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ABSTRACT
This paper describes a course called, “Introduction to Scien-
tific Computing” that has been developed for freshman stu-
dents at Wagner college, a private national liberal arts insti-
tution. The course trains students in computational think-
ing and involves hands-on learning of typical work-flows in
scientific data analysis and data visualization. Students de-
velop proficiency in the symbolic computing platform, Wol-
fram Mathematica R©, to apply functional programming to
develop data analysis and problem solving skills. The course
presents computational thinking examples in the framework
of various scientific disciplines. This exposure helps students
to understand the advantages of technical computing and its
direct relevance to their educational goals. The students
are also trained to perform molecular visualization using
open source software packages, such as Avogadro and Visual
Molecular Dynamics, to understand secondary and tertiary
protein structures, construct molecular animations, and to
analyze computer simulation data. These experiences stim-
ulate students to apply these skills across multiple courses
and their research endeavors. Student self-assessment data
suggests that the course satisfies a unique niche in under-
graduate education. We have provided a sample syllabus,
homework assignments, and examples of student work to
aid in the design and implementation of similar courses at
other institutions.

CCS Concepts
•Applied computing→ Education; Chemistry; Physics;
Computer-assisted instruction; Computer-managed instruc-
tion; Mathematics and statistics; Collaborative learning;

Keywords
Undergraduate; Freshman Year; Scientific Computing; Ed-
ucation; Visualization
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Computational Science is a relatively new phenomenon in
the long march of scientific disciplines and pursuits. From
their invention in 1940s[1] to large scale supercomputers that
are advancing fundamental research in all disciplines, com-
puting has a fascinating history[2]. However, a typical lib-
eral arts student gets very little to no exposure to such inspi-
rational and powerful uses of computers and computational
thinking. Most students consider the usage of computers for
routine purposes (browsing, social media, document process-
ing, etc.) as being “technologically literate”. However, this
is a very limited form of literacy and educators need to raise
the level of technological competency to enhance the career
prospects of our students[3, 4].

The STEM education community has focused its atten-
tion on introducing students to computational thinking and
computation as distinct from routine computer usage [5, 6,
3]. The physics education community has been instrumental
in adopting computer aided instruction and full fledged cur-
ricula and majors in Computational Physics exist at many
institutions[7, 8, 9, 10, 11, 12]. Similar attempts to intro-
duce computing in the chemistry curriculum have also been
reported in the literature [13, 14, 15, 16, 17, 18]. These
curricular level transformations are important milestones in
modernizing and improving educational outcomes and skills
of future graduates. However, an institution without the re-
sources to engage in curricular overhaul may not be able to
take advantage of such approaches. Particularly, smaller lib-
eral arts colleges with limited faculty size and infrastructure
are in an especially unfavorable position to embed comput-
ing holistically in an entire discipline or program.

A feasible alternative is to modernize the introductory
computer course to highlight computational thinking and
move beyond routine usage of computers. However, this
approach lacks cohesiveness and students may not see the
computing as directly relevant to their studies. We advocate
the alternative approach to embed computing in a freshman
level course in the natural sciences and provide students with
an exposure to computational thinking in the framework
of their course. A striking example of such an approach
in an introductory mechanics course was recently reported
[19]. That course required students to learn elementary pro-
gramming skills to solve physics problems using VPYTHON
programming environment. These students did not possess
formal computer science coursework exposure and a major-
ity of the class successfully completed the evaluation. These
approaches are warranted to ensure that future STEM grad-
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uates can converse with computers with reasonable fluency
in the future. We highlight an approach to inject compu-
tational thinking and molecular visualization at the fresh-
man level. The importance of visualization in disciplines
like chemistry and biology cannot be overstated[20, 21] and
the power of computational thinking to assist students in
physics and other disciplines has been well documented[19,
7, 8, 16, 17]. Our course provides students with a toolbox
of computational thinking and molecular visualization and
editing tools that can be advantageously applied to a va-
riety of courses offered in the STEM disciplines. The easy
availability and widespread acceptance of these tools by stu-
dents has the potential to increase the richness and depth of
coursework in many disciplines.

2. METHODOLOGY
We designed and implemented a Scientific Computing course

to teach elementary computational thinking in the frame-
work of STEM disciplines and to highlight applications of
computing to the natural sciences. The course aims to de-
velop specific competencies of computational thinking, molec-
ular visualization and editing, and data analysis. The course
also aims to provide students with an introduction to func-
tional programming, large scale data visualization and rep-
resentation. A Scientific Computing course is commonplace
in engineering disciplines. Such courses are typically focused
on applications of numerical methods and their applications
in solving scientific and engineering problems. There are
many texts available on scientific computing with this focus
[22, 23, 24, 25]. However, these books and corresponding
courses are designed for an audience familiar with some com-
puter programming language and/or advanced mathematics
courses like calculus or linear algebra. Such courses are gen-
erally offered by Computer Science faculty and are typical
coursework for engineering concentrations or Computational
Physics majors.

However, there is no such parallel at liberal arts colleges.
A standard scientific computing course as previously de-
scribed would not be applicable to the student population at
liberal arts colleges. Wagner College, like many liberal arts
colleges, requires a semester of a Computer Science affiliated
course to provide students with an exposure to “technologi-
cal skills”. Sadly, such courses typically do not delve into
high-level computational skills or computational thinking
and generally provide instruction in using Microsoft Office R©
products and rudimentary worldwide web concepts. These
courses and approaches were probably valuable a decade ago
when computing devices were not quite as prevalent. How-
ever, in today’s world these courses appear outdated and
do not provide relevant skills to the modern undergradu-
ate student. We devised a course called, “Introduction to
Scientific Computing”, with the express intention to include
all potential STEM students in the course. The course is
designed to be inclusive toward students with all levels of
preparation and previous exposure to computers and math-
ematics preparation. Most importantly, the course has no
computer science pre-requisites. The course pre-requisites
are any introductory class in the natural science disciplines
taken during the first semester freshman year. Thus, the
course is designed to be appropriate and most advantageous
for second-semester freshman students.

The broad spectrum of the course allows it to serve a
variety of students pursuing multiple STEM career paths.

The course intention is to highlight the ubiquitous thread
of computing that permeates modern scientific endeavors.
The course goal is not to design and produce efficient pro-
grams or code. The course goal is to reach out to students
who may have never considered computers as an ally to
perform the science and learning that interests them. An
important course goal is to highlight the role and power
of computational thinking in solving problems. The course
uses the freely available text, An Elementary introduction
to Wolfram language[26], by Stephen Wolfram, the creator
of the Wolfram programming language which is at the core
of Mathematica R©.

We chose to use the Mathematica platform to reduce the
entry barrier and also to take advantage of the immense va-
riety of applications and in-built functions in Mathematica
that span the STEM domains and beyond. Python program-
ming language is similar in many respects and we think it
could be suitable to construct a similar course. However,
we wanted to steer clear of the notion that this is a com-
puter programming course and eschewed the Python pro-
gramming language. We wanted to ensure that we could
reach the maximum number of students and even those stu-
dents who had previous negative experiences with computer
programming. A similar course could be constructed using
Maple R©, Matlab R©, or other software packages based on in-
structor familiarity and availability. The most important
consideration is that there should be an element of higher
level programming and scripting that allows students to en-
gage with the code and to construct analysis tools using
functional programming ideas. Thus, we would argue that
spreadsheet based packages like Microsoft Excel R©, etc. are
not appropriate as the primary course platform.

The course can be divided into two broad sections: Math-
ematica technical platform and molecular visualization and
editing. The Mathematica portion familiarizes students with
the basic data structures and operations. We also high-
light the applications of curated databases and their inte-
grations into solving scientific problems. Students are in-
troduced to various forms of data presentation including
static and dynamic plots and charts. Finally, we introduce
students to molecular editing and visualization using open
source tools like Avogadro[27] and Visual Molecular Dynam-
ics(VMD)[28]. We combine the elements of data analysis
and visualization by presenting students with molecular dy-
namics simulation trajectory and carrying out its analysis
as a classroom exercise. The next few sections will describe
each of these modules in more detail.

3. MATHEMATICA MODULE
The course starts by introducing students to the vari-

ous domains that can be accessed through Mathematica.
This is achieved by highlighting in-built functions in Math-
ematica. We start by plotting trigonometric functions and
three-dimensional plots. Mathematica recently added cu-
rated databases to the program. These allow a look-up of
data from domains like chemistry, physics, biology, finan-
cial markets, economic data for countries, engineering data,
mortality rates, weather data, etc. For many students this
is their first ever encounter with such data. The goal of the
first lecture is to ensure that students feel empowered and
experience that they can write the code that can access such
high level tasks. We impress upon students that the course
is not about nuts and bolts of programming, but learning
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technical platforms that can be used to address high level
questions.

The course follows a workshop model in which the instruc-
tor projects the notebook (Mathematica interface) on a large
screen and students write down the code on their individ-
ual computers. This is important to get the first practice
of writing down the code and to increase student familiarity
and confidence with the interface. The basic data structure
in Mathematica is a list. We spend at least three lectures on
familiarizing students with the list (array) structure and per-
forming operations. Standard operations like reversing the
list, calculating mean, standard deviations, etc. are carried
out to develop baseline competency. We perform simple al-
gebra on lists and solve problems that require setting up lists
for solutions. Such problems abound in scientific domains
and provide a review of scientific concepts as well as the
skill of interpreting scientific problems into a computational
framework. We necessarily choose problems from different
domains, physics, chemistry, etc. to highlight broad usage
of the platform and to inspire students to use their newly
acquired skill across other courses.

Students also learn to visually represent different types
of data. The standard mathematical functions, dynamic
plots, parametric plots, etc. are also explored in the course.
Bar charts and histograms are also covered to provide stu-
dents with an overview of different aspects of data presenta-
tion. The students appreciate different data representations
and their appropriateness to highlight certain aspects of the
data. Lively discussions on choosing data representation are
commonplace in the classroom. In all cases the data origi-
nates from solution of a problem from one of the scientific
disciplines. This builds up on previous knowledge of the core
principles of Mathematica. A glimpse of the diversity of ex-
amples that we execute in class and homework assignments
for this module is provided below. These examples take ad-
vantage of Mathematica’s curated research databases and
the coding principles taught in the course. This approach
enables students to use computational skills in their other
courses and research assignments.

1. Plotting density and temperature of water to deter-
mine the temperature of maximum density of liquid
water

2. Construction and analysis of dice games

3. Plotting density of elements and analyzing trends

4. Identifying the 10 most populated cities in the USA
and data representations

5. Determination of the number of airports in the G8
countries

6. Plotting temperature data for various cities and ana-
lyzing weather trends

7. Atomic radii of elements in the second and third period
of the Periodic Table

8. Interactive histograms of distributions of randomly se-
lected integers

9. Interactive plots of mathematical functions

We will highlight the example of a die throwing game to
demonstrate the readable and expansible nature of the code.
The algorithm is simply described as:

1. Create a list of 6 integers for a regular six-sided die

2. Pick an integer randomly to represent a particular face
of the die

3. Accumulate the counts of each face over a number of
die throws

4. Plot the distribution of each face for the specified num-
ber of trials

A sequential construction of this example is provided in
the following code snippet

rolls = Table[RandomInteger [{1,6}],{i

,1 ,100000}];

Histogram[rolls]

However, these can be merged into a one-line code eliminat-
ing the need to create and store a variable. This approach
where functions are input to other functions is a powerful
feature of functional programming and we stress this repeat-
edly during the course. This feature enables students to
chain complicated tasks into simple and easy to read code
fragments.

Histogram[Table[RandomInteger [{1,6}],{i

,1 ,100000}]]

This can be easily extended to two dice games and plotting
the histograms of sums of two dice throws. The following
command simulates million throws of two dice and adds the
output. It then plots a histogram to highlight the distribu-
tion of the recorded sum.

Histogram[Table[RandomInteger [{1, 6}] +

RandomInteger [{1, 6}], {i, 1,

1000000}]]

As students develop their skills in the language and com-
putational thinking, we revisit this example and create a
custom function to carry out these operations. The dice ex-
ample is used to highlight the power of repeated trials and
the need for large numbers of trials to understand stochastic
phenomena. Students construct the scenario of a compari-
son between an unloaded regular dice and a dice loaded to
favor the face bearing the numbers four or six three times
over other faces. This example impresses upon students the
need for repeated trials and also the role of random num-
bers in stochastic processes. The output of this comparison
of a loaded die with a regular die is shown in Fig. 1. The
result clearly shows that a loaded die behavior can be de-
tected with few trials, however, the regular die output needs
many trials to verify the equal probability of each outcome.
The code snippet highlights the advantage of using Mathe-
matica and the ease with which students progress in their
knowledge of coding.

regularDice[throws_] :=

Module [{out = Table[RandomChoice [{1, 2,

3, 4, 5, 6}], {throws }]},

Histogram[out , PlotLabel -> throws "

Unloaded Die Throws "]]

loadedDice[throws_] :=

Module [{out =

Table[RandomChoice [{0.1, 0.1, 0.1,

0.3, 0.1, 0.3} -> {1, 2, 3, 4,
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Figure 1: Histograms of outputs of an unloaded and
loaded die. The behavior of a loaded die is clear
even at low number of trials.

5, 6}], {throws }]},

Histogram[out , PlotLabel -> throws "

Loaded Die Throws "]]

GraphicsGrid [{{ regularDice [100],

loadedDice [100]} , {regularDice [10000] ,

loadedDice [10000]} , {regularDice

[1000000] , loadedDice [1000000]}}]

The focus of this module is to empower students with
the skills of computational thinking and its application in
various domains. The students are reminded constantly
that Mathematica would be a great help for them in other
courses, laboratory reports, and homework assignments. Stu-
dents are also trained to write short programs (called Mod-
ules) that chain multiple built-in functions. This experience
introduces students to the power of programming and its
applicability to their daily activities. However, the course is
not devoted to programming, rather its intention is to high-
light the power and ease of functional programming and
the advantages it can provide to students. The examples
have been deliberately chosen to improve student under-
standing of pre-calculus and calculus, data analysis, data
fitting, data visualization, and elementary physical science
concepts. In the next section we describe the molecular vi-
sualization module.

4. MOLECULAR VISUALIZATION
Molecular editing and visualization is also embedded in

the course to allow students to experience the applications
of computing beyond numerical calculations. Students use
an open-source application Avogadro[27] to create and edit
molecular structures. Students also use Avogadro’s features
to create carbon nanotubes, aromatic compounds, and polypep-
tide sequences. This activity of building different molecules

Figure 2: A snapshot of water arrangement in Avo-
gadro. The dashed lines represent hydrogen bond-
ing interactions.

is also helpful for students to develop skills of interaction
with Graphical User Interface (GUI) of typical scientific ap-
plications. We apply Avogadro’s molecular mechanics[29]
capabilities to highlight intermolecular interactions and hy-
drogen bonding between water molecules. We also highlight
Avogadro’s application to analyzer stereochemistry and 3-D
molecular structures. Students have informally reported af-
ter progressing to organic chemistry course that Avogadro
was a very helpful tool for that course.

A signature activity that we perform with Avogadro is the
study of arrangement and orientation of water molecules in
a small cluster. The students follow along in this activity on
their personal computers. We utilize the Auto Optimization
feature of Avogadro for this exercise. This feature allows
a continuous optimization of molecular geometry and ar-
rangement using molecular mechanics. We start with 20-25
randomly placed water molecules on the screen. The classi-
cal mechanics force field MMFF94[30]is chosen to represent
intermolecular interactions. This force field recognizes hy-
drogen bonding interactions and the resulting arrangement
of water molecules in the cluster is a result of the hydrogen
bonding propensity of these molecules. Students are asked
to pick and drag molecules around the screen. The system
responds instantaneously and rearranges other molecules in
the vicinity. The program also displays the potential energy
at each instant and students observe that potential energy
fluctuations correspond to favorable or unfavorable local and
global arrangements of water molecules. Specifically, the
system of water molecules attempts to optimize the hydro-
gen bonding interactions. A snapshot of animation with
hydrogen bonds is shown in Fig.2. An animation of this
process is supplied in the Supporting Information.

The course utilizes Visual Molecular Dynamics (VMD)[28]
to study three-dimensional structures of proteins and to in-
troduce students to a tool widely used in computational
chemistry and biology research laboratories. VMD is a pow-
erful tool to visualize structural properties, perform molec-
ular dynamics simulation setup and data analysis for the
NAMD[31] simulation engine. VMD allows fine-grained con-
trol of structural representation and can also be used to vi-
sualize a simulation trajectory run in any of the popular
molecular dynamics simulation engines like GROMACS[32],
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Figure 3: 1l2y mini-protein with proline residues
highlighted in CPK representation. The secondary
structure is emphasized by using the NewCartoon
representation in VMD.

NAMD[31], LAMMPS[33], etc. This enables us to intro-
duce the Protein Data Bank (PDB)[34] and to provide an
overview of protein structure, stability, and function.

Students learn to browse the PDB resource, load molecules
into VMD and extract information from the structures. They
are trained to represent different molecular representations
like CPK[35], Van der Waals, and secondary structure rep-
resentations that are commonly seen in the literature and
biology textbooks. For example, we study the structure of a
small synthetic mini-protein trp-cage (PDB code: 1L2Y)[36].
The structure is shown in Fig.3 with the proline residues in
CPK representation and the rest of the molecule in New-
Cartoon representation to highlight the α-helix motif. This
also allows students to observe the general rule that pro-
line residues do not participate in the formation of α-helix
secondary structure motifs[37].

Similarly, we highlight structure of a β-barrel membrane
protein (PDB code: 1G90)[38] located in the outer mem-
brane of Gram-negative bacteria. This protein is chosen to
highlight the β-sheet secondary structure element and the
β-barrel morphology. Students learn to visualize the hydro-
gen bond connections between the sheets and to represent
the structure in multiple ways. A representation of this pro-
tein is depicted in Fig.4. The red dashed lines represent
hydrogen bonding interactions.

An important element of the course is to develop critical
thinking skills of students and to encourage them to question
their own beliefs about concepts learned in other courses.
Hydrogen bonding is one of the most important concepts
that students of Chemistry and Biology (the major popula-
tion of our course at Wagner College) need to understand. A
hydrogen bond is simply an electrostatic interaction between
a hydrogen atom connected to a highly electronegative atom
like fluorine, oxygen or nitrogen and another electronegative
atom. Hydrogen bonds are commonly understood to be a
key factor in protein structural stability, stability of DNA,
RNA, and the unique properties of water. However, most
students do not possess an intuitive understanding of how
an interaction would be labeled as a hydrogen bond in the
pictures seen in their biology or chemistry textbooks. Stu-
dents use VMD options to display hydrogen bonds in protein
structures. They also modify the default distance and an-
gle cutoff to study the impact of such restrictions on the
number of hydrogen bonds reported in the structure. The

Figure 4: A β-barrel membrane protein. The red
dashed lines represent hydrogen bonding interac-
tions.

default distance criterion is 3.3 Angstrom and default an-
gle criterion is that the Donor-Hydrogen-Acceptor angle is
less than 20 degrees. Students discover that modifying these
definitions leads to a change in the number of interactions
flagged as hydrogen bonds and also study hydrogen bonds
in different regions of proteins. This model of instruction
enables students to appreciate the role of visualization and
also the type of decisions that are implicit in visualization
engines that study biomolecules. This exercise helps stu-
dents to understand that pictures seen in books, textbooks,
and research articles are the result of many decisions that
must be understood from a computational and physical per-
spective.

The interplay of visualization with data analysis is high-
lighted in the next signature activity that we perform with
the students. We apply VMD to visualize the trajectory
of a short molecular dynamics simulation of liquid water
and Mathematica to perform data analysis on observables
recorded during the simulation. Such an activity would not
be possible to perform with freshman level students outside
of this course.

5. ANALYSIS OF MOLECULAR DYNAM-
ICS SIMULATION

We perform the visualization and analysis of a short molec-
ular dynamics simulation of liquid water at room tempera-
ture. We execute the simulation beforehand and project
the simulation trajectory for visualization to the class. We
then display hydrogen bonds during the simulation frames.
Usually, a lively discussion follows about the behavior of
liquid water during the simulation and how they could use
VMD[28] to display the hydrogen bonds and use different
representations of the simulation trajectory. At this point in
the curriculum students realize that a molecule in bulk wa-
ter attempts optimization of its hydrogen bonding network.
The trajectory is processed using GROMACS[39] tools be-
forehand and students are presented with text files contain-
ing measurement of temperature, potential energy, kinetic
energy, etc. during the simulation.

Students are provided a brief overview of molecular dy-
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Figure 5: Moving averages to compute the aver-
age temperature during a molecular dynamics sim-
ulation. The fluctuations in the measurement are
highly suppressed as the width of averaging window
increases.

namics simulation and a brief explanation of the NPT en-
semble[40] used to carry out the simulations. They calculate
the number of water molecules and volume of simulation box
to achieve appropriate density. This helps to build an appre-
ciation of the scale of molecular simulations. A particularly
illuminating aspect of this exercise is the concept of average
value of a measurement over a time period. The simulation
provides an output of temperature measurement and other
physical observables at every picosecond during the simula-
tion. Thus, for a 2 nanosecond simulation there are 2000
recorded temperature values. Students import the raw data
into Mathematica and visualize the measurement. They no-
tice that the temperature fluctuates and is not truly fixed at
300 K for the entire simulation. The students then perform
moving averages to understand the temperature measure-
ment. As they perform moving averages over measurement
values, they realize that instantaneous measurements may
differ significantly from the average. They perform a time
average using a duration of 10 ps, 100 ps, and 500 ps each.
They observe that with larger averaging duration the tem-
perature measurement is very close to the preset 300 K for
the simulation. Fig.5 depicts a plot that students construct
using the raw data. This exercise also provides an oppor-
tunity to impart the skill of importing data from text files
into Mathematica and data processing for desired analysis.
Students report that this is usually their first experience ana-
lyzing large amounts of data and visualizing fluctuations in
the measurement of a commonly experienced physical ob-
servable such as temperature. The exercise also involves
analyzing potential and kinetic energies and the number of
hydrogen bonds during the simulation.

6. SMALL PROJECT EXPERIENCE
Students perform a small research project during the last

six weeks of the course. These are group projects that in-
corporate themes from the course. We reserve a portion of
class time for students to pursue these projects and to get
assistance from the instructor and other classmates. A few
student projects are described below to provide an overview:

1. Mathemusica: Students explained the mechanism of
sound, action of sound waves, and programmed popu-
lar music and classical music compositions using Wol-
fram programming language in Mathematica. This

was a highly unusual and creative application of pro-
gramming and computing.

2. Global warming trends: Students downloaded datasets
of global surface and sea temperatures from NOAA to
analyze trends and to highlight the measures of global
warming.

3. Gallery of 3-D structures and functions: Students cre-
ated 3-D structures of proteins, their genetic informa-
tion, and their properties using VMD and Mathemat-
ica’s biological data functionalities.

4. Gallery of atomic orbitals: Students plotted mathe-
matical expressions for atomic orbitals to depict shapes
of atomic orbitals and their properties.

These projects highlight the diversity of students and their
interests in the course. They also demonstrate the diverse
range of functions and databases that are built into Mathe-
matica and of student efforts to apply their skills in a variety
of domains.

7. STUDENT ASSESSMENT
This course has been taught twice at Wagner College to

a total audience of 30 students with a distribution of stu-
dents from all levels. Student response to the course has
been overwhelmingly positive. The freshman population in
Spring 2015 was 50% and in Spring 2016 was 43%. The
strong interest from students at all levels is highly encour-
aging. Although, the course would be most beneficial if stu-
dents take it as early as second semester of freshman year.
Additionally, it also points to a pressing need for this course.
Students in their junior and senior years of College have ex-
pressed amazement and disbelief about the accomplishments
of computational science and its potential impact on their
career paths. The course has a strong enrollment for the
Spring 2017 semester with 19 students (11 freshmen) regis-
tered for the course.

The assessment was carried out using anonymous on-line
survey. The average of student responses is reported along
with standard deviation in parentheses. The responses have
been merged for the first two iterations of the course with
30 respondents. The first set of questions had responses
on scale from Strongly Agree (5) to Strongly Disagree (1).
These questions have a broad focus and students seemed in-
tent on applying the skills from this course to other courses.

1. I have acquired a better understanding of applications
of computing to Science. 4.50 (0.51)

2. I plan to apply software and skills acquired from this
course to other courses. 4.17 (0.81)

3. I have acquired skills that will help me in my major.
4.23 (0.77)

The second set of questions had responses on a scale used
for Wagner College Chemistry graduate exit survey: A great
deal (5), A lot (4), Some (3), A little (2), Not at all (1).
These questions address distinct skills and tools practiced
in the course. The responses are overwhelmingly positive
and the course seems to be addressing a unique niche in the
undergraduate liberal arts curriculum.

1. My skill in manipulation of large datasets has increased.
3.97 (0.81)
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2. My skill in graphical analysis of data has increased.
4.07 (0.87)

3. My skill in setting up and solving numerical problems
has increased. 3.9 (0.80)

4. My skill in visualization and analysis of mathematical
functions has increased. 4.07 (0.91)

5. My skill in visualization of structure of biomolecules
has increased. 4.13 (0.86)

6. My skill in molecular drawing and editing has increased.
4.23 (0.82)

The positive course evaluations and student experiences
have inspired us to share this work with a larger audience.

8. CONCLUSION
We have created a course called,“Introduction to Scientific

Computing” to introduce students to technical computing
and functional programming at liberal arts Colleges. The
course focus is to present computing and interaction with
data in the framework of STEM disciplines. This approach
fosters the integration of computing into the educational
goals of students from all STEM branches and provides a
set of tools that can be used throughout their undergrad-
uate education and well into the professional work-place or
graduate school. We think that the course utility is the high-
est for freshman students because of the high impact of these
skills and tools on their undergraduate education. However,
student response from all levels of student population has
been highly encouraging. Students learn the skills of data
analysis, data visualization, functional programming, molec-
ular visualization, and molecular editing. Students also ap-
ply these skills collaboratively in small group based research
projects. The diversity of projects and assignments carried
out in the course highlight the broad applicability of the
course to STEM education. Our hope is to transform the
student mindset into accepting scientific computing as a skill
that is as integral to the practice of STEM disciplines as
their laboratory skills. We hope that colleagues at other in-
stitutions will consider creation of a similar course to better
prepare our future generations.

9. SUPPORTING INFORMATION
The following files are provided as supporting information:

1. A notebook with code samples described in section 3
in Mathematica notebook format and PDF

2. Animation of the molecular rearrangement activity de-
scribed in Section 4

3. A popular music song, “All of me” recreated by stu-
dents in Mathematica (in CDF, PDF and Mathemat-
ica format). The document can be opened with the
freely available Wolfram CDF player https://www.wolfram.
com/cdf-player/.

4. A sample course syllabus and assignments are provided
to aid in creation of a similar course.
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