
Parallelized Model of Low-Thrust Cargo Spacecraft
Trajectories and Payload Capabilities to Mars

Wesley Yu
Department of Aerospace Engineering and

Engineering Mechanics
The University of Texas at Austin

Austin, TX 78712
+1(915)309-7972

yuwesley@utexas.edu

Hans Mark
Department of Aerospace Engineering and

Engineering Mechanics
The University of Texas at Austin

Austin, TX 78712
+1(512)471-5077

hmark@mail.utexas.edu

ABSTRACT
As a Blue Waters Student Internship Program project, we have
developed a model of interplanetary low-thrust trajectories from
Earth to Mars for spacecrafts supplying necessary cargo for future
human-crewed missions. Since these cargo missions use ionic
propulsion that causes a gradual change in the spacecraft’s
velocity, the modeling is more computationally expensive than
conventional trajectories assuming instantaneous spacecraft
velocity changes. This model calculates the spacecraft’s time of
flight and swept angle at different payload masses with other
parameters kept constant and correlates them with known
locations of the planets. With parallelization using OpenMP on
Blue Waters, its runtime has decreased from 10.55 to 1.53 hours.
The program takes a user-selected Mars arrival date and outputs a
given range of dates with maximum payload capabilities. This
parallelized model will greatly reduce the time required for future
mission design projects when other factors like spacecraft solar
panel power output may vary with new mission specifications.
The internship experience has enhanced the intern’s ability to
manage a project and will impact positively on his future graduate
studies or research career.
CCS Concepts
•Applied computing ➝	Physical sciences and engineering
➝Aerospace

Keywords
Computational Modeling; Orbital Mechanics; Low-Thrust
Trajectories

1. INTRODUCTION
Sending humans to Mars has presented difficult problems to solve
in the past few decades since the Moon landings. With the advent
of new technology and launch methods, such as NASA’s Space
Launch System (SLS) and SpaceX’s reusable first stage, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.	 Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.
DOI: https://doi.org/10.22369/issn.2153-4136/8/2/7

possibility of reaching Mars within the next few decades is
becoming a reality.
There are still many aspects of a crewed mission that need work,
like the effect of galactic cosmic radiation on the crew’s health,
and the ability to get all necessary equipment and backup supplies
to the Martian surface to keep the crew safe there. The latter
problem leads into the focus of this study.

Ionic engines can be the safe and efficient source of propulsion
[1,2,3] for cargo missions to supply the Martian surface with food,
water, habitats, scientific instruments, and transportation
equipment. With the low-thrust characteristics of ionic engines,
we cannot model their trajectories with instantaneous velocity
changes [2]. Instead, the calculations must take into account the
continuous velocity change along the entire trajectory at
infinitesimally small time steps. This study explores the use of
parallel computing to speed up the calculation of these low-thrust
cargo transfers.

2. BACKGROUND
The possibility of travelling to Mars hinges largely on our ability
to support astronauts with necessary sustenance and equipment for
the length of their stay on the surface. This requires consideration
of backup safety factors that call for multiple cargo launches to
ship the necessary supplies to the Martian surface [3]. The
eventual goal would be continual shipments from Earth to Mars to
setup surface stations and provide a growing community of shelter
and supplies for the astronauts to utilize. These cargo missions
would be unmanned and much more frequent than the crewed
missions.
Each individual cargo mission itself does not need to reach Mars
quickly because of the continual nature of the shipment process.
Therefore, we do not require current high-thrust chemical
propulsion to complete Earth to Mars transfer in the usual eight
months [2]. In order to increase safety and conserve fuel, we can
utilize ion propulsion for this operation. This would lengthen the
trip to a year and a half, but each shipment would be arriving
within a few months of each other, giving the astronauts a steady
supply, much like the current supply system for the International
Space Station.

The main difference between ionic and chemical propulsion is the
method in which the thrust is applied. In chemical engines, cold
gas is ignited to cause an expulsion of propellant at a very high
mass flow rate. The thrust, in turn, is very high but fuel runs out
within a few minutes [4]. Thus, chemical engines are fired only

Volume 8, Issue 2 Journal of Computational Science Education

46 ISSN 2153-4136 July 2017

during a very short period of time, and can be modeled assuming
an instantaneous change in velocity, ∆V [5]. Using solar panels to
provide electric power, ionic engines operate by using energetic
electrons to bombard and ionize noble gases, such as argon and
xenon [2,3,6]. A potential difference then develops, accelerates
the ions, and emits a positively charged beam as the exhaust.
Unlike conventional chemical engines, the mass flow rate is very
low [7,8], so the thrust must be applied throughout the entire
transfer. These two different propulsion systems using ionic and
chemical engines would produce two contrasting types of orbital
transfers, known as the Ward spiral and Hohmann transfer
respectively (see Figure 1). Modeling the Ward spiral trajectory
requires a calculation of velocity change at each point along the
spacecraft’s path. Optimizing these low-thrust trajectories for a
proper launch date becomes computationally expensive, and
would benefit from a parallelized computational model.

There are two main questions we are trying to answer in this
study. The first is the relationship between the time of flight and
payload mass of the spacecraft. The second is the effect of
launching at non-ideal times on the payload mass capabilities of a
certain spacecraft. Having a model to calculate this will help
determine safety factors and contingencies in a mission design
project.

3. METHODS
The main model in this study centers on a low-thrust Ward spiral,
with the inputs being the thrust and mass of the spacecraft. After
accounting for the inclination change between Earth’s and Mars’
orbits, we correlate the positions of the two planets in the coming
decades, called ephemerides, to the possible trajectories. These
ephemerides tables are obtained from the NASA Jet Propulsion
Laboratory’s (JPL) HORIZONS online tool [9] by inputting a
start and end time, then specifying the time step size. Since we are

testing all the launch dates over a five-year period as well as
altering the payload mass levels, parallelizing the code would
speed up the process significantly.

3.1 The Ward Spiral
Using a method developed for satellite orbit lowering maneuvers
that employ low thrust ion engines [10,11], we reversed the
direction of travel to an orbit raising trajectory [10]. Since Earth
and Mars are on slightly different orbital planes, the change in
inclination also adds additional ∆𝑉 to the trajectory, so we had to
consider this in our calculations as well. This allowed us to model
a spiral of gradually increasing orbital radius that reached from
Earth to Mars. The Ward spiral starts with a circular orbit where
the orbital velocity, 𝑣, is calculated by the equation:

𝑣 =
𝜇
𝑟
	

where 𝜇 is the gravitational parameter of the Sun and 𝑟 is the
spacecraft’s distance from the Sun [4]. From the inputted thrust,
𝐹, of the spacecraft we can calculate the power, 𝑃, of the
spacecraft:

𝑃 = 𝐹𝑣 = 𝐹
𝜇
𝑟

and correlate it to the vis-viva energy [4], defined as the total
energy of the spacecraft in a circular orbit,	𝐸:

𝐸 = −
𝜇𝑚
2𝑟

where 𝑚 is the inputted spacecraft mass. Since the time derivative
of energy is power, we can equate 𝐸 to 𝑃 and therefore:

𝐹
𝜇
𝑟
=
𝜇𝑚
2𝑟.

𝑟

Figure 1. Comparison between a low-thrust Ward spiral and conventional Hohmann transfer from Earth to Mars. The blue circle

represents Earth’s orbit around the Sun, red is Mars’ orbit, and green is the transfer trajectory.

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 47

We now have a first-order differential equation that directly
relates the time derivative of the orbital radius and the thrust of
the spacecraft’s ion engine, with initial conditions of 𝑟 = 𝑟/
(Earth’s orbital radius around the Sun), at 𝑡 = 0.

𝑑𝑟
𝑑𝑡

=
2𝐹
𝜇𝑚

𝑟3/.

Solving the above differential equation gives:

𝑟 =
𝑟/

1 − 𝐹
𝑚

𝑟/
𝜇 𝑡

.

This calculates the orbital radius at any given time, 𝑡.We can now
use the initial and final orbital radii, 𝑟/ and 𝑟6, to find the time of
flight,	𝑡7, and integrate the stored orbital radius and velocity
values to find the total swept angle, 𝜃, of the transfer orbit:

𝑡7 =
𝑚
𝐹

𝜇
𝑟/

1 −
𝑟/
𝑟6

𝜃 = 	
𝑣(𝑡)
𝑟(𝑡)

;<

/
𝑑𝑡	

With these relations it is straightforward to code a model for a
single trajectory, with an array of time and an inputted thrust and
mass. The next part of the model calculates the inclination change
between Earth’s and Mars’ orbits. Just as energy is required to
change the orbital radius, the change in orbital inclination requires
an amount of ∆V given by:

∆𝑉 = 2𝑣 sin
∆𝑖
2

where ∆𝑖 is the change in inclination. Since the orbital velocity 𝑣
is constantly decreasing as the orbital radius increases, the total
∆𝑉 is a summation of all the inclination changes along the
trajectory [4].

3.2 Trajectory Optimization

3.2.1 Time of Flight
For conventional propulsion, the optimization is conducted with
∆𝑉 as the main objective. Minimizing the ∆𝑉 in a maneuver will
minimize the fuel needed for a certain transfer, thus lowering the
overall cost of the mission. [5,6]. However, with a low-thrust
trajectory, the ∆𝑉 is determined by the difference in orbital
velocities of Earth and Mars around the Sun, and is therefore a
constant. So regardless of how long it takes to reach Mars on a
certain trajectory, the spacecraft needs the same amount of ∆𝑉.
Therefore the main optimizing objective is the time of flight of the
transfer, which is mostly dependent on the locations of the planets
at a given time [12]. Although there will be a limit to how fast the
spacecraft can reach Mars due to the extremely low thrust of the
ion engines, we still would like a reasonably quick transfer. This
would minimize exposure of food/water and even some scientific
equipment to the harmful effects of galactic cosmic radiation.

3.2.2 Computational Approach
With the two inputs of thrust and payload mass, we chose to keep
thrust constant for each run, as an assumption that we are using
one engine with readily available electrical power. The thrust of
0.023 N is used for our computations based on the NASA-
released information on the NEXT ion thruster [3]. We then

varied the payload mass from 1 to 20 metric tons (t) with
increments of 0.1 kg, and calculated the time of flight and swept
trajectory angle for each mass value. This range was chosen based
on payload masses in NASA heritage missions as a lower bound,
up to anticipated future necessary mass levels as an upper bound
[3]. With these values stored in a text file, we correlated the data
with ephemerides to find potential launch windows for missions
with different payload masses.

As we make the payload mass increments smaller to increase the
accuracy of time of flight calculations, the number of data points
also increases, making the text files larger in size. To minimize
the inconvenience of loading large text files we separated the
outputs into smaller organized files labeled with the first mass
value in the file. The main use for the files is to create a table that
relates mass and time of flight so that when needed, one can
extract the values on a desktop computer, without having to
access Blue Waters. The most important application would be a
mission plan to arrive on Mars by a certain date, given the
maximum payload mass and necessary thrust. This would require
many calculations of the time of flight versus mass, and with the
tabulated values for a given thrust, it will be much easier to read
through them instead of calculating the time of flight each time.

All the code that was run on Blue Waters to calculate time of
flight was written in C, and compiled using cc in the default
craype/2.5.0 programming environment with Cray Linux
Environment (CLE 5.2). The programs for further payload
capability analysis were also written in C and compiled with
gcc/4.9.2 in a Cygwin 6.3 terminal installed on a Windows 10
desktop computer. We used gnuplot 5.0 to generate payload
capability figures and MATLAB 2015b to generate the three-
dimensional Earth-Mars trajectory plots.

3.2.3 Maximum Payload
Since the tabulated values are separated by thrust level, one can
also start with a time of flight and arrival date, and use the tables
to find the maximum payload mass capability for a given thrust.
The model takes the required time of flight and associates it to a
payload mass, and if the ephemerides suggest that the launch
cannot be completed in time, the model will go to the next thrust
level.

This application takes advantage of the tabulated values extracted
from the parallelized code run on Blue Waters. The user can input
the desired arrival date and a maximum time of flight, and the
program can find a range of launch dates with their corresponding
payload mass and present them in a plot. For mission design
projects this would be a very useful tool to visualize the
relationship between an actual launch date and the possible
payload mass.

Another application is to lock the launch date at the ideal case,
and then match it with the user’s needed arrival date. Then we can
vary the arrival date within a range around the user-selected date
to see its effect on the maximum payload mass. This allows us to
test the effect of launching at non-ideal launch windows on the
maximum payload capability (including the mass spacecraft mass)
of a mission. Using this model can help test contingency and
develop safety margins for the mission design.

3.3 Launch Date Calculation
In order to calculate the proper launch dates we require the
ephemerides of Earth and Mars for the coming decades. This
allows the determination of the initial and final positions of the

Volume 8, Issue 2 Journal of Computational Science Education

48 ISSN 2153-4136 July 2017

planets during the transfer orbit, which can be correlated with the
outputted times of flight to determine the necessary launch date of
the cargo shipment. We generated the ephemerides from JPL’s
HORIZONS software [9] and loaded them into text files. Using a
50-year range from January 1, 2018 to December 31, 2067, we
have the positions of both planets for the next five decades.
To avoid overly long or unrealistically short times of flight, we set
an upper and lower bound on the times of flight calculated from
the varying payload mass. Then the times were matched with their
corresponding arrival dates. Using the known ephemerides we
could work backwards to find the appropriate launch dates. This
allowed us to identify “windows of opportunity” and optimal
launch dates.

3.4 Parallelization

3.4.1 Parallelization Method
Finding the times of flight from varying payload masses
represented the bulk of the computations needed in this project.
The time required for extraction and analyses of the resulting data
was negligible. For simplicity, we separated the parallelized time
of flight calculations and tabulations using Blue Waters from the
subsequent payload and launch dates analyses that can be run by a
user on a typical desktop computer.

To parallelize the time of flight computations, we used OpenMP
in the default Cray compiler on Blue Waters. The programming
environment was the default craype/2.5.0, and we coded in C on
OpenMP v3.0 to parallelize the for loops calculating the vector of
different transfer orbits. The code was then compiled on Blue
Waters using gcc/4.9.2, running on XE compute nodes.

We assigned one potential transfer orbit to each thread, with eight
cores total for the parallel runs. With the thrust kept constant, each
orbit had a different payload mass assigned to it and produced a
time of flight. Then the trajectory’s time of flight was correlated
to the different launch dates with the same window for travel. The
program would print out the time of flight, swept angle, and
corresponding payload mass so that extracting the data later

would be easier. Both the serial and parallel versions of the code
are available upon request.

3.4.2 Measuring Speed Increase

The most convenient way to track the run times of all our tests is
to use the ‘time’ function for all tasks we run on Blue Waters. We
ran several small data sets with around 1000 payload mass inputs
for testing, where hardly any speedup was observed. We also ran
100 large datasets with millions of payload mass inputs to
increase the accuracy in time of flight calculations, where more
significant speed increase is expected due to the smaller
percentage of overhead.

4. RESULTS
The products of the model we created are three-dimensional plots
of the trajectories and possible launch dates for the mission. These
are helpful in visualizing and planning missions, where the plots
can show us the general shape and characteristic of the trajectory,
the possible launch dates give us concrete numbers on the
frequency and viability of the missions.
The more interactive product is a program that can determine the
payload capability of the spacecraft based on given launch or
arrival dates. The user can input a necessary Mars arrival date and
time of flight, and use the model to find the maximum payload
mass for a given thrust. If the mission does not meet the
requirements for the given thrust, the model will find the next
level suitable thrust level by adding additional engines to increase
the thrust.

4.1 Plots of Trajectories
The plots take into account the inclination change of the
spacecraft, and show the spacecraft’s path from Earth’s orbit
around the Sun to Mars’. The inclination change is exaggerated in
the plots for visual effect, but the actual change in inclination
between Earth and Mars orbit is 1.85°. The x-y plane in this
reference frame is the orbital plane of Earth around the Sun.
Examples of trajectory plots are shown in Figures 2 and 3.

Figure 2. A typical Ward spiral from Earth to Mars, a trajectory that would take two years to complete for a 15t payload with a
single NEXT engine.

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 49

Figure 3. A much faster trajectory (10 months transit time) than in Figure 2, representative of a small probe’s trajectory, where the

payload would be relatively light.

4.2 Effective Launch Dates
As mentioned earlier, the model outputs possible launch dates
given a Mars arrival date, which is very helpful in mission
planning. The model can predict the date of launch, or even the
hour of the launch if the user chooses. We represent the date as a
Julian Date, which is the number of days since noon Universal
Time on January 1, 4713 BCE, to facilitate ease of calculation.
Julian dates can be converted back to the common Gregorian
calendar dates easily using the U.S. Naval Observatory Julian
Date Converter [13]. Table 1 below shows two examples of the
outputs that the program will give with a 14.9t payload and 0.023
N thrust, with two different user inputted arrival dates:

Table 1. Ideal and Latest Possible Launch Dates

 Mission 1 Mission 2

Inputted Mars Arrival
Gregorian Date 5/2/2023 6/17/2045

Corresponding Julian Date 2460066.5 2468148.5

Ideal Launch Julian Date
Based on Time of Flight 2459406.5 2467384.5

Ideal Launch
Gregorian Date 7/11/2021 5/15/2043

Latest Launch Julian Date
Adjusted for Ephemerides 2459415.5 2467416.5

Latest Launch Gregorian Date 7/20/2021 6/16/2043

Launching either earlier or later than the ideal date would require
more fuel. However, an earlier launch can give the mission greater
scheduling flexibility. Launching later would lower the safety
margin, limiting the flexibility of the mission. Beyond the latest
launch date, it will not be possible to reach Mars by the desired
arrival date with the given payload mass and thrust level.

4.3 Maximum Payload
With the program that outputs payload capability from a given
time of flight, we were able to plot the maximum payload mass
against a range of launch dates. With the added constraint of the
arrival date and maximum time of flight, we could use this tool to
narrow down the search of ideal launch windows.
The outputs from this program are once again tabulated in a text
file as maximum payload mass and launch date. Such outputs for
Mission 1 in Table 1, with required arrival date of May 2, 2023
are plotted in Figure 4. At the ideal launch date of July 11, 2021,
the maximum payload mass of 14.9t is attained, but the payload
capability decreases parabolically as the launch date deviates from
ideal.

When locking the launch date to the ideal case in the
aforementioned model and using the user-inputted arrival dates as
a reference, we plotted the maximum payload mass while varying
the arrival date. Once again we can see that the maximum payload
mass remains at the ideal arrival date, but the loss of payload
capability is less than that generated by deviations from the ideal
launch date.
This computational tool is useful for trade studies when
determining the cost of a mission and its resulting trade-off with
payload mass. We can now see the effects of delaying or moving
up the timetable of a mission, and how it will limit certain
equipment or resources to be transported on the mission. With this
information we can effectively plan shipments and their fail-safe
launch dates.

Volume 8, Issue 2 Journal of Computational Science Education

50 ISSN 2153-4136 July 2017

Figure 4. Maximum payload mass the spacecraft can carry at different launch dates with a constant time of flight. The suggested

ideal date of July 11, 2021 (Julian 2459406.5, see Table 1) is on the apex of the graph.

Figure 5. Maximum payload mass the spacecraft can carry at different arrival dates with the launch date kept at the original ideal
from Table 1. Note the asymmetry of the decrease in payload capability on either side of the ideal arrival date. Due to the change in

positions of Earth and Mars, arriving earlier versus later yields different payload capabilities.

4.4 Speedup After Parallelization
We ran both the serial and parallelized versions of the program on
Blue Waters’ Cray XE nodes, at a peak performance of 313.6
GFLOPS per node. As expected, when running small data sets of
1000 payload masses for initial testing, there was no noticeable
speedup since the effects from overhead canceled out the
parallelization. When running the parallelized version to calculate

10 million payload mass data points we used eight cores and the
runtime decreased from 10.55 hours to 1.53 hours. This reduced
runtime facilitated our development of the Ward spiral code
without the need for overnight testing and outputting. The
increased speed was utilized primarily to speed up the intensive
calculations to prepare the tabulated values, allowing us to quickly
start analyzing the resulting data for mission planning.

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 51

5. DISCUSSION

5.1 Usefulness of Parallelization
While using Blue Waters was extremely helpful in generating the
time of flight tables, a user with the intent to input one mass and
thrust value will see no difference in a single calculation of the
trajectory versus a program that reads tabulated values. So the
parallelization in this case did not affect the end user. However,
with the case where the user is looking for maximum payload
mass given a time of flight and arrival date, it would be very
inconvenient to calculate the values serially on a laptop. Having
the tabulated values to scroll through in this case would greatly
reduce the computing time.

5.2 Viability of Low-Thrust Missions to Mars
From the trajectory plots, time of flights, and payload capabilities
obtained from this study, we can see that the use of ionic
propulsion is a viable method to provide support for future
missions to Mars. The mission parameters that we have calculated
are well within the reasonable range of required cargo shipment
set by NASA standards. This will be key in future development of
routine cargo missions when we continue our mission designing
process.

5.3 Educational Impact of the Project
The project is a one-year Blue Waters Student Internship with an
initial training workshop for C programming on the
supercomputer, followed by required monthly reports submitted to
the internship program. Throughout the course of the program, the
intern has learned to structure a research project with a well-
defined timeline to meet clear and realistic goals and steps. The
experience has enhanced the intern’s ability to plan and manage a
research project and helped find solutions in a timely fashion for
challenges such as parallelization I/O problems and memory-
related segmentation errors encountered in this project. This will
have a positive impact on the intern’s future graduate studies or
research career.

The main educational goal of this project is to expose the intern to
methods of parallel computing. During the short session in
Summer 2015, the intern learned the basics of various parallel
programming languages like OpenMP and MPI, and also
strengthened his skills in using C. Afterwards during the year, he
was able to use this knowledge and apply it to trajectory modeling
problems. While the integration of OpenMP into the trajectory
model was essentially used to run more cases in the same time, it
was a good introduction to parallel computing, and we hope to
continue utilizing this tool for future studies of this nature.

Through this process the intern also greatly strengthened his
ability to comfortably use Linux command terminals to
communicate remotely with a supercomputer, a skill that will be
extremely useful in upcoming research. Additionally, the intern
has gained insight into trajectory modeling and general knowledge
in spacecraft mission design and planning. The program generated
for this project will be valuable in the intern’s continuing research
project to design a cost effective, human-crewed mission to Mars.
The code (Version 1.0) was fully developed by the intern, and is
available upon request.

6. CONCLUSION
Throughout the study we evaluated the use of parallel computing
to assist in trajectory modeling. The most effective course of

action was to increase the volume of trajectories we could model,
and generate tables to use offline. This method is like a higher
mission level tool similar to how ephemerides would be used to
plan a trajectory. Parallelization greatly increased the efficiency of
the developmental stage of the model, as it saved time by
speeding up testing of the Ward spiral code and results were
obtained quickly for payload and launch date analyses. The ability
to handle large amounts of data and organize it on Blue Waters
saved a lot of disk space and computing time on the desktop
computer.

From the study it is now possible to use the model to plan cargo
missions to Mars in the concept study phase. The model can be
used on any machine as long as the data and ephemerides are
present in the package. With the input of thrust and mass in text
file form, additional parameters that alter those two main variables
can be added on without disrupting the original code. We can
build on this template for future, higher-fidelity models.

7. LIMITATIONS AND FUTURE
PROJECTS
The main limitation in this study was the assumption of full
available power to the spacecraft at all times. The model
accounted for an ideal transfer with the maximum thrust of the
NEXT engine present throughout the trajectory. However, in an
actual mission, the orientation of the solar panels and other factors
like system reliability can come into play and alter the available
power levels, thus changing the thrust of the engine unexpectedly.
In addition, minute gravitational perturbations are not accounted
for, and with Jupiter’s large gravitational influence, it can alter the
trajectory enough to require thrust changes for course correction.
These extra factors are subjects we can explore in future studies
that add to this model. We can still use the thrust and mass as
inputs, but append extra calculations that will alter the thrust
based on power levels and course corrections.

8. ACKNOWLEDGEMENTS
This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science
Foundation (awards OCI-0725070 and ACI-1238993) and the
state of Illinois. Blue Waters is a joint effort of the University of
Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications. We thank Therese Larson for her
assistance in communication with Shodor and NCSA and Natalie
Wolfenbarger for her help on generating ephemerides.

9. REFERENCES
[1] Brophy, J. R., Noca, M. 1998. Electric Propulsion for Solar

System Exploration. Journal of Propulsion and Power 14, 5,
700-707.

[2] Curtis, H. 2013. Orbital Mechanics for Engineering Students
3rd edn. Butterworth-Heinemann, Oxford, United Kingdom.

[3] Wertz, J. R., Everett, D. F., Puschell, J. J. 2011. Space
Mission Engineering: The New SMAD. Microcosm Press,
Hawthorne.

[4] Bate, R. R., Mueller, D. D., White, J. E. 1971. Fundamentals
of Astrodynamics. Dover Publications, Inc, New York,
United States.

[5] Hughes, K. M., Edelman, P. J., Saikia, S. J., Longuski, J. M.,

Volume 8, Issue 2 Journal of Computational Science Education

52 ISSN 2153-4136 July 2017

Loucks, M. E., Carrico Jr., J. P., Tito, D. 2015. Fast Free
Returns to Mars and Venus with Applications to Inspiration
Mars. Journal of Spacecraft and Rockets 52, 6, 1712-1735.

[6] Colasurdo, G., Casalino, L. 2003. Characteristics of Electric
Propulsion Systems for Optimal Interplanetary Trajectories.
In : 54th Annual Astronautical Congress of the International
Astronautical Federation, the International Academy of
Astronautics, and the International Institute of Space Law,
Bremen, Germany, 1-7.

[7] Purvis, J. W. 1992. Closed Form Low-Thrust Trajectories for
Mars Missions. In : AIAA/SAE/ASME/ASEE 28th Joint
Propulsion Conference and Exhibit, Nashville, Tennessee, 1-
4.

[8] Rayman, M. D., Fraschetti, T. C., Raymond, C. A., Russell,
C. T. 2005. Preparing for the Dawn Mission to Vesta and
Ceres., Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California.

	

	

	

[9] NASA Jet Propulsion Laboratory HORIZONS Web-
Interface. In: Jet Propulsion Laboratory Solar System
Dynamics. Available at: http://ssd.jpl.nasa.gov/horizons.cgi	

[10] Rimrott, F. PJ., Cleghorn, W. L. 2002. Orbit Transfer by
Means of a Ward Spiral. Technische Mechanik 22, 4, 283-
290.	

[11] Rimrott, F. PJ., Salustri, F. A. 2001. Open Orbits in Satellite
Dynamics. Technische Mechanik 21, 3, 207-214.

[12] Nah, R. S., Vadali, S. R., Braden, E. 2001. Fuel-Optimal,
Low-Thrust, Three-Dimensional Earth-Mars Trajectories.
Journal of Guidance, Control, and Dynamics 24, 6, 1100-
1107.

[13] U.S. Naval Observatory Julian Date Converter. In: Naval
Oceanography Portal. Available at:
http://aa.usno.navy.mil/data/docs/JulianDate.php

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 53

