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Forward
In this issue, Sharma describes a model scientific computing
course at a liberal arts college. The course focuses on scien-
tific data analysis and data visualization using Mathematica
and a variety of open source tools for molecular visualiza-
tion. It provides a description of the hands-on exercises and
student assessments of the experience.

The article by Shamir describes a model for an undergrad-
uate research experience in computer science that has been
implemented as his institution. The program has resulted
in about 40% of the undergraduate majors participating in
the research experience across a wide range of topics.

The other articles in this issue detail the internship and re-
search experiences of five students and their faculty men-
tors. Alford and Toth describe a project that compared the
cost, power consumption, and computational efficiency of
ARM-CPU systems with a regular cluster performing vir-
tual screening with AutoDock Vina.

Haddad et.al. tested a new algorithm for the computation
of Bayesian networks that generates multiple networks in
parallel to help remove the bias of other approaches. They
demonstrated a major performance gain through 64 proces-
sors after which the communications overhead resulted in
wasted computational resources.

Isokpehi and his students used the Blue Waters Supercom-
puter to analyze the information from microbial genomes.
They then used several data analytics tools to visualize the
similarities and differences across a 547 annotation files for
the Rhizobiales genome.

Peterson et.al. describe the contents of a computer science
course for high school students with a capstone project of
building an n-Body simulation. They report a number of
challenges faced by students in the course along with the
results of the final project.

Finally, Yu and Mark describe their model for the interplan-
etary low-thrust trajectories from Earth to Mars for space-
crafts supplying necessary cargo for future human-crewed
missions. They were able to achieve significant speedup in
the application after parallelization.
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ABSTRACT
This paper describes a course called, “Introduction to Scien-
tific Computing” that has been developed for freshman stu-
dents at Wagner college, a private national liberal arts insti-
tution. The course trains students in computational think-
ing and involves hands-on learning of typical work-flows in
scientific data analysis and data visualization. Students de-
velop proficiency in the symbolic computing platform, Wol-
fram Mathematica R©, to apply functional programming to
develop data analysis and problem solving skills. The course
presents computational thinking examples in the framework
of various scientific disciplines. This exposure helps students
to understand the advantages of technical computing and its
direct relevance to their educational goals. The students
are also trained to perform molecular visualization using
open source software packages, such as Avogadro and Visual
Molecular Dynamics, to understand secondary and tertiary
protein structures, construct molecular animations, and to
analyze computer simulation data. These experiences stim-
ulate students to apply these skills across multiple courses
and their research endeavors. Student self-assessment data
suggests that the course satisfies a unique niche in under-
graduate education. We have provided a sample syllabus,
homework assignments, and examples of student work to
aid in the design and implementation of similar courses at
other institutions.

CCS Concepts
•Applied computing→ Education; Chemistry; Physics;
Computer-assisted instruction; Computer-managed instruc-
tion; Mathematics and statistics; Collaborative learning;

Keywords
Undergraduate; Freshman Year; Scientific Computing; Ed-
ucation; Visualization

1. INTRODUCTION
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Computational Science is a relatively new phenomenon in
the long march of scientific disciplines and pursuits. From
their invention in 1940s[1] to large scale supercomputers that
are advancing fundamental research in all disciplines, com-
puting has a fascinating history[2]. However, a typical lib-
eral arts student gets very little to no exposure to such inspi-
rational and powerful uses of computers and computational
thinking. Most students consider the usage of computers for
routine purposes (browsing, social media, document process-
ing, etc.) as being “technologically literate”. However, this
is a very limited form of literacy and educators need to raise
the level of technological competency to enhance the career
prospects of our students[3, 4].

The STEM education community has focused its atten-
tion on introducing students to computational thinking and
computation as distinct from routine computer usage [5, 6,
3]. The physics education community has been instrumental
in adopting computer aided instruction and full fledged cur-
ricula and majors in Computational Physics exist at many
institutions[7, 8, 9, 10, 11, 12]. Similar attempts to intro-
duce computing in the chemistry curriculum have also been
reported in the literature [13, 14, 15, 16, 17, 18]. These
curricular level transformations are important milestones in
modernizing and improving educational outcomes and skills
of future graduates. However, an institution without the re-
sources to engage in curricular overhaul may not be able to
take advantage of such approaches. Particularly, smaller lib-
eral arts colleges with limited faculty size and infrastructure
are in an especially unfavorable position to embed comput-
ing holistically in an entire discipline or program.

A feasible alternative is to modernize the introductory
computer course to highlight computational thinking and
move beyond routine usage of computers. However, this
approach lacks cohesiveness and students may not see the
computing as directly relevant to their studies. We advocate
the alternative approach to embed computing in a freshman
level course in the natural sciences and provide students with
an exposure to computational thinking in the framework
of their course. A striking example of such an approach
in an introductory mechanics course was recently reported
[19]. That course required students to learn elementary pro-
gramming skills to solve physics problems using VPYTHON
programming environment. These students did not possess
formal computer science coursework exposure and a major-
ity of the class successfully completed the evaluation. These
approaches are warranted to ensure that future STEM grad-
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uates can converse with computers with reasonable fluency
in the future. We highlight an approach to inject compu-
tational thinking and molecular visualization at the fresh-
man level. The importance of visualization in disciplines
like chemistry and biology cannot be overstated[20, 21] and
the power of computational thinking to assist students in
physics and other disciplines has been well documented[19,
7, 8, 16, 17]. Our course provides students with a toolbox
of computational thinking and molecular visualization and
editing tools that can be advantageously applied to a va-
riety of courses offered in the STEM disciplines. The easy
availability and widespread acceptance of these tools by stu-
dents has the potential to increase the richness and depth of
coursework in many disciplines.

2. METHODOLOGY
We designed and implemented a Scientific Computing course

to teach elementary computational thinking in the frame-
work of STEM disciplines and to highlight applications of
computing to the natural sciences. The course aims to de-
velop specific competencies of computational thinking, molec-
ular visualization and editing, and data analysis. The course
also aims to provide students with an introduction to func-
tional programming, large scale data visualization and rep-
resentation. A Scientific Computing course is commonplace
in engineering disciplines. Such courses are typically focused
on applications of numerical methods and their applications
in solving scientific and engineering problems. There are
many texts available on scientific computing with this focus
[22, 23, 24, 25]. However, these books and corresponding
courses are designed for an audience familiar with some com-
puter programming language and/or advanced mathematics
courses like calculus or linear algebra. Such courses are gen-
erally offered by Computer Science faculty and are typical
coursework for engineering concentrations or Computational
Physics majors.

However, there is no such parallel at liberal arts colleges.
A standard scientific computing course as previously de-
scribed would not be applicable to the student population at
liberal arts colleges. Wagner College, like many liberal arts
colleges, requires a semester of a Computer Science affiliated
course to provide students with an exposure to “technologi-
cal skills”. Sadly, such courses typically do not delve into
high-level computational skills or computational thinking
and generally provide instruction in using Microsoft Office R©
products and rudimentary worldwide web concepts. These
courses and approaches were probably valuable a decade ago
when computing devices were not quite as prevalent. How-
ever, in today’s world these courses appear outdated and
do not provide relevant skills to the modern undergradu-
ate student. We devised a course called, “Introduction to
Scientific Computing”, with the express intention to include
all potential STEM students in the course. The course is
designed to be inclusive toward students with all levels of
preparation and previous exposure to computers and math-
ematics preparation. Most importantly, the course has no
computer science pre-requisites. The course pre-requisites
are any introductory class in the natural science disciplines
taken during the first semester freshman year. Thus, the
course is designed to be appropriate and most advantageous
for second-semester freshman students.

The broad spectrum of the course allows it to serve a
variety of students pursuing multiple STEM career paths.

The course intention is to highlight the ubiquitous thread
of computing that permeates modern scientific endeavors.
The course goal is not to design and produce efficient pro-
grams or code. The course goal is to reach out to students
who may have never considered computers as an ally to
perform the science and learning that interests them. An
important course goal is to highlight the role and power
of computational thinking in solving problems. The course
uses the freely available text, An Elementary introduction
to Wolfram language[26], by Stephen Wolfram, the creator
of the Wolfram programming language which is at the core
of Mathematica R©.

We chose to use the Mathematica platform to reduce the
entry barrier and also to take advantage of the immense va-
riety of applications and in-built functions in Mathematica
that span the STEM domains and beyond. Python program-
ming language is similar in many respects and we think it
could be suitable to construct a similar course. However,
we wanted to steer clear of the notion that this is a com-
puter programming course and eschewed the Python pro-
gramming language. We wanted to ensure that we could
reach the maximum number of students and even those stu-
dents who had previous negative experiences with computer
programming. A similar course could be constructed using
Maple R©, Matlab R©, or other software packages based on in-
structor familiarity and availability. The most important
consideration is that there should be an element of higher
level programming and scripting that allows students to en-
gage with the code and to construct analysis tools using
functional programming ideas. Thus, we would argue that
spreadsheet based packages like Microsoft Excel R©, etc. are
not appropriate as the primary course platform.

The course can be divided into two broad sections: Math-
ematica technical platform and molecular visualization and
editing. The Mathematica portion familiarizes students with
the basic data structures and operations. We also high-
light the applications of curated databases and their inte-
grations into solving scientific problems. Students are in-
troduced to various forms of data presentation including
static and dynamic plots and charts. Finally, we introduce
students to molecular editing and visualization using open
source tools like Avogadro[27] and Visual Molecular Dynam-
ics(VMD)[28]. We combine the elements of data analysis
and visualization by presenting students with molecular dy-
namics simulation trajectory and carrying out its analysis
as a classroom exercise. The next few sections will describe
each of these modules in more detail.

3. MATHEMATICA MODULE
The course starts by introducing students to the vari-

ous domains that can be accessed through Mathematica.
This is achieved by highlighting in-built functions in Math-
ematica. We start by plotting trigonometric functions and
three-dimensional plots. Mathematica recently added cu-
rated databases to the program. These allow a look-up of
data from domains like chemistry, physics, biology, finan-
cial markets, economic data for countries, engineering data,
mortality rates, weather data, etc. For many students this
is their first ever encounter with such data. The goal of the
first lecture is to ensure that students feel empowered and
experience that they can write the code that can access such
high level tasks. We impress upon students that the course
is not about nuts and bolts of programming, but learning
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technical platforms that can be used to address high level
questions.

The course follows a workshop model in which the instruc-
tor projects the notebook (Mathematica interface) on a large
screen and students write down the code on their individ-
ual computers. This is important to get the first practice
of writing down the code and to increase student familiarity
and confidence with the interface. The basic data structure
in Mathematica is a list. We spend at least three lectures on
familiarizing students with the list (array) structure and per-
forming operations. Standard operations like reversing the
list, calculating mean, standard deviations, etc. are carried
out to develop baseline competency. We perform simple al-
gebra on lists and solve problems that require setting up lists
for solutions. Such problems abound in scientific domains
and provide a review of scientific concepts as well as the
skill of interpreting scientific problems into a computational
framework. We necessarily choose problems from different
domains, physics, chemistry, etc. to highlight broad usage
of the platform and to inspire students to use their newly
acquired skill across other courses.

Students also learn to visually represent different types
of data. The standard mathematical functions, dynamic
plots, parametric plots, etc. are also explored in the course.
Bar charts and histograms are also covered to provide stu-
dents with an overview of different aspects of data presenta-
tion. The students appreciate different data representations
and their appropriateness to highlight certain aspects of the
data. Lively discussions on choosing data representation are
commonplace in the classroom. In all cases the data origi-
nates from solution of a problem from one of the scientific
disciplines. This builds up on previous knowledge of the core
principles of Mathematica. A glimpse of the diversity of ex-
amples that we execute in class and homework assignments
for this module is provided below. These examples take ad-
vantage of Mathematica’s curated research databases and
the coding principles taught in the course. This approach
enables students to use computational skills in their other
courses and research assignments.

1. Plotting density and temperature of water to deter-
mine the temperature of maximum density of liquid
water

2. Construction and analysis of dice games

3. Plotting density of elements and analyzing trends

4. Identifying the 10 most populated cities in the USA
and data representations

5. Determination of the number of airports in the G8
countries

6. Plotting temperature data for various cities and ana-
lyzing weather trends

7. Atomic radii of elements in the second and third period
of the Periodic Table

8. Interactive histograms of distributions of randomly se-
lected integers

9. Interactive plots of mathematical functions

We will highlight the example of a die throwing game to
demonstrate the readable and expansible nature of the code.
The algorithm is simply described as:

1. Create a list of 6 integers for a regular six-sided die

2. Pick an integer randomly to represent a particular face
of the die

3. Accumulate the counts of each face over a number of
die throws

4. Plot the distribution of each face for the specified num-
ber of trials

A sequential construction of this example is provided in
the following code snippet

rolls = Table[RandomInteger [{1,6}],{i

,1 ,100000}];

Histogram[rolls]

However, these can be merged into a one-line code eliminat-
ing the need to create and store a variable. This approach
where functions are input to other functions is a powerful
feature of functional programming and we stress this repeat-
edly during the course. This feature enables students to
chain complicated tasks into simple and easy to read code
fragments.

Histogram[Table[RandomInteger [{1,6}],{i

,1 ,100000}]]

This can be easily extended to two dice games and plotting
the histograms of sums of two dice throws. The following
command simulates million throws of two dice and adds the
output. It then plots a histogram to highlight the distribu-
tion of the recorded sum.

Histogram[Table[RandomInteger [{1, 6}] +

RandomInteger [{1, 6}], {i, 1,

1000000}]]

As students develop their skills in the language and com-
putational thinking, we revisit this example and create a
custom function to carry out these operations. The dice ex-
ample is used to highlight the power of repeated trials and
the need for large numbers of trials to understand stochastic
phenomena. Students construct the scenario of a compari-
son between an unloaded regular dice and a dice loaded to
favor the face bearing the numbers four or six three times
over other faces. This example impresses upon students the
need for repeated trials and also the role of random num-
bers in stochastic processes. The output of this comparison
of a loaded die with a regular die is shown in Fig. 1. The
result clearly shows that a loaded die behavior can be de-
tected with few trials, however, the regular die output needs
many trials to verify the equal probability of each outcome.
The code snippet highlights the advantage of using Mathe-
matica and the ease with which students progress in their
knowledge of coding.

regularDice[throws_] :=

Module [{out = Table[RandomChoice [{1, 2,

3, 4, 5, 6}], {throws }]},

Histogram[out , PlotLabel -> throws "

Unloaded Die Throws "]]

loadedDice[throws_] :=

Module [{out =

Table[RandomChoice [{0.1, 0.1, 0.1,

0.3, 0.1, 0.3} -> {1, 2, 3, 4,
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Figure 1: Histograms of outputs of an unloaded and
loaded die. The behavior of a loaded die is clear
even at low number of trials.

5, 6}], {throws }]},

Histogram[out , PlotLabel -> throws "

Loaded Die Throws "]]

GraphicsGrid [{{ regularDice [100],

loadedDice [100]} , {regularDice [10000] ,

loadedDice [10000]} , {regularDice

[1000000] , loadedDice [1000000]}}]

The focus of this module is to empower students with
the skills of computational thinking and its application in
various domains. The students are reminded constantly
that Mathematica would be a great help for them in other
courses, laboratory reports, and homework assignments. Stu-
dents are also trained to write short programs (called Mod-
ules) that chain multiple built-in functions. This experience
introduces students to the power of programming and its
applicability to their daily activities. However, the course is
not devoted to programming, rather its intention is to high-
light the power and ease of functional programming and
the advantages it can provide to students. The examples
have been deliberately chosen to improve student under-
standing of pre-calculus and calculus, data analysis, data
fitting, data visualization, and elementary physical science
concepts. In the next section we describe the molecular vi-
sualization module.

4. MOLECULAR VISUALIZATION
Molecular editing and visualization is also embedded in

the course to allow students to experience the applications
of computing beyond numerical calculations. Students use
an open-source application Avogadro[27] to create and edit
molecular structures. Students also use Avogadro’s features
to create carbon nanotubes, aromatic compounds, and polypep-
tide sequences. This activity of building different molecules

Figure 2: A snapshot of water arrangement in Avo-
gadro. The dashed lines represent hydrogen bond-
ing interactions.

is also helpful for students to develop skills of interaction
with Graphical User Interface (GUI) of typical scientific ap-
plications. We apply Avogadro’s molecular mechanics[29]
capabilities to highlight intermolecular interactions and hy-
drogen bonding between water molecules. We also highlight
Avogadro’s application to analyzer stereochemistry and 3-D
molecular structures. Students have informally reported af-
ter progressing to organic chemistry course that Avogadro
was a very helpful tool for that course.

A signature activity that we perform with Avogadro is the
study of arrangement and orientation of water molecules in
a small cluster. The students follow along in this activity on
their personal computers. We utilize the Auto Optimization
feature of Avogadro for this exercise. This feature allows
a continuous optimization of molecular geometry and ar-
rangement using molecular mechanics. We start with 20-25
randomly placed water molecules on the screen. The classi-
cal mechanics force field MMFF94[30]is chosen to represent
intermolecular interactions. This force field recognizes hy-
drogen bonding interactions and the resulting arrangement
of water molecules in the cluster is a result of the hydrogen
bonding propensity of these molecules. Students are asked
to pick and drag molecules around the screen. The system
responds instantaneously and rearranges other molecules in
the vicinity. The program also displays the potential energy
at each instant and students observe that potential energy
fluctuations correspond to favorable or unfavorable local and
global arrangements of water molecules. Specifically, the
system of water molecules attempts to optimize the hydro-
gen bonding interactions. A snapshot of animation with
hydrogen bonds is shown in Fig.2. An animation of this
process is supplied in the Supporting Information.

The course utilizes Visual Molecular Dynamics (VMD)[28]
to study three-dimensional structures of proteins and to in-
troduce students to a tool widely used in computational
chemistry and biology research laboratories. VMD is a pow-
erful tool to visualize structural properties, perform molec-
ular dynamics simulation setup and data analysis for the
NAMD[31] simulation engine. VMD allows fine-grained con-
trol of structural representation and can also be used to vi-
sualize a simulation trajectory run in any of the popular
molecular dynamics simulation engines like GROMACS[32],
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Figure 3: 1l2y mini-protein with proline residues
highlighted in CPK representation. The secondary
structure is emphasized by using the NewCartoon
representation in VMD.

NAMD[31], LAMMPS[33], etc. This enables us to intro-
duce the Protein Data Bank (PDB)[34] and to provide an
overview of protein structure, stability, and function.

Students learn to browse the PDB resource, load molecules
into VMD and extract information from the structures. They
are trained to represent different molecular representations
like CPK[35], Van der Waals, and secondary structure rep-
resentations that are commonly seen in the literature and
biology textbooks. For example, we study the structure of a
small synthetic mini-protein trp-cage (PDB code: 1L2Y)[36].
The structure is shown in Fig.3 with the proline residues in
CPK representation and the rest of the molecule in New-
Cartoon representation to highlight the α-helix motif. This
also allows students to observe the general rule that pro-
line residues do not participate in the formation of α-helix
secondary structure motifs[37].

Similarly, we highlight structure of a β-barrel membrane
protein (PDB code: 1G90)[38] located in the outer mem-
brane of Gram-negative bacteria. This protein is chosen to
highlight the β-sheet secondary structure element and the
β-barrel morphology. Students learn to visualize the hydro-
gen bond connections between the sheets and to represent
the structure in multiple ways. A representation of this pro-
tein is depicted in Fig.4. The red dashed lines represent
hydrogen bonding interactions.

An important element of the course is to develop critical
thinking skills of students and to encourage them to question
their own beliefs about concepts learned in other courses.
Hydrogen bonding is one of the most important concepts
that students of Chemistry and Biology (the major popula-
tion of our course at Wagner College) need to understand. A
hydrogen bond is simply an electrostatic interaction between
a hydrogen atom connected to a highly electronegative atom
like fluorine, oxygen or nitrogen and another electronegative
atom. Hydrogen bonds are commonly understood to be a
key factor in protein structural stability, stability of DNA,
RNA, and the unique properties of water. However, most
students do not possess an intuitive understanding of how
an interaction would be labeled as a hydrogen bond in the
pictures seen in their biology or chemistry textbooks. Stu-
dents use VMD options to display hydrogen bonds in protein
structures. They also modify the default distance and an-
gle cutoff to study the impact of such restrictions on the
number of hydrogen bonds reported in the structure. The

Figure 4: A β-barrel membrane protein. The red
dashed lines represent hydrogen bonding interac-
tions.

default distance criterion is 3.3 Angstrom and default an-
gle criterion is that the Donor-Hydrogen-Acceptor angle is
less than 20 degrees. Students discover that modifying these
definitions leads to a change in the number of interactions
flagged as hydrogen bonds and also study hydrogen bonds
in different regions of proteins. This model of instruction
enables students to appreciate the role of visualization and
also the type of decisions that are implicit in visualization
engines that study biomolecules. This exercise helps stu-
dents to understand that pictures seen in books, textbooks,
and research articles are the result of many decisions that
must be understood from a computational and physical per-
spective.

The interplay of visualization with data analysis is high-
lighted in the next signature activity that we perform with
the students. We apply VMD to visualize the trajectory
of a short molecular dynamics simulation of liquid water
and Mathematica to perform data analysis on observables
recorded during the simulation. Such an activity would not
be possible to perform with freshman level students outside
of this course.

5. ANALYSIS OF MOLECULAR DYNAM-
ICS SIMULATION

We perform the visualization and analysis of a short molec-
ular dynamics simulation of liquid water at room tempera-
ture. We execute the simulation beforehand and project
the simulation trajectory for visualization to the class. We
then display hydrogen bonds during the simulation frames.
Usually, a lively discussion follows about the behavior of
liquid water during the simulation and how they could use
VMD[28] to display the hydrogen bonds and use different
representations of the simulation trajectory. At this point in
the curriculum students realize that a molecule in bulk wa-
ter attempts optimization of its hydrogen bonding network.
The trajectory is processed using GROMACS[39] tools be-
forehand and students are presented with text files contain-
ing measurement of temperature, potential energy, kinetic
energy, etc. during the simulation.

Students are provided a brief overview of molecular dy-
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Figure 5: Moving averages to compute the aver-
age temperature during a molecular dynamics sim-
ulation. The fluctuations in the measurement are
highly suppressed as the width of averaging window
increases.

namics simulation and a brief explanation of the NPT en-
semble[40] used to carry out the simulations. They calculate
the number of water molecules and volume of simulation box
to achieve appropriate density. This helps to build an appre-
ciation of the scale of molecular simulations. A particularly
illuminating aspect of this exercise is the concept of average
value of a measurement over a time period. The simulation
provides an output of temperature measurement and other
physical observables at every picosecond during the simula-
tion. Thus, for a 2 nanosecond simulation there are 2000
recorded temperature values. Students import the raw data
into Mathematica and visualize the measurement. They no-
tice that the temperature fluctuates and is not truly fixed at
300 K for the entire simulation. The students then perform
moving averages to understand the temperature measure-
ment. As they perform moving averages over measurement
values, they realize that instantaneous measurements may
differ significantly from the average. They perform a time
average using a duration of 10 ps, 100 ps, and 500 ps each.
They observe that with larger averaging duration the tem-
perature measurement is very close to the preset 300 K for
the simulation. Fig.5 depicts a plot that students construct
using the raw data. This exercise also provides an oppor-
tunity to impart the skill of importing data from text files
into Mathematica and data processing for desired analysis.
Students report that this is usually their first experience ana-
lyzing large amounts of data and visualizing fluctuations in
the measurement of a commonly experienced physical ob-
servable such as temperature. The exercise also involves
analyzing potential and kinetic energies and the number of
hydrogen bonds during the simulation.

6. SMALL PROJECT EXPERIENCE
Students perform a small research project during the last

six weeks of the course. These are group projects that in-
corporate themes from the course. We reserve a portion of
class time for students to pursue these projects and to get
assistance from the instructor and other classmates. A few
student projects are described below to provide an overview:

1. Mathemusica: Students explained the mechanism of
sound, action of sound waves, and programmed popu-
lar music and classical music compositions using Wol-
fram programming language in Mathematica. This

was a highly unusual and creative application of pro-
gramming and computing.

2. Global warming trends: Students downloaded datasets
of global surface and sea temperatures from NOAA to
analyze trends and to highlight the measures of global
warming.

3. Gallery of 3-D structures and functions: Students cre-
ated 3-D structures of proteins, their genetic informa-
tion, and their properties using VMD and Mathemat-
ica’s biological data functionalities.

4. Gallery of atomic orbitals: Students plotted mathe-
matical expressions for atomic orbitals to depict shapes
of atomic orbitals and their properties.

These projects highlight the diversity of students and their
interests in the course. They also demonstrate the diverse
range of functions and databases that are built into Mathe-
matica and of student efforts to apply their skills in a variety
of domains.

7. STUDENT ASSESSMENT
This course has been taught twice at Wagner College to

a total audience of 30 students with a distribution of stu-
dents from all levels. Student response to the course has
been overwhelmingly positive. The freshman population in
Spring 2015 was 50% and in Spring 2016 was 43%. The
strong interest from students at all levels is highly encour-
aging. Although, the course would be most beneficial if stu-
dents take it as early as second semester of freshman year.
Additionally, it also points to a pressing need for this course.
Students in their junior and senior years of College have ex-
pressed amazement and disbelief about the accomplishments
of computational science and its potential impact on their
career paths. The course has a strong enrollment for the
Spring 2017 semester with 19 students (11 freshmen) regis-
tered for the course.

The assessment was carried out using anonymous on-line
survey. The average of student responses is reported along
with standard deviation in parentheses. The responses have
been merged for the first two iterations of the course with
30 respondents. The first set of questions had responses
on scale from Strongly Agree (5) to Strongly Disagree (1).
These questions have a broad focus and students seemed in-
tent on applying the skills from this course to other courses.

1. I have acquired a better understanding of applications
of computing to Science. 4.50 (0.51)

2. I plan to apply software and skills acquired from this
course to other courses. 4.17 (0.81)

3. I have acquired skills that will help me in my major.
4.23 (0.77)

The second set of questions had responses on a scale used
for Wagner College Chemistry graduate exit survey: A great
deal (5), A lot (4), Some (3), A little (2), Not at all (1).
These questions address distinct skills and tools practiced
in the course. The responses are overwhelmingly positive
and the course seems to be addressing a unique niche in the
undergraduate liberal arts curriculum.

1. My skill in manipulation of large datasets has increased.
3.97 (0.81)

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 7



2. My skill in graphical analysis of data has increased.
4.07 (0.87)

3. My skill in setting up and solving numerical problems
has increased. 3.9 (0.80)

4. My skill in visualization and analysis of mathematical
functions has increased. 4.07 (0.91)

5. My skill in visualization of structure of biomolecules
has increased. 4.13 (0.86)

6. My skill in molecular drawing and editing has increased.
4.23 (0.82)

The positive course evaluations and student experiences
have inspired us to share this work with a larger audience.

8. CONCLUSION
We have created a course called,“Introduction to Scientific

Computing” to introduce students to technical computing
and functional programming at liberal arts Colleges. The
course focus is to present computing and interaction with
data in the framework of STEM disciplines. This approach
fosters the integration of computing into the educational
goals of students from all STEM branches and provides a
set of tools that can be used throughout their undergrad-
uate education and well into the professional work-place or
graduate school. We think that the course utility is the high-
est for freshman students because of the high impact of these
skills and tools on their undergraduate education. However,
student response from all levels of student population has
been highly encouraging. Students learn the skills of data
analysis, data visualization, functional programming, molec-
ular visualization, and molecular editing. Students also ap-
ply these skills collaboratively in small group based research
projects. The diversity of projects and assignments carried
out in the course highlight the broad applicability of the
course to STEM education. Our hope is to transform the
student mindset into accepting scientific computing as a skill
that is as integral to the practice of STEM disciplines as
their laboratory skills. We hope that colleagues at other in-
stitutions will consider creation of a similar course to better
prepare our future generations.

9. SUPPORTING INFORMATION
The following files are provided as supporting information:

1. A notebook with code samples described in section 3
in Mathematica notebook format and PDF

2. Animation of the molecular rearrangement activity de-
scribed in Section 4

3. A popular music song, “All of me” recreated by stu-
dents in Mathematica (in CDF, PDF and Mathemat-
ica format). The document can be opened with the
freely available Wolfram CDF player https://www.wolfram.
com/cdf-player/.

4. A sample course syllabus and assignments are provided
to aid in creation of a similar course.
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ABSTRACT
Research experience has been identified as a high-impact in-
tervention for increasing student engagement and retention
in STEM. However, authentic undergraduate research lead-
ing to primary authorship peer-reviewed publications is a
challenge due to the relatively short time the students work
on their capstone projects, and the insufficient preparation
of the students as researchers. The challenge is further mag-
nified in the field of computer science, where the absence of
“traditional” labs limits the opportunities of undergraduate
students to participate in research. Here we present a novel
approach to authentic computer science undergraduate re-
search, based on interdisciplinary computational science and
student ownership of their research projects. Instead of the
traditional role of undergraduate research assistant, the stu-
dents select their own research topic based on their per-
sonal interests, and with the assistance of a faculty com-
plete all stages of their research project. The uniqueness
of the approach is its ability to lead to scientific discover-
ies and peer-reviewed publications such that the primary
author is the student, while allowing the student to experi-
ence the entire research process, from defining the research
question through analysis of the experimental results. In
three years the model led to a dramatic increase in the num-
ber of undergraduate students who publish primary-author
peer-reviewed scientific papers. The intervention increased
the number of peer-reviewed student-authored publications
from none to a very high rate of about one third of the stu-
dents, in many cases publishing in the top outlets in their
field.

Categories and Subject Descriptors
K.3.2 [Computers and education]: Computer and Infor-
mation Science Education

General Terms
Experimentation, Human Factors

1. INTRODUCTION
Research experience has been becoming increasingly impor-
tant in undergraduate education, and a primary tool for
attracting and retaining students in the Science, Technol-
ogy, Engineering, and Mathematics (STEM) disciplines [32,
29]. One of the goals of undergraduate research experience
is to improve student learning [18], as it has been shown that
active learning is superior to “traditional” teaching method-
ologies [12], also leading to higher grades [20, 3]. Another
goal is student preparation and ability to make connections
among seemingly disparate pieces of information, evaluate
evidence, and bring the requisite expertise to address com-
plex issues [1].

In addition to enhancing the learning experience, research-
based education has been proven to be a powerful inter-
vention for engaging undergraduate students [37], and con-
sequently retaining students in STEM [16, 20, 25, 9, 29].
The possibility of making a discovery and the participation
in authentic STEM research has substantial impact on stu-
dent engagement and learning compared to classical exper-
iment or “cookbook” style laboratory exercises that repro-
duce known results [32, 29].

In particular, research-based education was found effective
for attracting underrepresented minority students to STEM
[3, 48]. Other proven interventions for underrepresented mi-
norities in STEM include attending conferences, presenting
at conferences, and faculty mentorship [48], which are also
activities related to undergraduate research.

However, undergraduate research in computer science in-
troduces several obstacles, making it more challenging than
undergraduate research in many other STEM disciplines.
Fields such as physics, chemistry, or biology offer a variety
of hands-on opportunities for undergraduate research. Un-
dergraduate students can join research labs and participate
in experiments by executing protocols, preparing materials,
or operating basic research equipment. Such research labs
provide opportunities for undergraduate students to become
familiar with the environment of a research lab. As a result,
undergraduate students have noticeable presence in research
labs in these disciplines, and are often authors on scientific
peer-reviewed publications. Although the experiments are
normally designed by more senior researchers, undergradu-
ate students can take part in the research and benefit greatly
from their presence at the lab and their work as part of a
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research team in a discovery-driven environment.

Research in computer science, on the other hand, normally
requires deep knowledge of the concepts being studied and
familiarity with the state-of-the-art literature [30], making
it more difficult for an undergraduate student to make a
contribution.

Therefore, undergraduate research experience in computer
science can be broadly divided into two primary categories:
The first is student independent capstone projects, driven by
student ideas and the personal interest of the student. Stu-
dents working on these projects often receive the assistance
of a faculty or industry supervisor, but the project is nor-
mally owned by the student, who leads it through all stages
of the development [28]. The downside of these capstone
projects is that they rarely lead to peer-reviewed scientific
publications and authentic scientific discoveries.

The second category is student research assistantship [49, 5],
in which the student joins a research project led by a faculty
or another senior person, and assists them with the research.
As a research assistant, the student is exposed to authentic
research, but does not lead or own the research [19]. Another
disadvantage of student research assistantship is that it is
limited by available funding [31] and faculty attention [34],
and therefore while some undergraduate students in com-
puter science have the opportunity to join faculty or research
labs, the majority of undergraduate students completing a
four-year degree in computer science do not participate in
authentic research or become authors on a peer-reviewed
scientific paper. In some cases research opportunities are
available for the most qualified and motivated students, and
allowing all students to work on research requires a compro-
mise on the research quality and expectations [4]. It should
also be noted that undergraduate research experience in the
form of research assistantship is far more common in re-
search universities compared to other institution of higher
education [44, 33], and therefore students in smaller univer-
sities have less opportunities experience research.

Here we describe a model of undergraduate research expe-
rience that combines student ownership with authentic re-
search that leads to peer-reviewed publications such that the
primary author is the student. The project is owned by the
student and driven by the student’s area of interest, while
leading to authentic scientific discoveries and peer-reviewed
publications. The model provides research opportunities to
all undergraduate students, and significantly improved stu-
dent engagement. It also dramatically increased the num-
ber of students publishing peer-reviewed papers from none
to one third of the total number of graduating students.

2. STUDENT RESEARCH ASSISTANT COM-
PARED TO STUDENT RESEARCHER

The typical way by which an undergraduate student is ex-
posed to authentic STEM research is through the role of
student research assistant. As a research assistant, the stu-
dent joins a faculty or lab, and performs tasks related to the
research under the direction of the primary investigator or
another senior member in the lab. Although there is clearly
high educational value in being part of a research team, the
research assistantship model is imperfect for providing re-

search experience to large numbers of students as part of
their curricula.

Firstly, due to the close supervision that mentoring an un-
dergraduate student in computer science requires, the pri-
mary investigators are limited by the number of undergradu-
ate students they can mentor in their lab, and therefore just
few of the undergraduate students have the opportunity to
participate in research. Less senior members such as PhD
candidates also have commitments that limit their ability
to mentor students, and being trainees themselves they lack
the training and experience to effectively mentor students
and lead them to scientific discoveries. Undergraduate stu-
dents working in labs often receive stipend for their work,
making the number of students also limited by the availabil-
ity of funding. Because of the limited number of available
research assistantship positions, these positions are some-
times competitive, and students are selected based on their
academic achievements, making the research experience in-
accessible to those who are not at the top of their class.

Another downside of the student research assistant model is
that the students are required to join an existing research
project designed and led by a faculty, and therefore do not
select their research topic by themselves. That limitation is
magnified in smaller institutions of higher education, where
the number of research programs is limited and the student
has even less research options to choose from. Working on a
research program led by a faculty also diminishes the aspect
of ownership of the research, which is an important element
of the undergraduate research experience [29, 2]. Another
disadvantage of the student research assistantship model is
that the student often performs specific tasks defined by
the primary investigator or other supervisors, and therefore
does not earn hands-on experience in performing the entire
research process, from the definition of the research problem
to the analysis of the experimental results.

According to the undergraduate research experience model
proposed in this paper, the undergraduate research is per-
formed such that the student serves as the researcher, and
the faculty assists the student and provides the required
knowledge to successfully complete the project. The student
selects the research topic of his or her interest, defines the
scientific question, designs the research, performs the exper-
iments, and then analyzes the experiential results, while the
faculty mentor assists the student and provides the knowl-
edge required for the completion of each step of the research.
That experience exposes the student to all stages of the re-
search, and embraces the idea of student ownership rather
than assisting the research agenda of a more senior person.
The ability of the student to work on a research topic of
their choice helps to engage the student in the research, and
also attracts students who would not otherwise work on a
research project. It can also lead to peer-reviewed scientific
papers on which the undergraduate student is the primary
author.

Table 1 shows a summary of the differences between the role
of a student research assistant and the proposed model of
student researcher.
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Table 1: Student research assistant vs. student researcher
Student research assistant Student researcher

Accessibility Some (best) students All students
Owner of the research Faculty Student
Selection of research topic Faculty Student
Student responsibilities Defined tasks Entire research project
Paper authorship For some, as co-authors Yes (if paper is published)
Role of faculty mentor Direct the student Assist the student

3. IMPLEMENTATION OF THE STUDENT
RESEARCHER MODEL

In the proposed program, the student projects normally
span over two semesters, during which they earn three credit
hours in each semester. The two project courses are manda-
tory for all students, although students are not required to
perform research, and are free to choose to work with an in-
dustry partner, develop a video game, or work on their own
technological invention that is not necessarily considered re-
search. As will be described later in this paper, the number
of students choosing to work on research increased dramati-
cally since the described undergraduate research experience
model was implemented.

The students do not work on existing research programs,
and therefore the number of students that can perform re-
search is not limited by the number of research labs or open
research assistantship positions. However, supervising and
mentoring students is still a time-consuming task for the fac-
ulty. As will be described in Section 4, the experience of im-
plementing the program showed that one faculty can mentor
the research programs of about 10 students. Since the ratio
between faculty and senior students is normally lower than
1:10, the implementation of the program is feasible even in
smaller institutions of higher education, or colleges where
substantial part of the teaching is performed by part-time
faculty members.

One of the key features of the scheme is that the students
can choose their own research topics, based on their inter-
est. In the beginning of the semester the student meets with
the faculty mentor to discuss the topics the student is inter-
ested in, and the student and faculty collaboratively design
a research plan that is as close as possible to these fields of
interest. That is done in the first two weeks of the project.
Examples of research projects will be described in Section 4.

One of the important aspects of the research topics is compu-
tational science and interdisciplinarity [7]. Most Undergrad-
uate students do not have deep knowledge in the different
sub-fields of computer science, and therefore the requirement
to expand the state-of-the-art in a core computer science
sub-discipline might not be in agreement with the prepara-
tion of the student and their ability to perform that type
of research. In other cases research in these sub-disciplines
of computer science might not be aligned with the interests
of the student. Fortunately, computer science has applica-
tion to many other fields, and the increasing availability of
scientific data in these disciplines allows effective research
and substantial scientific discoveries through computational
science. Biology has long been a field with strong ties to
computer science in the form of bioinformatics and com-

putational biology, but other fields such as astronomy and
geoscience are also in the process of establishing strong links
to computer science, leading to interdisciplinary sub-fields.
Since many of the students who choose computer science are
also interested in astronomy, computational astronomy is a
field of study that can attract undergraduate students to
research. Other fields that are of high student interest can
be zoology, art, music, literature, and sport. Allowing the
students to choose a topic of research in these disciplines can
engage the student in research, and more importantly, can
attract students who would not otherwise participate in au-
thentic scientific research. Students can also choose research
topics related to their culture or ethnicity, and express their
identity through computing.

The availability of scientific data that the students can pro-
cess is often a critical requirement for completing the re-
search, and therefore the student and faculty mentor should
verify that the data are publicly available or can be obtained
within a reasonable period of time. That ensures that the
beginning of the project is not delayed because the data are
not available. The analysis of the data can be done by mod-
ifying existing open source data analysis tools and adjusting
them to the specific needs of the data analysis project.

When the students are provided with the option to select
the research topics regardless of the existing research pro-
grams available on their campus, it is expected that some
students would choose to study topics that the faculty men-
tor is not familiar with. To satisfy the expectations of the
student, the faculty mentor can learn the new field with the
student, leading to the expansion of the research topics that
the faculty can mentor. Therefore, it can be expected that
the implementation of the program will lead to a gradual in-
crease in the variety of research programs the students can
choose from.

The downside of the student self-selection of the research
projects is that students are geared towards their own inter-
ests so that each student tends to pick the project by the
topic, and not necessarily by the other students that they
want to work with. The priority of the research topic over
the research team results in much less teams of students, and
some students who work on research tend to work by them-
selves. In fact, just about 25% of the students who chose to
work on research worked in teams. That can be very differ-
ent from non-research projects such as video games, where
the vast majority of the students worked in teams. In that
case, the students first select the team they want to work
with, and only then they discuss the specific video game
they wish to develop.
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Two semesters is a short time for completing a research
project and submitting a scientific paper. Unlike gradu-
ate students who spend most of their time working on their
thesis, undergraduates spend substantial part of their time
taking courses, and sometimes have other commitments such
as work, and therefore their progress is limited by the time
they can commit to their research. For that reason it is im-
portant to meet the student at least once a week, as well as
maintaining a channel of communication by email or other
technologies (e.g., Skype) so that the student gets the sup-
port as soon as they need it, without delaying their progress.
It is also the responsibility of the faculty to monitor the
progress of the students and make sure the students use their
resources efficiently, and make the correct implementation
decisions during the semester. The level of student-faculty
interaction therefore goes beyond the regular office hours.
From the faculty perspective it means spending longer hours
on campus meeting with students, and becoming available
to the students at almost any time.

The open communication with the faculty mentor is also im-
portant for supporting the student. Undergraduate students
who have no experience in research are naturally concerned
about not being able to complete their project, and con-
sequently failing the course. The communication with the
faculty and the availability of the faculty assures the stu-
dents that they receive the support they need to complete
the project, and that the faculty is aware of their efforts and
the solutions they develop as they attempt to solve the scien-
tific question at hand. Working as a team with their faculty
mentor can drastically reduce the anxiety, and make the re-
search project a positive experience. For the same reason it
is important to make a clear statement that the project is
not graded by the ability of the student to provide a solution
to the scientific problem by the end of the semester, but by
the way the student studies the topic and approaches the
scientific question in attempt to solve it. Such statement
reduces the natural anxiety of the students who are asked
to perform tasks they never attempted before, and might be
worried about the academic consequences in case the prob-
lem they chose to work on does not cooperate with their
solutions. Another reason is to encourage the student to
choose more challenging research projects, and not neces-
sarily the simpler problems that they know they can solve
and secure a passing grade.

4. RESULTS
The program described above was implemented in our de-
partment, which has ∼120 undergraduate students, and about
25-30 senior students. Before the implementation of the pro-
gram the undergraduate students were rarely involved in re-
search. In three years the program increased the number
of students working on research from practically none to
about 40% of the students. Students in the video game con-
centration have to develop a video game as part of their de-
gree requirements, and cannot choose to work on a research
project (for academic credits), so when excluding these stu-
dents about half of the undergraduate students chose to
work on a research project, while the others preferred to
develop creative computer applications or work on industry-
oriented projects. Table 2 shows the distribution of the type
of projects selected by the students. As the table shows, the
number of students who chose to work on research increased

dramatically when the program was first implemented in
2011, allowing the students to work on their own research
projects. The drop in the number of students in 2014 can be
associated with the financial crisis that hit the Detroit area
in 2009-2011, affecting the number of senior students about
four years later.

Table 2: Student selection of capstone projects.
The new approach to student capstone projects was
started in 2011.

Year Video games Research Other
2010 14 1 38
2011 16 22 25
2012 12 24 21
2013 11 21 19
2014 7 12 15
2015 6 18 14
2016 8 21 16

The increase in the number of students who participate in
authentic research is also reflected by the number of stu-
dents who become authors on peer-reviewed scientific pa-
pers. Before the implementation of the program none of the
undergraduate students submitted papers to peer-reviewed
journals or conferences. After the first year of the program
two papers were published [47, 42], three papers in 2013 [36,
13, 39], seven in 2014 [14, 43, 17, 11, 26, 46, 21], six in 2015
[8, 24, 35, 22, 15, 27], and seven in 2016 [23, 38, 41, 45, 40,
50, 10].

The number of submitted papers peaked in the spring semester
of 2013, where out of 21 students eight papers were submit-
ted with 11 student authors, more than half of the students
in that semester. These papers were published during 2013
through 2015.

The student engagement is also reflected by the number of
students who keep working on their project and meet reg-
ularly with the faculty after they graduate. A student who
continues to work on their research makes an indirect state-
ment about the level of engagement and commitment to
their scholarly work. About one quarter of the students
who work on research projects continue to come to campus
and meet with their mentor faculty for at least one semester
after they graduate.

One of the surprising observations of the experiment is the
student response to publishing scientific papers. The ex-
periment revealed a very positive attitude of undergraduate
students toward publishing papers, and expressed willing-
ness to put efforts in the preparation of papers also after
they graduate. In some cases the students return to cam-
pus to work on revising their papers, as the report of the
reviewers and editors is normally received after the student
graduates. Another expression of student enthusiasm about
publishing papers is explicit statements made by the stu-
dent expressing their expectation to publish a paper, even
before they chose their research topic. In addition to student
pride and motivation, the communication of the student re-
search results through peer-reviewed papers helps to defend
the overall quality and impact of the student research, and
helps to justify the engagement of students in research.
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An important aspect of the results observed in the first
four years of the program is the impact of research expe-
rience on underrepresented minorities. Research experience
has been demonstrated as one of the most powerful tools
to attract and retain underrepresented minority groups in
STEM [6, 48, 3], and the findings of this experiment are
in strong agreement with these reports. Our department
has a relatively small population of underrepresented mi-
nority students, but the effect was measured by the partic-
ipation of women in research. Like many other computer
science programs, our student population is dominated by
male students. In 2013 the department had 114 male stu-
dents and just 12 female students. However, the proportion
of female students is completely different when considering
the student-authored papers published so far. Out of 27
student-authored papers published so far, about 25% were
authored by female students [47, 42, 26, 43, 24, 50, 10], much
higher than the proportion of female student in the entire
student population, which is ∼9%. That proportion remains
consistent also among the papers that are currently under
review. It should be noted that the sample size is still too
small to be statistically significant.

The presence of female students in research is also felt by
news items in the mainstream media. Since 2011 we had
four student research projects [42, 14, 43, 23] featured on
the premier national and international popular press (e.g.,
NBC News, Fox News, CBS, NPR, Discovery Channel, Sci-
entific American, The Atlantic, etc’), including press inter-
views with the students about their research. The exposure
through the mainstream media elevated the research experi-
ence to a new level of pride and excitement for the students,
their friends, and their families. Of these four students two
were women. Although it is clear that the test group is far
too small for making a conclusion, it is a result of female
student engagement in the research, as the research topic
is strongly related to the student’s personal interests. Also,
out of the 27 students that were authors on scientific papers,
10 continued to graduate school.

As mentioned in Section 3, the research project of each stu-
dent starts with a meeting in which the student describes
their interests to the faculty mentor, and then the topic of
the research is defined by both the student and the faculty.
Since different students have different topics of interest, sup-
porting the interest of the students requires a broad range
of research topics on which the students can perform their
studies, and new topics and disciplines are added every year
based on the student request. The first interdisciplinary pro-
gram was bioinformatics and medical informatics [36, 26, 24,
41], and based on the request of students was enhanced with
astroinformatics [17, 11, 21, 35, 22, 23]. Other programs
that followed were Zoology [47, 43], art [42], music [14, 15,
13], literature [39], sports [46, 45, 50], and human aspects of
computing [8, 38]. All of these programs were added based
on student interest and their expressed desire to perform re-
search in these disciplines. One example is a student who
was also a volunteer in a bird preservation society, and chose
a project which applied computational science to study birds
behavior and preservation [47]. A student who is an amateur
artist chose to apply computational science to analyze art
[42], a semi-professional rock musician used computational
methods to analyze music [14], a football fan applied com-

putational science to the analysis of football coach decisions
[46], and a soccer fan chose to analyze the salaries of soccer
players [50].

4.1 Transferability of the model
Working with every student and the need to learn new dis-
ciplines based on the student interest requires substantial
efforts from the faculty. Therefore, the return should be
weighted against the time investment to make the model
transferable. Incentives for faculty to implement the model
include publications and opportunities for external funding.
Additionally, the opportunity to learn new disciplines can
also have a certain value, and the engagement in research
through education can be appealing to faculty at institu-
tions that mostly focus on education.

This project was started without institutional funding, but
led to several external grants directly or indirectly related
to the work. For instance, an NSF grant (CNS-1157162) to
fund a computing facility was based primarily on computa-
tional research performed by students. Another NSF grant
(IIS-1546079) was received with substantial help from the
work of students who were interested in computational as-
tronomy. A grant from the AAC&U was given partially for
the work on computational analysis of art [42], and funded
the implementation of this model in art history courses.

Peer-reviewed publications can also be an incentive for the
faculty, as publications in competitive outlets often add to
the reputation of their authors. However, the diverse nature
of the papers and outlets does not necessarily lead to a solid
career development path, and therefore career development
in the sense of peer-reviewed publications is not a primary
incentive.

5. CONCLUSION
Research experience is an effective intervention for attract-
ing and retaining undergraduate students in STEM, and de-
velop creativity and critical thinking skills [1]. Due to the
deep knowledge required to perform research in computer
science, as well as the limited open positions for student re-
search assistants in labs, most computer science undergrad-
uate students do not participate in authentic research before
they graduate, or become authors on scientific papers.

Here we propose a model of interdisciplinary computer sci-
ence undergraduate research that can provide research op-
portunities for undergraduate students. The model is based
on student selection of their research topic and student own-
ership of the research, while the faculty assists the students
to perform all stages of the research project, from the def-
inition of the scientific question to the analysis of the ex-
perimental results. That model is different from the role of
the student research assistant, in which the student joins
an existing research program and follows the directions of
the faculty supervisor. The primary advantages of the pro-
posed model is its accessibility to all students, its ability
to engage students by ownership of their research, and ex-
pose the students to hands-on experience in all stages of a
research project.

The results show dramatic increase in the number of stu-
dents participating in research, and consequently the num-
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ber of peer-reviewed papers authored by students. These
results are achieved without the need for investment in more
research labs or research assistantship positions, and without
additional funding to support student stipends. However,
the implementation of the program requires intensive inter-
action and frequent meetings with the student, and avail-
ability of the faculty far beyond the regular office hours.

An important requirement for successful implementation of
the program is a broad range of interdisciplinary research
topics that can engage and motivate students, and attract
computer science students who would otherwise preferred
to work on other projects that are not necessarily research.
These research programs are different from the “establish-
ment”’ research programs and topics normally expected from
computer science faculty members. Therefore, the devel-
opment of such programs also requires redefinition of the
expected research achievements for the purpose of career
decisions such promotion and tenure. While normally de-
cisions regarding promotion or tenure are based on teach-
ing and scholarship achievements, the model proposed here
combines the two and makes it difficult to make a clear line
that separates between them. Therefore, the “traditional”
teaching-research-service scheme of faculty assessment for
tenure and promotion might need to be adjusted to a model
that has substantial overlap and strong link between teach-
ing and research responsibilities, but also requires a different
research agenda from the faculty who is interested in the im-
plementation of such program.
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ABSTRACT 
We attempted to find a more sustainable solution for performing 
virtual screening with AutoDock Vina which uses less electricity 
than computers using typical x64 CPUs.  We tested a cluster of 
ODROID-XU3 Lite computers with ARM CPUs and compared its 
performance to a server with x64 CPUs.  In order to be a viable 
solution, our cluster needed to perform the screen without 
sacrificing speed or increasing hardware costs.  The cluster 
completed the virtual screen in a little less time than our 
comparison server while using just over half the electricity that 
the server used.  Additionally, the hardware for the cluster cost 
about 38% less than the server, making it a viable solution.   
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Electricity consumption; ARM CPUs; virtual screening; 
AutoDock Vina. 

1. INTRODUCTION 
The technique of virtual screening is used in the drug discovery 
process to reduce the time required to discover new drugs and the 
costs associated with that task [1].  Virtual screening is the 
process of using computers to simulate how well a molecule will 
bind to a protein or another target, using a molecular docking 
program, such as AutoDock Vina [2, 3].  Using virtual screening, 
millions of molecules can be “tested” by computers in a relatively 
short time, eliminating most of them from the pool of potential 
cures for a particular disease.  This reduces the number of 
molecules to test in a wet lab to a very small number and thereby 
reduces costs of drug discovery significantly [1].  Due to the 
importance of virtual screening in the drug discovery process, it is 
critical to complete virtual screens quickly, and thus, large 
compute clusters and supercomputers are often used to conduct 
virtual screens [4]. 

For years, the focus of supercomputers was on increasing their 
computational power without concern about other aspects of 
supercomputing, such as electricity consumption [5].  However, 
the electricity consumption of supercomputers has become a large  

 

 

concern over the past years [5, 6].  This concern has led to GPUs 
and coprocessors being used in supercomputers to achieve more 
processing power while using less electricity [7, 8].  Additionally, 
the Green500 list was created to rank supercomputers in terms of 
energy efficiency [9].  

2. RELATED WORK 
The Mont-Blanc project is exploring the potential for Advanced 
RISC Machines (ARM) CPUs to be used to build next-generation 
supercomputers [10, 11, 12]. Advantages of ARM CPUs include 
lower electricity consumption and cost.  However, ARM CPUs 
are slower than x64 CPUs.  Thus, the question of whether 
supercomputers and clusters built from x64 CPUs or ARM CPUs 
can provide a lower electricity consuming method of performing 
the same scientific computations in the same amount of time for 
similar cost is important. The Mont-Blanc project has built a 
prototype with system on chip (SoC) computers and compared its 
performance to the MareNostrum III supercomputer’s 
performance.  The Mont-Blanc prototype was slower than 
MareNostrum, but in some cases, more energy efficient and the 
prototype showed potential [11]. 

Toth et. al. conducted performance measurements of the programs 
AutoDock Vina and Dock6 on various computer-on-board 
products with ARM CPUs [13].  The measurements were 
compared to two computers with x64 CPUs.  In this work, one of 
the computers with an ARM CPU outperformed both systems 
with x64 CPUs, consuming less electricity for a given task.  That 
computer also was predicted to be able to complete the same task 
in the same amount of time using hardware costing less money.  
However, the work had two shortcomings.  The first issue was 
that instead of conducting a full screen, the number of compounds 
that could be screened in 24 hours was measured.   

To remove the variability of time to screen compounds, which 
could have led to unfair results, a single compound was screened 
repeatedly for 24 hours.  The second issue was that the 
performance measurements were for a single device, which 
ignored the extra costs and electricity consumption of a cluster 
and the potential issues that would occur on a cluster, rather than a 
single system.  These issues include slowdown from network 
communication between nodes and using a shared file system 
using the network file system (NFS).  It also ignored the cost and 
electricity consumption of a dedicated controller node for the 
cluster which doesn’t perform any work for the virtual screen, but 
just assigns tasks to each worked node and is responsible for 
managing the NFS shared folder.12 
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Work by Keipert et. al. compared the performance of the 
computational chemistry application GAMESS on x86 and 32-bit 
and 64-bit ARM CPUs [14, 15].  They found that the 32-bit ARM 
CPUs were more energy efficient than the x86 CPUs for 
completing tasks. 

3. METHODS 
To compare the two types of systems, we ran the same virtual 
screen on each type of system and recorded both the electricity 
and time required to conduct the screen.  
 
3.1 Hardware 
Our comparison systems were an x64 server and a cluster of 
ODROID-XU3 Lite SoC computers with ARM processors.  The 
server contained four AMD Opteron 6378 processors.  Each 
processor has 16 2.4 GHz x64 CPU cores for a total of 64 CPU 
cores.  The server also had 64 GB of RAM, two 500 GB hard 
disks, and a 1000-watt power supply.  The ODROID-XU3 Lite 
computers each have a Samsung Exynos5422 processor, which 
contains two quad-core processors (a CortexTM-A15 1.8 GHz 
quad-core processor and a CortexTM-A7 1.3 GHz quad-core 
processor) [16].  The ODROID-XU3 Lite computers have 10/100 
Mbps Ethernet and 2 GB of RAM and are powered by a 5V4A 
power supply.  The ODROID computers do not have persistent 
storage built in, and thus we used SanDisk 16 GB class 10 
microSD cards for their storage.  In addition, our cluster consists 
of a 48-port 10/100 Mbps Ethernet switch and Ethernet cables, a 
240 GB SSD connected by USB 3 and an externally powered SSD 
enclosure, 5 power strips, and 280 1” metal standoffs.  The 
ODORID cluster is shown in Figure 1.  The cost breakdown of the 
cluster is shown in Table 1.  To measure the electricity consumed 
by the virtual screens, we used P3 International P4400 Kill a Watt 
Electricity Usage.	

3.2 Software 
The server ran Ubuntu Linux 14.04.5 LTS and the computers in 
the cluster ran Ubuntu Linux 14.04.1 LTS.  On all the computers, 
the graphical user interface was disabled.  For the server, we ran 
one task per CPU core using gnu parallel [17].  On the cluster, we 
ran the SLURM clustering software to allow us to submit jobs so 
each CPU core in the cluster was always processing a molecule 
[18].  We used a slightly customized version of AutoDock Vina 
that outputs only the best score, rather than all the data that Vina 
outputs by default, to minimize file I/O [3].   That version is what 
we use to conduct virtual screens on supercomputers, servers, and 
clusters to improve the performance and allow for faster 
processing of the results of virtual screens.  For the trials, we 
screened the full_nci_ALL_TAUTOMERS_2011 compound 
library from the ZINC Database, which contains 316,179 
molecules [19]. 

4. RESULTS 
We compared the data from running the virtual screen on the 
server with 64 x64 CPU cores to the data from running the virtual 
screen on the cluster of ODROID computers with ARM CPUs.  
The results of the virtual screens on the two platforms were 
identical.  We compared the electricity consumed to complete the 
virtual screen, the time required to complete the virtual screen, 
and the cost of the hardware of both options.  The results are 
summarized in Table 2.  The ODROID cluster was the better 
solution in all three categories we measured.  The electricity usage 
of both systems is shown in Figure 2.  The cluster used only 
51.8% of the electricity the server used to conduct the virtual 
screen.  The cluster was able to complete the virtual screen in less 
time than the server, requiring only 94.3% of the time that the 
server required.  The time required by each system to complete 
the virtual screen is shown in Figure 3. The cost of each system is 
shown in Figure 4.  The cluster only cost 61.29% of the price of 
the server.  Show cost parts in table here, too, to show totals. 

 

Table 1 - Cluster Costs 

Item	 Cost/Unit	 Units	 Cost	
ODROID-XU3	Lite	 $96.80	 25	 $2,420.00	
10/100	Mbps	Ethernet	cable	 $0.91	 25	 $22.75	
240	GB	SSD	 $79.99	 1	 $79.99	
SSD	enclosure	 $39.99	 1	 $39.99	
Power	strips	 $24.99	 5	 $124.95	
280	metal	standoffs	 $114.25	 1	 $114.25	
16	GB	class	10	microSD	card	 $8.25	 25	 $206.25	
10/100	Mbps	Ethernet	switch	 $139.99	 1	 $139.99	
		 		 		 		
Total	cluster	cost	 		 		 $3,148.17	
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Figure 1 - The ODROID Cluster 

 

Table 2 - Summary of Results 

	 Server	 ODROID	
Cluster	

Cluster’s	Resource	Usage	As	Percent	of	
Server’s	Resource	Usage	

Electricity	Consumed	(KWh)	 86.10	 44.56	 51.8%	
Time	to	Conduct	Virtual	Screen	(sec)	 513,364	 484,356	 94.3%	
Hardware	Cost	 $5136.93	 $3101.92	 61.29%	
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Figure 2 - Electricity Consumed by the Virtual Screen 

 

 
Figure 3 - Time Required to Conduct the Virtual Screen 
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Figure 4 - The Cost of the Systems 

 

5. CONCLUSIONS AND FUTURE WORK 
We demonstrated that a cluster of ODROID-XU3 Lite computers 
with ARM CPUs can perform a virtual screen with AutoDock 
Vina using 48.2% less electricity than our x64 server. 
Additionally, the screen was completed using 5.6% less time and 
the hardware to perform the virtual screen cost about 38% less 
than the server.  Based on our findings, clearly ARM processors 
have the potential to be used for scientific computing for tasks 
that require little memory per CPU core, like virtual screening.     

However, we note that one drawback of using our cluster of 
OROID-XU3 Lite computers was that we needed to flash a 
microSD card with the operating system installed on it for each 
computer.  Flashing the microSD cards for an entire cluster is very 
time-consuming and would be a problem when producing a large 
cluster of SoC nodes.  We are currently exploring options to avoid 
this process.   

We also note that while the process of virtual screening worked 
well with our cluster, virtual screening requires only a small 
amount of memory per molecule being screened, so it works well 
on the systems with small amounts of memory per CPU core.  For 
other scientific problems that require more memory per CPU core 
used, this solution may not work as well.   

Additionally, virtual screening doesn’t write significant amounts 
of output to files, so we did not run into any problems using NFS 
for our cluster.  However, it would be interesting to see if other 
programs that produce more output cause issues due to the NFS 
share.  Newer ODORID SoC computers also have Gigabit 
Ethernet, so that may help keep NFS from becoming a bottleneck. 
A hierarchical configuration where all the nodes of a particular 
portion of the cluster write to one NFS share while nodes in other 
portions of the cluster write to other NFS shares could also help 
prevent this from becoming a problem.   

6. REFLECTIONS 
I have been taking computer science courses since I was in high 
school, so I’ve known that I have a knack for the type of 
analytical thinking required in computer science for a while. Since 
I was a sophomore in high school, I have loved using computers 
to build things and solve problems. By the time I got to college, I 
was pretty set on furthering my education in computer science and 
eventually pursuing a job in the field, though at the time I 
assumed that school was the immediate concern and making a 
difference in the field would come post-graduation. I had never 
imagined that my opportunity to advance and explore the field 
would come while I was still an undergraduate.  

Through a mentor who is very dedicated to the education of his 
students both in and out of the classroom, I received the 
opportunity to participate in the Blue Waters internship program.  
Once we had discussed the details, I knew that I would be 
spending my summer doing research, and I couldn’t have been 
more excited. I was excited to have the opportunity to explore 
problems that were more applicable and important to the “real 
world” than those I had been working on for my classes. In 
addition to this, I looked forward to expanding my knowledge 
base beyond what the traditional class room had to offer.  

The summer that I spent doing the research was memorable for 
many reasons. It began with my trip to University of Illinois at 
Urbana–Champaign for the Blue Waters Petascale Institute. This 
two-week workshop provided me with the unique opportunity to 
meet other students who excel in the field of computer science, 
learn new skills to bring back to my own project, and see, as well 
as work with, the Blue Waters supercomputer. These 
opportunities were unique to the Petascale Institute and something 
that I could never have hope to experience without this internship.  

When I returned to school to begin my project I had a new 
expanse of knowledge with which to work, and couldn’t have 
been more excited. The project was engaging and gave me the 
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opportunity to test some of my new skills in an independent 
setting.  

Overall, I could not have asked for more from a summer 
experience. I was given the chance to learn new skills and put 
them to the test on a project that was manageable, yet challenging. 
Through this experience I discovered that I have an interest in 
hardware which I would not have otherwise discovered in my 
undergraduate studies. This new-found interest led me to pursue a 
more hardware-based internship this last summer. I found that I 
thoroughly enjoy writing embedded software and have chosen to 
pursue a master’s degree in computer engineering at the 
University of Louisville while continuing work in embedded 
software after I graduate in the spring. Without this internship, it 
is quite possible that I would have simply stuck to software for the 
remainder of my college career and never discovered my interest 
in hardware.  
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ABSTRACT
Bayesian networks may be utilized to infer genetic relations
among genes. This has proven useful in providing informa-
tion about how gene interactions influence life. However,
Bayesian network learning is slow as it is an NP-hard al-
gorithm. K2, a search space reduction, helps speed up the
algorithm but may introduce bias. The bias arises from the
fact that K2 enforces topologies which makes it impossible
for subsequent nodes to become parents of previous nodes
while the algorithm builds the network. To eliminate this
bias, multiple Bayesian networks must be computed to en-
sure every node has the chance to be a parent to every other
node. The purpose of this paper is to propose a hybrid algo-
rithm for generating consensus networks utilizing OpenMP
and MPI. This paper evaluates the parallelization of net-
work generation and provides commentary on learning and
implementing OpenMP and MPI. The OpenMP and MPI
accelerations are implemented in a single library and can be
switched on or off. These accelerations are for computing
multiple Bayesian networks simultaneously. Methods are
developed and tested to evaluate the results of the imple-
mented accelerations. The results show generating networks
across multiple cores results in a linear speed-up with neg-
ligible overhead. Distributing the generation of networks
across multiple machines also introduces linear speed-up, but
results in additional overhead.

1. INTRODUCTION
Inferring relations among genes requires a significant amount
of data. Bayesian networks may be used to correlate this
data and extract relationships among the genes [12]. We
do not know what this relationship is, but we do know it
has a high likelihood of existing. These relationships can
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permission and/or a fee. Copyright ©JOCSE, a supported publication of
the Shodor Education Foundation Inc.

DOI: https://doi.org/10.22369/issn.2153-4136/8/2/4

then be used to make testable hypotheses to determine how
gene interactions influence life in organisms or humans. As a
result, tests can be performed in the lab with more confidence
and a reduced chance of wasting time and resources.
This concept has been applied to smaller data sets and
shows promising results [12], however remains too slow to be
applied to a larger problem. It is our objective to decrease
the runtime required to form a network which may reveal
genetic interactions. Bayesian network learning, however,
is inherently slow because it is an NP-hard algorithm [4].
Search space reduction algorithms may be utilized to reduce
the computational complexity. K2 is a great example of a
search space reduction algorithm, and is our algorithm of
choice. However, it introduces a new problem. K2 restricts
the parent hierarchy of genes within the network [4], and
thus introduces bias in the computed relations. To achieve
high confidence in the generated networks, an abundance of
Bayesian networks need to be computed using random search
space restrictions. These random search space restrictions
(or topologies) remove the bias and provide results which
can be interpreted at various levels of confidence.
By eliminating one problem and introducing another, consen-
sus networks enable the ability of parallelization by requiring
multiple units of work rather than just one faster unit of
work. Other authors describe parallel implementations that
can increase the speed of Bayesian network learning [2] [8].
However, no libraries exist which compute multiple Bayesian
networks concurrently. This project examines the value of
Bayesian network learning within a parallel environment in
order to reduce the time needed to generate consensus net-
works using many topological inputs. This examination is
performed through implementation of the said algorithm,
exploring methods available such as OpenMP and MPI.
Results from running experiments with varying number of
cores and machines are examined and it is found our paral-
lelization has a positive impact. There are a couple caveats,
however, such as the over provisioning of resources which
leads to waste and potential introduction of latency from
cluster parallelism. When the resources are appropriate for
the problem size, OpenMP and MPI substantially reduce
the time to generate a consensus network. The reduction in
runtime appears to be linear, more so after accounting for
introduced latency and overhead.
This paper is an extension to the initial analysis performed
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on the algorithm and explains the thought processes behind
the implementation. The preceding publication shows why
the algorithm needs to be sped up, as an increase in samples
causes linear growth of the problem and introduction of
additional genes causes exponential growth of the problem
[5]. After reading this paper, the reader should have a sense
of why and how the parallelization was reasoned about and
implemented to achieve optimal efficiency.

2. BACKGROUND

2.1 Bayesian Networks
Bayesian networks capture qualitative relationships among
variables within a directed acyclic graph (or DAG). Nodes
within the DAG represent variables, and edges represent
dependencies between the variables [6] [11]. Bayesian net-
works have a search space which grows exponentially when
introducing new nodes and not placing restrictions on the
structure of the network. This complication can be overcome
by using the K2 algorithm. The K2 algorithm reduces the
computational cost of learning by imposing restraints on
parent node connections via topological ordering [4]. Here, a
topology refers to a hierarchical structure of parenthood that
the K2 algorithm will utilize to reduce overall computational
complexity while scoring data relationships. Restricting the
parent ordering, however, creates an issue of bias, which is
inherent within a constraint-based search space reduction
[12]. Sriram [12] proposed a solution to this issue by creating
a consensus network, or the combination of multiple Bayesian
networks derived from several topological inputs. To elim-
inate the bias created by these restraints, many randomly
generated topologies are used. By increasing the number
of topological inputs, the consensus network has a greater
chance of reflecting the true nature of the gene interactions
with higher levels of confidence.

2.2 OpenMP
OpenMP or (Open Multi-Processing) is a cross-platform,
multilingual application programming interface (API) which
enables shared-memory parallel programming on a single
machine. The OpenMP specification consists of compiler
directives and library functions used to parallelize portions
of a program’s control flow [10]. The most rudimentary
example of OpenMP would be to distribute a for-loop across
multiple threads.
An advisory board of top entities in computation controls
its specification [1] which can be implemented by various
compilers to target specific system capabilities and archi-
tectures. The specification includes language-specific APIs,
compiler directives, and standardized environment variables
[10]. The model of OpenMP is comparable to the fork-join
model, but provides additional convenience (cross-platform)
features through compiler directives. These directives consist
of, but are not limited to, barriers, critical regions, variable
atomicity, shared memory, and reductions [10].
OpenMP enables parallel code portability at a level which
would not be achievable while retaining an ideal code climate.
OpenMP, by nature allows simple and straight-forward par-
allelization of loops with a compiler directive that targets
the system for which the program is compiled on. Without
OpenMP, the program would have to include many different
libraries and routines to achieve parallel code across different
systems. The result of this would be a program which only

works on a specific set of machines, or a code base which is
hard to maintain and debug when changes are made to the
underlying algorithm.

2.3 MPI
MPI (or Message Passing Interface) is a standard which
outlines network-routed (a)synchronous communication be-
tween machines [9]. MPI enables executing programs across
multiple machines in a cluster and passing messages between
them to schedule work or share information.
Execution of a program which utilizes MPI is most often
performed with a tool. This tool is responsible for forwarding
appropriate parameters to each program in order to specify
the information required for the processes to communicate.
Upon program start, the MPI execution environment must
be initialized using the MPI library methods [9]. The initial-
ization sequence results in augmented program arguments
(to remove arguments passed by the execution tool) and
the rank of the program in the MPI environment [9]. This
information allows the program to proceed as normal while
being a small part in a larger sum.

3. METHODOLOGY
Testing was performed on the Blue Waters petascale machine
at the University of Illinois at Urbana-Champaign. The
facility is maintained by Cray and consists of 22,640 Cray
XE6 machines and 3,072 XK7 machines, which are CPU-
only and GPU-accelerated machines respectively. The XE6
machines consist of two 16 core AMD processors with 64
GBs of RAM. The XK7 machines consist of a single 16 core
AMD processor with 32 GBs of RAM and a NVIDIA K20X
GPU [7].
Cray XE6 machines were used to perform all tests utilizing
purely synthetic data. OpenMP and MPI were implemented
by the Cray Compiler, Cray C version 8.3.10. The synthetic
data is in the form of a gene-by-sample matrix consisting of
the presence or absence of each gene within the sample. This
data was generated according to a model we defined. We
then ensured the result of the consensus network(s) matched
our model to validate functionality and evaluate a degree
of correctness for our algorithm. Each test was run five
times with the mean, standard deviation, and standard error
calculated to measure runtime consistency.
The library being used to run the tests is available online [3].
This library was implemented as described in this paper.

3.1 Processors
The first natural step in parallelizing computation is to
attempt to use multiple cores (or threads) simultaneously
on the machine. This can be done by running multiple
instances of the program, or by implementing code which
takes advantage of multiple threads. Analyzing the program
reveals a couple potential places for parallelization. There are
many for-loops which perform actions which are independent
from one another. The for-loops identified for inspection
are the generation of topologies and the iteration over the
topologies to generate networks.
The generation of topologies results in a a predetermined
number of topologies filled into an array. This operation
can be easily parallelized across multiple cores as they are
independent. The appropriate tool to perform this paral-
lelization is OpenMP. OpenMP was implemented with a
simple compiler directive which sped up computation.
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#pragma omp parallel for
for (...) { }

Iterating over the topologies to generate networks can also
be parallelized. The creation of Bayesian networks are inde-
pendent from one another, and thus, networks can be asyn-
chronously generated. Implementation of this parallelization
is straight-forward as Bayesian network computation does
not mutate its data set. This prevents us from having to
replicate the memory and increase the space complexity of
the algorithm. OpenMP was implemented again as shown
above. Additionally, within the parallel for, the resulting
network must be appended to the consensus network. The
consensus network, however, is not thread-safe and must
be operated on within a critical section. A critical section
specifies that the code can only be executed on one thread
at a time.

#pragma omp critical
for (...) { }

This ensures the networks are properly summed together,
otherwise, an addition may be lost. For example, if Thread
A and Thread B attempt to increment a variable at the same
time, they may both access the value before the other com-
mits the new value. This will result in a lost operation, as
the threads are not aware of one another.
To measure the resulting computational runtime decrease,
multiple tests were performed with varying number of proces-
sors. A single set of synthetic data was used which consisted
of 10 genes and 10,000 samples. Using an exclusively reserved
machine, tests were run by varying the number of processors
(up to 32) and measuring the algorithm performance for the
creation of 160 Bayesian networks per gene 1600 total). We
have reached the resource limits on the systems which we
have access to, and cannot test beyond 32 cores. The selec-
tion of 10 genes and 160 Bayesian networks was arbitrarily
chosen as sufficient means to measure computation time.

3.2 Cluster Parallelism
Distributing work across multiple machines requires a differ-
ent approach than that of OpenMP. OpenMP cannot share
memory across machines so it cannot be applied to this situ-
ation. MPI is optimal for this situation as it allows machines
to send messages back and forth to share memory and com-
municate their responsibilities and results. Distributing the
Bayesian network learning process across multiple machines
doesn’t make much sense because each step is dependent
on the previous, so the result would be a slower computa-
tion since calculations couldn’t happen in parallel and there
would be added network latency. The main candidate for
distribution would be the computation of a Bayesian network
(or the iteration over the topologies), because networks are
computed independent of one another and there is a large
backlog of networks which need to be computed. Distributing
the work with MPI is surprisingly simple, as the topologies
are randomly generated. This means there is no commu-
nication required prior to beginning computation. Upon
initialization, each machine must determine its rank and role
by augmenting the arguments, this may be done like so.

int main(int argc, char **argv) {
int forkIndex = 0, forkSize = 1;
MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &forkIndex);
MPI_Comm_size(MPI_COMM_WORLD, &forkSize);

...
}

Each machine can then determine how much work it needs
to do by dividing the number of requested topologies per
gene by the number of machines in the swarm.

int top_d = topologies / forkSize;
int top_r = topologies % forkSize;
if (forkIndex < top_r) ++top_d;
topologies = top_d;

When the machines complete their share of the computation
they communicate to coalesce the computed networks into a
consensus network. The master machine then saves the con-
sensus network to the disk and completes any other required
computations which are simple enough not to require being
distributed across machines.
Tests are conducted to measure the impact on runtime when
multiple machines are used. The same data is used from
the above (processors) test. Tests were run on dedicated
machines utilizing 16 processors and computing 60 Bayesian
networks per gene (600 total). The selection of 10 genes
and 60 Bayesian networks was arbitrarily chosen as sufficient
means to measure computation time.

4. RESULTS AND DISCUSSION
In the following tables, the standard deviation is represented
by the letter s and the standard error is denoted by se. This
standard deviation and error is in regards to the algorithm
runtime, not the accuracy of the algorithm.

4.1 Processors
When increasing the number of processors, the resulting
runtime decrease appears to be linear. The linear nature of
the results removes the necessity for further testing between
the number of cores tested. Figure 1 illustrates that as
the number of processors increase, the runtime decreases at
approximately the same rate. Exact results may be seen in
Table 1.

Table 1: Runtimes for the program across increasing
numbers of processors.

Cores Mean Time s se
1 396.348 3.192 1.427
2 269.023 0.530 0.237
4 137.359 0.629 0.281
8 76.169 0.220 0.090
16 40.359 0.307 0.137
32 22.172 0.144 0.064

This linear decrease is consistent with how OpenMP dis-
tributes its work. OpenMP distributes the task of an in-
dependent Bayesian network computation across multiple
threads simultaneously. These independent tasks are non-
blocking and do not lock one another, and thus have very
little contention. There is one lock after each computation
which appends the network to the consensus network, but is
negligible to the total time taken to compute the Bayesian
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Figure 1: Illustrates runtime decrease as the number
of processors increase. The decline is nearly linear.

networks. OpenMP results in such low runtime standard
error because it works with memory within the program and
requires no network communication like MPI. The reduction
of standard error as the number of threads increase may be
due to the kernel. The kernel is responsible for scheduling
threads and ensuring other work on the system gets done.
The increase in threads means there are more threads which
may go uninterrupted by the kernel scheduling something
else from the operating system.

4.2 Cluster Parallelism
The resulting runtime decrease also appears to be linear
while increasing the number of machines. However, as the
number of machines increase, overhead also increases. Figure
2 demonstrates that as the number of machines increase,
there is much more variation introduced and overhead in the
runtime.
Observing 64 machines and leading up to 64 machines, it can
be noted that the reduction in runtime becomes less and less
and then starts increasing. This increase in runtime happens
when the inflection point has been reached for the given set
of data. At some point, it takes longer to send the data over
the network than it would be to simply compute more data
on fewer machines. There are some potential modifications
which can be made to mitigate this overhead (such as asyn-
chronous coalescing), but it cannot be eliminated completely.
It is important to note that an increase in resources does not
necessarily mean an increase in performance, nor always one
for one; see Table 2 for test results.
The standard error generally increases with the increase
in machines, but this is not always true. There does not
seem to be a correlation between an increase or decrease
in machines with an increase or decrease in standard error,

Figure 2: Illustrates runtime decrease as the number
of machines increase. The decline is nearly linear.

except for the general rule stated above. This is consistent
with the fact that networks are very unpredictable. Pings
may vary wildly depending on other network traffic and the
route which packets decide to take. Additionally, there may
be other noisy peers on the network hogging bandwidth and
causing slower transmissions. On clusters across the world
wide web, traffic may have to travel through geographical
displacement and suffer packet loss or increases in latency.
The only thing consistent with the standard error is that it
is not consistent.

5. CONCLUSION
By generating a consensus network out of many Bayesian
networks, researchers may screen and infer new gene interac-
tions. This allows researchers to feel more confident about
testing hypotheses in the lab, such that their resources and
time will not be wasted.
We have concluded that utilizing parallelization through
means of OpenMP and MPI substantially reduces the time
to generate a consensus network. However, as demonstrated
in the graphs above, an increase in resources must be tai-
lored to the problem at hand. Increasing the resources too
significantly becomes detrimental, resulting in costly waste;
see Table 2.
Future work may involve parallelizing the coalescing of con-
sensus networks in effort to reduce the overhead introduced
when increasing cluster parallelism. Additionally, all ma-
trix operations are currently done on a single-thread. These
operations (in some cases) contain thousands of rows and
columns being applied to an expensive mathematical function.
These operations are ideal for the GPU as it can perform the
arithmetic across several thousand of threads simultaneously.
As such, the motivation for this is that CUDA (or other
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Table 2: Runtimes for the program across increasing
numbers of machines.

Nodes Mean Time s se
1 102.204 0.361 0.161
2 53.451 0.272 0.122
4 28.656 0.383 0.171
8 17.8 1.812 0.810
16 10.917 0.327 0.134
32 7.862 0.462 0.207
64 6.259 0.444 0.198
128 6.739 0.430 0.193
256 7.904 1.110 0.496
512 7.241 0.246 0.110
1024 8.845 1.105 0.494

means of GPGPU acceleration) has the potential to speed
the algorithm up by several orders of magnitude.

6. REFLECTIONS
Working on this project gave me a massive amount of experi-
ence, which far surpassed what I thought it would. I gained
experience in professional writing for journal publications
and renewed my skills in proofreading. I also gained exposure
to a whole new aspect of project organization which I was
not used to: meetings with advisors, progress reports, and
demos. I feel like this has really helped foster my professional
identity and prepared me more for higher education and the
workforce. Additionally, I flexed my problem solving skills
while implementing the algorithm and begun refactoring.
The refactoring had to be done in such a fashion to allow for
parallelization. This presented some challenges because there
were also memory considerations to make things sharable
over the network (MPI). Overall, I learned many invaluable
skills which will be applied to my future education and work.
Notably, I performed my first publication [5] and gave a
presentation at the associated conference, then proceeded
to present a poster version of the paper at GLBIO 2016 to
draw attention to the work.
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ABSTRACT 
Several microbial genome databases provide collections of 
thousands of genome annotation files in formats suitable for the 
performance of complex cognitive activities such as decision 
making, sense making and analytical reasoning. The goal of the 
research reported in this article was to develop interactive 
analytics resources to support the performance of complex 
cognitive activities on a collection of publicly available genome 
information spaces. A supercomputing infrastructure (Blue 
Waters Supercomputer) provided computational tools to construct 
information spaces while visual analytics software and online 
bioinformatics resources provided tools to interact with the 
constructed information spaces. The Rhizobiales order of bacteria 
that includes the Brucella genus was the use case for preforming 
the complex cognitive activities. An interesting finding among the 
genomes of the dolphin pathogen, Brucella ceti, was a cluster of 
genes with evidence for function in conditions of limited nitrogen 
availability.  

General Terms 
Big Data, Human-Computer Interaction, Microbiology, 
Visualization. 

Keywords 
Bacteria; Brucella; Cognitive Activities, Genomics; Stress 
Response; Universal Stress Protein, Visual Analytics 

1. INTRODUCTION 
The automated annotation of genome sequences of bacteria and 
archaea produces diverse types of data sets including multivariate 
data on predicted protein-coding genes [1-4]. Examples of 
variables annotated for protein-coding genes are genome unique 
identifier, genome name, unique gene identifier (locus tag), 
coordinates of the start and end position, product description, 
Enzyme Commission identifier, length of gene sequence, and 
location of gene on positive or negative strand.  

Several microbial genome databases [1, 3, 4] provide 
collections of thousands of genome annotation files in formats 
(such as tab delimited) suitable for importing to computational 
environments that support the performance of complex cognitive 
activities. In complex cognitive activities (such as analytical 
reasoning, decision making, knowledge discovery, learning, 
planning, problem solving, sense making and understanding), 
humans interact with information to support their information-

intensive thinking processes [5-7]. 

The goal of the research reported in this article was to 
develop interactive analytics resources to support the performance 
of complex cognitive activities on a collection of publicly 
available genome information spaces. A genome annotation file 
containing protein-coding genes of a bacterial (eubacteria and 
archaebacteria) genome could be described as an information 
space which can be compared or integrated to other information 
spaces. The complex genomic information space presents diverse 
opportunities for knowledge generation on microbial genomes 
that combines the affordances from both the human cognitive 
system and computing system. The goal of our research was to 
obtain potentially biologically relevant insights from the microbial 
genomic information space. Therefore, we have combined (i) the 
use of a supercomputing environment (Blue Waters 
Supercomputer) [8] to construct information spaces; (ii) the use of 
visual analytics software to interact with the constructed 
information spaces; and (iii) online bioinformatics resources on 
microbial genomes. 

Visual analytics affords humans to analyze huge information 
spaces in order to support complex cognitive activities such as 
decision making and data exploration [9]. The interaction with 
information through visual representations provides a human-
centered approach to the performance of cognitive activities [10, 
11]. This human-centered approach lowers the barriers to 
knowledge generation from genome information spaces. In 
addition, there is potential to increase the number of 
undergraduate students who are able to engage in genomics 
research.  

An example of genome information space is the PATRIC 
Bioinformatics Resource, which provides collection of thousands 
of genome annotation files available for download at 
ftp://ftp.patricbrc.org/patric2 [4]. The first objective of this 
research study was to construct an information space on the count 
of genes assigned to strands [positive (+) or negative DNA strand 
(-)] in the thousands of genome annotation files. This objective 
will lead to a reduction in the complexity of the information space 
for subsequent complex cognitive activities with desktop visual 
analytics software. The second objective was to perform complex 
cognitive activities on genomic information from multiple 
sources. Though, we recognize that some complex cognitive 
activities often done without clear distinctions. 

These objectives are important to our investigation of stress 
responsive gene clusters that include genes which encode the 
universal stress proteins (pfam00582) [12, 13]. The genomes 
sequenced from bacteria in the order Rhizobiales were used to 
accomplish the research study objectives. Rhizobiales is a diverse 
order of bacteria that include nitrogen-fixing bacteria associated 
with leguminous plants and lichens as well as intracellular 
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pathogens of animals and plants [14, 15].  Examples of genera in 
the order Rhizobiales (alphaproteobacteria) are Bartonella, 
Beijerinckia, Bradyrhizobium, Brucella, Cohaesibacter, 
Hyphomicrobium, Methylobacterium, Microvirga, Methylocystis, 
Phyllobacterium, Rhizobium, Rhodobium, Rhodopseudomonas 
and Xanthobacter [16]. Finally, the interactive views can provide 
opportunities for learning about the genomes of bacteria.  

2. METHODS 
2.1 Source of Genome Annotation Files  
The genome annotation files (with file extension RefSeq.cds.tab) 
were downloaded from the PATRIC Bioinformatics Resource at 
ftp://ftp.patricbrc.org/patric2/genomes_by_species/ to the Blue 
Waters Supercomputer. Each file is expected to contain a header 
row and records with annotation for each gene including genome 
unique identifier, genome name, unique gene identifier (locus 
tag), coordinates of the start and end position, product description, 
Enzyme Commission identifier, length of gene sequence, and 
location of gene on positive or negative strand.  

Three additional files (genome_lineage, genome_metadata 
and genome_summary) were obtained from 
ftp://ftp.patricbrc.org/patric2/current_release/RELEASE_NOTES/
Feb2016/. These files contain fields that can be used accomplish 
complex cognitive activities. The genome_lineage file includes 
taxonomic annotation of genomes including kingdom, phylum, 
order, genus and National Center for Biotechnology Information 
(NCBI) Taxonomy Identifier.  The genome_metadata includes 
data on habitat, gram stain category and temperature of the 
microbial isolate source of the genome sequence. The 
genome_summary file includes data on genome length, gene 
count and genome sequencing status (e.g. Whole Genome 
Sequencing, Plasmid and Complete).  

2.2 Construction of Information Space on 
Strand Location of Genes 
The genome annotation files include annotation on the 
transcription direction of the gene (location of gene on the 
positive (+) or negative (-) strand). A set of computer scripts were 
developed on Blue Waters Supercomputer [17] to extract the 
transcription direction of each gene in the genome annotation 
files. The output file was formatted as a tab delimited file with 
Genome ID, Gene Count for Strand, the Genome Name and the 
Transcription Direction. This method allowed us to accomplish 
our objective to construct an information space on the distribution 
of genes in genome annotation files by transcription direction 
[location of gene on positive or negative strand]. 

2.3 Development of Interactive Analytics for 
Complex Cognitive Activities 
We developed interactive analytics using guidelines provided for 
designing interactive visual representations for complex cognitive 
activities [10, 18]. Therefore to design human-information 
interaction tools for decision making, the interaction features in 
the design are expected to include the following action patterns: 
blending, filtering, linking/unlinking, measuring, sharing and 
translating [7]. 

A software for visual analytics, Tableau Desktop 
Professional (Tableau Software Inc. Washington, USA), was used 
to design the views for accomplishing the following activities: (i) 
to identify biases in gene distribution across genomes [sense 
making]; (ii) to decide on which bacteria genome to investigate 
based on annotated comments [decision making]; and (iii) to 

determine the arrangement and functions of a cluster of genes that 
are transcribed together [analytical reasoning].  

3. RESULTS 
3.1 Information Space on Strand Location of 
Genes 
A total of 21,139 genome annotation files were downloaded from 
the PATRIC Bioinformatics Resource and processed on the Blue 
Waters Supercomputer. The collection of files provides a data 
resource for the performance of data analytics. Each file had 16 
fields and number of records corresponding to the protein-coding 
genes annotated for the genome. The total number of gene records 
obtained from PATRIC was 74,991,894. The derived information 
space consisted of four fields: Genome ID, Genome Name, Strand 
and the Gene Count (assign to each strand). 

3.2 Interactive Analytics for Sense Making on 
Protein-Coding Genes in Rhizobiales  
A total of 547 Rhizobiales genome annotation files were 
evaluated because of our interest in Rhodopseudomonas palustris 
[19]. Figure 1 shows the number of protein-coding genes (RefSeq 
annotation) assigned to the strands of the genomes of 
Brucella ceti, a Brucella species that cause chronic diseases in 
marine mammals such as dolphins and whales [20]. The 
visualizations in Figure 1 and Figure 2 allow for the difference in 
count of genes assigned to the genome strands to be calculated.  

 

 
 

Figure 1. Visualization to facilitate identifying strand 
biases in gene distribution across genomes of Brucella ceti. 
Interactive version:  
https://public.tableau.com/profile/publish/genomeanalytics/genus_str
anddist  
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3.3 Interactive Analytics for Sense Making on 
Protein-Coding Genes in Rhizobiales  
Sense making “is concerned with developing a mental model of 
an information space about which one has insufficient 
knowledge” [7]. We used the Box plot visualization technique to 
compare multiple distributions of the gene counts for genera 
(Agrobacterium, Bartonella, Beijerinckia, Brucella, 
Methylobacterium, Nitrobacter and Rhodopseudomonas) in the 
Rhizobiales (Figure 3).  Interactive figure is available at 
https://public.tableau.com/profile/publish/genomeanalytics/boxplo
t_rhizobiales  

The design of the visualization involves blending data fields 
from (i) the genome_lineage file (contains taxonomic 
information); (ii) the genome_summary file (contains plasmid 
count); and (iii) the constructed information space on the strand 
location of genes.  The interactive version allows user to specify 
the bacteria taxonomic family or families to compare.  

In the case of the Rhizobiales genomes, examining the box 
plot revealed genomes with outlier protein coding sequence within 
the genus. Outlier values in the box plot were annotated for 
selected genomes. For example, Brucella ceti TE10759-12 has 
2,376 protein-coding genes in the RefSeq genome annotation file. 
The missing genes of TE10759-12 provides a user with 
information to generate testable hypotheses. 

 
 

Figure 3. Visual representation (box plot) to facilitate 
sense making of protein-coding gene counts for selected 

genomes of Rhizobiales bacteria. 
Interactive version: 
https://public.tableau.com/profile/publish/genomeanalytics/boxplot_r
hizobiales  
 

 
 

Figure 2. Dashboard providing access to a bioinformatics resource as well as integrating information on the number of genes 
assigned to chromosomal strand locations for prokaryotic taxonomic and genome categories.  

Interactive Analytics resource at: https://public.tableau.com/profile/publish/genomeanalytics/genomesearch. User of the resource can 
perform activities such as sense making and decision making through selection or specifying the taxonomic order, genus or genome 
name to view the gene counts on the strand location in genomes. Additional information could be obtained through the Pathosystems 
Resource Integration Center (PATRIC) website. The dashboard can also be used as a resource for learning the distribution of genes to 
strand location. In the example, the genomes of Brucella ceti are the focus of sense making, decision making and learning activities.  
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3.4 Interactive Analytics for Decision Making 
on Genomes for Investigation 
In decision making “the attention that is drawn to emergent 
features may facilitate the choice of one among a number of 
alternatives within the information space” [21]. We developed a 
view from the genome_metadata file to display the comments 
associated with eight Brucella ceti genomes. Four categories of 
comments were identified (Table 1).   

Table 1. Categories of Comments on Brucella ceti genomes 

Brucella ceti 
Strains 

Comment Category 

B1/94, M13/05/1, 
M490/95/1, 
M644/93/1 

This strain will be used for comparative 
analysis with other Brucella species. 

B1/94  Sequencing of Brucella species for qPCR 
assay development. 

str. Cudo Brucella ceti Cudo was isolated from a 
bottlenose dolphin (Tursiops truncatus). 
The genome sequence of this organism 
will provide interesting insights into the 
evolution of this species. 

TE10759-12, 
TE28753-12 

… The aim of the study is the deep 
characterization of the isolates … 

https://public.tableau.com/profile/publish/genomeanalytics/genom
e_comments (Interactive version of genome comments). 

 

The comment “Brucella ceti Cudo was isolated from a 
bottlenose dolphin (Tursiops truncatus)” facilitated our decision 
to further conduct gene neighborhood analysis of the universal 
stress proteins of Brucella ceti Cudo. Universal stress proteins 
contain the protein family (Pfam) domain with Pfam Identifier as 
PF00582 or pfam00582 [22]. We obtained a list of 1377 genes 
predicted as encoding universal stress proteins in 348 Brucella 
genomes. The Locus Tags for Brucella ceti Cudo universal stress 
proteins (USP) are BCETI_1000312, BCETI_3000327, 
BCETI_5000106 and BCETI_7000519. Only BCETI_7000519 
was annotated as located on the positive strand (+) location.  

We subsequently obtained and used the image of gene 
neighborhood of each USP gene using the BioCyc Database 
Collection [23]. The comparison of the gene neighborhood images 
would help us to confirm the transcription direction and also 
discover the functions adjacent to the Brucella genes for universal 
stress proteins (Figure 4). We found that BCETI_1000312 USP 
gene is at the beginning of a four-gene transcription unit (operon) 
(Figure 4). The other genes (BCETI_1000313, BCETI_1000315 
and BCETI_1000316) respectively encode for tryptophanyl-tRNA 
synthetase (trpS), integral membrane protein (MviN) [renamed 
Peptidoglycan biosynthesis protein MurJ], and protein-P-II 
uridylyltransferase (glnD). The gene BCETI_1000311, adjacent to 
the USP gene BCETI_1000312, encodes a nitrogen fixation 
related protein. BCETI_1000311 is not predicted to be in same 
transcription unit with the USP gene (BCETI_1000312). 

 
Figure 4. Multi-Genome alignment of the gene neighborhood of predicted genes for universal stress proteins in genomes of 

Brucella ceti and Ochrobactrum species. The genes for universal stress proteins have diagonal lines.  
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3.5 Interactive Analytics for Analytical 
Reasoning on Brucella ceti Transcription Units 
containing Gene for Universal Stress Protein 

Analytical reasoning “is based on rational, logical analysis 
and evaluation of information” as well as “a structured, 
disciplined activity” [7]. We performed analytical reasoning on 
the multi-genome alignment of the gene neighborhood of 37 
Brucellae genomes in BioCyc. The interactive alignment is can be 
constructed at BioCyc.org. We used the B. ceti Cudo four-gene 
transcription unit as template to analyze the presence and 
composition of transcription units and subsequently evaluate the 
level of conservation of the genomic region between Brucella ceti 
and Ochrobactrum genomes (Figure 4). The finding that 
BCETI_1000312 and BCETI_1000311 are not an operon was 
confirmed with a multi-genome alignment of the gene 
neighborhood. Among the Brucella ceti genomes, strain Cudo is 
unique for having the 4-gene transcriptional unit, which consists 
of genes for universal stress protein, tryptophanyl-tRNA 
synthetase, peptidoglycan biosynthesis protein and protein-P-II 
uridylyltransferase, a regulator of nitrogen status of Escherichia 
coli [24]. 

4. DISCUSSION 
4.1 Information Space on Strand Location of 
Genes 

We developed a computational workflow that led to a 
reduction in the complexity of 21,139 genome annotation files 
from 16 fields to 4 fields. This complexity reduction process 
implemented involved algorithmic operations including sorting 
and comparisons that required high performance computing 
resources. There is growing need for use of supercomputing 
resources and cloud computing in bioinformatics [25, 26]. The 
derived information space enabled a variety of complex cognitive 
tasks to be performed with desktop visual analytics software as 
well as online bioinformatics software.  

Our research used the RefSeq genome annotation files. 
PATRIC bioinformatics resource includes re-annotated versions 
of microbial genomes [4]. Therefore, the computational protocols 
that we have developed on the Blue Waters Supercomputer [17] 
for deriving new information space on strand location of genes 
can be adapted for the PATRIC genome annotation files (with 
extension PATRIC.cds.tab). We expect to obtain additional 
genomes and gene loci. For example, our information space 
included 547 Rhizobiales genome annotation files. Based on 
statistics available at the PATRIC website (patricbrc.org), we 
expect to have at least 1441 Rhizobiales genomes. A web-based   

4.2 Interactive Analytics for Sense Making on 
Protein-Coding Genes in Rhizobiales  

As shown in Figure 1, among the seven Brucella ceti strains, 
3 strains had excess of at least 50 genes mapped to the negative 
strand.  The M13/05/1 strain has the largest difference in number 
of mapped genes, at 209 genes. This may indicate that certain 
genes have been recently duplicated, or that groups of genes were 
transferred from one strand to another, thereby providing a user 
with information to generate testable hypotheses.  

The integration of information space on strand location with 
other annotation files enabled us to make sense of the distributions 
of the gene counts for genera in the Rhizobiales (Figure 3). We 
chose to use the box plot technique since the technique is suitable 
to visually summarize and compare groups of data [27]. A finding 

from the box plot visual representation (Figure 3) is that 
methanol-oxidizing Methylobacterium nodulans ORS 2060, the 
legume (Crotalaria) root-nodule-forming and nitrogen-fixing 
bacteria [28], has at least 7 sequenced plasmids [29]. The 
possession of an intact 120kb megaplasmid correlated with ability 
of Methylobacterium extorquens DM4 to utilize dichloromethane 
as sole source of carbon and energy [30]. Comparative analysis of 
the genes in the plasmids of Methylobacterium species could 
improve understanding of methylotrophy and nitrogen-fixation. 

Rhodopseudomonas palustris TIE-1 has an upper outlier 
gene count among the Rhodopseudomonas. Further research could 
investigate the function of the additional genes in the iron 
oxidizing R. palustris strain [31].  

4.3 Interactive Analytics for Decision Making 
on Genomes for Investigation 

The comments associated with eight Brucella ceti genomes 
(Table 1) helped us decide to further investigate the genome of 
Brucella ceti Cudo, a dolphin associated Brucella [32, 33]. In the 
BioCyc pathway databases, a transcription unit is a set of one or 
more genes that are transcribed to produce a single messenger 
RNA [34]. Our research interest is in multi-gene transcription 
units which include at least one gene for universal stress protein. 
Four genes for universal stress proteins were observed in the 
genome of B. ceti Cudo. We have not observed reports describing 
the function of the B. ceti USPs. Therefore, this report provides 
new insights into the organization of transcription units and 
possible function of B. ceti USPs. [35]. The decision making then 
led to analytical reasoning of the gene neighborhood of B. ceti 
USP transcription units. 

4.4 Interactive Analytics for Analytical 
Reasoning on Brucella ceti Transcription Units 
containing Gene for Universal Stress Protein 

Among the Brucella ceti genomes, strain Cudo is unique for 
having the 4-gene transcriptional unit, which consists of genes for 
universal stress protein, tryptophanyl-tRNA synthetase, (pfam 
00579), peptidoglycan biosynthesis protein (pfam03023) and 
protein-P-II uridylyltransferase (pfam08335) (Figure 2). There is a 
need for research studies to confirm the existence of the 4-gene 
transcription unit as well as the role of each gene. A common 
annotated function of the proteins encoded by the transcription 
unit is metabolism of nitrogen. The universal stress proteins are 
induced in response to stress conditions including nitrogen 
starvation [36-38]. Tryptophanyl-tRNA synthetase (TrpRS) 
ensures the translation of the genetic code for tryptophan, a 
nitrogen containing amino acid, by catalyzing the activation of 
tryptophan by adenosine triphosphate (ATP) and transfer to the 
tryptophanyl-tRNA (tRNATrp) [39].  

The peptidoglycan biosynthesis protein in Escherichia coli is 
a lipid II flippase essential for cell wall peptidoglycan synthesis 
[40]. The protein-P-II uridylyltransferase (GlnD) is involved in 
glutamine metabolism and primary sensor of nitrogen [41]. In 
Mycobacterium tuberculosis, an intracellular pathogen as Brucella 
species, L- glutamine is a major component of the cell wall [42] 
and a source of nitrogen in Brucellae [43]. An immune response 
in mammalian cells for the control of intracellular pathogens 
includes the gamma interferon induced production of indoleamine 
2,3-dioxygenase (IDO), an enzyme for the degradation of 
tryptophan [44]. The transcription direction of the four genes is 
conserved in the two Ochrombactrum genomes (Figure 3). 
Furthermore the functions for peptidoglycan synthesis and 
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nitrogen sensing exist as a transcription unit in both 
Ochrombactrum genomes and four of the five B. ceti genomes.   
In summary, there is evidence that the function of the 
transcription unit in the Brucella ceti Cudo genome that contains 
the gene BCETI_1000312 is for nitrogen stress response. 

5. CONCLUSIONS 
The goal of the research reported in this article was to 

develop interactive analytics resources to support the performance 
of complex cognitive activities on a collection of publicly 
available genome information spaces. Our expectation is that the 
information spaces and interactive views present opportunities for 
learning about the microbial genomes. An overview of the 
resources developed is presented in the figure in the Appendix 
section.  

A supercomputing infrastructure (Blue Waters 
Supercomputer) provided computational tools to construct 
information spaces while visual analytics software and online 
bioinformatics resources provided tools to interact with the 
constructed information spaces. The Rhizobiales order of bacteria 
that includes the Brucella genus was the use case for preforming 
the complex cognitive activities. An interesting finding among the 
Brucella ceti genomes was that strain Cudo is unique for a 
predicted four-gene transcriptional unit that contain genes known 
to respond to limited nitrogen availability.   
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2015 to April 2016. At the beginning of the internship I attended 
the two-week Blue Waters 2016 Petascale Institute held at the 
University of Illinois Urbana-Champaign (UIUC) from May 24th 
to June 5th 2015. I gained an introduction to high performance 
computing. During my mentored internship at Bethune-Cookman 
University I became familiar with command-line instructions for 
performing computing actions. The internship training has helped 
me to better understand microbial genomes as well as data 
visualization techniques. I have a clearer understanding of career 
pathways that incorporate computational science. 
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9. APPENDIX 
 

 

 
 

Interactive Analytics Resources for Complex Cognitive Activities on Information from Annotations of Prokaryotic Genomes 
Website: https://public.tableau.com/profile/publish/genomeanalytics/infopage   
This set of interactive analytics resources consisting of views and dashboards were developed to support the performance of complex 
cognitive activities on a collection of publicly available genome information spaces.  
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ABSTRACT 
Communicating and transferring computational science 
knowledge and literacy is a tremendously important concept for 
students at all levels of education to understand. Computational 
knowledge is especially important due to the tremendous impact 
that computer programming has had on all scientific and 
engineering disciplines.  As technology evolves, so must our 
educational system in order for society to evolve as a whole. We 
undertook direct instruction of a computational science course, 
and have developed a curriculum that can be expanded upon to 
provide students entering technical disciplines with the 
background that they need to be successful.  The course would 
provide insight to the C programming language as well as how 
computers function at a more basic level.  Students would 
undertake projects that explores how to program simple tasks and 
operations and ultimately ends in a final project aimed at 
assessing the knowledge accumulated from the course. 

CCS Concepts 
• Social and professional topics   • Social and professional 
topics~Computing education   • Social and professional topics~K-
12 education 

Keywords 
Computing education, K-12 Education 

1. INTRODUCTION 
Computational science as a discipline uses modern tools of 
computer science combined with a mathematical approach to 
problem solving to tackle issues that are relevant to science. 
Computational science requires knowledge from three disparate 
fields: computer and information sciences, which is used to 
develop the software and data structures to solve computationally 
interesting problems, numerical and non-numerical approaches to 
modeling, which can be used to represent data for scientific 
problems, and computing infrastructure that the software can be 
run on.  

A problem of scientific interest is usually first understood in terms 
of a model that predicts or explains observation, which serves as a 
template for software engineers to develop a computer program 
that allows the model to be studied, and then is finally executed 
on a computing platform.  Virtual modeling helps to see the 
expected outcome of experiments and ideas without real world 
execution.  This helps save time and money.  Today companies 
utilize computational science to do just that.  Other uses of 
computational science and virtual modeling are to view objects 

and interactions that are difficult to view under normal 
circumstances.  Particle interaction is the best example of this.  
The class that this paper will help outline was all about modeling 
a particle, something that cannot be seen by the naked eye, as it 
moved through space. 

Computational Science is not widely taught.  There are schools 
that will cover one of the fields of computational science in great 
detail, but will provide little or no detail on the other two. The 
goal of this course was to provide a strong foundation in all three 
areas. 

2. RELATED WORK 
The approach that was developed at Marmion Academy was 
heavily based upon the instruction that the SHODOR educational 
foundation developed for use in the Blue Waters Student 
Internship and the Petascale Institute. The approach of the 
institute combined lectures on the theory of parallel programming 
and high-performance computing with practical exercises that 
reinforced the concepts. We sought to adapt this approach for use 
at Marmion Academy, and used the XSEDE training roadmap 
available from HPC university as a starting point to developing 
computational literacy in our students. 
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3. CHALLE1NGES 
There are some significant challenges that are faced when 
introducing a computational science curriculum into a high school 
environment. The primary challenge faced is the lack of 
computing backgrounds amongst the majority of the course 
enrollees. Most students taking the course do not have any 
familiarity with programming languages, none do they have any 
exposure to a Linux operating system, and few have taken the 
mathematic and scientific coursework necessary to understand the 
scientific 2models that will be covered. Also, the high school 
format with 45 minute class periods limits the amount of time that 
instructors have to cover new material. With crowded student 
course schedules, students have very little time outside of class to 
self-study or prepare. 

The students’ lack of knowledge and available time greatly 
hindered the results of the course.  Several were able to learn the 
material, but almost all struggled in applying the material even at 
the end of the year.  Students lost interest in the class as the year 
progressed.  Additionally, majority of the students enrolled in the 
course were seniors and became afflicted with senioritis making it 
difficult for them to learn and pay attention.  As stated previously, 
students had problems applying concepts that had been introduced 
throughout the entire year.  The same questions were constantly 
being asked by students showing their lack of ability to grasp 
what the class was teaching. 

Several students had difficulty with the language as well.  The C 
programming language has a lot of rules and syntax to it.  
Students were very confused with how to structure their code and 
irked the students once they figured out how “dumb” a computer 
really is.  Several students that did express interest in the class say 
that the difficulty of the language being used dissuaded them from 
pursuing a career in computational science in the future.  The 
environment they were programming in, Cygwin, also confused 
the students because it used keystrokes that the students were 
unfamiliar with.  It caused a lot of frustration for the students 
since they might accidentally delete a line of code due to the 
unfamiliar key strokes. 

4. COURSE OUTLINE 
Using the roadmaps available from HPC University, we 
developed a prototype curriculum for the course. The curriculum 
was developed with the express goal of introducing high school 
students with no computing background. We began with a 
conceptual introduction to the ideas of high performance 
computing, computer architectures, parallel programming, and 
data visualization. We would then proceed with a tutorial of the 
Linux command-line interface, along with the basic skillset 
needed to run and submit jobs on the Blue Waters system.  The 
program used for this was Cygwin due to its ability to emulate a 
Linux environment and because of the instructor’s familiarity with 
it. Next, we would introduce a computer programming language 
that the students would use when implementing the algorithms 

                                                                    
1

 
- Undergraduate Student 

2 - Undergraduate Student 

3 - Principal Investigator   
 

 

that model solutions to scientific problems. The language that we 
chose for this course was the C programming language, due to the 
large codebase of examples from the Petascale Institute and the 
language’s high degree of hardware optimization. Throughout the 
course, topics relevant to software development would be 
introduced, such as best practices, debugging, libraries, and 
profiling.  This was done through lectures and class examples as 
well as projects that the students would work on throughout the 
week.  The projects would implement the topics discussed in class 
in order to help students understand their importance.  The 
difficulty of the projects was extremely low due to the constant 
difficulty in understanding the C programming language and 
issues with the Cygwin environment. After the students were 
confident in their knowledge of basic programming, we would 
then proceed to parallel programming concepts and techniques 
using resources such as MPI.  Due to time constraints and overall 
difficulty in the instruction the students were not able to receive 
instruction in parallel programming.  The course would conclude 
with a project that would encompass all they had learned 
throughout the course.  We decided that the final project should be 
an N-Body simulation of a particle’s position on a Cartesian Plane 
in order for the students to demonstrate a proper amount of 
knowledge from the course.  This project would involve 
computing the continual position of the particle using loops and 
dynamically updating the variables involved with the particle’s 
position as well as printing to the screen.  The final project would 
be graded based on how well constructed the student’s code was 
able to output the results, the accuracy of the results, the student’s 
understanding after a small Q&A, and finally if the code was well 
documented.  All percentages for appropriate grading scales as 
well as a more documented step by step walkthrough of how the 
students would be taught are shown in the attached course 
syllabus after the acknowledgements and references. 

5.  COURSE INSTRUCTION 
The course ran for 40 weeks, with one 45-min session every day. 
We utilized a project-based teaching method, through which the 
students were graded based on their ability to work through and 
complete in-class practical projects and materials. Each week 
consisted of a combination of the following: lectures on new 
concepts and new materials, practical lectures that the students 
could follow along with, or in-class projects and exercises. We 
also needed a development environment that would simulate the 
Blue Waters development environment, and for this role we used 
Cygwin. Cygwin allows us to simulate a Linux environment on a 
Windows system, and allows for the student to practice the basics 
of the Linux command-line, which is the only interface that they 
would be exposed to on Blue Waters. Resources from the 
Petascale Institute were used to familiarize the students with job 
processing on Blue Waters, include the “Time to Science” 
demonstration intended to demonstrate the performance benefits 
of increasing node size on a job. A basic workflow guide was also 
created by the course instructors for use as a simple in-class 
tutorial on basic operations on the Blue Waters system.  

The first semester was extremely different from the second.  The 
instructors decided that the students would be graded on 
completion rather than an assessment.  This changed at the end of 
the first semester because the students were prioritizing other 
classes since they were finding the class extremely easy.  It was 
found that students were not learning the material and constantly 
asking questions that they should have been able to answer.  
Second semester saw a lot of grading on projects that was not seen 
previously.  While this was met with a lot of frustration from the 
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students, they did begin to take the class more seriously and 
focused on learning and becoming more proficient with the C 
language. 

 

6. COURSE RESULTS 
The final project for the course was for the students to create an n-
body simulator using the skills they had learned in the class 
throughout the year.  The students were given three weeks to work 
on the simulator.  The goal was to accept input for a time function 
and then track the position of a particle on a standard Cartesian 
plane.  The students were required to print out a graphic inside of 
a terminal showing the coordinates of the particle in relation to the 
origin. The equations that the students used to model the particle 
were explained. Debugging and algorithm help were also 
provided as well. 

As stated in Section 3, the students had difficulty throughout the 
course.  Due to the ease of use with modern technology, students 
had difficulty grasping the basic implementations and syntax of 
the C programming language.  Their lack of knowledge in 
programming greatly hindered the progress of the course.  
Questions were continuously asked throughout the year about 
topics that were extremely basic and demonstrated in every 
project.  Examples include the scope of a variable, variable 
assignment, and syntax for both for and while loops. 

The project proved very challenging for several of the students.  
The most issues became clear when the students had to figure out 
how to graph the particle’s position.  Students were familiar with 
printing out to the screen by the end of the course, but were 
unsure how to do it with continuous updates to an object as it 
changed position.  Others had problems figuring out how to use 
the C programming language to accomplish what the project 
required and were much slower to finish.   

Overall the project was a moderate success.  The students had the 
most problems with learning the C language because of its foreign 
nature.  Students constantly struggled with basic concepts such as 
creating variables or managing the scope of a program. The 
students constantly asked the same questions such as “How do I 
make this?” for extremely basic concepts such as object and 
variable creation or Boolean logic.  After interviewing some of 
the students, it was determined that most of the issues encountered 
were because of the approach taken in the first semester where 
grading was not weighted as heavily. Instruction could not be 
slowed down without sacrificing time to teach other concepts that 
would be needed for use in the final project.  Students were also 
extremely unfamiliar with programming syntax. Several students 
were able to overcome this obstacle, but others struggled up until 
the very end of the class. 

These faults do not hinder the results of the class.  Of the original 
twelve students that were enrolled in the course, only a single 
student dropped the course.  The student who dropped did not 
drop for academic purposes, but for issues with scheduling.  All 
the other students who completed the course finished with very 
good grades due to their ability to finish the projects assigned and 
demonstrate all knowledge required of them.  All of the students 
were still able to complete the final project and all had extremely 
good results.  Several of the students also became extremely adept 
at utilizing the C programming language for their own use.  
Additionally, several of the students expressed interest in going 
into an engineering or programming related field, which require 
computational science knowledge. Students expressed extreme 

satisfaction in being able to learn programming since it will 
almost definitely help them as they are transitioning to college. 

7. CONCLUSIONS 
Throughout the course there were several issues that had to be 
overcome and others that could not be accounted for.  Were this 
course to be taught in the future, we have listed several issues that 
we encountered and solutions that we feel would be most 
effective. 

• We feel that the course instruction has been informative 
on how to best approach future computational science 
instruction. To improve and extend our instruction into 
the future, we feel that more emphasis be placed upon 
the applications of computational models, and less 
emphasis be placed upon computer programming 
instruction.  

• Computer programming instruction requires a 
significant amount of time to adequately prepare the 
student, and thus is not a proper use of limited class 
time when the focus is to prepare students for the 
applications of computational science. It is therefore 
more appropriate to require the student to be 
comfortable with a programming language prior to 
entering the course, or to learn how to program outside 
of class time.  

• Another option is to use a language that is simpler to 
use and requires less class time to attain familiarity 
with. Our primary candidate for a simple language 
included Scientific Python.  

• Based on frustrations programming in a command-line 
environment, we recommend the use of an integrated 
development environment (IDE) when developing 
applications on a local system, and the use of command-
line tools only on remote systems.  

• A more rigorous grading methodology should be used in 
order to properly motivate the students and encourage 
active student participation.  

 

8. REFLECTIONS 
I feel that this experience has been very beneficial to me in my 
academic and career development, and I will take away a great 
deal from this work. The Petascale Institute especially was a 
tremendous opportunity to expand and polish my knowledge 
using the resources that SHODOR had available. The chance to 
work with colleagues from other institutions and learn from 
experts in the field of computational science education was an 
enlightening experience. I look forward to the chance to continue 
using the skills I gained from Blue Waters in my future academic 
work.  
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1st Semester - Fall 2015 
Computational Science & Engineering (CT-STEM) Syllabus & Guidelines 

Section 1 
 

Textbook: Curricular outline will coincide with materials from the Computational Science Institute 
(http://www.computationalscience.org/) , the CT-STEM program designs at https://osep.northwestern.edu/projects/ct-stem , and 
from resources on HPC University (http://hpcuniversity.org/) 

------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
This is an introductory level course on the application of computational thinking to the solution of general science problems guided by 
the inherent processes of the Scientific Method.  This course draws on the three pillars of science – theory, computation and 
experiment.  Computational elements will be performed using the programming language of C that will be taught at an introductory 
level.  Physical experiments will be performed to enhance computer simulation experiments as needed. This course is an introduction 
of computational thinking principles in a problem-based learning environment.  A major piece of the learning process will be focused 
on using high performance computing (HPC) as the platform for computational science & engineering modeling via the Blue Waters 
system (see: http://www.shodor.org/petascale/). Some prototyping of HPC code will be performed on the Marmion Academy 
Raspberry Pi HPC cluster. Grading is formative.  
 

Note: Pre-requisites: Pre-Calculus with Trigonometry (completed or currently enrolled) 
 
- Topic by Order                                                                                                        
- What is Computational Science and why? 
- Federal, State and Local efforts to promote computational science 
- Basic pre-calculus and basic linear algebra math review 
- The Scientific Method as built on the three pillars of science (theory, computer simulation, and experiment) 
- Outlining the n-body simulation semester project (why and how) 
 
- General HPC concepts  
-  Basic Linux/Unix overview and command-line interface tutorial 
- Overview of computer programming and C language basics (more advanced elements are taught in context of the project) 
- How to log into and use HPC resources like Blue Waters and the Raspberry Pi HPC cluster 
- Test run sample C code 
 
- Introduction to parallel programming and parallel programming languages like MPI, OpenMP, CUDA 
- Debugging, profiling, and optimization of serial and parallel code  

 
- Creating a single particle (1-body) 3D simulation (step-by-step) 

        Appendix 1. Fall 2015 CT-STEM Syllabus 
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o Introducing the creation of computer representations of a single classical particle in a box 
o Moving the particle through numerical integration 
o Moving the particle in 1D then a single particle in 3D 
o Applying Periodic Boundaries to the box 
o Running the simulation with C and visualizing the output 
 

- Creating a many particle (n-body) 3D simulation (step-by-step) 
o Moving from 1D to 3D simulations – considerations of force 
o “It’s all about forces” lecture 
o Realism of computer simulations – “If the forces are realistic, the simulation will be realistic” lecture 
o How we use physical experiments to improve computer simulation realism 
o Running the 3D n-body simulation for : 

§ Planetary bodies and astronomical size simulations 
§ Monatomics (homogeneous and heterogeneous systems) 
§ Hard spheres to simulate macroscopic objects in our ‘big’ world 
§ Chemical simulations and experiments (how they compare) 
§ Biological simulations and experiments (how they compare) 

 
 

- Biological simulation of wolf and sheep populations 
- Chemical statistics of motion as applied to the Boltzmann distribution of velocities 

 
 

All programming projects and physical experiment labs are defended with an oral presentation and examination immediately after 
completion of the write-up. All lab reports will follow the MLA research report standards. Bad grammar, plagiarism and spelling will 
also be checked /scored 
 
Grading 
Grading is calculated against a formative project-based model. Emphasis is placed on quality and timely completion of assignments. 
Homework grades are reduced 10% for each day late past the assigned due date. Procrastination and/or poor time management can 
have the most devastating effect on your grade. Stay on task. It’s about following the path and doing the work. You will be given 
multiple attempts (except on exams and quizzes) to make them acceptable. If you do the work to the level of quality that I ask, you 
will get a good grade. 

 
Quizzes (online; in class; note quizzes; C quizzes)     15% 
Quarter Exam (comprehensive)       15% 
Homework & Projects (online homework; in class projects)    20% 
Labs (computer simulation analyses and/or physical laboratory experiment)  20% 
Semester Exam (comprehensive test + successful 3D n-body simulation project)  30% 
 
 
If you need to contact us:  E-mail vpinks@marmion.org or epeterson@marmion.org 
 
 
 
 
 
 
 
 

All students will be held accountable for their behavior according to the Policies outlined in the Marmion Academy 
Student/Parent Handbook 2015 – 2016. Verbal bullying such as negative characterization of other students or negative 
characterization of other student’s behavior will be considered on par with physical bullying and not tolerated. 
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A Very Basic Blue Waters Workflow Guide 
Author: Eric Peterson, Marmion Academy 
Created: June 2015 
Last Modified: May 2016 
 

Notes: Commands are in bold and are preceded by a dollar sign $. [ ] tokens should be replaced with the appropriate information, minus the [ ]. Text 
that is to be inserted into files is in italics. Text in the following font will be actual output from the system: example system output 
 

1. First, SSH into Blue Waters (steps are different depending on type of account, either training or regular 
account): 
 
$ssh [your username]@bwbay.ncsa.illinois.edu   or 
$ssh [your username]@bw.ncsa.illinois.edu 
 
Password: [enter your password here] 
 

2. Use basic commands to change directories, display directories/files, move and copy files and directories, 
edit files (use basic CLI tutorial by Mubeen) 
 

3. Requesting resources on Blue Waters, either XE or XK nodes: 
 

a. There are two different ways to request resources: 
i. Interactively (allows you to submit jobs and see output immediately): 

 
$ qsub –I [resource list] 
 

ii. Batch: 
 
$qsub [batch script file].pbs 

 
b. Resource lists: 

i. This is where you request the number of nodes, type of nodes, number of processors, 
amount of time required, and more. One example for an interactive mode: 
 
$qsub -I –l nodes=1:ppn=[32 / 16]:[xk / xe] \ 

    -l walltime=1:00:00 
 

ii. For batch files: 
 
#PBS  -l [resource list] 
 

c. Batch files: (Allows you to request resources that will run without direct intervention and waste 
less of your computing time) 

i. Basic structure of a PBS file: 
 
#!/bin/bash 
cd $PBS_O_WORKDIR 
#PBS -l [resource list] 

  Appendix 2. A Very Basic Blue Waters Workflow Guide 
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#PBS -o [pathname of output file] 
#PBS -e [pathname of error file] 
 
aprun ./[name of program]   

 

 
4. Running your job: 

a. On an interactive session: 
 
$aprun  –n [number of processes] ./[name of program] 

b. In a batch file: 
 
aprun  –n [number of processes] ./[name of program] 

 
5. After the job has been submitted, you will see the job ID of your job appear at the command line. 

Example of a job submission (through batch): 
 
Job submitted to account: jt4 
1817863.nid11293 
 

6. Checking the status of your jobs will be critical (It also allows you to check what job ID you received): 
 
$qstat -u [your username]   or 
$qstat -u `whoami`    (if you don’t know your username)  
 

7. When your job has finished (Q in stat indicates a queued job, R indicates a running job, and C indicates 
a completed job): 

 

a. In batch: 
You will receive files (hopefully in the same directory as the program) with the name : [program 
name].pbs.[e / o][job ID], unless you chose different names for the output and error files. 
 

b. In Interactive mode: 
You will see your results through standard output (the screen) unless re-directed. 

 
8. Compiling your programs: 

a. Compiling your programs may depend on if you are using CUDA, MPI, openMP, openACC, or 
none of those, but the basics are as follows: 

i. Once you have finished editing your .c file, use the CRAY C compiler to compile your 
program with the following flags: 
 
$cc -o [program name] [program name].c –l[libraries] 
 

ii. This will create a file named [program name].  
b. If you are using openACC, you may need to add: 

 
$Module load craype-accel-nvidia35  
–h pragma=acc      (add this to compiler line before -o flag) 
 

c. When using openMP, remember to set the number of threads: 
export OMP_NUM_THREADS=[number of threads] 
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d. If you are using CUDA, you may need to compile your CUDA section separately, then link the 
CUDA to your main program 
 
$nvcc -o [program name].o -c [program name].cu 
$CC -o [program name] [program name].o [program name].c 

 

9. Makefiles: 
a. Makefiles are a way of automating the compilation process, and ensuring that all dependencies 

and flags are set properly every time you compile. 
b. Basic structure of a makefile: (example): 

 
all: 
 make 
[program name]: [program name].c 
 CC –o  [program name] [program name].c 
clean: 
 rm –rf [program name] 

 

10. Performance Testing: 
a. This guide will talk briefly about the GNU Profiler (gprof). First swap the environment to the 

GNU programming environment: 
 
$module swap PrgEnv-cray PrgEnv-gnu 
 

b. Compile a program with the –pg and –g options enabled: (this enables profiling) 
 
$gcc –pg –g –o [program name] [program name].c 
 

c. Now we actually run our program to generate the profiling info: 
 
$ ./[program name] 
 

d. This generates a file called “gmon.out”. Now we use gprof to visualize the profiling data, 
additionally providing it another run of the program to give it more data: 
 
$gprof ./[program name] gmon.out > profiling_data 
 

e. Then, we can see the final data by using less: 
 
$less profiling_data 

 

 
11. Editing a file using a text editor (vi): 

a. vi is a simple text editor that is available on blue waters and all Unix-based systems. It can 
invoked simple by typing: 
 
$vi   or 
$vi [file name] 
 

b. vi has two basic modes: 
i. Command mode, keyboard presses will be executed as commands. The default mode that 

vi starts in. To enter command mode, press ESC. 
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ii. Insert mode, keyboard presses will be insert or edit text in the file. To enter insert mode, 
press ‘i’ on the keyboard. 
 

c. In command mode, you can use the direction keys to move through the file, or use: 
i. Ctrl-f to move up one screen through the file. 

ii. Ctrl-b to move down one screen through the file. 
iii. ‘gg’ to move to the top of the file. 
iv.  

d. In command mode, you can use keyboard presses to edit: 
i. ‘dd’ will remove an entire line 

ii. ‘yy’ will yank a line, and p will place the yanked line where your cursor is located. 
iii. ‘u’ will undo the last change you made  

 
e. In command mode, to close and save files: 

i. ‘:w’ will write the file to disk but not quit 
ii. ‘:wq’ will write the file to disk and quit 

iii. ‘:q!’ will quit without saving  (useful if you made unwanted edits) 
 

f. In command mode, you can navigate to a line by pressing  
 
‘:[line to navigate to]’ 
 

g. In command mode, searching for a pattern is relatively painless: 
 
‘/[pattern to search for]’ 
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ABSTRACT 
As a Blue Waters Student Internship Program project, we have 
developed a model of interplanetary low-thrust trajectories from 
Earth to Mars for spacecrafts supplying necessary cargo for future 
human-crewed missions. Since these cargo missions use ionic 
propulsion that causes a gradual change in the spacecraft’s 
velocity, the modeling is more computationally expensive than 
conventional trajectories assuming instantaneous spacecraft 
velocity changes. This model calculates the spacecraft’s time of 
flight and swept angle at different payload masses with other 
parameters kept constant and correlates them with known 
locations of the planets. With parallelization using OpenMP on 
Blue Waters, its runtime has decreased from 10.55 to 1.53 hours. 
The program takes a user-selected Mars arrival date and outputs a 
given range of dates with maximum payload capabilities. This 
parallelized model will greatly reduce the time required for future 
mission design projects when other factors like spacecraft solar 
panel power output may vary with new mission specifications. 
The internship experience has enhanced the intern’s ability to 
manage a project and will impact positively on his future graduate 
studies or research career. 
CCS Concepts 
•Applied computing ➝	Physical sciences and engineering 
➝Aerospace 

Keywords 
Computational Modeling; Orbital Mechanics; Low-Thrust 
Trajectories 
 

1. INTRODUCTION 
Sending humans to Mars has presented difficult problems to solve 
in the past few decades since the Moon landings. With the advent 
of new technology and launch methods, such as NASA’s Space 
Launch System (SLS) and SpaceX’s reusable first stage, the  
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bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee.	 Copyright ©JOCSE, a supported 
publication of the Shodor Education Foundation Inc. 
DOI: https://doi.org/10.22369/issn.2153-4136/8/2/7 
 

possibility of reaching Mars within the next few decades is 
becoming a reality. 
There are still many aspects of a crewed mission that need work, 
like the effect of galactic cosmic radiation on the crew’s health, 
and the ability to get all necessary equipment and backup supplies 
to the Martian surface to keep the crew safe there. The latter 
problem leads into the focus of this study.  

Ionic engines can be the safe and efficient source of propulsion 
[1,2,3] for cargo missions to supply the Martian surface with food, 
water, habitats, scientific instruments, and transportation 
equipment. With the low-thrust characteristics of ionic engines, 
we cannot model their trajectories with instantaneous velocity 
changes [2]. Instead, the calculations must take into account the 
continuous velocity change along the entire trajectory at 
infinitesimally small time steps. This study explores the use of 
parallel computing to speed up the calculation of these low-thrust 
cargo transfers.  
 

2. BACKGROUND 
The possibility of travelling to Mars hinges largely on our ability 
to support astronauts with necessary sustenance and equipment for 
the length of their stay on the surface. This requires consideration 
of backup safety factors that call for multiple cargo launches to 
ship the necessary supplies to the Martian surface [3]. The 
eventual goal would be continual shipments from Earth to Mars to 
setup surface stations and provide a growing community of shelter 
and supplies for the astronauts to utilize. These cargo missions 
would be unmanned and much more frequent than the crewed 
missions.  
Each individual cargo mission itself does not need to reach Mars 
quickly because of the continual nature of the shipment process. 
Therefore, we do not require current high-thrust chemical 
propulsion to complete Earth to Mars transfer in the usual eight 
months [2]. In order to increase safety and conserve fuel, we can 
utilize ion propulsion for this operation. This would lengthen the 
trip to a year and a half, but each shipment would be arriving 
within a few months of each other, giving the astronauts a steady 
supply, much like the current supply system for the International 
Space Station.  

The main difference between ionic and chemical propulsion is the 
method in which the thrust is applied. In chemical engines, cold 
gas is ignited to cause an expulsion of propellant at a very high 
mass flow rate. The thrust, in turn, is very high but fuel runs out 
within a few minutes [4]. Thus, chemical engines are fired only 
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during a very short period of time, and can be modeled assuming 
an instantaneous change in velocity, ∆V [5]. Using solar panels to 
provide electric power, ionic engines operate by using energetic 
electrons to bombard and ionize noble gases, such as argon and 
xenon [2,3,6]. A potential difference then develops, accelerates 
the ions, and emits a positively charged beam as the exhaust. 
Unlike conventional chemical engines, the mass flow rate is very 
low [7,8], so the thrust must be applied throughout the entire 
transfer. These two different propulsion systems using ionic and 
chemical engines would produce two contrasting types of orbital 
transfers, known as the Ward spiral and Hohmann transfer 
respectively (see Figure 1). Modeling the Ward spiral trajectory 
requires a calculation of velocity change at each point along the 
spacecraft’s path. Optimizing these low-thrust trajectories for a 
proper launch date becomes computationally expensive, and 
would benefit from a parallelized computational model. 

There are two main questions we are trying to answer in this 
study. The first is the relationship between the time of flight and 
payload mass of the spacecraft. The second is the effect of 
launching at non-ideal times on the payload mass capabilities of a 
certain spacecraft. Having a model to calculate this will help 
determine safety factors and contingencies in a mission design 
project. 
 

3. METHODS 
The main model in this study centers on a low-thrust Ward spiral, 
with the inputs being the thrust and mass of the spacecraft. After 
accounting for the inclination change between Earth’s and Mars’ 
orbits, we correlate the positions of the two planets in the coming 
decades, called ephemerides, to the possible trajectories. These 
ephemerides tables are obtained from the NASA Jet Propulsion 
Laboratory’s (JPL) HORIZONS online tool [9] by inputting a 
start and end time, then specifying the time step size. Since we are 

testing all the launch dates over a five-year period as well as 
altering the payload mass levels, parallelizing the code would 
speed up the process significantly. 
 

3.1 The Ward Spiral 
Using a method developed for satellite orbit lowering maneuvers 
that employ low thrust ion engines [10,11], we reversed the 
direction of travel to an orbit raising trajectory [10]. Since Earth 
and Mars are on slightly different orbital planes, the change in 
inclination also adds additional ∆𝑉 to the trajectory, so we had to 
consider this in our calculations as well. This allowed us to model 
a spiral of gradually increasing orbital radius that reached from 
Earth to Mars. The Ward spiral starts with a circular orbit where 
the orbital velocity, 𝑣, is calculated by the equation: 

𝑣 =
𝜇
𝑟
	

where 𝜇 is the gravitational parameter of the Sun and 𝑟 is the 
spacecraft’s distance from the Sun [4]. From the inputted thrust, 
𝐹, of the spacecraft we can calculate the power, 𝑃, of the 
spacecraft: 

𝑃 = 𝐹𝑣 = 𝐹
𝜇
𝑟

 

and correlate it to the vis-viva energy [4], defined as the total 
energy of the spacecraft in a circular orbit,	𝐸: 

𝐸 = −
𝜇𝑚
2𝑟

 

where 𝑚 is the inputted spacecraft mass. Since the time derivative 
of energy is power, we can equate 𝐸 to 𝑃 and therefore: 

𝐹
𝜇
𝑟
=
𝜇𝑚
2𝑟.

𝑟 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Comparison between a low-thrust Ward spiral and conventional Hohmann transfer from Earth to Mars. The blue circle 

represents Earth’s orbit around the Sun, red is Mars’ orbit, and green is the transfer trajectory. 
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We now have a first-order differential equation that directly 
relates the time derivative of the orbital radius and the thrust of 
the spacecraft’s ion engine, with initial conditions of 𝑟 = 𝑟/ 
(Earth’s orbital radius around the Sun), at 𝑡 = 0. 

𝑑𝑟
𝑑𝑡

=
2𝐹
𝜇𝑚

𝑟3/. 

Solving the above differential equation gives: 

𝑟 =
𝑟/

1 − 𝐹
𝑚

𝑟/
𝜇 𝑡

. 

This calculates the orbital radius at any given time, 𝑡.We can now 
use the initial and final orbital radii, 𝑟/ and 𝑟6, to find the time of 
flight,	𝑡7, and integrate the stored orbital radius and velocity 
values to find the total swept angle, 𝜃, of the transfer orbit: 

𝑡7 =
𝑚
𝐹

𝜇
𝑟/

1 −
𝑟/
𝑟6

 

 

𝜃 = 	
𝑣(𝑡)
𝑟(𝑡)

;<

/
𝑑𝑡	

With these relations it is straightforward to code a model for a 
single trajectory, with an array of time and an inputted thrust and 
mass. The next part of the model calculates the inclination change 
between Earth’s and Mars’ orbits. Just as energy is required to 
change the orbital radius, the change in orbital inclination requires 
an amount of ∆V given by: 

∆𝑉 = 2𝑣 sin
∆𝑖
2

 

where ∆𝑖 is the change in inclination. Since the orbital velocity 𝑣 
is constantly decreasing as the orbital radius increases, the total 
∆𝑉 is a summation of all the inclination changes along the 
trajectory [4]. 
 

3.2 Trajectory Optimization 
 

3.2.1 Time of Flight  
For conventional propulsion, the optimization is conducted with 
∆𝑉 as the main objective. Minimizing the ∆𝑉 in a maneuver will 
minimize the fuel needed for a certain transfer, thus lowering the 
overall cost of the mission. [5,6]. However, with a low-thrust 
trajectory, the ∆𝑉 is determined by the difference in orbital 
velocities of Earth and Mars around the Sun, and is therefore a 
constant. So regardless of how long it takes to reach Mars on a 
certain trajectory, the spacecraft needs the same amount of ∆𝑉. 
Therefore the main optimizing objective is the time of flight of the 
transfer, which is mostly dependent on the locations of the planets 
at a given time [12]. Although there will be a limit to how fast the 
spacecraft can reach Mars due to the extremely low thrust of the 
ion engines, we still would like a reasonably quick transfer. This 
would minimize exposure of food/water and even some scientific 
equipment to the harmful effects of galactic cosmic radiation.  
 

3.2.2 Computational Approach 
With the two inputs of thrust and payload mass, we chose to keep 
thrust constant for each run, as an assumption that we are using 
one engine with readily available electrical power. The thrust of 
0.023 N is used for our computations based on the NASA-
released information on the NEXT ion thruster [3]. We then 

varied the payload mass from 1 to 20 metric tons (t) with 
increments of 0.1 kg, and calculated the time of flight and swept 
trajectory angle for each mass value. This range was chosen based 
on payload masses in NASA heritage missions as a lower bound, 
up to anticipated future necessary mass levels as an upper bound 
[3]. With these values stored in a text file, we correlated the data 
with ephemerides to find potential launch windows for missions 
with different payload masses.  

As we make the payload mass increments smaller to increase the 
accuracy of time of flight calculations, the number of data points 
also increases, making the text files larger in size. To minimize 
the inconvenience of loading large text files we separated the 
outputs into smaller organized files labeled with the first mass 
value in the file. The main use for the files is to create a table that 
relates mass and time of flight so that when needed, one can 
extract the values on a desktop computer, without having to 
access Blue Waters. The most important application would be a 
mission plan to arrive on Mars by a certain date, given the 
maximum payload mass and necessary thrust. This would require 
many calculations of the time of flight versus mass, and with the 
tabulated values for a given thrust, it will be much easier to read 
through them instead of calculating the time of flight each time. 

All the code that was run on Blue Waters to calculate time of 
flight was written in C, and compiled using cc in the default 
craype/2.5.0 programming environment with Cray Linux 
Environment (CLE 5.2). The programs for further payload 
capability analysis were also written in C and compiled with 
gcc/4.9.2 in a Cygwin 6.3 terminal installed on a Windows 10 
desktop computer. We used gnuplot 5.0 to generate payload 
capability figures and MATLAB 2015b to generate the three-
dimensional Earth-Mars trajectory plots. 
 

3.2.3 Maximum Payload  
Since the tabulated values are separated by thrust level, one can 
also start with a time of flight and arrival date, and use the tables 
to find the maximum payload mass capability for a given thrust. 
The model takes the required time of flight and associates it to a 
payload mass, and if the ephemerides suggest that the launch 
cannot be completed in time, the model will go to the next thrust 
level. 

This application takes advantage of the tabulated values extracted 
from the parallelized code run on Blue Waters. The user can input 
the desired arrival date and a maximum time of flight, and the 
program can find a range of launch dates with their corresponding 
payload mass and present them in a plot. For mission design 
projects this would be a very useful tool to visualize the 
relationship between an actual launch date and the possible 
payload mass. 

Another application is to lock the launch date at the ideal case, 
and then match it with the user’s needed arrival date. Then we can 
vary the arrival date within a range around the user-selected date 
to see its effect on the maximum payload mass. This allows us to 
test the effect of launching at non-ideal launch windows on the 
maximum payload capability (including the mass spacecraft mass) 
of a mission. Using this model can help test contingency and 
develop safety margins for the mission design.  
 

3.3 Launch Date Calculation 
In order to calculate the proper launch dates we require the 
ephemerides of Earth and Mars for the coming decades. This 
allows the determination of the initial and final positions of the 
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planets during the transfer orbit, which can be correlated with the 
outputted times of flight to determine the necessary launch date of 
the cargo shipment. We generated the ephemerides from JPL’s 
HORIZONS software [9] and loaded them into text files. Using a 
50-year range from January 1, 2018 to December 31, 2067, we 
have the positions of both planets for the next five decades.  
To avoid overly long or unrealistically short times of flight, we set 
an upper and lower bound on the times of flight calculated from 
the varying payload mass. Then the times were matched with their 
corresponding arrival dates. Using the known ephemerides we 
could work backwards to find the appropriate launch dates. This 
allowed us to identify “windows of opportunity” and optimal 
launch dates.   
 

3.4 Parallelization 
 

3.4.1 Parallelization Method 
Finding the times of flight from varying payload masses 
represented the bulk of the computations needed in this project. 
The time required for extraction and analyses of the resulting data 
was negligible. For simplicity, we separated the parallelized time 
of flight calculations and tabulations using Blue Waters from the 
subsequent payload and launch dates analyses that can be run by a 
user on a typical desktop computer. 

To parallelize the time of flight computations, we used OpenMP 
in the default Cray compiler on Blue Waters. The programming 
environment was the default craype/2.5.0, and we coded in C on 
OpenMP v3.0 to parallelize the for loops calculating the vector of 
different transfer orbits. The code was then compiled on Blue 
Waters using gcc/4.9.2, running on XE compute nodes. 

We assigned one potential transfer orbit to each thread, with eight 
cores total for the parallel runs. With the thrust kept constant, each 
orbit had a different payload mass assigned to it and produced a 
time of flight. Then the trajectory’s time of flight was correlated 
to the different launch dates with the same window for travel. The 
program would print out the time of flight, swept angle, and 
corresponding payload mass so that extracting the data later  
 
 

would be easier. Both the serial and parallel versions of the code 
are available upon request. 
 

3.4.2 Measuring Speed Increase 

The most convenient way to track the run times of all our tests is 
to use the ‘time’ function for all tasks we run on Blue Waters. We 
ran several small data sets with around 1000 payload mass inputs 
for testing, where hardly any speedup was observed. We also ran 
100 large datasets with millions of payload mass inputs to 
increase the accuracy in time of flight calculations, where more 
significant speed increase is expected due to the smaller 
percentage of overhead.  
 

4. RESULTS 
The products of the model we created are three-dimensional plots 
of the trajectories and possible launch dates for the mission. These 
are helpful in visualizing and planning missions, where the plots 
can show us the general shape and characteristic of the trajectory, 
the possible launch dates give us concrete numbers on the 
frequency and viability of the missions. 
The more interactive product is a program that can determine the 
payload capability of the spacecraft based on given launch or 
arrival dates. The user can input a necessary Mars arrival date and 
time of flight, and use the model to find the maximum payload 
mass for a given thrust. If the mission does not meet the 
requirements for the given thrust, the model will find the next 
level suitable thrust level by adding additional engines to increase 
the thrust. 
 

4.1 Plots of Trajectories 
The plots take into account the inclination change of the 
spacecraft, and show the spacecraft’s path from Earth’s orbit 
around the Sun to Mars’. The inclination change is exaggerated in 
the plots for visual effect, but the actual change in inclination 
between Earth and Mars orbit is 1.85°. The x-y plane in this 
reference frame is the orbital plane of Earth around the Sun. 
Examples of trajectory plots are shown in Figures 2 and 3. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. A typical Ward spiral from Earth to Mars, a trajectory that would take two years to complete for a 15t payload with a 
single NEXT engine.  
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Figure 3. A much faster trajectory (10 months transit time) than in Figure 2, representative of a small probe’s trajectory, where the 

payload would be relatively light. 

 
4.2 Effective Launch Dates 
As mentioned earlier, the model outputs possible launch dates 
given a Mars arrival date, which is very helpful in mission 
planning. The model can predict the date of launch, or even the 
hour of the launch if the user chooses. We represent the date as a 
Julian Date, which is the number of days since noon Universal 
Time on January 1, 4713 BCE, to facilitate ease of calculation. 
Julian dates can be converted back to the common Gregorian 
calendar dates easily using the U.S. Naval Observatory Julian 
Date Converter [13]. Table 1 below shows two examples of the 
outputs that the program will give with a 14.9t payload and 0.023 
N thrust, with two different user inputted arrival dates: 

 
Table 1. Ideal and Latest Possible Launch Dates 

 Mission 1 Mission 2 

Inputted Mars Arrival  
Gregorian Date 5/2/2023 6/17/2045 

Corresponding Julian Date 2460066.5 2468148.5 

Ideal Launch Julian Date 
Based on Time of Flight 2459406.5 2467384.5 

Ideal Launch  
Gregorian Date 7/11/2021 5/15/2043 

Latest Launch Julian Date 
Adjusted for Ephemerides 2459415.5 2467416.5 

Latest Launch Gregorian Date 7/20/2021 6/16/2043 

 

 

Launching either earlier or later than the ideal date would require 
more fuel. However, an earlier launch can give the mission greater 
scheduling flexibility. Launching later would lower the safety 
margin, limiting the flexibility of the mission.  Beyond the latest 
launch date, it will not be possible to reach Mars by the desired 
arrival date with the given payload mass and thrust level. 
 

4.3 Maximum Payload 
With the program that outputs payload capability from a given 
time of flight, we were able to plot the maximum payload mass 
against a range of launch dates. With the added constraint of the 
arrival date and maximum time of flight, we could use this tool to 
narrow down the search of ideal launch windows. 
The outputs from this program are once again tabulated in a text 
file as maximum payload mass and launch date. Such outputs for 
Mission 1 in Table 1, with required arrival date of May 2, 2023 
are plotted in Figure 4. At the ideal launch date of July 11, 2021, 
the maximum payload mass of 14.9t is attained, but the payload 
capability decreases parabolically as the launch date deviates from 
ideal. 

When locking the launch date to the ideal case in the 
aforementioned model and using the user-inputted arrival dates as 
a reference, we plotted the maximum payload mass while varying 
the arrival date. Once again we can see that the maximum payload 
mass remains at the ideal arrival date, but the loss of payload 
capability is less than that generated by deviations from the ideal 
launch date. 
This computational tool is useful for trade studies when 
determining the cost of a mission and its resulting trade-off with 
payload mass. We can now see the effects of delaying or moving 
up the timetable of a mission, and how it will limit certain 
equipment or resources to be transported on the mission. With this 
information we can effectively plan shipments and their fail-safe 
launch dates.  
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Figure 4. Maximum payload mass the spacecraft can carry at different launch dates with a constant time of flight. The suggested 

ideal date of July 11, 2021 (Julian 2459406.5, see Table 1) is on the apex of the graph.  

 
Figure 5. Maximum payload mass the spacecraft can carry at different arrival dates with the launch date kept at the original ideal 
from Table 1. Note the asymmetry of the decrease in payload capability on either side of the ideal arrival date. Due to the change in 

positions of Earth and Mars, arriving earlier versus later yields different payload capabilities. 
 
4.4 Speedup After Parallelization 
We ran both the serial and parallelized versions of the program on 
Blue Waters’ Cray XE nodes, at a peak performance of 313.6 
GFLOPS per node. As expected, when running small data sets of 
1000 payload masses for initial testing, there was no noticeable 
speedup since the effects from overhead canceled out the 
parallelization. When running the parallelized version to calculate 

10 million payload mass data points we used eight cores and the 
runtime decreased from 10.55 hours to 1.53 hours. This reduced 
runtime facilitated our development of the Ward spiral code 
without the need for overnight testing and outputting. The 
increased speed was utilized primarily to speed up the intensive 
calculations to prepare the tabulated values, allowing us to quickly 
start analyzing the resulting data for mission planning. 

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 51



5. DISCUSSION 

5.1 Usefulness of Parallelization 
While using Blue Waters was extremely helpful in generating the 
time of flight tables, a user with the intent to input one mass and 
thrust value will see no difference in a single calculation of the 
trajectory versus a program that reads tabulated values. So the 
parallelization in this case did not affect the end user. However, 
with the case where the user is looking for maximum payload 
mass given a time of flight and arrival date, it would be very 
inconvenient to calculate the values serially on a laptop. Having 
the tabulated values to scroll through in this case would greatly 
reduce the computing time. 
 

5.2 Viability of Low-Thrust Missions to Mars 
From the trajectory plots, time of flights, and payload capabilities 
obtained from this study, we can see that the use of ionic 
propulsion is a viable method to provide support for future 
missions to Mars. The mission parameters that we have calculated 
are well within the reasonable range of required cargo shipment 
set by NASA standards. This will be key in future development of 
routine cargo missions when we continue our mission designing 
process. 
 

5.3 Educational Impact of the Project 
The project is a one-year Blue Waters Student Internship with an 
initial training workshop for C programming on the 
supercomputer, followed by required monthly reports submitted to 
the internship program. Throughout the course of the program, the 
intern has learned to structure a research project with a well-
defined timeline to meet clear and realistic goals and steps. The 
experience has enhanced the intern’s ability to plan and manage a 
research project and helped find solutions in a timely fashion for 
challenges such as parallelization I/O problems and memory-
related segmentation errors encountered in this project. This will 
have a positive impact on the intern’s future graduate studies or 
research career. 

The main educational goal of this project is to expose the intern to 
methods of parallel computing. During the short session in 
Summer 2015, the intern learned the basics of various parallel 
programming languages like OpenMP and MPI, and also 
strengthened his skills in using C. Afterwards during the year, he 
was able to use this knowledge and apply it to trajectory modeling 
problems. While the integration of OpenMP into the trajectory 
model was essentially used to run more cases in the same time, it 
was a good introduction to parallel computing, and we hope to 
continue utilizing this tool for future studies of this nature.  

Through this process the intern also greatly strengthened his 
ability to comfortably use Linux command terminals to 
communicate remotely with a supercomputer, a skill that will be 
extremely useful in upcoming research. Additionally, the intern 
has gained insight into trajectory modeling and general knowledge 
in spacecraft mission design and planning. The program generated 
for this project will be valuable in the intern’s continuing research 
project to design a cost effective, human-crewed mission to Mars. 
The code (Version 1.0) was fully developed by the intern, and is 
available upon request. 
 

6. CONCLUSION 
Throughout the study we evaluated the use of parallel computing 
to assist in trajectory modeling. The most effective course of 

action was to increase the volume of trajectories we could model, 
and generate tables to use offline. This method is like a higher 
mission level tool similar to how ephemerides would be used to 
plan a trajectory. Parallelization greatly increased the efficiency of 
the developmental stage of the model, as it saved time by 
speeding up testing of the Ward spiral code and results were 
obtained quickly for payload and launch date analyses. The ability 
to handle large amounts of data and organize it on Blue Waters 
saved a lot of disk space and computing time on the desktop 
computer.  

From the study it is now possible to use the model to plan cargo 
missions to Mars in the concept study phase. The model can be 
used on any machine as long as the data and ephemerides are 
present in the package. With the input of thrust and mass in text 
file form, additional parameters that alter those two main variables 
can be added on without disrupting the original code. We can 
build on this template for future, higher-fidelity models. 
 

7. LIMITATIONS AND FUTURE 
PROJECTS 
The main limitation in this study was the assumption of full 
available power to the spacecraft at all times. The model 
accounted for an ideal transfer with the maximum thrust of the 
NEXT engine present throughout the trajectory. However, in an 
actual mission, the orientation of the solar panels and other factors 
like system reliability can come into play and alter the available 
power levels, thus changing the thrust of the engine unexpectedly. 
In addition, minute gravitational perturbations are not accounted 
for, and with Jupiter’s large gravitational influence, it can alter the 
trajectory enough to require thrust changes for course correction. 
These extra factors are subjects we can explore in future studies 
that add to this model. We can still use the thrust and mass as 
inputs, but append extra calculations that will alter the thrust 
based on power levels and course corrections. 
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