustrate are purposely different from the 
conventional way of building the models.  For example, for the 
first-order reaction, the conventional way of building the model 
looks like the following graph (Figure-1) 

Figure-1 A conventional Berkeley Madonna model for the 
first-order reaction, AàB with the rate constant k. 

2 It must be acknowledged that dynamic software other than 
Berkeley Madonna also has ‘alias’  like feature such as shadow 
variable in Vensim and ghost variable.  

3 All reactions discussed in this manuscript refers to elementary 
step reactions that actually happen in the molecular level. 
Differential equations to represent the rate of appearance or 
disappearance can therefore be written as represented in each 
molecular elementary step reaction. 

Although the model built this way is quick and intuitive, the 
equation students write for J1 is counter-intuitive: 
J1=k[A]    [Equation 1]

instead of  -k [A].  Most of the flow-chart based kinetic models as 
published [18-21] fall into this category.  

In this module, students will learn to build the model as shown in 
Figure-2 

Figure-2 A tutorial Berkeley Madonna model for the first-
order reaction, AàB with the rate constant k. 
The new model allows students to write d[A]/dt and d[B]/dt 
consistently with what they learn in the classroom: 
d[A]/dt = - k [A]  ; d[B]/dt = k [A]   [Equation 2]

After running the model, a chart of both [A] and [B] as a function 
of time are shown as in Figure-3. 

Figure-3 Concentrations of [A] and [B] as a function of time 
for the first order reaction.  [A]o=10, [B]o=0, k=1. 
When ln([A]) is plotted against time, a straight line is shown in 
Figure 4, indicative that the model built in Figure 2 is correct. 
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Figure-4 A plot of ln([A]) as a function of time for the 1st  
order reaction: A à B;  A  [A]o=10, [B]o=0, k=1.  The slope is -
k, while the intercept is Ln([A]o) 
 

In building the 1st order reaction model shown in Figure-2, 
students need to use the alias icon in Berkeley MadonnaTM. A 
tutorial for building a chemistry reaction model using the alias 
icon is presented in the supplementary material. 
Similarly, the 2nd order kinetics can be built as shown in Figure 5: 

 
Figure-5 A tutorial Berkeley Madonna model for the 2nd order 
reaction, 2AàB with the rate constant k.  [A]o=10, [B]o=0, k=1 
The differential equation expression for the 2nd order reaction is: 
d[A]/dt = - 2 k [A]2  ; d[B]/dt = k [A]2   [Equation 3] 
                                               

The concentrations of both [A] and [B] as a function of time are 
shown in Figure-6. 

 
Figure-6 Concentrations of [A] and [B] as a function of time 
for the 2nd order reaction: 2 A à B;  A  [A]o=10, [B]o=0, k=1. 
A key signature of the 2nd-order reaction is that when 1/[A] is 
plotted against time, a linear plot is obtained.  This is indeed the 
case: 
 

 
Figure-7 A plot of 1/[A] as a function of time for the 2nd order 
reaction: 2 A à B;  A  [A]o=10, [B]o=0, k=1.  The slope is 2 k, 
while the intercept is 1/[A]o 

For upper-level students, the 1st and the 2nd order reactions can be 
used as an initial tutorial for learning Berkeley MadonnaTM code.  
On the other hand, the spreadsheets generated from both models 
can be used as teaching materials for general chemistry students 
learning about the kinetics. 

2.2 Equilibrium concept  
 
The mathematical model to illustrate the equilibrium concept is 
shown in Equation [4]  
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Equation [4] 

 

Following the tutorial presented in the first example for both the 
1st or the 2nd order reactions, the finished flow chart will resemble 
the graph in Figure-8.  The initial conditions and rate constants 
are: [A]o= 10, [B]o=0, k1=2, k2=1. The complete code is attached 
in the supporting materials.   
 
 

 
Figure-8:  A flow chart to illustrate the equilibrium concept. 
 
The differential equations for Equation [4] are: 

d[A]/dt = -k1[A] + k2[B]                   d[B]/dt = k1[A]-k2[B]       
[Equation 5] 

The final chart plotting both [A] and [B] as a function of time is 
shown in Figure-9 
 

 
 

Figure-9 Concentrations of [A] and [B] as a function of time 
for the equilibrium reaction between A and B ;  [A]o=10, 
[B]o=0, k1=2, k2=1 
Madonna allows students to print out results in Excel format.  
When complete, the students are asked to answer the following 
questions: 
[1] What time does the reaction reach equilibrium? 

[2] What are the concentrations of [A] and [B] when the reaction 
reaches equilibrium? What is the equilibrium constant of the 
reaction? 

The spreadsheet can also be used in general chemistry without 
asking students to build the flow chart model. Upper-level 
students can be challenged to build the model from the scratch 
and explain questions [1] and [2] shown above.  

2.3 Rate-determining step 
For a sequential reaction shown in Figure 10, the concept of the 
rate-determining step implies that the rate of the product 
formation is determined by the slowest rate constant in this 
sequential reaction.  For example, in Figure 10, if k2 << k1, or k3, 
then [D] should be determined by k2.  Mathematically, it is 
expressed in Eq. 6. 

)1(][~][ 2tk
o eAD --        [Equation 6] 

                                                                               

 
Figure-10:  A flow chart to illustrate the rate-determining-step 
concept. 
In the flow chart, the initial concentrations are [A]o=100, 
[B]o=[C]o=[D]o=0.  Rate constants are: k1=k3=10, k2=0.1 
The Berkeley Madonna model when finished should look like 
Figure 11 
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Figure-11:  A complete Madonna model to illustrate the rate-
determining-step concept. AàBàCàD in which BàC is the 
rate-determining step with k2=0.1. 
The differential equations that students need to write for the 
success of this model is: 
d[A]/dt = - k1[A],  d[B]/dt = k1[A]-k2[B],  d[C]/dt = k2[B]-k3[C],  
d[D]/dt =k3[C]    [Equation 7] 
                                                                                                                           
When [D] from the Excel spreadsheet (generated from the 
Madonna model) is compared against the plot obtained from 
Equation 5, they are almost identical as shown in Figure 12.  
Upper level students will be asked to generate the model from 
scratch.  They are asked not only to generate the graph as shown 
in Figure 12, but also play with the numerical values of k1, k2, and 
k3 to draw conclusions about under what kind of conditions do 
rate-determining step kinetics exist. 

 
Figure-12:  Excel output graph to illustrate the concentration 
changes of product [D] based on the Madonna output and [D] 
based on Equation 6. 
 

2.4 The steady-state approximation 
 
A flow chart to illustrate steady-state kinetics is illustrated in 
Figure-13, with the constraint that k2>>k1 so that d[B]/dt = 0.   

 

Figure-13:  A flow chart to illustrate the steady-state 
equilibrium concept. 
 
This implies that after an induction period in which the 
concentration of the intermediate, B, rises from zero, and during 
the major part of the reaction, the rate changes of the intermediate 
is negligibly small. The essential part of this exercise is that the 
intermediate concentration [B] should remain constant with time.  
A Berkley Madonna model is presented in Figure 14. 
 

 
Figure-14:  A complete Madonna model to illustrate the 
steady-state kinetics concept. AàBàC in which the rate 
constant k2 for  BàC is much greater than the rate constant 
k1 for AàB.  [A]o =100, [B]o =0, [C]o =0, k1 =0.1, k2 =10. 
The differential equations that student will write are:  d[A]/dt = -
k1[A],  d[B]/dt = k1[A] –k2[B],  d[C]/dt = k2[C].                                                           
[Equation 8] 

Figure-15 illustrates that d[B]/dt = 0 in which [B] is shown as the 
orange plot. 
 

 
Figure-15:  Excel output graph to illustrate the steady-state 
kinetics concept in which d[B]/dt =0 (shown orange).  The 
reactant, [A] (blue) decreases while the product [C] (grey) 
increases with time. 
 
Upper-level students are asked to reproduce this steady-state 
approximation from scratch.  The Excel spreadsheet can be used 
for general chemistry students 
.  

2.5 The enzyme kinetics approximation and 
the Lineweaver-Burk Equation 
A schematic description of enzyme kinetics is illustrated as 
follows:  
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[Equation 9] 

 

In this mechanism, E is the enzyme, S is the substrate, ES is the 
complex, and P is the product.  In the limit where the initial 
substrate concentration is substantially greater than that of the 
enzyme ([S]o>>[E]o), the rate of product formation [24] is given 
by 

[ ] [ ] [ ]
[ ] mo

oo
o KS

ESk
dt
Pd

R
+

== 3       

                                                                          [Equation 10] 
 
The composite constant, Km, in Eq.6 is referred to as the Michaelis 
constant of the enzyme kinetics.  Km is given by [24] 

1

32

k
kk

Km
+

=               

                                                                                   [Equation 11] 

Eq.10 is referred to as the Michaelis-Menten rate law. A 
reciprocal plot of the reaction rate can also be constructed by 
inverting Eq.10 which results in the Linderweaver-Burk equation,  

[ ]o
m

o SR
K

RR
111

maxmax

+=          

                                                                         [Equation 12] 
where RMAX=K3 [E]O . 

In this equation form, the plot of 1/Ro against 1/[S]o, will yield a 
straight line with a slope of Km/Rmax and an intercept of 1/Rmax, 
with Rmax = k3 [E]o, and Km given by Equation 11. 
 

 
Figure-16:  A Berkeley Madonna model to illustrate the 
enzyme kinetics mechanism. K1=2, k2=20, k3=2, [E]o=2.3, 
[ES]o=0, [P]o=0, [S]o varies from 2 to 20. 

In this model, the differential equations expressing this kinetics 
are: 
d[E]/dt = -k1 [E][S] +k2 [ES] + k3 [ES] 
d[S]/dt = -k1 [E][S] + k2 [ES]                                                                       
d[P]/dt = k3 [ES] 
d[ES]/dt = k2 [ES] - k3 [ES]  

[Equation 13] 
 

The chart generated from the Excel spreadsheet is shown in 
Figure-17. 

 
Figure-17:  Excel output graph to illustrate the enzyme 
kinetics concept in which d[ES]/dt =0 (shown grey).  Other 
outputs include [S] (substrate, orange), product [P] (yellow), 
enzyme [E] (blue) 
For our Madonna model we have Rmax = 4.6, KM =11. The plot of 
1/R versus 1/[S]o shown in Figure-18 is called the Lineweaver-
Burk plot.  A regression equation of this plot gives a slope of  
1.011, and the intercept = 0.0032.  These results deviate from the 
theoretical value in which the slope (KM/Rmax ) is 2.3913 and the 
intercept (1/Rmax ) is 0.2174. The percent of deviation are 81% for 
the slope and 195% for the intercept.  This deviation becomes 
smaller if we use a smaller initial enzyme concentration.   For 
example, when the initial enzyme concentration is 10-fold 
smaller, or [E]o = 0.23 instead of [E]o = 2.3, then  Rmax = 0.46, 
KM =11, slope= KM/Rmax = 23.913, intercept=1/Rmax = 2.174. The 
new Lineweaver-Burk plot yields a slope of 26.85, an intercept = 
2.0342.  These values only deviate from the theoretical values by 
11.5% for the slope, and 6.6%. for the intercept.  In the laboratory 
set up, usually the enzyme concentration is in the nM range while 
the substrate concentrations are in the mM range, so the 
Lineweaver-Burk equation is a useful approximation for finding 
the Km values. 
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Figure-18:  The Lineweaver-Burk plot of the enzyme kinetics.   
 

2.6 Stratospheric ozone depletion kinetics 
model 
Stratospheric (10-50 km above the sea level) ozone protects living 
beings from the harmful UV radiation from the sun.  It was 
reported [25] that there was a 2.9% decline of stratosphere ozone 
from 1973 to 1997.  The decline was due to the excess 
chlorofluorohydrocarbons (used as a refrigerant) released to the 
stratosphere.  In 1995, a Nobel Prize was awarded to Professors 
Paul Crutzen, Mario Molina, and F. Sherwood Rowland for this 
important discovery.  
 
Understanding the chemistry that controls the formation of the 
ozone layer, and the effects of man-made chemicals on the ozone 
layer, are areas in which physical chemists can impact society. 
Both experimental data from the laboratory and field data 
collected from the atmosphere are available [26].  In this unit, 
students learn to use Berkeley Madonna code to express both the 
flow-charts and differential equations for the depletion of 
stratosphere ozone due to chlorofluorohydrocarbons.  
 
The elementary steps of the chemical reactions are shown as 
follows: 
 
Step 1           O2 + hν à 2 O                                k1 = 3 x 10 -12 s -1 
 
Step 2         M + O + O2 à M + O3              k2 = 1.2 x 10 -33 cm 6 

molecule -2 s -1   
 
Step 3       O3 + hν à O + O2                            k3 = 5.5 x 10 -4 s -1  
 
Step 4         O + O3 à 2 O2                          k4 = 6.9 x 10 -16 cm 3 
molecule -1 s -1 

 

Step 5        O + ClO à Cl + O2                   k5 = 4.12 x 10-11 cm 3 
molecule -1 s -1 
 
Step 6         Cl + O3 à ClO + O2                k6 = 8.89 x 10 -12 cm 3 
molecule -1 s -1 
 

                                                                                            
[Equation 14] 

 
Steps 1-4 are the elementary steps of the Chapman mechanism.  
Step-2 is the essential step of the ozone formation.  Because it 
involves a 3-body collision of O, O2, and an inert solid, M, the 
rate constant k2 is many orders of magnitude smaller than the rate 
constants of other steps.  The much smaller rate constant of ozone 
formation in the Chapman mechanism makes it susceptible to 
depletion in the presence of chlorine oxygen compounds as shown 
in steps 5-6. 
 
The initial concentrations of O, O2, O3, M, ClO, and Cl  taken 
from the same NASA resources [26] are: 
 
[O]o = 1 x 10 7   molecules/cm3 

 
[O2]o = 2 x 10 17  molecules/cm3 
 
[O3]o = 7 x 10 12 molecules/cm3 
 

[M]o = 9 x 10 17 molecules/cm3 
 
[ClO]o = 1 x 10 8 molecules/cm3 
 
[Cl]o = 5 x 10 4 molecules/cm 3 
 
With [Equation 14] and the initial concentrations of each species, 
students are asked to construct two Berkeley Madonna flow 
charts:  One for the Chapman mechanism (Steps 1-4 in Equation 
14); the other including steps 5-6 in addition to the Chapman 
mechanism.   
 
The flow chart for the Chapman mechanism should look like the 
chart shown in Figure 19. 
 

 
 

Figure-19:  A Berkeley Madonna model to illustrate the 
Chapman mechanism. The O1, O2, and O3 shown in the chart 
stand for [O], [O2], and [O3] 
The differential equations for the Chapman mechanism (Step-1 to 
Step-4) are: 
d[O]/dt = 2 k1 [O2] – k2 [M][O][O2] + k3 [O3] – k4 [O][O3] 
d[O2]/dt = -k1 [O2] –k2 [M][O][O2] + k3 [O3] + 2 k4 [O][O3]   

                  [Equation 15] 

Figure-19:  A Berkeley Madonna model to illustrate the 
Chapman mechanism. The O1, O2, and O3 shown in the chart 
stand for [O], [O2], and [O3] 
The differential equations for the Chapman mechanism (Step-1 to 
Step-4) are: 
d[O]/dt = 2 k1 [O2] – k2 [M][O][O2] + k3 [O3] – k4 [O][O3] 

d[O2]/dt = -k1 [O2] –k2 [M][O][O2] + k3 [O3] + 2 k4 [O][O3]                    
[Equation 15] 

The complete mechanism is represented in the Berkeley Madonna 
flow chart attached as supplementary material to this manuscript. 
The Excel output of [O3] in the absence and in the presence of 
ClOx interference is shown in Figure 20. 
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Figure-20:  Ozone concentrations as a function of time in the 
absence and presence of ClOx interference.   
 

3.  PROJECTS AND EXERCISES 
 
A tutorial to use differential-equation constructed flow charts with 
the Berkeley Madonna is presented as supplementary material to 
this manuscript.  Although the following projects and exercises 
are for upper-level students, some of the Excel output can be used 
for general chemistry students. 
 
3.1 First-order kinetics:   AàB with rate 
constant k1=1, and [A]o=10 
 

(1)  Write differential equations for d[A]/dt, and d[B]/dt. 
(2)  Following the tutorial, construct Berkeley Madonna 

flow charts representing d[A]/dt, and d[B]/dt. 
(3) After running the program, proceed to save the results ( 

[A] and [B] as a function of time) in Excel© format. 
(4) Plot [A] and [B] as a function of time, and discuss the 

results. 
(5) Create another column for ln([A]), and plot ln([A]) as a 

function of time.  Discuss the results. 
(6) Create another column for [A]o(1-e-k

1
t). Plot both [B] 

and [A]o(1-e-k
1
t) as a function of time and discuss the 

results. 

3.2 Equilibrium concept 
 

The equilibrium concept is represented as: 
 

 
with k1=2, and k2=1.  The initial concentrations for [A] and [B] 
are:  [A]o=10, and [B]o= 0. 
 
[1] What is an equilibrium?  What is the expected equilibrium 
constant even before running the program? 
[2] Write differential equations for d[A]/dt and d[B]/dt for this 
equilibrium. 
[3] Construct Berkeley Madonna flow charts based on the 
differential equations for d[A]/dt and d[B]/dt.  
[4] Run the code and save the Excel outputs.  Study the Excel 
output and answer the following questions: 

(i) Approximately when do [A] and [B] reach equilibrium? 
(ii) What are the equilibrium concentrations for [A] and [B]  
(iii) What is the equilibrium constant? 
(iv) Show that the equilibrium constant K = k1/k2 

 
3.3 Rate-determining step kinetics 
 
In this exercise, students are ask to construct differential equation-
based Madonna flow charts for the following diagram: 
 

	
The inputs for the rate constants and initial concentrations of 
species are: [A]o=100, [B]o=[C]o=[D]o=0, k1=k3=10, k2=0.1. 

[1] Express in words what ‘the rate-determining-step’ means in 
chemical kinetics. 

[2] Write differential equations for d[A]/dt,  d[B]/dt, d[C]/dt, and 
d[D]/dt. 

[3] Construct Berkeley Madonna flow charts based on this set of 
differential equations with proper inputs for k1, k2, k3, [A]o, [B]o, 
[C]o and [D]o. 

[4] Run the code and study the Excel outputs by creating another 
column with the equation form, [A]o (1- e –k

2
 t).  Plot both [D] and 

[A]o (1- e –k
2
 t) together as a function of time, and discuss the 

results. 
 
3.4 The Steady-state approximation 
 
In this exercise, students are asked to construct a differential 
equation based Berkeley Madonna chart diagram such that d[B]/dt 
=0 in the following flow chart. 
 

	
(1) Write differential equations for d[A]/dt, d[B]/dt, and 

d[C]/dt. 
(2) Construct differential equation-based Berkeley 

Madonna chart diagrams with initial k1=0.5, k2=20, 
[A]o =10, [B]o=0, [C]o=0. 

(3) Run the code, and save the results in Excel format.  Plot 
[A], [B], and [C] with time.  Also record d[B]/dt at time 
= 10 s. 

(4) Change the ratio of k1/k2 and observe how d[B]/dt 
changes with the ratio. 

(5) Change [A]o and observe how d[B]/dt changes with 
[A]o.   

 
3.5 Enzyme kinetics 

 
In this exercise, students are asked to construct a differential 
equation-based Berkeley Madonna chart diagram based on the 
enzyme kinetics flow chart diagram shown below: 
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(1) Write differential equations for d[E]/dt, d[S]/dt, 
d[ES]/dt, and d[P]/dt. 

(2) Construct differential equation based Berkeley Madonna 
chart diagrams with initial inputs of [E]o =2.3, k1=2, 
k2=20, k3=2, [S]o=2. 

(3) Run the code and plot [E], [S], [P], and [ES] with time. 
(4) Record d[P]/dt, and d[ES]/dt at 0.1 s.  
(5) Repeat the procedures of (3) and (4), but with [S]o =5, 

10, 20 then record the new d[P]/dt and d[ES]/dt at 0.1 s 
for each new [S]o.    

(6) Construct a Lineweaver-Burk plot, obtaining the slope 
and the intercept of the plot, and compare the values with 
the theoretical values (slope = Km/Rmax, intercept = 
1/Rmax, Rmax =k3 [E]o, Km =((k2+k3)/k1.).  Calculate the 
percent of error between your experimental value (from 
the chart) and theoretical values (from the rate constants 
and the initial enzyme concentration). 

(7) Repeat procedures (3), (4) (5) and (6) but with the new 
initial enzyme concentration of [E]o = 0.23.   

(8) Report your finding in words that discuss the conditions 
in which the Lineweaver-Burk plot applies to finding Km 
in enzyme kinetics problems. 
 

3.6 Stratospheric Ozone 
 
In this more advanced unit, students are challenged to apply their 
skills to solve the stratospheric ozone depletion problems.  The 
kinetics of stratospheric ozone consists of two parts: The 
Chapman mechanism (step 1-step 4) for the ozone formation, and 
the chloro-carbon ozone depletion (step 5-step 6).  They are 
summarized as follows: 
 

	
(1) Write differential equations for d[O]/dt, d[O2]/dt. 

d{O3]/dt, for Step-1 to Step-4; the other for d[O]/dt, 
d[O2]/dt. d{O3]/dt , d[ClO]/dt and d[Cl]/dt. for Step-1 
to Step-6. 

(2) Construct differential equation-based Berkeley 
Madonna chart diagrams using the rate constants given 
and initial conditions for: [O]o =  1 x 10 7, [O2]o = 2 x 
10 17,[O3]o = 7 x 10 12,  [M]= 9 x 10 17, [ClO]o =  1 x 10 
8  , and [Cl]o = 5 x 10 4 molecules/cm 3. 

(3) Run the code twice, once for Step-1 to Step-4; the other 
for Step-1 to Step- 6.  The parameters used for running 
these two codes are:  Numerical method Rosenbrock 
(stiff), stop-time = 1.5 x 107, ΔT min = 500,  ΔT max 
=1000, ΔT out= 0, tolerance = 0.01. 

(4) Plot [O3] versus t, once for Step 1-Step 4; the other for 
Step-1 to Step-6 

(5) Discuss the results of your plots. 
 

4.  SELECTIVE ANSWERS TO THE 
PROJECTS AND  EXERCISES 
 
4.1 First-order kinetics:   AàB with rate 
constant k1=1, and [A]o=10 
 
d[A]/dt = - k1 [A],  d[B]/dt = k1 [A]  ; [A] = [A]o e –k

1
 t, [B]= [A]o 

(1- e –k
1
 t) 

 
A plot of ln[A] against t will give a straight line with a slope of  
–k1. The Excel output for [B] should be the same as   
[A]o (1- e –k

1
 t). 

 
4.2 Equilibrium concept 
 
An equilibrium is reached when the rates of forward and 
backward reactions are equal.  When k1 =2, and k2 =1, the 
forward rate is k1 [A], and the backward rate is k2 [B],  k1 [A] = k2 
[B].  The equilibrium constant, K, K = [B]/[A] = k1/k2.   
 
4.3 Rate-determining step kinetics 
 
When a given step is the rate-determining step, the rate constant 
for this specific step is many orders of magnitude smaller than the 
rate constants of the other steps.  In this case, the rate of product 
formation is determined by the rate constant for this rate-
determining step.  Thus, if rate constant of the rate-determining 
step is k2, then [P] ~ [A]o (1 – e –k

2
 t). 

 
4.4 The Steady-state approximation 
 
In a mechanism of AàBàC, B is the intermediate.  The steady-
state approximation relies on the premise that d[B]/dt =0. To 
make this approximation valid, as soon as B is formed, it is 
immediately converted into C, or k2 (rate constant for BàC) is 
many orders of magnitude larger than k1 (rate constant for AàB).  
Under this circumstance, d[B]/dt ~0. 
 
4.5 Enzyme kinetics 
 
When differential equations are properly written and the Berkeley 
Madonna chart diagrams are properly constructed, a double 
reciprocal plot of 1/ (d[P]/dt) versus 1/[S]o  will give a straight 
line with a slope = Km/Rmax, and intercept = 1/Rmax in which Rmax = 
k3 [E]o, Km = (k2 + k3)/k1.  The agreement between the 
experimental value (from the double-reciprocal plot) and the 
theoretical plot (from Equation 12) will improve as the initial 
enzyme concentration is reduced. 
 
4.6 Stratosphere ozone 
 
The most important part of this exercise is to properly write the 
differential equations for d[O]/dt, d[O2]/dt, and d[O3]/dt for the 
Chapman mechanism (Step-1 to Step 4) given in the exercises;  
d[O]/dt, d[O2]/dt, d[O3]/dt, d[ClO]/dt, and d[Cl]/dt for the 
complete mechanism (Step-1 to Step-6). 
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The differential equations for the Chapman mechanism (Step-1 to 
Step-4) are: 
d[O]/dt = 2 k1 [O2] – k2 [M][O][O2] + k3 [O3] – k4 [O][O3] 
d[O2]/dt = -k1 [O2] –k2 [M][O][O2] + k3 [O3] + 2 k4 [O][O3]                     
d[O3]/dt = k2[M][O][O2] –k3[O3] –k4 [O][O3] 

When Steps 5-6 are involved, we would modify d[O]/dt, d[O2]/dt, 
and d[O3]/dt to include both Cl and ClO species. 

d[O]/dt = 2 k1 [O2] – k2 [M][O][O2] + k3 [O3] – k4 [O][O3]-
k5[O][ClO] 

d[O2]/dt = -k1 [O2] –k2 [M][O][O2] + k3 [O3] + 2 k4 
[O][O3]+k5[O][ClO]+ k6 [Cl][O3]                     
d[O3]/dt = k2[M][O][O2] –k3[O3] –k4 [O][O3]-k6 [Cl][O3]                     
d[ClO]/dt = -k5[O][ClO] + k6 [Cl] [O3] 

d[Cl]/dt = k5 [O][ClO] –k6 [Cl] [O3] 
 
When Berkeley Madonna chart diagrams are properly constructed 
and the output is saved into an Excel format, a plot of [O3] versus 
time with and without Cl/ClO interference will look like Figure 
20.	
	
5.  TESTING AND EVALUATION 
 
5.1 General chemistry testing and evaluations 
 
During the spring semester of 2017, two weeks before the first 
exam for a general chemistry class, I provided an Excel output of 
first-order kinetics, AàB with rate constant k1.  I asked students to 
plot ln[A] versus t, using the regression equation to find the slope, 
and the rate constant k1.  Fifteen students out of 130 students 
made a mistake of taking the slope (which is a negative number) 
as k1.  After explanations to the class, when a similar question 
appeared in the first exam, only 6 out of 130 students made the 
same mistake. 
 
5.2 Upper-level chemistry testing and 
evaluations  
 
During the fall semester of 2016, I implemented VensimTM 
projects almost exactly the same as what was presented during the 
2015 cCWCS (Chemistry Collaboration and Workshop for 
Community Scholars) to my students of Thermodynamics and 
Kinetics class of 12 students.  In that study, 10 out 12 students 
were able to completely follow the tutorial, create the diagrams 
and answer the questions correctly; 2 out 10 did not answer 
questions related to the equilibrium concept correctly even though 
they had created the model correctly. Even with this success, 
students were unable to obtain a realistic Michaelis constant, KM 
through the Lineweaver-Burk plot. The class soon realized that 
VensimTM was unable to model stratosphere ozone depletion 
problems. 
 
The Berkeley Madonna code was implemented in the fall 
semester of 2017.  The grading rubric is (1) Stratosphere ozone, 
25/60; (2) Enzyme kinetics and Lineweaver-Weaver plot, 15/60; 
(3) First order kinetics, 5/60; (4) Equilibrium Concept, 5/60; (5) 
Rate-Determining Step, 5/60; and (6) Steady-State 
Approximation, 5/60.  The average grade for this project was 

82%. Grade distribution for this project for 26 students is shown 
in Figure-21. 
 

	
	
Figure 21 Grade distribution for the Berkeley Madonna 
Project Introduced at UW-Green Bay in Fall, 2017. 
 
About 5 out of 26 students did not succeed in the Stratospheric 
Ozone problem.  The common mistake was that in creating [O3] 
versus time in the presence of Cl and ClO species, they did not 
create flow charts that include d[Cl]/dt, and d[ClO]/dt.  This 
mistake can be easily remedied by writing instructions in the 
manual if this project manual is introduced in 2018, or adopted by 
other physical chemistry instructors.  Also, approximately 6 
students lost points in the 1st-order kinetics plot to show a match 
between the product [B] versus time and [A]0 (1-exp(-k1t)).  If this 
manual is introduced again in 2018, I would add an additional 
assignment asking students to derive [B(t)] = [A]0 (1-exp(-k1t)).  
This way, students will appreciate why this plot is included in the 
assignment. 
 
At the end of the semester, the final exam (take-home exam) 
included a project of using the Berkeley Madonna code to create 
the Lotka–Volterra mechanism [27] .  A successful code will 
create a chart similar to that shown in Figure 22.  Everyone 
succeeded for this problem in the final exam. 
 

	
 
Figure-22 The oscillation pattern of the [X], and [Y], for the 
Lotka–Volterra mechanism. 
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6. CONCLUSION 
 
Berkeley Madonna code was successfully adopted as a powerful 
and versatile platform that offers substantial pedagogical 
advantages for students to quickly create code and engage in 
interpretations.  The learning outcomes for upper-level students at 
UW-Green Bay are encouraging.  Instructors can also use the 
platform to create Excel spreadsheets for Gen-Chem students 
learning key concepts of chemical kinetics. 
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