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ABSTRACT
With parallel and distributed computing (PDC) now in the
core CS curriculum, CS educators are building new peda-
gogical tools to teach their students about this cutting-edge
area of computing. In this paper, we present an innovative
approach we call microclusters – personal, portable Beowulf
clusters – that provide students with hands-on PDC learning
experiences. We present several different microclusters, each
built using a different combination of single board comput-
ers (SBCs) as its compute nodes, including various ODROID
models, Nvidia’s Jetson TK1, Adapteva’s Parallella, and the
Raspberry Pi. We explore different ways that CS educators
are using these systems in their teaching, and describe spe-
cific courses in which CS educators have used microclusters.
Finally, we present an overview of sources of free PDC ped-
agogical materials that can be used with microclusters.

Keywords
Beowulf clusters, microcluster, Computer Science, Distributed,
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1. INTRODUCTION
Prior to 2005, parallel and distributed computing (PDC)

were elective topics in the computer science (CS) curricu-
lum, optional, and rarely covered at the undergraduate level.
While parallel programming libraries such as OpenMP [21]
and MPI [24, 23] existed, the expense of parallel hardware
and the difficulty in accessing high performance resources
made these concepts difficult to teach. Over the last decade,
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this has changed largely as a result of two watershed events:
the birth of multicore architecture and cloud computing.
Both of these innovations have greatly decreased the cost
and increased the accessibility of programming parallel ar-
chitectures.

Intel and AMD released the first of many commercial mul-
ticore CPUs in 2006. This changed the foundation of com-
modity hardware, because each core in a multicore CPU
could run a program simultaneously (i.e., in parallel). Dual-
core CPUs were followed by quad-core, then hexa-core, then
octa-core, and so on. Today Intel offers 22-core Xeon and 72-
core Xeon Phi CPUs [26]. Traditional sequential programs
use only one of a CPU’s cores. Software must be intention-
ally designed and written as parallel software, if it is to fully
leverage multicore CPUs. In addition, Nvidia released the
CUDA [35] library in 2007, spurring the birth of GPGPU
and manycore computing.

Amazon introduced its Elastic Compute Cloud (EC2) in
2006, allowing users of its service to run their applications
on rented virtual machines (VMs) on Amazon’s infrastruc-
ture. Users can vary the number of VMs they rent (the
“elastic” aspect of Amazon’s service), allowing them to write
distributed applications that run at varying scales. This
ability to access scalable computing facilities without having
to maintain the hardware infrastructure has proven highly
attractive to the business community. This popularity has
necessitated a shift in program design: Since a traditional
sequential program runs on just one machine, software must
be designed and written as parallel and distributed software
to run across multiple VMs, if it is to take advantage of the
scalability of a cloud service like EC2.

Recognizing the implications of these events – that all
CS students now need to learn about PDC – both the IEEE
TCPP Curriculum Recommendations [40] and the ACM/IEEE
CS 2013 Curriculum Recommendations [44] moved PDC
topics into the core CS curriculum.

These changes raise many questions, including:

What hardware, software, and teaching resources
should we use to teach students about PDC?

Volume 8, Issue 3 Journal of Computational Science Education

2 ISSN 2153-4136 December 2017



Given the ubiquity of the multicore CPU, just about any
computer has hardware on which students might learn about
parallel computing, but not distributed computing. Dis-
tributed computing by definition involves a computation
being distributed across multiple machines. Hardware plat-
forms that might be used for teaching distributed computing
include a network of workstations (NoW), a Beowulf clus-
ter [42], or a cloud system such as Amazon’s EC2. A com-
puter lab can be configured as a NoW, and so can be used
to teach PDC. However, when students launch distributed
computations in a heavily-used lab, each student’s computa-
tional performance will suffer as the computations compete
for the lab’s limited CPU resources. A cloud service such as
Amazon’s EC2 can be used to teach PDC, but the process-
ing all takes place at a distance from the student, resulting
in a loss of immediacy in the student’s learning experience.
High performance Beowulf clusters can be used, but they
are relatively expensive to build and maintain.

The widespread availability of inexpensive single-board
computers (SBCs) provides a different option for teaching
PDC. Just as inexpensive integrated circuits made the mi-
crocomputer possible, inexpensive SBCs make it possible to
build a microcluster – a personal, portable, Beowulf clus-
ter – on which students learn about PDC.

In this paper, we present several different microclusters
that CS educators have built for teaching their students
about PDC, and explore the different ways these educa-
tors are using them in their classes. In the next section,
we present some background information on microclusters.
We examine the above-mentioned microclusters in detail in
Section 3. In Section 4, we describe our experiences using
these microclusters for teaching, research, and outreach. In
Section 5, we discuss some of the software and teaching re-
sources that can be used on these systems to help students
learn about PDC. We conclude with some observations in
Section 6.

2. BACKGROUND
Wiglaf, the first Beowulf cluster, was built by Donald

Becker and Thomas Sterling at NASA in 1994 [42]. Wiglaf
was a small cabinet containing sixteen motherboards with
80486 CPUs, which communicated through 10Mbps Ether-
net. Unlike most of its successors, Wiglaf might be consid-
ered a microcluster by today’s standards, since the entire
cluster fit into one cabinet with its monitor and keyboard
on top. In contrast, its immediate successor Hrothgar con-
sisted of three shelves containing sixteen Pentium PCs con-
nected with 100Mbps Ethernet, initiating the “lots of boxes
on shelves” model used by many subsequent Beowulf clus-
ters.

Almost immediately after Wiglaf’s creation, people be-
gan building microclusters. In the rest of this section, we
describe a few of these early examples of microclusters, as
the context for the systems described in Section 3.

2.1 TTL_Papers
The term“microcluster”was coined by Hank Dietz and his

students at Purdue University. They debuted their TTL Papers
microcluster at the 1994 Supercomputing conference [22]. It
consisted of four nodes, each with a 25-MHz 80486 proces-
sor, that communicated through their parallel ports via a
custom-built interconnect unit. The entire cluster weighed
30 pounds and fit within a 1 foot (30.48 cm) cube.

2.2 SETI Stacks
In 1999, the SETI@Home project [29] released a distributed

computing client that, running on a personal computer, would:
(1) download a batch of signals received by a radio telescope;
(2) analyze those signals, looking amid the noise for regular
patterns that might be evidence of intelligent communica-
tion; and then (3) report its findings back to the project.

In the hope of being the first to find evidence of extrater-
restrial intelligence, many enthusiasts built clusters dedi-
cated to running the SETI@Home client. At least 26 of
these were microclusters that were dubbed “SETI Stacks”,
consisting of stacked motherboards with Pentium-era CPUs,
communicating via original Ethernet. Many of these sys-
tems had colorful names like “Crunchenstein Stack”, “Stomp
Monster”, “SetiCruncher”, and so on [33].

2.3 Ultimate Linux Lunchbox
In the early 2000s, Ron Minnich and Mitch Williams built

a series of microclusters at Sandia and Los Alamos National
Labs. These may have been the first clusters built using
SBCs, and their efforts culminated in 2005 with the Ultimate
Linux Lunchbox, a lunchbox-sized microcluster consisting of
sixteen Technologic Systems TS-7200 SBC nodes, connected
using 100Mbps Ethernet [34]. These SBCs had StrongARM
CPUs, a precursor to the ARM processors used by the mi-
croclusters we present in Section 3.

2.4 LittleFe
In 2005, Paul Grey, Tom Murphy, and Charlie Peck

built LittleFe, a six-node cluster-in-a-suitcase small enough
to take on the road to conferences, workshops, and high
school outreach events [14]. The name is a pun, as ”Lit-
tleFe” is the opposite of ”Big Iron”.

The initial LittleFe was a wooden frame housing six mi-
croATX motherboards with 1-GHz x86 CPUs, 100Mbps Eth-
ernet, a shared hard drive, and a customized Linux distribu-
tion. Subsequent versions replaced the wooden frame with
a machined metal frame, upgraded the network to Gigabit
Ethernet, and upgraded the CPUs to multicore CPUs with
integrated GPUs. Each version cost less than $2800, which
includes a Pelican case rugged enough to let its LittleFe sur-
vive an airline’s baggage-handling system.

In 2010, Charlie Peck obtained a grant from Intel to fund
the first LittleFe Buildout, a conference event at which at-
tendees (generally faculty) were given the raw materials for
a LittleFe and spent a day assembling them into a work-
ing cluster, aided by Charlie and his students from Earlham
College. At the end of the day, participants took the system
they had built back to their home institutions, at no cost to
them or their institutions. The beauty of this approach is
that in building their own cluster, the participants acquired
much of the knowledge needed to maintain it. Subsequent
support from Intel, the National Science Foundation, and
XSEDE has funded a total of 7 LittleFe Buildouts, resulting
in 106 LittleFe clusters being built and used to teach parallel
computing in colleges and universities throughout the U.S.
Most of the systems in this paper were inspired by LittleFe.

2.5 Microwulf
After seeing the first version of LittleFe at a 2006 confer-

ence, Joel Adams and his student Tim Brom built a “per-
sonal, portable, Beowulf cluster” at Calvin College. Their
goal was to generate as much computational performance as
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Figure 1: Parallella in case (left). 4-node Parallella
Beowulf Cluster (right).

possible within a $2500 budget. To accomplish this, Adams
designed this cluster in keeping with“Amdahl’s Other Law”[13];
balancing its CPU resources, main memory, and network
bandwidth, to keep its computations from being CPU-, memory-
, or network-bound.

The result was Microwulf [9], a microcluster of four nodes,
each with a dual-core AMD Athlon64 CPU, 2GB of RAM,
and two Gigabit Ethernet adaptors. For less than $2500
in early 2007, Microwulf achieved 26.25 Gflops on the HP-
Linpack supercomputing benchmark [38]. This gave Mi-
crowulf a price/performance ratio of $94/Gflop, making it
the first Beowulf cluster to break the $100/Gflop barrier.
By August 2007, the price of its components had dropped to
$1256, improving its price/performance ratio to $48/Gflop.

Adams used Microwulf in his Fall 2007 High Performance
Computing (CS 374) course at Calvin College, to provide
students with hands-on experience developing and running
MPI, OpenMP, and MPI+OpenMP programs.

3. MICROCLUSTERS FOR TEACHING PDC
In 2012, the Raspberry Pi Foundation released the Rasp-

berry Pi, a $35 credit-card sized SBC. Its low cost cat-
alyzed many CS educators and hobbyists to build Raspberry
Pi microclusters. Notable early efforts with the Raspberry
Pi include IridisPi [20], PiCloud [47], and efforts at Boise
State [28] and FUB [8]. Despite its low cost, the Raspberry
Pi’s relatively weak CPU (700 Mhz ARM 11) and small on-
board memory (512 MB) encouraged educators to turn to
other SBCs for creating microclusters to teach their students
about PDC1. In this section, we briefly give an overview of
four recent parallel efforts at the authors’ institutions.

3.1 StudentParallella
West Point was perhaps the first to incorporate the Par-

allella in the classroom [31]. Introduced by Adapteva via
Kickstarter in 2013, the Parallella is a credit-card sized SBC
with a dual-core Zynq ARM A9 CPU, 1 GB of RAM, gigabit
ethernet, and a 16-core Epiphany co-processor. The board
is extremely power efficient, requiring only a 5V/2A power
supply, similar to a Raspberry Pi. The desktop edition of
the board retails for $145.00, while the microserver edition
retails for $99.00.

At West Point, Suzanne Matthews introduced undergrad-
uates to the Parallella in a parallel computing elective course

1The release of the Raspberry Pi 2 in 2015 updated the
board to a 900 MHz quad-core ARM Cortex A7 CPU, mak-
ing it possible to use the board as a standalone unit for
teaching PDC concepts

Figure 2: The 2-node HSC 6 Cluster (left). “Half-
Shoebox” case (right).

in the Spring 2015 semester. Each student had their own
desktop edition of Parallella board. Epiphany programming
was one of five programming modules covered in the course,
along with C, Pthreads, OpenMP, and MPI. Matthews open-
sourced [31, 30] her Parallella teaching materials, disk im-
ages, and setup guides in 2015, facilitating others to use the
Parallella in the classroom. A custom case for the Parallella
that enables it to be used on its own or configured into a Stu-
dentParallella microcluster was designed and open-sourced
by Matthews and Blackmon [32]. In Figure 1, we show the
Parallella in case assigned to each student, as well as a 4-
node microcluster configuration.

Pros and Cons of Parallella-based Clusters.
Students were initially very excited by the Parallella. The

small form factor and powerful 16-core co-processor were
extremely motivating to students early in the course. How-
ever, their enthusiasm waned as the course went on, due
to difficulties with the Epiphany Software Development Kit
(eSDK) [31]. Students were largely dependent on Matthews’
guide to the eSDK [30] to complete their co-processor as-
signment due to their lack of experience reading user manu-
als. The dual-core ARM CPU also limited students’ speedup
analyses. It is worth noting the Zynq SoC also has an FPGA
which can be used in a parallel computing course, though
Matthews did not do so.

Matthews concluded that while using a credit-card sized
computer was very motivating for her students, it was un-
clear if the Parallella was the best option. Programming the
co-processor is not significantly easier than programming a
GPU, and some students at the end of the course expressed a
desire to have learned CUDA instead [31]. While the Paral-
lella system shows much promise, existing software packages
and APIs could use more maturity before the Parallella is
really ready for integration into an academic course.

3.2 Half Shoebox Clusters
David Toth of Centre College built the first Half Shoebox

Cluster (HSC) in 2014 [45]. The project was motivated from
a desire to build a low-cost, portable cluster for students to
learn about PThreads, OpenMP, and MPI, necessitating a
dual-core SBC.

The first HSC consisted of two dual-core Cubieboard2 [4]
SBCs. After discovering the ODROID [3] SBC, six sub-
sequent HSCs were built with various ODROID SBCs as
they were released, beginning with the ODROID U3, and
continuing with the C1, XU3-Lite, C1+, XU4, and most re-
cently, the C2. The U3, C1, C1+, and C2 all have quad
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Figure 3: Rosie, a 6-node Nvidia Jetson TK1 cluster

core CPUs, while the XU3-Lite and XU4 have 8-core ARM
CPUs. The HSCs with the XU3-Lite and XU4 nodes also
support OpenCL programming. The least expensive HSC
costs about $150. Figure 2 shows the most recent HSC.

Toth maintains a web site [46] with disk images for the
HSCs and a parts list so people can build their own HSCs
and start using them immediately. HSC 6 is shown in Fig-
ure 2. The cluster is 2.75” wide by 4.25” long by 4.25” high.
The box is 6.75” wide x 7.5” deep x 4.5” high. All other
HSCs fit in the same box, but some HSC boards are slightly
bigger than HSC 6’s boards.

Pros and Cons of Half Shoebox Clusters.
Students loved having their own clusters. Students not

enrolled in the course were very curious about the clusters
and in some cases, envious of the students in the course.
The ODROID nodes also have GPIO pins like a Raspberry
Pi, allowing the nodes to be used in an Internet of Things
course. The forum on the web site of the manufacturer of
the ODROID nodes have a vast assortment of questions and
contributions by users. In addition, questions posted to the
forums get answered quickly, and there is a free ODROID
magazine with lots of projects and ideas. In short, much
like there is a large Raspberry Pi presence and community
on the Internet, such a presence and community exist for
the ODROID systems, too.

Some disadvantages of the HSCs are that only some of
them (XU3-Lite and XU4 nodes) support GPU program-
ming with OpenCL, and none support CUDA.

3.3 Rosie
In April 2014, Nvidia released a development board called

the Jetson TK1, featuring their Tegra TK1 processor. The
board consists of a quad-core ARM Cortex-A15 processor
and an integrated Kepler GPU with 192 cores. A single
Jetson board costs $192.00, or one dollar per core. This
low cost, together with its capability of easily being flashed
with an Ubuntu Linux distribution from Nvidia, makes these
Jetson boards good candidates for building an inexpensive
cluster with a great deal of computing power; this six node
cluster provides (6 x 4) = 24 CPU cores plus (6 x 192) =
1152 CUDA-capable GPU cores.

Libby Shoop and a Macalester College undergraduate con-
nected six of these boards via a Gigabit Ethernet switch to
create a six-node microcluster named Rosie (see Figure 3).
Rosie features an NFS-mounted disk that all nodes share,
and each node is CUDA-capable, thanks to its Kepler GPU
and Nvidia Linux distribution. Because each board has mul-
ticore and GPU capability, this cluster has been used to
teach heterogeneous computing techniques with MPI and
either OpenMP or CUDA.

Figure 4: Cu-T-Pi

Pros and Cons of Jetson-based Clusters.
Rosie is placed on a cart and rolled into class to demon-

strate how this small cluster models larger supercomputers.
Students gather around the hardware and are excited to see
its pieces. Instructors can explain sources of overhead by
pointing out the distance over the network that data must
travel when using MPI for distributed programs. This vis-
ceral interaction with the hardware is valuable.

This value has a price: at $192, the Jetson is the most
expensive of the SBCs. Setting up such a cluster also re-
quires some effort. NVidia provides software for flashing the
operating system onto these boards (including CUDA and
MPI), but you need another Ubuntu Linux machine to do so.
Afterward, the cluster network, network file system (NFS),
passwordless ssh, and accounts must be set up for student
users of the system to use MPI. For six nodes, this process
took an undergraduate student under Shoop’s supervision
a few days. To make this easier, complete instructions, in-
cluding a parts list, are available on [6].

3.4 Cu-T-Pi
Cu-T-Pi, shown in Figure 4, is a microcluster named for

some of the technologies it aggregates (CUDA, Nvidia Tk-1,
and Raspberry Pi). Created by James Wolfer [48] at Indiana
University, South Bend (IUSB), this cluster is designed to be
highly visible, portable, and have hardware and software ar-
chitecture consistent with contemporary heterogeneous sys-
tems. The cluster consists of four Model B+ Raspberry
Pi worker nodes and one Nvidia Jetson Tk-1 head node,
connected through a gigabit Ethernet switch, all mounted
in a terraced arrangement for instructional visibility. The
resulting system provides eight ARM cores and 192 CUDA-
capable GPU cores, supporting demonstrations and devel-
opment using the OpenMP, MPI, and CUDA platforms.

In addition to its use for introducing parallel concepts,
Wolfer has used CU-T-Pi to demonstrate benchmarking con-
cepts in his Parallel Computing course. By using the HPL
benchmark adapted for the Raspberry Pi [38, 15], we can
observe and quantify the impact of asymmetric communica-
tion speeds. Details can be found in [48].

Pros and Cons of CU-T-Pi.
Positive aspects of this heterogeneous system include mod-

eling current HPC architecture, supporting heterogeneous
software development. Asymmetric speeds between compo-
nent nodes offer unique opportunities for MPI benchmark-
ing. Each node includes GPIO capabilities allowing inter-
facing with custom hardware.

Limitations include the relatively slow speed of the Rasp-
berry Pi, and incompatible GPIO voltage/current require-
ments between the Raspberry Pi and TK-1 computers.
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4. TEACHING, RESEARCH, & OUTREACH
EXPERIENCES

Microclusters are useful for introducing PDC concepts
inside and outside of the classroom. In this section, we
describe the various strategies we have used to introduce
students to parallel computing using microclusters. We de-
scribe best practice strategies when assigning each student
their own cluster compared to having a single cluster for the
entire classroom. We also discuss our experiences in paral-
lel computing electives and core computer science courses.
Additionally, we discuss our efforts using microclusters to
engage undergraduates in research and outreach events.

4.1 Strategies for Introducing Microclusters
The primary way in which the authors have used micro-

clusters is to introduce PDC concepts to undergraduates.
CS Education research advocates the use of “hands-on ex-
periential learning” [19] for teaching PDC concepts, while
recommending a high degree of interactivity in the class-
room [19, 17]. In all cases, microclusters had a definite
“cool” factor that encouraged student engagement and en-
thusiasm for PDC concepts. There were two primary ways
students engaged with microclusters in the classroom. In the
first, students shared access to a common microcluster. In
the second, each student had their own microcluster. Each
strategy has benefits and draw-backs.

4.1.1 One Cluster per Class
The “One Cluster per Class” can take a variety of forms

ranging from units designed for student access to classroom
demonstration machines. Rosie was designed for both roles,
being used at Macalester College in an upper-level Par-
allel Computing course first as a demonstration machine,
and then for individual student access for in-class activi-
ties, homework problems, and course projects. Students
are given accounts on the head node, which is connected
to Macalester’s network and given an internal IP address.
They can then log in remotely for class activities and work
on graded assignments. Cu-T-Pi was designed as a class-
room demonstration machine; to provide a portable, pre-
configured, “ready-to-rock” device that can move from class
to class and provide an introduction to parallel computing.

Both Cu-Ti-Pi and Rosie enable instructors to expose
their students to OpenMP, MPI, and CUDA programming.
CUDA concepts can be taught via demonstration code pro-
vided by Nvidia CUDA SDK, or through open-source teach-
ing materials such as those available through CSinParallel
or CDER (see Section 5). For example, Macalester uses the
modules available through CSinParallel to teach students
CUDA, OpenMP, and MPI programming.

Pros and Cons of “One Cluster Per Class".
Students have a very positive reaction to seeing the cluster

hardware, and its physical nature generates student curios-
ity and motivates discussion of system components. For ex-
ample, students can observe communication “overhead” by
monitoring the Ethernet lights on both the SBCs and the
network switch. Rosie’s NFS-shared hard disk allows for
discussion of Network File Systems, and lets students see
the storage device. By contrast, traditional HPC or cloud
systems hide such details from students, which can hinder
their ability to fully understand such mechanisms.

The portability of the “One Cluster Per Class” units en-
courages their use in classes across the spectrum, from first-
year to graduate levels, inviting comments like “...brought in
a mini super-computer to demonstrate the power of parallel
programming” in a freshman class.

The gains in portability and instructional flexibility are
balanced by its limitations. Specifically, except when con-
nected online, these systems are not directly available to
students, limiting first-hand experience–only the students
involved in building Rosie, for example, gained system-level
experience. When used outside class, demand is high at cer-
tain times and students compete for cluster cycles, perhaps
limiting this approach to smaller institutions.

4.1.2 One Cluster per Student
West Point and Centre College both adopted the “one

cluster per student” approach. The decreasing cost of SBC
hardware enables each student to purchase SBCs of their
own, or sign a cluster out as individual lab equipment. There
are some immediate benefits to this approach, including
eliminating resource contention between students and max-
imizing the individual learning experience. A microSD card
pre-loaded with necessary course materials can be shared
with students at the beginning of the course. Updates may
be downloaded by students from a class website. Students
may connect to their clusters using SSH or a more familiar
desktop environment.

Both Centre College and West Point use this approach to
teach students about the MPI, OpenMP, and Pthreads li-
braries. West Point students also learned about accelerator
programming using the Parallella’s Epiphany co-processor.
Centre College maximizes the one cluster per student ap-
proach by assigning each student their own two-node clus-
ter. In contrast, West Point assigns each student a single
Parallella; as an in-class lab, students network their boards
together to form a cluster [31].

Pros and Cons of “One Cluster Per Student".
Students at both institutions were very excited to have

their own clusters. At West Point, students opted to pri-
marily connect to their clusters via SSH, owing to the time
and number of peripherals (e.g. monitor, keyboard, mouse)
required for access. At Centre College, students typically
brought their clusters to the dedicated computer science
lab and hooked them up to large monitors, keyboards, and
mice there. At both places, students were unable to connect
their clusters to the Internet, due to institutional IT policies.
This is consistent with experience of others experimenting
with SBCs at their own institutions [43]. Instead, students
transferred files between their laptops and their clusters via
SCP/SFTP or USB flash drives.

A significant benefit of the one cluster per student model
is that it removes the system administration work from the
faculty member - a node crashing only affects a student (who
can reboot it themself). Additionally, when disk images are
provided, a faculty member new to teaching PDC can be up
and running quickly, without having to learn about config-
uring the hardware. The one cluster per student model also
enables students to operate in isolation from each other, thus
allowing them to measure the performance of their sequen-
tial and parallel versions of their programs without other
students’ tests influencing their results.
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4.2 Courses Using Microclusters
A natural place to use microclusters in the classroom is

in a Parallel Computing elective course. Such courses intro-
duce students to PDC concepts in a self-contained package.
The drawback to electives is that they cannot guarantee that
every student gets exposure to PDC concepts. The ACM
CS 2013 [44] report introduced the PDC knowledge area
and recommended that 15 core tier-one and tier-two hours
be included in the core undergraduate computer science cur-
riculum. Likewise, the NSF/IEEE TCPP Curriculum Ini-
tiative on Parallel and Distributed Computing (NSF/IEEE
TCPP) [40] recommends that PDC concepts be introduced
in required computer science “systems” courses. The au-
thors have used their microclusters to introduce students to
PDC in required courses such as Computer Organization and
Computer Architecture, and to delve more deeply in Parallel
Computing electives.

4.2.1 Uses in Parallel Computing Electives
At West Point, the students used the Parallella to com-

plete homework assignments. Epiphany co-processor pro-
gramming was covered along with OpenMP, MPI, and Pthreads.
For each course assignment, students wrote a C program and
a parallel equivalent in one or two other libraries and per-
formed timing studies to quantify their performance gains.
Students were also required to complete a final project and
summarize their results in a research paper. In addition,
they were assigned 10 topics papers in which the summarized
and reflected upon CACM articles covering PDC topics.

At Centre College, students used their HSC systems to
learn about Pthreads, OpenMP, and MPI. Students chose a
problem and over the course of the semester, they created
sequential, OpenMP, MPI, and MPI+OpenMP programs to
solve their problem. The programs were then tested and
their performance was compared. The students then created
posters about their projects, wrote a paper summarizing the
project and the results, and gave presentations about their
programs and what they had learned.

At Macalester College, students in the elective course used
Rosie for an MPI homework assignment and for heteroge-
neous computing activities with MPI+CUDA and MPI+
OpenMP. A Monte Carlo solution for modeling a pandemic
was used as a class activity. As the final project for the
course, students chose a project for a particular architec-
ture; those who chose a distributed computing solution used
Rosie as their platform to explore and test for scalability.

Cu-Ti-Pi has also supported classroom demonstrations
in the senior/graduate level Parallel Computing course at
IUSB.

4.2.2 Uses in “Systems” Courses
At West Point, the Parallella architecture is briefly dis-

cussed as part of a larger lesson on hardware acceleration in
the Computer Organization course. Due to the importance
of the x86 architecture in West Point’s CS curriculum, the
custom Parallella architecture was eschewed in favor of tra-
ditional x86 multicore servers for the hardware base of the
course.

At IUSB, Cu-Ti-Pi has supported the Operating Systems
class by providing remote access to an interfaced Geiger
counter, as the basis for a random number serving file system
project [27]. It has also been used for classroom demonstra-
tions in the Computer Organization course.

Rosie has served as a demonstration platform in the Com-
puter Systems course at Macalester College, where it is wheeled
into class and and used to demonstrate examples that il-
lustrate scalability and speedup in a distributed system.
The students work with Pthreads and OpenMP on shared-
memory multicore machines first, so Rosie is shown as a
contrasting architecture for distributed parallel computing.
Plans in progress at Macalester are to include hands-on ac-
tivities with new Raspberry Pi- based clusters by shorten-
ing some units earlier in the course to free up time for dis-
tributed programming at the end of the course.

4.3 Research & Outreach Experiences
Microclusters have been used at each institution to in-

spire students and faculty about parallel computing. For
example, Cu-Ti-Pi has been used for demonstrations in a
general education computer literacy course.

At West Point, a student project used a cluster of Rasp-
berry Pi B+s to simulate a remotely operated “smart” mor-
tar system [41] in 2014. The same cluster was used by an-
other West Point student in 2015 to study password cracking
for their final project in their parallel computing course. In
2017, students ascertained a Raspberry Pi 2 cluster’s ability
to detect power grid anomalies [18].

At Macalester College, the building of Rosie itself was a
very beneficial summer research experience for undergrad-
uate students. The experience of students has been passed
on so that current students have not only rebuilt Rosie but
also built new clusters based on newer Jetson boards and on
the relatively new Raspberry Pi 3 boards.

The microclusters mentioned in this paper have also been
demonstrated at the SIGCSE Technical Symposium [11, 12].

5. TEACHING MATERIALS
As described previously, traditional parallel libraries such

as Pthreads, OpenMP, and MPI can all be taught using mi-
croclusters. For example, the Pacheco parallel programming
textbook [37] and his earlier book for MPI programming [36]
have been used at Calvin, Macalester, and West Point as a
main text for their parallel computing electives.

Given the advances in computer architecture in the last
ten years, a chief complaint is the scarcity of textbooks for
teaching modern parallel computing concepts to undergrad-
uates. In this section, we describe two NSF funded initia-
tives, CSinParallel and CDER, that aim to alleviate this
shortfall. CSinParallel offers a series of parallel “modules”
that can be used in the context of a course in place of a text-
book. CDER has an initiative to build a modern textbook.
We also discuss other sources of PDC educational materi-
als. All the authors have used various combinations of these
materials to supplement their coverage of PDC concepts in
their courses.

5.1 CSinParallel
The NSF-funded CSinParallel project [16] maintains a

site, CSinParallel.org, which contains a comprehensive set
of course modules for PDC education. Each module is de-
signed to be used over a short period of time in any of sev-
eral courses, depending on the curriculum and course struc-
ture at an instructor’s institution. Modules exist for various
levels of experience, ranging from novices in introductory
courses to experienced seniors in advanced electives. Mod-
ules also exist for various types of hardware and software. As
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an example, for MPI, there are modules for distributed com-
puting fundamentals, heterogeneous computing, a pandemic
modeling exemplar using a Monte Carlo approach, and oth-
ers. Modules can be used to briefly introduce students to
parallel computing concepts, or provide them with in-depth
exposure to programming examples and practices. CSinPar-
allel modules have been used successfully at Macalester, St.
Olaf, West Point, and other places, with students rating the
material highly.

The patternlets module at CSinParallel.org is especially
useful for teaching with microclusters. Patternlets are small
code examples that demonstrate particular PDC topics, us-
ing well-known, tried-and-true parallel design patterns [10].
There are currently 21 MPI patternlets available for teach-
ing distributed-memory parallel topics and 16 OpenMP pat-
ternlets for teaching shared-memory parallel topics, as well
as patternlets for POSIX pthread multithreading and het-
erogeneous (MPI+OpenMP) computing.

5.2 CDER
The NSF-funded Center for Parallel and Distributed Com-

puting Curriculum Development and Educational Resources
(CDER) was created with mission of developing core PDC
curricula that can be adopted at a wide array of institutions
across industry and academia. CDER maintains a collection
of instructor-produced PDC materials [25], and has synthe-
sized several introductory topics into a book [39]. A second
volume of the book will target students in upper-level com-
puter science courses.

In addition to collecting PDC educational materials, CDER
has also sponsored an Early Adopter Program to provide
seed funding for faculty to integrate PDC concepts into
their courses, and the EduPar workshop series to provide
a venue for dissemination of these Early Adopters’ results.
The Early Adopter Program has funded over 100 institutions
to date. CDER also provides access to parallel hardware
platforms for teaching PDC topics.

5.3 Other Sources of Materials
There are many high quality PDC teaching materials

available from other sources including HPCUniversity.org [2],
the Computational Science Education Reference Desk [1],
and Lawrence Livermore National Laboratory (LLNL) [7].

HPCUniversity.org has tutorials on programming languages
such as C, C++, and Python, as well as UNIX and shell
programming to help students acquire necessary background
skills. There are also tutorials there on using OpenMP, MPI,
MPI+OpenMP, the Intel Xeon Phi, GPGPU, and CUDA.

CSERD has a number of modules that show how to im-
plement solutions to problems with different parallel com-
puting libraries. These include classic examples like Con-
way’s Game of Life and calculating the area under a curve
to interdisciplinary applications of parallel computing such
as biofilms and solving the party problem in mathematics.

LLNL is another source of useful tutorials, focused on
Pthreads, MPI, and OpenMP.

6. CONCLUSIONS
We have described how microclusters can be used to in-

troduce undergraduate students to PDC. The microclusters
at Calvin College, Centre College, IUSB, Macalester College,
and West Point have excited students about parallel com-
puting concepts and applications. Microclusters embody the

“hands-on” learning of PDC clusters advocated by CS edu-
cators, are a fun way to introduce students of all levels to
parallel and distributed computing, and provide small-scale
models of larger HPC systems.

We also described different strategies for engaging stu-
dents with microclusters, including different courses in which
students can use microclusters, and microcluster-based re-
search and outreach experiences. We noted free teaching
materials that can be used in conjunction with microclus-
ters. Some of our SBCs cost less than many course text-
books; with the availability of free, high-quality teaching
materials, SBCs and SBC clusters can be individually pur-
chased by students in lieu of a textbook.

While we highlighted the one cluster per student model
and the one cluster per class model, Macalester College
has recently begun moving towards an intermediate “several
clusters per class” model. In this approach, students work
in groups, with each group using their own microcluster to
explore hands-on CSinParallel.org activities. These clusters,
built in summer 2017 using Raspberry Pi 3 boards, will be
used in the 2017-2018 academic year in the sophomore-level
systems course. This model should provide better scalability
than the “one cluster per class” approach.

The price/performance ratios of SBC architectures con-
tinue to improve, as new processors and boards are released.
For example, Nvidia introduced the Jetson TX1 in 2015,
based on the Tegra TX1 processor, containing an updated
ARM CPU and 256 GPU cores, and now offers an updated
Jetson TX2 developer kit board for an educational discount
price of $299.00. Macalester has recently built a new clus-
ter using 4 TX2 boards. More affordable multicore SBCs,
such as the 4-core Raspberry Pi 3 board ($35.00 without a
power adapter) are also now excellent candidates for afford-
able small clusters. The future of Adapteva and its Parallella
board is in some doubt [5]; however, it is the only SBC that
supports teaching about FPGAs and co-proccessors.

For each SBC, Table 1 summarizes the software libraries
that can be covered, the hardware features, and the cost per
node. Additional items that may be needed include network
router and cables, power supply, monitor, and keyboard. For
demonstrations and student research projects, more expen-
sive and powerful clusters based on NVidia Jetson hardware
may be preferable. The low-cost multicore ODROID and
Raspberry Pi 3 hardware are excellent ways to get hard-
ware in students’ hands and and avoid competition for a
shared cluster. For these SBCs, downloadable images allow
students to get started with these systems quickly.

The choice of hardware and teaching model depends on
the course learning outcomes at a given institution. To illus-
trate, all of the microclusters presented in this paper support
the coverage of learning outcomes related to OpenMP and
MPI; to cover CUDA outcomes, a Jetson SBC is needed; to
cover outcomes related to co-processors or FPGAs, a Par-
allela is needed; and so on. Likewise, the ”one cluster per
student”model scales well and is applicable at institutions of
all sizes; the ”one cluster per course” model may be limited
to small institutions and/or demonstration machines.

Our collective experiences strongly suggest that micro-
clusters are an inexpensive, accessible, cost-effective, and
motivating way to introduce parallel computing concepts
to undergraduates, in keeping with current CS curriculum
guidelines. We hope that our positive experiences will in-
spire others to use microclusters to teach PDC concepts.
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Features Parallella OROID XU4 NVidia Jetson TK1 Raspberry Pi 3
OpenMP Y Y Y Y

MPI Y Y Y Y
GPGPU N OpenCL CUDA N

Co-Processor Y N N N
FPGA Y N N N

Cores: CPU + GPU/Co-Processor 2 + 16 8 + 6 4 + 192 4 + 0
Cost (per node) $99.00 $59.00 $192.00 $35.00

Table 1: Overview of node architectures and features.
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