
Computational approaches to scattering by microspheres

Reed M. Hodges
Georgia Southern University

P.O. Box 8031
Statesboro, GA 30460

rh04272@georgiasouthern.edu

Kelvin Rosado-Ayala
Georgia Southern University

P.O. Box 8031
Statesboro, GA 30460

kr04537@georgiasouthern.edu

Maxim Durach
∗

Georgia Southern University
P.O. Box 8031

Statesboro, GA 30460
mdurach@georgiasouthern.edu

ABSTRACT
Mie theory is used to model the scattering off of wavelength-
sized microspheres. It has numerous applications for many
different geometries of spheres. The calculations of the elec-
tromagnetic fields involve large sums over vector spherical
harmonics. Thus, the simple task of calculating the fields,
along with additional analytical tools such as cross sections
and intensities, require large summations that are conducive
to high performance computing. In this paper, we derive
Mie theory from first principles, and detail the process and
results of programming Mie theory physics in Fortran 95.
We describe the theoretical background specific to the mi-
crospheres in our system and the procedure of translating
functions to Fortran. We then outline the process of opti-
mizing the code and parallelizing various functions, compar-
ing efficiencies and runtimes. The shorter runtimes of the
Fortran functions are then compared to their correspond-
ing functions in Wolfram Mathematica. Fortran has shorter
runtimes than Mathematica by between one and four orders
of magnitude for our code. Parallelization further reduces
the runtimes of the Fortran code for large jobs. Finally, vari-
ous plots and data related to scattering by dielectric spheres
are presented.

Keywords
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1. INTRODUCTION
Scattering by wavelength-sized microspheres involves a so-

lution to Maxwell’s equations derived by Gustav Mie and
published in 1908. Several prominent books, such as those
by Stratton [8] and Bohren & Huffman [1], provide a suc-
cinct derivation of Mie theory. But these derivations rely
heavily on previous knowledge of the material and leave out
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many details. In this paper, we derive the theory from first
principles and explicitly state most of the steps involved.

Microspheres exhibit many interesting photonic and plas-
monic properties. When composed of pure dielectric and
with radii on the order of the incident wavelength, they
produce photonic nanojets in the shadow region [2]. These
nanojets are regions of greatly increased intensity, and are
reminiscent of a lensing effect in ray optics. Dielectric spheres
can also be used in the design of efficient optical antennas
[3], enhance two-photon fluorescence [6], and exhibit optical
coupling and transport [2].

Wavelength-sized spheres have uses outside of the pure-
dielectric regime as well. Metal microspheres can exhibit a
plasmonic response at the interface [7]. Additionally, other
effects can be produced as the geometries of the micro-
spheres are altered. Chiral dielectric spheres can add an-
gular momentum to the photonic nanojets [5]. Alternating
layers of gold-dielectric concentric spheres can be designed
to exhibit optical neutrality, or invisibility [4]. The many ap-
plications of the theory make modeling of electromagnetic
scattering by microspheres with efficient code a beneficial
endeavor.

Wolfram Mathematica and Fortran are two commonly
used programming languages for computational physics. Math-
ematica has the advantage of being an simple-to-use sym-
bolic language, with a small learning curve and a plethora of
built-in functions. Fortran is more low-level, making it more
difficult to learn and use but generally superior in speed.
Here we outline the contents of the Fortran library devel-
oped specifically for Mie scattering by dielectric spheres, and
compare the results with Mathematica code of the same pur-
pose.

2. MIE THEORY AND CROSS SECTIONS
The solution begins by defining solutions to the vector

wave equations, M and N [8].

M = ∇× (rψ) (1)

N =
1

k
∇×M (2)

The form of these spherical vector wave functions (SVWFs)
is found with a scalar potential function ψ, which is a solu-
tion to the scalar wave equation. This equation assumes a
time dependence of exp (−iωt).

∇2ψ + k2effψ = 0 (3)

It is solvable with separation of variables, yielding a solution
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of the form:

ψ
(j)
lm(r, θ, φ) = (−1)mz

(j)
l (kr)Pml (cos θ)eimφ (4)

ψ
(j)
elm(r, θ, φ) = (−1)mz

(j)
l (ktr)P

m
l (cos θ)eimφ (5)

Where z
(j)
l (kr) are either spherical Bessel functions of the

first kind (j = 1) or spherical Hankel functions of the first
kind (j = 3), and Pml (cos θ) are associated Legendre poly-
nomials. The second form of this potential (Eqn. 5) is inside
the sphere, with kt = k

√
εsph.

Performing the differentiation yields explicit forms for the
SVWFs.

M
(j)
lm =

im

sin θ
ψ

(j)
lm êθ −

∂ψ
(j)
lm

∂θ
êφ (6)

N
(j)
lm =

1

k
∇×M

(j)
lm =

l(l + 1)

kr
ψ

(j)
lm êr +

1

kr

∂2

∂r∂θ

(
rψ

(j)
lm

)
êθ

+
1

kr

im

sin θ

∂

∂r

(
rψ

(j)
lm

)
êφ (7)

The electromagnetic field is then expressed as infinite sums
of these functions, with the appropriate Mie coefficients.
The field is broken down into three components: the inci-
dent field Einc, the scattered field Esca, and the field inside
the dielectric sphere Esph.

Einc =

∞∑
l=1

l∑
m=−l

(
plmM

(1)
lm + qlmN

(1)
lm

)
(8)

Esca =

∞∑
l=1

l∑
m=−l

(
almN

(3)
lm + blmM

(3)
lm

)
(9)

Esph =

∞∑
l=1

l∑
m=−l

(
clmN

(1)
elm + dlmM

(1)
olm

)
(10)

The magnetic fields are found by taking the curls of these
expressions.

The Mie coefficients are determined with the boundary
conditions that the tangential components of the electric
fields be continuous at the interface, r = a, where a is the
radius of the sphere. These boundary conditions arise from
applying Stokes’s theorem to irrotational fields. One such
coefficient is:

alm = −plm
jl(k0r)

1
εsph

∂
∂r

[rjl(ktr)]− jl(ktr) ∂∂r [rjl(k0r)]

h
(1)
l (k0r)

1
εsph

∂
∂r

[rjl(ktr)]− jl(ktr) ∂∂r [rh
(1)
l (k0r)]

(11)
The scattering and extinction cross sections (σsca and

σext) measure how much power is taken out of the inci-
dent wave. The scattering cross section only includes power
loss due to scattering, while the extinction cross section also
includes absorption.

σsca =
2π

k2
Re

[ ∞∑
l=1

(|al|2 + |bl|2)
2l(l + 1)(l − 1)!

(2l + 1)(l + 1)!

]
(12)

σext =
π

k2
Re

[ ∞∑
l=1

(pla
∗
l +qlb

∗
l +blq

∗
l +alp

∗
l )

2l(l + 1)(l − 1)!

(2l + 1)(l + 1)!

]
(13)

A more explicit form of this derivation can be found in
the Supplementary Materials.

3. FORTRAN MATHEMATICS LIBRARY
Once the analytical calculations for our project were com-

pleted, the challenge was to translate the various functions
into code for numerical computation. The code to plot scat-
tering by microspheres was written in Wolfram Mathemat-
ica, but Fortran was needed to improve speed and to be run
on the Blue Waters supercomputer at the National Center
for Supercomputing Applications. Fortran 95 was chosen as
it is user-friendly while still being efficient.

The functions needed include the spherical Bessel func-
tions, spherical Hankel functions, associated Legendre poly-
nomials, and some miscellaneous functions. Few Fortran
functions exist online that meet the needs: they either cal-
culate regular Bessel functions but not spherical ones, calcu-
late regular Legendre polynomials but not associated ones,
can only be used up to l = 10, etc. Also, the desired preci-
sion was six-digit precision, to match the default precision of
Wolfram Mathematica, and many of the functions found on
the Internet lacked this. Recurrence relations or numerical
solutions to differential equations can be used to approxi-
mate values for these functions, but these options involve
recursion and thus are inefficient. Our library explicitly de-
fines the spherical Bessel functions and associated Legendre
polynomials up to the needed limits. Doing so comes at the
cost of additional overhead due to the explicit writing of the
table, but provides an efficient function as it only needs to
look in the table for the appropriate formula and plug in
the variables, as opposed to having to generate the formula
dynamically. However, this also comes with the drawback of
only being able to calculate a value up to a certain l, namely
l = 30.

The library includes many other functions which simply
called the Bessel and Legendre functions. Also, it has sev-
eral miscellaneous functions and subroutines, such as a Kro-
necker delta function and a subroutine to convert between
rectangular and spherical coordinates. The library is opti-
mized to the extent of removing extraneous variables and
combing loops to reduce the total number of iterations, and
using Gfortran compilation options and constraints. These
changes helped solve the initial segmentation faults and in-
accuracies for low values of l or high values of kr. The
library was tested for accuracy by comparing the results to
the calculations performed by the Mathematica library. It
is valid for values of l ranging from 1 to 30 and values of
kr up to about 100. This is reasonable for the purposes of
this project, since the values of the SVWFs are negligible for
high l and the spheres considered are all wavelength-sized.

The completed library is used to calculate the electromag-
netic fields and cross sections, and is available publicly on
GitHub (https://goo.gl/aRyScF). See Algorithm 1 for the
pseudocode used to calculate the fields from the functions
in the library.

4. EFFICIENCY, PARALLELIZATION, AND
RUNTIMES

Since several of the Fortran functions were written from
scratch for the purposes of this project, it is useful to analyze
their efficiencies via Big-O notation. The various unique
functions and their efficiencies are summarized in Table 1.
Four of the more rudimentary functions are either constant
or linear in efficiency, which is advantageous because they
are used in almost every other calculation. The rest of the
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Algorithm 1: Calculation of electromagnetic fields

Input: Geometrical parameters and physical properties
of the sphere, and physical properties of the
incident light.

Output: A file containing position coordinates and
intensities.

x = xmin;
z = zmin = xmin ;
for each x do

for each z do
initialize spherical coordinates ;
initialize electromagnetic field vectors ;
for each m value do

for each l value do
calculate all vector spherical wave
functions ;

add field term to net sum ;

end

end
intensity(x,z) = sum of incident, scattered, and
inside waves ;

write in output file x, z, intensity(x,z)
end

end
intensity(0,0) = 0 ;

Table 1: Fortran function complexities
FUNCTION EFFICIENCY
δlm O(1)
τf (l,m), πf (l,m) O(1)
n! O(n)
qlm, plm O(m)

z
(j)
l (kr) O(l2)

∂rz
(j)
l (k, r) O(l2)

alm, blm, clm, dlm O(l2)

ψ
(j)
lm O(n2)

∂θψ
(j)
lm , ∂r(rψ

(j)
lm), ∂2

rθ(rψ
(j)
lm) O(n2)

Pml (x) O(l +m) ≈ O(n2)

functions had quadratic efficiency.
All of these functions were previously programmed in Wol-

fram Mathematica, a symbolic computation program. For-
tran is orders of magnitude faster than Mathematica in com-
puting the same data. Here we compare the mean runtimes
of 30 trials between the two languages for the same calcu-
lations on the same computer. Table 2 shows the means,
standard deviations, and percent differences between For-
tran and Mathematica. Each of the more basic mathemat-
ical functions, jl(kr), hl(kr), and Pml (cos θ), were around
two orders of magnitude faster in Fortran than in Mathemat-
ica over calculations of 50,000 values of kr. The spherical
Hankel function is comparatively slower in Fortran at only
218.4% faster, likely because it has to call the two types
of spherical Bessel functions. The true speed of Fortran is

revealed when the larger functions M
(1)
lm and N

(1)
lm are in-

vestigated. They are four orders of magnitude faster than
Mathematica over calculations for 1200 values of k. Thus, it
is clear that our Fortran library for Mie theory has runtimes
less than our Mathematica library.

Figure 1: A plot of the scattering cross section as a
function of kr and εsph

Parallelization further increases the benefits of coding Mie
theory in Fortran for use on large computers like Blue Wa-
ters at the National Center for Supercomputing Applica-
tions or the Talon cluster at Georgia Southern University.
The cross sections and intensities then can be calculated for
many different permittivities, wavelengths, or sphere radii
simultaneously by executing the do loops in parallel. We
parallelized a program calculating the scattering cross sec-
tion for many different values of εsph and kr, using the ap-
plication programming interface OpenMP. The εsph do loop
was divided to be worked on in 32 threads, and the runtime
of the program was greatly reduced: the data contained in
Fig. 1 can be generated in 15 seconds, while the same pro-
gram requires 158 seconds in serial.

5. RESULTS
The developed Fortran library can be used to generate

data related to scattering by dielectric microspheres. The
Fortran outputs the data into comma separated variables
files, which can then be quickly visualized in Mathematica.
For example, Fig. 1 shows a density plot of the scattering
cross section as a function of kr and εsph.

Graphs like in Fig. 1 reveal where there is heavy scattering
by a sphere for a particular incident wavelength. Most of the
forward scattering comes in the form of a photonic nanojet,
a region of increased intensity on the shadow side of the
sphere. Plots of the electric field intensity reveal this jet;
Fig. 2 shows such plots for spheres of radius 250 nm and
400 nm, with incident wavelength 700 nm. The plots reveal
that the photonic nanojet has a greater intensity and larger
relative size when the sphere radius is closer to the order
of the incident wavelength. This is corroborated by Fig.
1, which showed that the scattering cross section reaches a
maximum near kr ≈ 6.

6. DISCUSSION AND CONCLUSIONS
In this paper we outlined the fundamentals of Mie the-

ory, the physical framework for electromagnetic scattering
by wavelength-sized spheres that is derived from Maxwell’s
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Table 2: Comparison between Fortran and Mathematica
FUNCTION FORT. MEAN (s) FORT. ST. DEV. (s) MATH. MEAN (s) MATH. ST. DEV. (s) % DIFF.
jl(kr) 0.746267 0.0189863 5.66427 0.364201 759.9%
hl(kr) 1.58893 0.13657 3.4708 0.158145 218.4%
Pml (cos θ) 2.07347 0.121895 14.5652 0.217958 702.5%

M
(1)
lm 0.310133 0.010061 45.9435 0.454602 14810%

N
(1)
lm 0.212133 0.00196053 68.748 1.03978 32410%

Figure 2: A plot of the electric field intensity, where |E0|2 = 1, for dielectric spheres of radii 250 nm (left) and
400 nm (right), displaying photonic nanojets. The incident wavelength is 700 nm and the effective permittivity
is εsph = 1.332.

equations. The solutions to the differential equations in-
volve spherical Bessel functions of the first kind, spherical
Hankel functions of the first kind, and associated Legen-
dre polynomials. The electromagnetic fields themselves are
large sums of these functions with the appropriate Mie co-
efficients. Also, the expressions for the scattering and ex-
tinction cross sections were derived, which also involve sum-
mations over l and provide a useful tool for analyzing the
scattering.

We detailed our efforts to develop, code, and apply a For-
tran mathematics library comprised of the necessary func-
tions. Several problems related to the accuracy of the func-
tions for certain extreme inputs were addressed. The fi-
nal functions and subroutines had efficiencies no worse than
O(n2). The calculation of the electromagnetic field summa-
tions was achieved with nested for loops. These for loops
were conducive to parallelization with OpenMP, which re-
duced the runtimes of certain jobs by about 10 times in our
case. Furthermore, our serial Fortran code had runtimes
orders of magnitude lower than the same tasks in our Math-
ematica code. Both of these facts reveal some of the benefits
of using Fortran for Mie theory calculations rather than the
more symbolic-based Mathematica.

Finally, we presented visualization of some of the data pro-
duced in Fortran. The plot of the scattering cross section as
a function of the relative permittivity εsph and radial func-
tion argument kr informs where the maxima and minima of
scattering occur. This helps optimize the characteristics of
the photonic nanojets, plots of which were shown in Fig. 2.

They reveal that the relative intensity and size of the nano-
jet are optimized when the sphere diameter is on the order
of the incident wavelength.

Although Fortran has proven to be much faster in per-
forming these calculations compared to Mathematica, there
are significant drawbacks which may limit its practicality.
One drawback is that the upfront coding of the programs
takes much longer in Fortran than in Mathematica. When
coding the library in Fortran, we had to write functions to
perform the vast majority of tasks from square one. In con-
trast, Mathematica has many of the needed functions pre-
defined. The second drawback is in defining the functions.
Writing Mathematica code is simpler than writing Fortran
code, due to Mathematica’s emphasis on symbolic compu-
tation. In Mathematica, one can just translate the math-
ematical formulae directly into code and be able to easily
see what is written; in Fortran the code is less readable.
The third drawback is that debugging in Fortran proved to
be more difficult than in Mathematica. Unlike Mathemat-
ica, Fortran requires the coder to understand how the code
works and manage the various underlying processes. One
big example of this is in parallelization with OpenMP. Par-
allelization in Mathematica is a simple as adding the word
”Parallel” in front of certain functions, whereas in Fortran
one must include options in the compiler to enable OpenMP,
call the appropriate additional functions in the code, and
include the OpenMP directives. In addition, this does not
protect against race conditions, so the programmer must
manually adjust the code to ensure results obtained from
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parallel execution are correct.

7. REFLECTIONS
R.H. completed this research project as part of the Blue

Waters Student Internship Program with the Shodor Educa-
tion Foundation, Inc. Below are some of his final reflections
on the experience:

I began this internship opportunity with little prior expe-
rience with coding or computing. As such, it was challenging
for me to learn how to program for scientific research, but the
two-week workshop at the University of Illinois at Urbana-
Champaign was undoubtedly helpful in teaching the skills
and knowledge required. Not only did it teach me the funda-
mentals of high-performance computing, but it also taught
me how to think about scientific problems from a comput-
ing perspective. This was invaluable to being successful in
this project. For example, the errors encountered in cod-
ing the mathematics library were overcome by thinking of
alternative approaches to calculating functions in Fortran.

As a whole, this project helped further my education in
both computing and in physics. I learned how to use par-
allel computing to improve my coding through great prac-
tice. The background research into Mie theory also gave me
foundational insights into electromagnetic theory and par-
tial differential equations, which has helped me achieve a
better understanding of topics covered in my undergradu-
ate classes. Also, this project impacted my career outlook
by further cementing my desire to research this subject in
graduate school and beyond. I will use the skills gained
through this experience for the remainder of my academic
career.

APPENDIX
A. SUPPLEMENTAL MATERIALS

The general Mie theory solution begins with Maxwell’s
equations.

∇ ·E = 4πρ (14)

∇ ·B = 0 (15)

∇×E = −1

c

∂B

∂t
(16)

∇×B =
4π

c
J +

1

c

∂E

∂t
(17)

The vector wave equation is found by taking the curl of Eqn.
16.

∇×
(
∇×E

)
= −1

c

∂

∂t

(
∇×B

)
= −1

c

∂

∂t

(
4π

c
J+

1

c

∂E

∂t

)
(18)

Plugging in Ohm’s law, J = σE, where σ is the conductivity
of the medium, and the vector calculus identity ∇ ×

(
∇ ×

E
)

= −∇2E +∇
(
∇ ·E

)
we get:

−∇2E +∇
(
∇ ·E

)
= −4πσ

c2
∂E

∂t
− 1

c2
∂2E

∂t2
(19)

If we assume the volume charge density is homogeneous and
the electric field has a time dependence of e−iωt, we can
write

∇2E− 4πσ

c2
(−iωE)− 1

c2
(−ω2E) = 0

∇2E +

(
4πσiω

c2
+
ω2

c2

)
E = 0 (20)

Defining the imaginary wave number as k2 = 4πσiω
c2

+ ω2

c2
,

we have the vector wave equation.

∇2E + k2E = 0 (21)

The same can be done for the magnetic field. These equa-
tions have three possible solutions [8]:

L = ∇ψ (22)

M = ∇× (rψ) (23)

L =
1

k
∇×M (24)

Provided that the scalar function ψ satisfies the scalar wave
equation.

∇2ψ + k2ψ = 0 (25)

Solving for these functions yields the fields given in Eqns.
4-7. The incident plane wave coefficients are given as follows.

plm = −il 2l + 1

l(l + 1)

(l −m)!

(l +m)!
[τlm(α) sin γ + iπlm(α) cos γ]

(26)

qlm = il
2l + 1

l(l + 1)

(l −m)!

(l +m)!
[πlm(α) sin γ + iτlm(α) cos γ] (27)

Where

τlm(α) = − 1

sinα
Pml (cosα) (28)

πlm(α) = − ∂

∂α
Pml (cosα) (29)

Next, the Mie coefficients are found using the boundary
condition that the tangential component of the electric field
be continuous at the surface of the sphere. This leads to
four equations, one of which is derived below.

Einc,θ,TE + Esca,θ,TE = Esph,θ,TE

qlmM
(1)
lm,θ + blmM

(3)
lm,θ = dlmM

(1)
olm,θ

qlm

(
im

sin θ
ψ

(1)
lm

)∣∣∣∣
r=a

+blm

(
im

sin θ
ψ

(3)
lm

)∣∣∣∣
r=a

= dlm

(
im

sin θ
ψ

(1)
olm

)∣∣∣∣
r=a

qlmjl(k0a) + blmh
(1)
l (k0a) = dlmjl(kta) (30)

Three other equations are found similarly, and they can be
summarized with two matrix equations.

[
h
(1)
l (k0a) −jl(kta)

∂r
(
rh

(1)
l (k0r)

)
−ε−1

sph∂r
(
rjl(ktr)

)] [alm
clm

]
=

[
−plmjlk0a

−plm∂r
(
rjl(k0r)

)]
(31)[

h
(1)
l (k0a) −jl(kta)

∂r
(
rh

(1)
l (k0r)

)
−∂r

(
rjl(ktr)

)] [blm
dlm

]
=

[
−qlmjlk0a

−qlm∂r
(
rjl(k0r)

)]
(32)

The coefficients can then be solved for as a system of linear
equations. The fields are then completely known and can be
plotted.
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The scattering and extinction cross sections are found
by integrating the radial component of the time-averaged
Poynting vector over the surface of the sphere.

σext − σsca =
8π

c

∫
Srr

2dΩ =

∫
Re[E×H∗]rr

2dΩ (33)

The evaluation of this the cross sections requires approxima-
tions of the spherical Bessel and spherical Hankel functions
for large r.

jl(kr) ≈
1

kr
cos

(
kr − l + 1

2
π

)
(34)

h
(1)
l (kr) ≈ 1

kr
(−i)l+1eikr (35)

Also, for normal incidence and linear polarization, we set
α = γ = 0, and only include the m = −1 mode. Plugging in
the fields as in Eqns. 8-10 and simplifying using the identity∫ π

0

(
dPml
dθ

dPmn
dθ

+
1

sin2 θ
Pml P

m
n

)
sin θ dθ =

2l(l + 1)

2l + 1

(l +m)!

(l −m)!
δln

(36)
This leads to the expressions for the scattering and extinc-
tion cross sections.

σsca =
2π

k2
Re

[ ∞∑
l=1

(|al|2 + |bl|2)
2l(l + 1)(l − 1)!

(2l + 1)(l + 1)!

]
(37)

σext =
π

k2
Re

[ ∞∑
l=1

(pla
∗
l +qlb

∗
l +blq

∗
l +alp

∗
l )

2l(l + 1)(l − 1)!

(2l + 1)(l + 1)!

]
(38)
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