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ABSTRACT 
As a Blue Waters Student Internship Program project, we have 
developed a model of interplanetary low-thrust trajectories from 
Earth to Mars for spacecrafts supplying necessary cargo for future 
human-crewed missions. Since these cargo missions use ionic 
propulsion that causes a gradual change in the spacecraft’s 
velocity, the modeling is more computationally expensive than 
conventional trajectories assuming instantaneous spacecraft 
velocity changes. This model calculates the spacecraft’s time of 
flight and swept angle at different payload masses with other 
parameters kept constant and correlates them with known 
locations of the planets. With parallelization using OpenMP on 
Blue Waters, its runtime has decreased from 10.55 to 1.53 hours. 
The program takes a user-selected Mars arrival date and outputs a 
given range of dates with maximum payload capabilities. This 
parallelized model will greatly reduce the time required for future 
mission design projects when other factors like spacecraft solar 
panel power output may vary with new mission specifications. 
The internship experience has enhanced the intern’s ability to 
manage a project and will impact positively on his future graduate 
studies or research career. 
CCS Concepts 
•Applied computing ➝	Physical sciences and engineering 
➝Aerospace 
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1. INTRODUCTION 
Sending humans to Mars has presented difficult problems to solve 
in the past few decades since the Moon landings. With the advent 
of new technology and launch methods, such as NASA’s Space 
Launch System (SLS) and SpaceX’s reusable first stage, the  
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possibility of reaching Mars within the next few decades is 
becoming a reality. 
There are still many aspects of a crewed mission that need work, 
like the effect of galactic cosmic radiation on the crew’s health, 
and the ability to get all necessary equipment and backup supplies 
to the Martian surface to keep the crew safe there. The latter 
problem leads into the focus of this study.  

Ionic engines can be the safe and efficient source of propulsion 
[1,2,3] for cargo missions to supply the Martian surface with food, 
water, habitats, scientific instruments, and transportation 
equipment. With the low-thrust characteristics of ionic engines, 
we cannot model their trajectories with instantaneous velocity 
changes [2]. Instead, the calculations must take into account the 
continuous velocity change along the entire trajectory at 
infinitesimally small time steps. This study explores the use of 
parallel computing to speed up the calculation of these low-thrust 
cargo transfers.  
 

2. BACKGROUND 
The possibility of travelling to Mars hinges largely on our ability 
to support astronauts with necessary sustenance and equipment for 
the length of their stay on the surface. This requires consideration 
of backup safety factors that call for multiple cargo launches to 
ship the necessary supplies to the Martian surface [3]. The 
eventual goal would be continual shipments from Earth to Mars to 
setup surface stations and provide a growing community of shelter 
and supplies for the astronauts to utilize. These cargo missions 
would be unmanned and much more frequent than the crewed 
missions.  
Each individual cargo mission itself does not need to reach Mars 
quickly because of the continual nature of the shipment process. 
Therefore, we do not require current high-thrust chemical 
propulsion to complete Earth to Mars transfer in the usual eight 
months [2]. In order to increase safety and conserve fuel, we can 
utilize ion propulsion for this operation. This would lengthen the 
trip to a year and a half, but each shipment would be arriving 
within a few months of each other, giving the astronauts a steady 
supply, much like the current supply system for the International 
Space Station.  

The main difference between ionic and chemical propulsion is the 
method in which the thrust is applied. In chemical engines, cold 
gas is ignited to cause an expulsion of propellant at a very high 
mass flow rate. The thrust, in turn, is very high but fuel runs out 
within a few minutes [4]. Thus, chemical engines are fired only 
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during a very short period of time, and can be modeled assuming 
an instantaneous change in velocity, ∆V [5]. Using solar panels to 
provide electric power, ionic engines operate by using energetic 
electrons to bombard and ionize noble gases, such as argon and 
xenon [2,3,6]. A potential difference then develops, accelerates 
the ions, and emits a positively charged beam as the exhaust. 
Unlike conventional chemical engines, the mass flow rate is very 
low [7,8], so the thrust must be applied throughout the entire 
transfer. These two different propulsion systems using ionic and 
chemical engines would produce two contrasting types of orbital 
transfers, known as the Ward spiral and Hohmann transfer 
respectively (see Figure 1). Modeling the Ward spiral trajectory 
requires a calculation of velocity change at each point along the 
spacecraft’s path. Optimizing these low-thrust trajectories for a 
proper launch date becomes computationally expensive, and 
would benefit from a parallelized computational model. 

There are two main questions we are trying to answer in this 
study. The first is the relationship between the time of flight and 
payload mass of the spacecraft. The second is the effect of 
launching at non-ideal times on the payload mass capabilities of a 
certain spacecraft. Having a model to calculate this will help 
determine safety factors and contingencies in a mission design 
project. 
 

3. METHODS 
The main model in this study centers on a low-thrust Ward spiral, 
with the inputs being the thrust and mass of the spacecraft. After 
accounting for the inclination change between Earth’s and Mars’ 
orbits, we correlate the positions of the two planets in the coming 
decades, called ephemerides, to the possible trajectories. These 
ephemerides tables are obtained from the NASA Jet Propulsion 
Laboratory’s (JPL) HORIZONS online tool [9] by inputting a 
start and end time, then specifying the time step size. Since we are 

testing all the launch dates over a five-year period as well as 
altering the payload mass levels, parallelizing the code would 
speed up the process significantly. 
 

3.1 The Ward Spiral 
Using a method developed for satellite orbit lowering maneuvers 
that employ low thrust ion engines [10,11], we reversed the 
direction of travel to an orbit raising trajectory [10]. Since Earth 
and Mars are on slightly different orbital planes, the change in 
inclination also adds additional ∆𝑉 to the trajectory, so we had to 
consider this in our calculations as well. This allowed us to model 
a spiral of gradually increasing orbital radius that reached from 
Earth to Mars. The Ward spiral starts with a circular orbit where 
the orbital velocity, 𝑣, is calculated by the equation: 

𝑣 =
𝜇
𝑟
	

where 𝜇 is the gravitational parameter of the Sun and 𝑟 is the 
spacecraft’s distance from the Sun [4]. From the inputted thrust, 
𝐹, of the spacecraft we can calculate the power, 𝑃, of the 
spacecraft: 

𝑃 = 𝐹𝑣 = 𝐹
𝜇
𝑟

 

and correlate it to the vis-viva energy [4], defined as the total 
energy of the spacecraft in a circular orbit,	𝐸: 

𝐸 = −
𝜇𝑚
2𝑟

 

where 𝑚 is the inputted spacecraft mass. Since the time derivative 
of energy is power, we can equate 𝐸 to 𝑃 and therefore: 

𝐹
𝜇
𝑟
=
𝜇𝑚
2𝑟.

𝑟 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Comparison between a low-thrust Ward spiral and conventional Hohmann transfer from Earth to Mars. The blue circle 

represents Earth’s orbit around the Sun, red is Mars’ orbit, and green is the transfer trajectory. 
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We now have a first-order differential equation that directly 
relates the time derivative of the orbital radius and the thrust of 
the spacecraft’s ion engine, with initial conditions of 𝑟 = 𝑟/ 
(Earth’s orbital radius around the Sun), at 𝑡 = 0. 

𝑑𝑟
𝑑𝑡

=
2𝐹
𝜇𝑚

𝑟3/. 

Solving the above differential equation gives: 

𝑟 =
𝑟/

1 − 𝐹
𝑚

𝑟/
𝜇 𝑡

. 

This calculates the orbital radius at any given time, 𝑡.We can now 
use the initial and final orbital radii, 𝑟/ and 𝑟6, to find the time of 
flight,	𝑡7, and integrate the stored orbital radius and velocity 
values to find the total swept angle, 𝜃, of the transfer orbit: 

𝑡7 =
𝑚
𝐹

𝜇
𝑟/

1 −
𝑟/
𝑟6

 

 

𝜃 = 	
𝑣(𝑡)
𝑟(𝑡)

;<

/
𝑑𝑡	

With these relations it is straightforward to code a model for a 
single trajectory, with an array of time and an inputted thrust and 
mass. The next part of the model calculates the inclination change 
between Earth’s and Mars’ orbits. Just as energy is required to 
change the orbital radius, the change in orbital inclination requires 
an amount of ∆V given by: 

∆𝑉 = 2𝑣 sin
∆𝑖
2

 

where ∆𝑖 is the change in inclination. Since the orbital velocity 𝑣 
is constantly decreasing as the orbital radius increases, the total 
∆𝑉 is a summation of all the inclination changes along the 
trajectory [4]. 
 

3.2 Trajectory Optimization 
 

3.2.1 Time of Flight  
For conventional propulsion, the optimization is conducted with 
∆𝑉 as the main objective. Minimizing the ∆𝑉 in a maneuver will 
minimize the fuel needed for a certain transfer, thus lowering the 
overall cost of the mission. [5,6]. However, with a low-thrust 
trajectory, the ∆𝑉 is determined by the difference in orbital 
velocities of Earth and Mars around the Sun, and is therefore a 
constant. So regardless of how long it takes to reach Mars on a 
certain trajectory, the spacecraft needs the same amount of ∆𝑉. 
Therefore the main optimizing objective is the time of flight of the 
transfer, which is mostly dependent on the locations of the planets 
at a given time [12]. Although there will be a limit to how fast the 
spacecraft can reach Mars due to the extremely low thrust of the 
ion engines, we still would like a reasonably quick transfer. This 
would minimize exposure of food/water and even some scientific 
equipment to the harmful effects of galactic cosmic radiation.  
 

3.2.2 Computational Approach 
With the two inputs of thrust and payload mass, we chose to keep 
thrust constant for each run, as an assumption that we are using 
one engine with readily available electrical power. The thrust of 
0.023 N is used for our computations based on the NASA-
released information on the NEXT ion thruster [3]. We then 

varied the payload mass from 1 to 20 metric tons (t) with 
increments of 0.1 kg, and calculated the time of flight and swept 
trajectory angle for each mass value. This range was chosen based 
on payload masses in NASA heritage missions as a lower bound, 
up to anticipated future necessary mass levels as an upper bound 
[3]. With these values stored in a text file, we correlated the data 
with ephemerides to find potential launch windows for missions 
with different payload masses.  

As we make the payload mass increments smaller to increase the 
accuracy of time of flight calculations, the number of data points 
also increases, making the text files larger in size. To minimize 
the inconvenience of loading large text files we separated the 
outputs into smaller organized files labeled with the first mass 
value in the file. The main use for the files is to create a table that 
relates mass and time of flight so that when needed, one can 
extract the values on a desktop computer, without having to 
access Blue Waters. The most important application would be a 
mission plan to arrive on Mars by a certain date, given the 
maximum payload mass and necessary thrust. This would require 
many calculations of the time of flight versus mass, and with the 
tabulated values for a given thrust, it will be much easier to read 
through them instead of calculating the time of flight each time. 

All the code that was run on Blue Waters to calculate time of 
flight was written in C, and compiled using cc in the default 
craype/2.5.0 programming environment with Cray Linux 
Environment (CLE 5.2). The programs for further payload 
capability analysis were also written in C and compiled with 
gcc/4.9.2 in a Cygwin 6.3 terminal installed on a Windows 10 
desktop computer. We used gnuplot 5.0 to generate payload 
capability figures and MATLAB 2015b to generate the three-
dimensional Earth-Mars trajectory plots. 
 

3.2.3 Maximum Payload  
Since the tabulated values are separated by thrust level, one can 
also start with a time of flight and arrival date, and use the tables 
to find the maximum payload mass capability for a given thrust. 
The model takes the required time of flight and associates it to a 
payload mass, and if the ephemerides suggest that the launch 
cannot be completed in time, the model will go to the next thrust 
level. 

This application takes advantage of the tabulated values extracted 
from the parallelized code run on Blue Waters. The user can input 
the desired arrival date and a maximum time of flight, and the 
program can find a range of launch dates with their corresponding 
payload mass and present them in a plot. For mission design 
projects this would be a very useful tool to visualize the 
relationship between an actual launch date and the possible 
payload mass. 

Another application is to lock the launch date at the ideal case, 
and then match it with the user’s needed arrival date. Then we can 
vary the arrival date within a range around the user-selected date 
to see its effect on the maximum payload mass. This allows us to 
test the effect of launching at non-ideal launch windows on the 
maximum payload capability (including the mass spacecraft mass) 
of a mission. Using this model can help test contingency and 
develop safety margins for the mission design.  
 

3.3 Launch Date Calculation 
In order to calculate the proper launch dates we require the 
ephemerides of Earth and Mars for the coming decades. This 
allows the determination of the initial and final positions of the 
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planets during the transfer orbit, which can be correlated with the 
outputted times of flight to determine the necessary launch date of 
the cargo shipment. We generated the ephemerides from JPL’s 
HORIZONS software [9] and loaded them into text files. Using a 
50-year range from January 1, 2018 to December 31, 2067, we 
have the positions of both planets for the next five decades.  
To avoid overly long or unrealistically short times of flight, we set 
an upper and lower bound on the times of flight calculated from 
the varying payload mass. Then the times were matched with their 
corresponding arrival dates. Using the known ephemerides we 
could work backwards to find the appropriate launch dates. This 
allowed us to identify “windows of opportunity” and optimal 
launch dates.   
 

3.4 Parallelization 
 

3.4.1 Parallelization Method 
Finding the times of flight from varying payload masses 
represented the bulk of the computations needed in this project. 
The time required for extraction and analyses of the resulting data 
was negligible. For simplicity, we separated the parallelized time 
of flight calculations and tabulations using Blue Waters from the 
subsequent payload and launch dates analyses that can be run by a 
user on a typical desktop computer. 

To parallelize the time of flight computations, we used OpenMP 
in the default Cray compiler on Blue Waters. The programming 
environment was the default craype/2.5.0, and we coded in C on 
OpenMP v3.0 to parallelize the for loops calculating the vector of 
different transfer orbits. The code was then compiled on Blue 
Waters using gcc/4.9.2, running on XE compute nodes. 

We assigned one potential transfer orbit to each thread, with eight 
cores total for the parallel runs. With the thrust kept constant, each 
orbit had a different payload mass assigned to it and produced a 
time of flight. Then the trajectory’s time of flight was correlated 
to the different launch dates with the same window for travel. The 
program would print out the time of flight, swept angle, and 
corresponding payload mass so that extracting the data later  
 
 

would be easier. Both the serial and parallel versions of the code 
are available upon request. 
 

3.4.2 Measuring Speed Increase 

The most convenient way to track the run times of all our tests is 
to use the ‘time’ function for all tasks we run on Blue Waters. We 
ran several small data sets with around 1000 payload mass inputs 
for testing, where hardly any speedup was observed. We also ran 
100 large datasets with millions of payload mass inputs to 
increase the accuracy in time of flight calculations, where more 
significant speed increase is expected due to the smaller 
percentage of overhead.  
 

4. RESULTS 
The products of the model we created are three-dimensional plots 
of the trajectories and possible launch dates for the mission. These 
are helpful in visualizing and planning missions, where the plots 
can show us the general shape and characteristic of the trajectory, 
the possible launch dates give us concrete numbers on the 
frequency and viability of the missions. 
The more interactive product is a program that can determine the 
payload capability of the spacecraft based on given launch or 
arrival dates. The user can input a necessary Mars arrival date and 
time of flight, and use the model to find the maximum payload 
mass for a given thrust. If the mission does not meet the 
requirements for the given thrust, the model will find the next 
level suitable thrust level by adding additional engines to increase 
the thrust. 
 

4.1 Plots of Trajectories 
The plots take into account the inclination change of the 
spacecraft, and show the spacecraft’s path from Earth’s orbit 
around the Sun to Mars’. The inclination change is exaggerated in 
the plots for visual effect, but the actual change in inclination 
between Earth and Mars orbit is 1.85°. The x-y plane in this 
reference frame is the orbital plane of Earth around the Sun. 
Examples of trajectory plots are shown in Figures 2 and 3. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. A typical Ward spiral from Earth to Mars, a trajectory that would take two years to complete for a 15t payload with a 
single NEXT engine.  
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Figure 3. A much faster trajectory (10 months transit time) than in Figure 2, representative of a small probe’s trajectory, where the 

payload would be relatively light. 

 
4.2 Effective Launch Dates 
As mentioned earlier, the model outputs possible launch dates 
given a Mars arrival date, which is very helpful in mission 
planning. The model can predict the date of launch, or even the 
hour of the launch if the user chooses. We represent the date as a 
Julian Date, which is the number of days since noon Universal 
Time on January 1, 4713 BCE, to facilitate ease of calculation. 
Julian dates can be converted back to the common Gregorian 
calendar dates easily using the U.S. Naval Observatory Julian 
Date Converter [13]. Table 1 below shows two examples of the 
outputs that the program will give with a 14.9t payload and 0.023 
N thrust, with two different user inputted arrival dates: 

 
Table 1. Ideal and Latest Possible Launch Dates 

 Mission 1 Mission 2 

Inputted Mars Arrival  
Gregorian Date 5/2/2023 6/17/2045 

Corresponding Julian Date 2460066.5 2468148.5 

Ideal Launch Julian Date 
Based on Time of Flight 2459406.5 2467384.5 

Ideal Launch  
Gregorian Date 7/11/2021 5/15/2043 

Latest Launch Julian Date 
Adjusted for Ephemerides 2459415.5 2467416.5 

Latest Launch Gregorian Date 7/20/2021 6/16/2043 

 

 

Launching either earlier or later than the ideal date would require 
more fuel. However, an earlier launch can give the mission greater 
scheduling flexibility. Launching later would lower the safety 
margin, limiting the flexibility of the mission.  Beyond the latest 
launch date, it will not be possible to reach Mars by the desired 
arrival date with the given payload mass and thrust level. 
 

4.3 Maximum Payload 
With the program that outputs payload capability from a given 
time of flight, we were able to plot the maximum payload mass 
against a range of launch dates. With the added constraint of the 
arrival date and maximum time of flight, we could use this tool to 
narrow down the search of ideal launch windows. 
The outputs from this program are once again tabulated in a text 
file as maximum payload mass and launch date. Such outputs for 
Mission 1 in Table 1, with required arrival date of May 2, 2023 
are plotted in Figure 4. At the ideal launch date of July 11, 2021, 
the maximum payload mass of 14.9t is attained, but the payload 
capability decreases parabolically as the launch date deviates from 
ideal. 

When locking the launch date to the ideal case in the 
aforementioned model and using the user-inputted arrival dates as 
a reference, we plotted the maximum payload mass while varying 
the arrival date. Once again we can see that the maximum payload 
mass remains at the ideal arrival date, but the loss of payload 
capability is less than that generated by deviations from the ideal 
launch date. 
This computational tool is useful for trade studies when 
determining the cost of a mission and its resulting trade-off with 
payload mass. We can now see the effects of delaying or moving 
up the timetable of a mission, and how it will limit certain 
equipment or resources to be transported on the mission. With this 
information we can effectively plan shipments and their fail-safe 
launch dates.  
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Figure 4. Maximum payload mass the spacecraft can carry at different launch dates with a constant time of flight. The suggested 

ideal date of July 11, 2021 (Julian 2459406.5, see Table 1) is on the apex of the graph.  

 
Figure 5. Maximum payload mass the spacecraft can carry at different arrival dates with the launch date kept at the original ideal 
from Table 1. Note the asymmetry of the decrease in payload capability on either side of the ideal arrival date. Due to the change in 

positions of Earth and Mars, arriving earlier versus later yields different payload capabilities. 
 
4.4 Speedup After Parallelization 
We ran both the serial and parallelized versions of the program on 
Blue Waters’ Cray XE nodes, at a peak performance of 313.6 
GFLOPS per node. As expected, when running small data sets of 
1000 payload masses for initial testing, there was no noticeable 
speedup since the effects from overhead canceled out the 
parallelization. When running the parallelized version to calculate 

10 million payload mass data points we used eight cores and the 
runtime decreased from 10.55 hours to 1.53 hours. This reduced 
runtime facilitated our development of the Ward spiral code 
without the need for overnight testing and outputting. The 
increased speed was utilized primarily to speed up the intensive 
calculations to prepare the tabulated values, allowing us to quickly 
start analyzing the resulting data for mission planning. 
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5. DISCUSSION 

5.1 Usefulness of Parallelization 
While using Blue Waters was extremely helpful in generating the 
time of flight tables, a user with the intent to input one mass and 
thrust value will see no difference in a single calculation of the 
trajectory versus a program that reads tabulated values. So the 
parallelization in this case did not affect the end user. However, 
with the case where the user is looking for maximum payload 
mass given a time of flight and arrival date, it would be very 
inconvenient to calculate the values serially on a laptop. Having 
the tabulated values to scroll through in this case would greatly 
reduce the computing time. 
 

5.2 Viability of Low-Thrust Missions to Mars 
From the trajectory plots, time of flights, and payload capabilities 
obtained from this study, we can see that the use of ionic 
propulsion is a viable method to provide support for future 
missions to Mars. The mission parameters that we have calculated 
are well within the reasonable range of required cargo shipment 
set by NASA standards. This will be key in future development of 
routine cargo missions when we continue our mission designing 
process. 
 

5.3 Educational Impact of the Project 
The project is a one-year Blue Waters Student Internship with an 
initial training workshop for C programming on the 
supercomputer, followed by required monthly reports submitted to 
the internship program. Throughout the course of the program, the 
intern has learned to structure a research project with a well-
defined timeline to meet clear and realistic goals and steps. The 
experience has enhanced the intern’s ability to plan and manage a 
research project and helped find solutions in a timely fashion for 
challenges such as parallelization I/O problems and memory-
related segmentation errors encountered in this project. This will 
have a positive impact on the intern’s future graduate studies or 
research career. 

The main educational goal of this project is to expose the intern to 
methods of parallel computing. During the short session in 
Summer 2015, the intern learned the basics of various parallel 
programming languages like OpenMP and MPI, and also 
strengthened his skills in using C. Afterwards during the year, he 
was able to use this knowledge and apply it to trajectory modeling 
problems. While the integration of OpenMP into the trajectory 
model was essentially used to run more cases in the same time, it 
was a good introduction to parallel computing, and we hope to 
continue utilizing this tool for future studies of this nature.  

Through this process the intern also greatly strengthened his 
ability to comfortably use Linux command terminals to 
communicate remotely with a supercomputer, a skill that will be 
extremely useful in upcoming research. Additionally, the intern 
has gained insight into trajectory modeling and general knowledge 
in spacecraft mission design and planning. The program generated 
for this project will be valuable in the intern’s continuing research 
project to design a cost effective, human-crewed mission to Mars. 
The code (Version 1.0) was fully developed by the intern, and is 
available upon request. 
 

6. CONCLUSION 
Throughout the study we evaluated the use of parallel computing 
to assist in trajectory modeling. The most effective course of 

action was to increase the volume of trajectories we could model, 
and generate tables to use offline. This method is like a higher 
mission level tool similar to how ephemerides would be used to 
plan a trajectory. Parallelization greatly increased the efficiency of 
the developmental stage of the model, as it saved time by 
speeding up testing of the Ward spiral code and results were 
obtained quickly for payload and launch date analyses. The ability 
to handle large amounts of data and organize it on Blue Waters 
saved a lot of disk space and computing time on the desktop 
computer.  

From the study it is now possible to use the model to plan cargo 
missions to Mars in the concept study phase. The model can be 
used on any machine as long as the data and ephemerides are 
present in the package. With the input of thrust and mass in text 
file form, additional parameters that alter those two main variables 
can be added on without disrupting the original code. We can 
build on this template for future, higher-fidelity models. 
 

7. LIMITATIONS AND FUTURE 
PROJECTS 
The main limitation in this study was the assumption of full 
available power to the spacecraft at all times. The model 
accounted for an ideal transfer with the maximum thrust of the 
NEXT engine present throughout the trajectory. However, in an 
actual mission, the orientation of the solar panels and other factors 
like system reliability can come into play and alter the available 
power levels, thus changing the thrust of the engine unexpectedly. 
In addition, minute gravitational perturbations are not accounted 
for, and with Jupiter’s large gravitational influence, it can alter the 
trajectory enough to require thrust changes for course correction. 
These extra factors are subjects we can explore in future studies 
that add to this model. We can still use the thrust and mass as 
inputs, but append extra calculations that will alter the thrust 
based on power levels and course corrections. 
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