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Introduction to Volume 8 Issue 1

Steven I. Gordon
Editor

Ohio Supercomputer Center
Columbus, OH

sgordon@osc.edu

Forward
This issue begins with an article by Shiflet et.al. on us-
ing HPC for genomic sequence alignment. They present an
overview of an online educational module that employs a se-
quential algorithm to determine the alignments of two DNA
sequences. The module also describes several approaches to
parallelization and speedup. The module is evaluated based
on its use in a bioinformatics course at University ”Magna
Græcia” of Catanzaro, Italy.

The article by Jung, Zirpoli, and Slick provides an overview
of a computational chemistry module that helps students to
visualize a complex organic chemistry reaction. The mod-
ule was used in an undergraduate course to help students
understand the thermodynamics and other aspects of the
reaction.

The three student articles detail the findings of several intern
experiences. Collins discusses the use of augmented reality
to visualize the molecular structures from the Protein Data
Bank. Maringanti describes the creation of an algorithm
to create a graph for a complex integrated circuit design.
Finally, Nguyen presents an approach for the parallelization
of database queries for large-scale distributed systems.

All of the student articles are a product of their participation
in the Blue Waters Student Internship program.
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ABSTRACT 
The Diels-Alder reaction is one of the most well-known organic 
reactions and is widely used for six-membered ring formation. 
Regio- and stereo-selective Diels-Alder reactions have been 
emphasized in various areas including pharmaceutical and polymer 
industries. However, covering the theoretical background of such 
reactions in an undergraduate class is challenging because the 
interactions between molecular orbitals is poorly visualized for 
students. Especially when dealing with polycyclic aromatic 
hydrocarbons (PAHs) and asymmetric compounds, the complexity 
of regio- and stereo-selectivity becomes more pronounced. Herein 
we utilized web-based computational tools (WebMO) to visualize 
the HOMO-LUMO of each reaction component and their 
interaction to form chemical bonds. In this study we demonstrated 
the incorporation of computational aids into a Diels-Alder 
laboratory class dramatically facilitates students’ understanding of 
several important concepts including frontier orbital theory, 
thermodynamics of the reaction, three-dimensional visualization, 
and so on. The assessment of teaching effectiveness prior to and 
after implementation of computational aids into Diels-Alder 
reactions will also be discussed in this manuscript.   

CCS Concepts 
• Social and Professional Topics ➝	Computational Science and 
Engineering Education.  

Keywords 
Diels-Alder reaction, Molecular orbital, Geometry optimization, 
Computational calculation, WebMO, Education, Undergraduate 
laboratory. 

 

 

 

 

 

 

 

1. INTRODUCTION 
As computational chemistry has significantly contributed to 
chemical research, many chemistry programs across the country 
now incorporate computational chemistry in their undergraduate 
curriculum [1-4]. In the last decade, leveraging such modern 
technology including open-source computational tools into actual 
undergraduate laboratories has been published in journals. Inspired 
by such efforts [5, 6], we recently implemented a web-based 
computational aid (WebMO, MOPAC with PM3) in our organic 
chemistry laboratory course where students have difficulty in 
understanding physical organic chemistry concepts. 

Diels-Alder cycloaddition reactions are widely used in synthetic 
organic chemistry since it was first described by Otto Diels and 
Kurt Alder in 1928 [7, 8]. Due to its interesting mechanism and 
accessibility to upper-level undergraduate coursework, there have 
been a variety of reports which involve Diels-Alder reaction in 
undergraduate laboratory classes [9-12]. The challenges of 
effective teaching the Diels-Alder reaction, however, stem from 
understanding the three-dimensional perspective of the molecules 
and molecular orbitals in an adduct formation which most 
undergraduate students have poorly understood in class. 
Cycloadditions such as the Diels-Alder reaction involve the 
concerted forming and breaking of bonds within a closed ring. In 
order to understand the reaction mechanism, conservation of orbital 
symmetry has been used to predict how cycloaddition can occur 
and what adducts will be produced. Due to complexity including 
prediction of regioselectivity, stereochemistry and reactive 
positions, these concepts tend to be one of the most challenging 
sections to comprehend for undergraduate students. Such 
complexity becomes more pronounced when students deal with 
polycyclic aromatic hydrocarbons such as anthracene which is a 
well-known diene in undergraduate laboratory classes [12]. In this 
manuscript the integration of web-based computational aids with 
the hands-on synthetic experiment and its effectiveness in 
facilitating students’ understanding will be discussed. 

2. EXPERIMENTAL DESIGN 
The computational procedure of this study is based on the 
exemplified lab exercises which can be found in the website of 
Computational Chemistry for Chemistry Educators (CCCE) and 
the CCCE workshop [13, 14]. To evaluate the effectiveness of 
computational aids in understanding a Diels-Alder reaction in the 
sophomore level class, the study was conducted for eight semesters 
and observed over eighty students who were enrolled in both the 
lecture and the corresponding laboratory sections in each semester. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Copyright ©JOCSE, a supported 
publication of the Shodor Education Foundation Inc. 
DOI: https://doi.org/10.22369/issn.2153-4136/8/1/1 
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This particular lab was achieved over a series of five assignments 
which consisted of one class lecture and two lab periods as outlined 
in Figure 1.  

 

 
Figure 1. Class design for computational-aid of Diels-Alder 
reaction experiment. Gray color indicates that Diels-Alder 
reaction is covered in a regular organic chemistry class. 

The class design consists of two homework assignments (pre-lab 
and post-lab assignments) and one lab-lecture and the actual 
performance of Diels-Alder reaction. Students were first introduced 
to Diels-Alder reactions in a regular organic chemistry lecture prior 
to the pre-lab assignment. The assignment asked a series of 
fundamental questions pertaining to the identification of the diene 
and dienophile, location of reactive sites, predicting products and 
sketching reactants’ molecular orbitals. After completing the initial 
assignment, students were introduced to computational calculations 
using WebMO software which can calculate geometric 
optimization, molecular orbitals, and heats of formation, and etc. 
Using the information collected by computational aids in hand, the 
post-lab assignment addressed the similar set of questions with 
anthracene and maleic anhydride which are used as reactants in the 
actual Diels-Alder reaction experiment. (Table 2; The actual pre-
lab and post-lab assignments can also be found in Supporting 
Material). After completing the computational calculations in the 
post-lab assignment, reaction between anthracene and maleic 
anhydride was performed in the laboratory. Therefore students 
have much better understanding about the Diels-Alder reaction by 
studying the theoretical calculations before they actually conduct 
the synthetic experiment. The product of the reaction was then 
identified using a melting point determination and NMR 
spectroscopy analysis. Experimental detail including synthetic 
procedure and discussion points is attached in Supporting Material. 

3. COMPUTATIONAL TOOLS 
WebMO is a freely available web-based tool which provides an 
access to multiple computational engines such as MOPAC, 
Gaussian, and DFT [15]. In this experiment, the MOPAC engine 
and PM3 theory was used to obtain molecular orbitals and 
geometric optimization of the proposed dienes/dienophiles and 
products. Once a calculation is completed, optimized geometry, 
heat of formation energy, energy of molecular orbital, and 
visualized molecular orbitals become available in the viewer 
window. Detailed tutorial and troubleshooting of using WebMO is 
also available in the website (http://www.webmo.net). 

 

4. RESULTS AND DISCUSSIONS 
4.1 Diels-Alder Reaction 
Predicting regioselectivity and stereochemistry of asymmetric 
dienes-dienophiles is commonly performed by identifying electron 
withdrawing and donating groups followed by a drawing of the 
respective resonance structures (Figure 2a). In addition to this 
traditional approach, the molecular orbital calculation was 
conducted on the asymmetric Diels-Alder reactions. In this study, 
acrylaldehyde and 2-methoxy cyclohexa-1,3-diene were used as a 
dienophile and a diene, respectively. The frontier orbital approach 
is a good way to understand these [4+2] cycloaddition reactions. 
The highest occupied molecular orbital (HOMO) of 2-methoxy 
cyclohexa-1,3-diene and the lowest unoccupied molecular orbital 
(LUMO) of acrylaldehyde were identified by evaluating electron 
occupancy in each orbital. Matching orbitals with the largest lobes 
in the HOMOdiene and LUMOdienophile can aid in visualizing the 
formation of more favorable transition state with a six-membered 
ring which, in turn, provides the major product. As shown in Figure 
2b, the phases of the interacting orbitals are also color coded to help 
students to match lobes with the same sign and interact to form 
chemical bonds. 

 

 

 
Figure 2. Reaction scheme between acrylaldehyde and 2-
methoxy cyclohexa-1,3-diene, a) Regio-selective adduct 
prediction by charge-separated resonance structures, b) 
HOMO-LUMO interaction and three-dimensional view of both 
adducts calculated by MOPAC with PM3. 

 

After deducing which orbitals were most likely to form a bond 
during the Diels-Alder reaction, both potential adducts were 
geometrically optimized. The enthalpy changes for the reactions 
were calculated to determine which adduct would be enthalpically 
favored (Table 1). The heat of reaction revealed that the 1,4-adduct 
is slightly favored by 0.3 kcal/mol which is consistent with 
experimental results [16]. 
 
 
Table 1. Enthalpy change for Diels-Alder reaction‡ 

Name Diene Dienophile Adduct ΔHrxn 
(kcal/mol)* 

1,4-adduct -17.26 -18.31 -68.45 -32.89 
1,3-adduct -17.26 -18.31 -68.17 -32.61 

‡Only enthalpic contribution was considered. 

* Data is calculated by MOPAC with PM3.  
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Although the favorable formation of 1,4-adduct is largely governed 
by the transition state interaction as shown in the resonance 
structures of diene-dienophile (Figure 2a), students can readily 
evaluate the regioselectivity between two potential adducts through 
visually evaluating the HOMO-LUMO interaction. Using the 
molecular orbital diagrams in conjunction with the thermodynamic 
results allowed not only a visual evaluation but also a quantitative 
approach in determining a regioselective product. 

4.2 Cycloaddition of Polycyclic Aromatic 
Hydrocarbons 
Although the Diels-Alder reaction between anthracene and maleic 
anhydride is a well-known reaction, often rationalizing how to 
predict the reaction sites on fused-ring systems is challenging in 
undergraduate laboratory classes (Figure 3a). The regioselectivity 
of this reaction can best be understood by using aromaticity, so the 
reaction occurs at C9 and C10 site where the weakest benzenoid 
character exists. The structures with more fused rings tend to have 
lower resonance energies per π-electron compared to benzene. 
Because the structures with fewer rings are more stable, 
cycloaddition reaction of anthracene where three rings are fused 
together occurs at an internal ring over a terminal ring to give a 
more stable product. With computational aids, however, students 
can visually approach which carbon atoms in the diene are involved 
in the cycloaddition. On the HOMO of anthracene, the carbon C9 
and C10 on the middle cycle possess the largest lobes indicating the 
most reactive site (Figure 3b). Connecting with the largest lobes 
designated in maleic anhydride gives the anticipated product, 9-10-
dihydroanthracene-9,10-α-β succinic anhydride. 

Another challenge for students to understand would be predicting 
the three-dimensional geometry of the final adduct. As shown in 
Figure 3c, the optimized geometry of the adduct was obtained by 
MOPAC, and clearly displays that the two hydrogen atoms in 
maleic anhydride retain cis-position. Additionally, the puckered 
structure of middle cycle indicates the change from sp2 to sp3 
hybridization upon the formation of the adduct. 

 
Figure 3. a) Diels-Alder Reaction between maleic anhydride 
(dienophile) and anthracene (diene), b) Schematic HOMO-
LUMO interaction, c) Optimized geometry of the Diels-Alder 
adduct. 
 
Generating an energy level diagram with calculated molecular 
orbital energies of the diene and dienophile facilitated further 
visualization of the HOMO-LUMO interaction. As taught in class, 

the strongest interaction should be between the HOMOdiene and the 
LUMOdienophile because of the smaller energy gap compared to the 
other interaction between the LUMOdiene and HOMOdienophile. With 
a smaller HOMO-LUMO energy gap, the orbitals interact to a great 
extent in the transition state, which reduces the energy barrier 
between the reactants and the product. Consistent with the lesson 
from the lecture, the energy gap between HOMOdiene – 
LUMOdienophile (154.53 /mol) is unambiguously smaller than 
HOMOdienophile – LUMOdiene (247.65 kcal/mol), which points out 
another important concept of frontier orbital interaction upon the 
cyclization (Figure 4). 

 
Figure 4. Frontier orbital energy diagram of maleic anhydride 
and anthracene. 
 
Furthermore, the overall ΔHrxn was calculated to be -32.9524 
kcal/mol which is the energy difference between anthracene 
(61.5035 kcal/mol)/ maleic anhydride (-90.1541 kcal/mol) and 
adduct (-61.6030 kcal/mol). The heat of reaction between reactants 
and product through the calculations allowed students to predict 
that the product will be enthalpically favored in the cycloaddition 
prior to the hands-on experiment. 

4.3 Assessment of Effectiveness of 
Computational Aids 
As described in the Class design (Figure 1), the effectiveness of 
computational aids was assessed by comparison between pre-lab 
assignment and post-lab assignment, which is tabulated in Table 2. 
Overall the post-lab assignment results showed markedly improved 
scores compared to the results in all questions prior to the 
implementation of computational visualization. 
 

Table 2. Comparison between Pre-lab and Post-lab assignment 
results (prior to and after implementation of computational 
aids). 

Question 

Percentage Correct 
Response 

Pre-lab 
assignment 

Post-lab 
assignment 

Identify the Diene and Dienophile 98 100 

Predict reactive site in Dienophile 88 89 

Predict reactive site in Diene 27 86 

Sketch HOMO-LUMO energy 
diagram 

34 73 

Draw Diels-Alder product 
(including stereochemistry) 

23 71 
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Regardless of the computational analysis, most students correctly 
identified which components of a reaction were either diene or 
dienophile. Once diene and dienophile had been assigned, 
predicting the reaction sites of the dienophile was straightforward. 
It is presumably due to the fact that only one carbon-carbon double 
bond is present in maleic anhydride. 

Finding the reactive carbons in the diene, however, becomes more 
challenging because of the highly conjugated structure of 
anthracene. The structure of anthracene gave mainly two choices of 
reaction sites, the middle cycle vs outer cycle. The majority of 
incorrect answers (73%) in pre-lab assignment were assigning the 
reactive site at the outer cycle of anthracene because they 
considered less steric hindrance for the cyclization at the outer 
cycle as shown in students’ final reports. 

In the post-lab assignment, after utilizing visual aids from MOPAC, 
the percentage of correct response was dramatically increased (27% 
to 86%). It is because modeling the HOMO of anthracene clearly 
provides more information of which atoms have the right phase and 
largest lobe to interact with the LUMO of maleic anhydride. 
Therefore, it is evident that computational aids facilitated the 
students in properly identifying the most reactive carbons of fused 
ring systems. 

Understanding the interaction between HOMO and LUMO during 
a Diels-Alder reaction was another challenging concept which 
resulted in only 34% of students correctly drawing the energy 
diagrams in the pre-lab assignment. Many students had difficulty 
in understanding why the interaction between HOMOdiene-
LUMOdienophile is favorable. It is presumably because generating a 
molecular orbital diagram was not a topic heavily emphasized in an 
undergraduate level class so that students are less familiar with 
molecular orbital or frontier orbital concepts. After using 
computational calculations which give molecular orbital energy 
levels in the numerical values (Figure 4) and visualized images of 
HOMO/LUMO with specific phases and sizes (Figure 3), students 
had a much better understanding of how the molecular orbitals were 
interacting and forming chemical bonds. This visual 
comprehension of molecular orbital theory transitioned into a more 
accurate molecular orbital diagram in the post-lab assignment. 

Finally, only 23% of students were able to draw a correct chemical 
structure of the Diels-Alder product in the pre-lab assignment. 
There were mainly three categories of incorrect structures; i) wrong 
regioselectivity, i.e., bicycle formation with outer cycle of 
anthracene, ii) incorrect or no stereochemistry (cis- vs trans-
hydrogen of maleic anhydride, iii) flat (unpuckered) structure of the 
fused bicycle. The majority of incorrect answers stemmed from the 
incorrectly assigned regioselectivity. It can be understood that 
students would not be able to draw the final product structure 
correctly once they identified incorrect reaction sites. However, it 
should be noted that besides the adduct formation with wrong 
regioselectivity, we found other two types of errors which are from 
the lack of three-dimensional understanding. In other words, 
students found a difficulty in assigning stereochemistry and 
structural transition from sp2 to sp3 hybridization. After obtaining 
the geometrically optimized adduct structure by molecular 
modeling, students had a better sense of a molecules geometric 
configuration in a three dimensional space, which translated into 
highly improved scores of the adduct stereochemistry in the post-
lab assignment. Furthermore, such structural information was also 
confirmed by NMR spectroscopy after the synthesis of the Diels-
Alder adduct. Therefore the results indicate that the implementation 

of computational analysis leverages students’ understanding of 
many important concepts of physical organic chemistry. 

5. CONCLUSION 
In this study, we demonstrated that computational aids such as 
WebMO can be introduced into undergraduate level classes and 
facilitate students’ better understanding of Diels-Alder reactions. 
Combinations of multiple concepts in chemistry often require quite 
complicated design of classes with multiple separated sections. The 
Diels-Alder reaction is a well-established example utilized in the 
undergraduate organic chemistry laboratory. By incorporating 
computational aids into this particular laboratory class, students can 
be exposed to several important concepts including 
thermodynamics, frontier orbital theory, stereochemistry, and so 
on. We also observed such visualization increased students’ 
engagement in the course, which is presumably because they are 
more familiarized with today’s technology. Harmonization of 
synthetic chemistry lab with computational analysis to demonstrate 
how physical chemistry can provide “visible” understanding is very 
important. It is, however, equally important for students to realize 
that computational results cannot solely be used to answer the 
questions. Further efforts to develop classes with highly efficient 
and effective teaching tools associated with computational analysis 
are ongoing in our department. 
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ABSTRACT 
“Aligning Sequences-Sequentially and Concurrently,” an 
educational computational science module by the authors and 
available online, develops a sequential algorithm to determine the 
highest similarity score and the alignments that yield this score for 
two DNA sequences.  Moreover, the module considers several 
approaches to parallelization and speedup.  Besides a serial 
implementation in C, a parallel program in C/MPI is available.  
This paper describes the module and details experiences using the 
material in a bioinformatics course at University “Magna Græcia” 
of Catanzaro, Italy.  Besides being appropriate for such a course, 
the module can provide a meaningful application for a high 
performance computing or a data structures class. 

CCS Concepts 
• Social and professional topics~Computing 
education   • Theory of computation~Parallel 
algorithms   • Theory of computation~Dynamic 
programming   • Applied computing~Bioinformatics 

Keywords 
Computational Science; High-Performance Computing; 
Educational Modules; Blue Waters; Fulbright. 

1. INTRODUCTION 
In a Fulbright Specialist visit to University “Magna Græcia” of 
Catanzaro, Italy, in January 2015, Angela Shiflet and George 
Shiflet initiated a project with Mario Cannataro and Pietro Guzzi   
to develop educational modules on high-performance-computing 
bioinformatics algorithms.  Wofford College student Daniel 
Couch, supported by a one-year internship with the Blue Waters 
Student Program, implemented the sequential and high-
performance computing algorithms associated with the first two of 
the resulting modules. 

 

The first product of this collaboration is a module that uses 
algorithms to determine the highest similarity score and the 
alignments that yield this score for two DNA sequences.  
Sequence comparison to determine the similarity or difference of 
two sequences is a fundamental operation of the interdisciplinary 
field of bioinformatics. Bioinformatics, which relies on 
mathematics, statistics, and computer science, provides tools to 
compile, organize, and analyze the overwhelming volumes of data 
that are being generated from genomic studies.  Because of the 
enormous quantity of data involved, high performance computing 
is an essential tool in bioinformatics. Similarities in gene 
sequences from different organisms, such as human and mouse, 
can help establish the function of the gene, and through sequence 
alignment, scientists can help establish the genetic causes of 
certain diseases. Moreover, sequence alignment is used to study 
protein functions and as a basis to predict protein structure. 

The educational module, “Aligning Sequences-Sequentially and 
Concurrently,” available at [6], develops the sequential 
Needleman-Wunsch Algorithm for sequence alignment and two 
parallel versions of the algorithm, the Pipeline Algorithm and the 
Block-and-Band Version of the Pipeline Algorithm.  Also 
included in the module are the necessary biological background, 
quick review questions, exercises, and projects.  The module was 
class tested in the course Advanced Techniques for 
Bioinformatics at University “Magna Græcia” in Spring, 2016, 
under the direction of Dr. Pietro Guzzi.  This paper describes and 
examines the module and our experiences using it. 

2. Module 
2.1 Pedagogy 
A variety of courses can incorporate the educational module 
“Aligning Sequences-Sequentially and Concurrently.”  For 
instance, a bioinformatics course can encompass the concepts and 
algorithms and consider or omit the programming components.  
The module can also be useful in an entry-level programming or 
data structures course to show an application of two-dimensional 
arrays.  Moreover, a high-performance computing class can cover 
the module emphasizing the HPC algorithms and concepts.   

The module provides the biological background necessary to 
understand the applications and references for further study.      
Eighteen (18) multi-part quick review questions throughout the 
module, with answers at the end of the module, provide 
immediate feedback. Nine (9) exercises give additional practice to 
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aid understanding of various aspects of the algorithms.  The 
module also provides five (5) project assignments for further 
exploration using sequential and/or parallel programming.  
Instructors can obtain implementations of the sequential algorithm 
in C and the parallel algorithms in C with MPI from [5] or the 
authors. 

2.2 Biological Background 
The introduction begins with a story of a woman diagnosed with 
breast cancer, possibly caused by inherited, mutated genes, and a 
general discussion of genes.  Subsequent background sections are 
on “Nucleic Acids,” “Proteins,” “Connecting DNA Code to 
Protein Sequence,” “Mutations and Cancer,” and “Genomics and 
Bioinformatics.”   The latter section indicates the importance of 
computation to biology by emphasizing that bioinformatics 
employs mathematics, statistics, and computer science to organize 
and store in databases vast amounts of data generated from 
genomic studies and to analyze that data.   

Some of the biological material in the module will be familiar to 
some students but is included for students with minimal science 
backgrounds.  Crucial to the understanding of the material is a 
basic understanding of deoxyribonucleic acid (DNA).  DNA is a 
long chain of molecules, each containing a nitrogenous base, 
adenine (A), guanine (G), cytosine (C), or thymine (T).   

Among the different bioinformatics algorithms, pairwise sequence 
alignment was chosen because it is largely used in various fields 
of biology, e.g. to highlight conserved DNA sequences or protein 
motifs along evolution, or as a basis of the protein structure 
prediction algorithms used to predict secondary and tertiary 
structure of proteins.  

In particular, pairwise sequence alignment algorithms arrange the 
two input sequences (e.g. representing DNA, RNA, or proteins) to 
discover similar regions that may be due to functional, structural 
or evolutionary relations among the sequences. On the other hand 

Moreover, sequence alignment algorithms use a very simple and 
intuitive metrics, i.e. the similarity among sequences, as a 
criterion to evaluate the quality of alignment. Finally, the chosen 
Needleman-Wunsch algorithm works on tabular data that is a data 
format very familiar to the students to whom the educational 
module is addressed. 

2.3 Sequential Algorithm 
Using bioinformatics, we can align DNA sequences to identify 
regions that are similar.  Such a similarity might indicate that the 
two regions have the same function or evolve from a common 
ancestor in a sequence of mutations.  In comparing two sequences, 
such as ATGAC and ACGC, we can employ a metric, called a 
similarity score, or score, to rate various alignments.  For a 
scoring scheme, the highest possible similarity score indicates the 
best alignment(s).  As the module discusses, an alignment of two 
DNA sequences has spaces in the sequences so that they are of the 
same length but so that a space in one sequence is not in the same 
position as a space in the other sequence.  For example, with a 
dash (-) indicating a space, one alignment of s = ATGAC and t = 
ACGC follows: 
 

s: A T G A C 
t: A - C G C 

 

Another possible alignment is as follows: 

 

s: A T G A C - - 

t: - - - A C G C 

 

Although we can rate the quality of an alignment in many ways, 
this example in the module defines the score for an alignment as 
the total of column, or position, scores, where the column scores 
have the following values:  +1 for a match, -1 for a mismatch, 
and -2 for a space in one of the corresponding positions.  Adding 
all the position scores, the following alignment, with a dash (-) 
indicating a space, has a score of 1 + (-2) + (-1) + (-1) + 1 = -2: 
 

s: A  T G A C 
t: A  - C G C 

column scores: 1 -2 -1 -1 1 
      

The Needleman-Wunsch Algorithm is a technique to determine 
the similarity and the alignments that yield this score [4].  The 
algorithm employs dynamic programming, which divides a 
problem into a collection of smaller problems and uses the 
solutions to these smaller problems to solve the larger problem.  
The Needleman-Wunsch Algorithm makes the best decision for 
prefixes, or subsequences from the start of the sequences (the 
smaller problems), as it iterates over the length of those prefixes.  
The module used the notation s[i..j] to indicate the subsequence 
from position i to position j, where the first position number is 0.  
For example, in s = ATGAC, s[1..2] is TG. 

We write the developing intermediate similarity scores in a two-
dimensional array, or matrix, a.  A blank (dash) and the bases of 
one sequence, such as s, are row labels, while a blank and the 
bases of the other sequence, such as t, label the columns.  As 
indicated in Figure 1, in row 0 and column 0, we write the on-
going scores for matching all spaces with prefixes of sequence s 
and t, respectively. 
 

      0   1   2   3 
   -  A  C  G  C 

   0  1  2  3  4 

 - 0 0 __ -2 __ -4 __ -6 __ -8 

         |         

0 A 1 -2 

   | 

1 T 2 -4 

   | 

2 G 3 -6 

   | 

3 A 4 -8 

   | 

4 C 5 -10 

 
Figure 1.  Initial values in similarity matrix 
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     0  1  
   -  A  C  
   0  1  2  
 - 0       
         

0 A 1       
         

1 T 2   -1  0  
                                          (-1) + (-1) = -2  \      |   0 + (-2) = -2 
2 G 3   -3 __ ?  
         |     

(-3) + (-2) = -5 
 

Figure 2.  Determine a[3][2] from a[2][2], a[3][1], and a[2][1] 
 
To determine the matrix scoring values, we proceed row by row, 
from left to right, calculating elements.  Figure 3 contains the 
entire similarity matrix, with line segments marking the paths 
from the maximum element(s).  The value in the bottom, right 
corner, 0, is the similarity of ATGAC and ACGC.  Following line 
segments from that corner backward to a[0][0], we obtain a 
corresponding alignment for the sequences, such as the following 
optimal alignment: 
 

s: A T G A C 
t: A C G - C 

 
  -  A  C  G  C 
  0  1  2  3  4 
- 0 0 __ -2 __ -4 __ -6 __ -8 
  | \        

A 1 -2  1 __ -1 __ -3 __ -5 
  |  | \  \    

T 2 -4  -1  0 __ -2 __ -2 
  |  | \ | \  \  

G 3 -6  -3  -2  1 __ -1 
  | \ | \ |  | \  

A 4 -8  -5  -4  -1  0 
  |  | \   | \  

C 5 -10  -7  -4  -3  0 
 

Figure 3. Array of similarity values for ATGAC and ACGC 
 

2.4 HPC in Module 
After covering this material, the module shows that employing a 
two-dimensional array, the complexity of the sequential algorithm 
is on the order of n2, O(n2), where n is the length of a sequence.  
To illustrate the problem, the module displays a graph of timings 
using a C implementation of the Needleman-Wunsch Algorithm 
with an increasing number of nucleotides (Figure 4).  When we 
are trying to match a sequence to multiple sequences in a 
database, the timing challenge of employing an O(n2) algorithm so 
often becomes evident.   

Figure 4 runtime = 1.62585 ´ 10-8 nucleotides2 
 

Thus, discussion of complexity motivates the need for parallel 
processing.  We can have different processes aligning the search 
sequence to different database sequences in a way called 
“embarrassingly parallel,” and/or we can have a parallel 
alignment algorithm, such as the Pipeline Algorithm, to operate 
on each pair of sequences.   
In the Pipeline Algorithm, for simplicity, the module assumes that 
the number of processes equals the number of rows, n, in the 
similarity matrix and that Process j is responsible for making the 
calculations on row j.  The processes can simultaneously compute 
their first column elements without communication with the other 
processes using the formula j * spacePenalty for a[0][j].  Then, 
Process j, for j = 0, 1, …, n – 2, can send a[0][j] to Process (j + 1).  
Similarly, Process 0 can compute the ith element in row 0 as i * 
spacePenalty.  Immediately after calculation of a[i][0], Process 0 
can communicate the value to Process 1.  Now, knowing the 
crucial values on the row above, a[0][0] and a[0][1],  and the 
value to the left, a[1][0], Process 1 can calculate a[1][1].  
Moreover, while this calculation is occurring, Process 0 can be 
calculating its next value, a[0][2].  Then, Process 0 sends a[0][2] 
to Process 1, and Process 1 sends a[1][1] to Process 2, so that 
enough information will be available to occupy the first three 
processes.  With each step, an additional process is drafted to 
work.  Figure 5 depicts the progress of this pipelining system for 
sequences of length n = 5 and m = 8.  After receiving 
communication of the value above, a process can start 
computation of its element in darker outline.  Thus, calculation of 
values on this anti-diagonal can proceed in parallel [2]. 
 

         Process 0 

         Process 1 

         Process 2 

         Process 3 

         Process 4 

         Process 5 

Figure 5 Pipelining the similarity matrix for sequences of 
length n = 5 and m = 8 

 
After discussing the algorithm, the module considers the number 
of steps for n processes to calculate the similarity matrix for 
sequences of length n, O(n). However, as the module illustrates, 
one disadvantage is the amount of communication, which is O(n), 
too.  Besides a theoretical discussion in the module, a table 
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presents runtime and speedup results versus number of 
nucleotides for sequential and pipeline C implementations of the 
Needleman-Wunsch Algorithm.  The table shows that with more 
than 10,000 nucleotides the pipeline algorithm is faster than the 
sequential one, but speedup is not linear.  Increasing 
communication between processes dampens the runtime of the 
HPC version. 

The problem of communication motivates consideration of the 
block-and-band version of the Pipeline Algorithm. To reduce 
communication, each process calculates a block of several column 
values.  Moreover, as Figure 6 illustrates, we can make a process 
responsible for a band, or several rows, of elements.  After 
calculating a submatrix, a process sends the block of elements in 
the last submatrix row to the next process so that the latter can 
start evaluation of a submatrix.  Not only does a process transmit 
fewer elements, communication can involve a block of elements 
instead of multiple separate send operations, which is slower.  
One of the module’s projects has the students implementing the 
algorithm and determining optimal block and band sizes.  
Consideration of the results can lead to a class discussion of 
scaling and load balancing. 
 

         }  
         Process 0 

          

         } 

 

         Process 1 

          
Figure 6 Pipelining a similarity matrix with block size of 2 and 

band size of 3 
 

2.5 Reinforcement of Material 
Eighteen, often multipart, Quick Review Questions throughout the 
module provide an assessment of the student's comprehension of 
the material.  For example, one question has the students 
calculating the value of a scoring matrix element by hand.  
Another 17-part question has the student trace through the scoring 
algorithm using particular sequences.  Answers at the end of the 
module provide immediate feedback to determine if the student is 
understanding the concepts. 

Nine exercises provide additional reinforcement.  For example, 
three exercises ask the students to develop entire scoring matrices 
for particular sequences, two involve complexity, and two 
consider modifications to the sequential algorithm. 

Five projects have the students developing various sequential 
and/or parallel algorithms, performing timings, calculating 
speedup, and determining advantageous band and block sizes. 

3. Class Testing 
3.1 Class 
In Spring, 2016, the course Advanced Techniques for 
Bioinformatics at the University “Magna Græcia” of Catanzaro in 
Italy covered the module.  The course is a requirement during the 
last semester of their Master’s Degree in Biomedical Engineering.  
The thirty (30) students in the class had BS degrees in biomedical 
engineering and, thus, had more skills on the biological side than 
in computer science.  The students covered the module in one 
week with four class contact hours.  A final assignment, done 

individually, was to implement the sequential version in Python 
and to compare their times to those in the module for the 
sequential and parallel implementations. 

3.2 Results 
After coverage of the material, seventeen (17) students completed 
a survey about the module.  Table 1 gives the list of survey 
questions, eliciting a response from 1 for “strongly disagree” to 5 
for “strongly agree,” with the average scores. The responses were 
mostly very favorable but indicated some challenges with the 
parallel algorithms and programming.   

 

Score Statement 

4.47 I understood the science in the module. 

4.29 I understood the sequential algorithms in the module. 

3.76 I understood the parallel algorithms in the module. 

4.53 I understood the importance of using high performance 
computing. 

4.47 The module was readable. 

4.59 The Quick Review Questions helped me understand the 
material. 

4.25 The exercises helped me understand the material. 

3.13 The project helped me understand the material. 

Table 1 Student survey averages (1 – strongly agree and 5 – 
strongly agree) 

 

The survey also included the following questions that required 
free responses: 

• Please elaborate about the above scores, particularly 
those below 4. 

• What did you like best about the module? 
• What did you find most difficult in the module? 
• Please give corrections and suggestions for 

improvement. 
• Please make further comments. 

These responses indicated a desire by many students for the 
module to have more examples and explanation of the parallel 
algorithms.  In response, the authors revised the sections on 
“Pipeline Algorithm” and “Block-and-Band Version of the 
Pipeline Algorithm” to include three specific, detailed examples 
and three additional multipart quick review questions with 
answers on the parallel versions (pipeline and block-and-band 
with bands of size 1 and greater than 1) of the algorithm.   

The students’ free responses contained numerous compliments. 
Students indicated that they liked the linkage between genomics 
and bioinformatics, the correlation between genetic mutations and 
cancer, and the discussion of bioinformatics.  Several stated that 
the quick review questions, figures, tables, and pseudocode for the 
Needleman-Wunsch Algorithm were helpful.  One student 
commented, “The way in which alignment algorithms were 
explained in the module is better than other articles I read, I really 
like it,” and another stated, “The article was interesting, from 
which we learned new concepts.”  About one-third of the students 
volunteered that the module was “interesting” or “very 
interesting.” 
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4. CONCLUSION 
Based on the survey responses and the students’ performance, the 
module, “Aligning Sequences-Sequentially and Concurrently,” 
accomplishes conveying some of the basic principles of 
bioinformatics, the Needleman-Wunsch Algorithm, HPC versions 
of the algorithm (pipeline and block-and-band), and the utility of 
high performance computing.  Moreover, the students understood 
and appreciated the material and successfully completed the 
assignment.  As a result of their suggestions, the authors improved 
the module, making it an even better educational module 
incorporating HPC topics in the context of other applications 
learning. 
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ABSTRACT 
In this paper, we describe and detail our project that allows for 
augmented reality visualization of data produced using the Blue 
Waters supercomputer or other high performance computers. 
While molecular structures have been displayed using augmented 
reality before [1][6], we created a pipeline for using information 
from the Protein Data Bank and automatically loading it into an 
augmented reality scene for further display and interaction. We 
find it important to create an easy way for students, scientists, and 
anyone else to be able to visualize molecular structures using 
Augmented Reality because it offers an interactive three 
dimensional perspective that is typically not available in the 
classroom. Learning about molecular structures in 2D is much less 
comprehensive, and our technique for visualization will be free 
for the end user and offer a great deal of aid to the learning and 
teaching process. There is no separate purchase required as long 
as a user has a smart phone or tablet. This is a helpful addition to 
scientific papers which, if containing the right target image, can 
be used as the visualization “anchor.” The Protein Data Bank 
(PDB) houses information about proteins, nucleic acids, and more 
to help scientists and students understand concepts and ideas in 
biology and chemistry [5]. Our project goal is to open the PDB up 
to students and people who are not familiar with augmented 
reality visualization and allow people to learn using the PDB by 
visualizing molecular structures in different representations, 
annotating and interacting with the structures, and offering 
learning modules for common molecular structures. We created a 
prototype mobile application allowing for molecular visualization 
of PDB structures, and are continuing to tweak our project for an 
eventual release to the public. 

Keywords 
Augmented Reality, Virtual Reality, Blue Waters, Unity 3D, PDB, 
Molecule, Visualization, Science 
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1. INTRODUCTION 
“Augmented Reality (AR) is a medium in which digital 
information is overlaid on the physical world that is in both 
physical and temporal registration with the physical world and 
that is interactive in real time,” [2]. This is different than virtual 
reality, which allows us to enter an entirely digital world where 
our environment is generated by a computer. Our project focus is 
to allow users to, via a mobile application, display and interact 
with molecular structures using augmented reality. To do this, we 
used a game engine, in our case, Unity 3D, so that we did not 
have to create and develop capabilities that a game engine already 
has to offer. The game engine allows us to arrange digital 
information that will be overlaid onto the physical world and thus 
allow for augmented reality. We also have access to the Blue 
Waters supercomputer which made it efficient and quick to put 
structures in the PDB into a format that we could visualize and 
manipulate. The middle step from PDB to AR visualization is a 
program called VMD (Visual Molecular Dynamics) which takes 
structures from the PDB, visualizes them, and creates output in a 
format that we can make into an Augmented reality scene (a 
format readable by the game engine software). The end goal is to 
be able to open the application, which communicates with a server 
and requests a visualization in the desired format, have the server 
execute VMD to create a file with the correct specifications and 
send it back to the mobile application where it is displayed and 
can be interacted with via AR. 

  

Figure 1: The view as seen from the camera of a computer 
that is using the VisMo application. You can see the target 
image, virtual buttons, and molecular structure.  
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2. Related Work 
Work by Billinghurst, Poupyrev, and May about mixed reality 
environments and how augmented reality allows for collaborative 
computing is important and relates to concepts we are addressing 
with in our project [1]. 

A similar project at the HITLab at the University of Washington 
for augmented tangible molecular models created a molecular 
viewer where using virtual models highlighted primary, 
secondary, tertiary, and quaternary levels of structural 
organization and amino acid sequences [4].  

Another related project is the NCSA Access magazine [5] created 
by the National Center for Supercomputing Applications (NCSA) 
at the University of Illinois at Urbana-Champaign. This issue of 
the magazine was a special augmented reality issue done as 
collaboration between Dr. Alan Craig, NCSA, and a team at 
Daqri, a company focused on augmented reality. The pages in the 
issue had unique content connected with them, and when users 
view the magazine through the mobile Daqri application, the 
augmented reality visualizations, including some example 
molecular visualizations, become visible.  

3. Creating the Pipeline 
3.1. From PDB to AR 
In order to visualize structures from the PDB, we used Visual 
Molecular Dynamics (VMD) software. VMD retrieves the data for 
the requested molecule from the PDB and creates a 3D computer 
graphics representation of the desired visualization. In our case, 
VMD creates a .obj file which is then returned to the VisMo 
application and placed into our virtual scene which is overlaid on 
the real world via augmented reality. The user of VisMo requests a 
PDB file within the application by entering the desired molecule 
via a dialog box on the mobile application, VisMo passes that 
information along to the server, and VMD runs and produces the 
desired file with the user-selected specifications. VisMo then can 
place the visualization in the scene and the user can see and 
interact it. The user can now control the point of view, size, and 
other characteristics of the structure they are observing using on 
screen and virtual buttons. 

3.2. Communicating With a Server 
It was necessary to set up a server for this project because there is 
computing that must be done outside of the mobile application. 
Shodor was very helpful and set up a server with VMD on a 
virtual machine so that we could, from within our augmented 
reality application, request that a file be made using VMD and 
certain specifications, and then export the file back to users.  

Storing all of the information from the PDB is not feasibly 
possible within a mobile application, which is why using a server 
is necessary for this project.  

3.3. Live Annotations 
Creating a system for live annotations within the scene during a 
visualization session was a goal of ours from the beginning; a way 
for the viewer to mark up the scene in order to help their 
comprehension and maybe help them teach a concept to other 
viewers. For now, we have implemented a “graffiti style” method 
of annotating the scene in real time. Essentially, when users press 
a button on the screen, a wall pops up behind the structure and 
allows the user to draw and write on it, acting as a worksheet of 
sorts.. In order to do this, we had help from Rodrigo Fernandez 
who allowed us to work using ideas and modified code from his 
project Texture Painter which can be found in the Unity 3D asset 

store [3]. Figure 2 shows a method of graffiti style annotation 
which could be implemented into the scene.  

Figure 2: structure of human PCNA with a palette for graffiti 
style annotations behind it in Unity 3D. 

Figure 3: User has the application open in order to visualize a 
human PCNA structure using the ball and stick visualization 
technique. 
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4. Application 
The applications for a project like this are vast and relatively 
unlimited; when we have the ability to control what digital content 
we are placing in physical and temporal registration with our real 
world, there is a great deal of versatility.  

What we have created is a mobile application that we see as 
helpful for classroom use, lab use, and other scholarly settings. 
Our motivation for creating such an application was noticing how 
limited textbooks and worksheets are when teaching chemistry 
and biology. Learning about three dimensional structures by 
looking at them in two dimensional representation simply is not 
good enough. What we are doing is giving users the ability to 
manipulate and visualize structures from any angle with no more 
than a sheet of paper and their smartphone or tablet. It can be seen 
in Figure 2 that users working with this application will see 
through the lens of a camera on a tablet or smartphone as their 
looking glass into the augmented reality world that we have 
created.  

In a lab, scientists often must communicate information with one 
another, and it is senseless to assume that each and every person 
they are working with understands exactly what they mean when 
trying to communicate certain information about certain 
molecular structures. With our application, scientists can more 
easily demonstrate concepts by being given the ability to show 
what they are working with more precisely, and being able to 
choose representation style, coloring style, etc. to better highlight 
certain structures or sections of a structure.  

Finally, we can say with confidence that readers of scientific 
articles and papers are often bombarded with heavy text as the 
only means of information with intermittent pictures scattered 
throughout the page. Our application would allow users to insert 
pictures into scientific papers that could be used to display 
information in augmented reality without compromising the 
written content of the paper. This would offer a more rounded 
perspective to information given in a certain paper or article.  

5. Conclusion 
We were able to create an innovative application for Android and 
iOS platforms which allows users to visualize structures of 
molecules which are typically only seen in 2D representations on 
paper in a 3D space. Our project allows for students and scientists 
to interact with their work in a way that can foster a greater 
understanding and sense of comprehension because it is, by 
nature, more wholesome to our senses. Seeing things from 
multiple perspectives and multiple representation styles while not 
being limited to how many physical balls or sticks a classroom 
has to build a structure is endlessly helpful. 

6. Future Work  
We are continuing to work on this project, and our goal is to 
familiarize people with augmented reality and allow people to 
simultaneously enjoy elements of the physical and virtual worlds 
without shutting out exposure to one or the other at any given 
time. Viewing digital content and seeing the world around should 
not be mutually exclusive. We would like to continue to add 
learning modules into the application which can help people learn 
scientific concepts and complete tutorials by visualizing 
scientifically curated structures and reactions using our 
applications and augmented reality. We will also continue to add 
features such as expanding our pool of curated structures and 
working with scientists and teachers to assess what needs we can 
work to fulfill in the scientific community. We would like to 
create tutorials where people can learn through pre-designed 

lessons in addition to the freeform use of visualizing any PDB 
structure.  

7. Reflections 
The Blue Waters Student Internship Program created an 
environment where students learned about high performance 
computing, parallelization, and in general doing research at 
university level. Students were given the opportunity to sit in on 
seminars and educational sessions for learning about parallel 
computing and how to implement ideas from this type of 
computing into the research and problems that we are working on.  
This was a great experience that has molded the education and 
career path I am taking. As a result of this program, I have already 
begun taking more computer science courses and visualization 
courses at University of Illinois at Urbana-Champaign. This has 
helped me learn more about the basics of computing, and I build 
upon that more in my independent classes, and I can also tie in the 
information I have learned from this internship to do what I need 
to do. This internship has also inspired me to get involved with 
other departments on campus. I have presented some of my work 
from this internship at various talks, and as a result of that I have 
been asked to help with projects and lab studies around campus. I 
am currently participating in two projects where I am using 
programming and visualization skills enhanced by this internship.  
I plan to do more research at the graduate level as well. I plan to 
get my PhD in Informatics or Computer Science, so this 
internship has definitely had a great influence on me. I now 
understand how important research is, and I do think that I can 
make an impact on the scientific community throughout my years 
of graduate school as I continue to learn and grow more, and 
participate in more great programs like the Blue Waters Student 
Internship Program.  
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ABSTRACT 
The problem of interconnecting nets with multi-port terminals in 
VLSI circuits is a direct generalization of the Group Steiner 
Problem (GSP). The GSP is a combinatorial optimization problem 
which arises in the routing phase of VLSI circuit design. This 
problem has been intractable, making it impractical to be used in 
real-world VLSI applications. This paper presents our work on 
designing and implementing a parallel approximation algorithm 
for the GSP based off an existing heuristic on a distributed 
architecture. Our implementation uses the CUDA-aware MPI 
approach to compute the approximate minimum-cost Group 
Steiner tree for several industry-standard VLSI graphs. Our 
implementation achieves up to 103x speedup compared to the best 
known serial work for the same graph. We present the speedup 
results for graphs up to 3k vertices. We also investigate some 
performance bottleneck issues by analyzing and interpreting the 
program performance data. 
 

1. INTRODUCTION 
A number of optimization problems with different application 
areas can be modeled by the GSP: given an undirected weighted 
graph G = (V, E) and a family N = {N1,…,Nk} of k disjoint groups 
of nodes Ni ⊆ V, find a minimum-cost tree which contains at least 
one node from each group Ni. One of such problems is the global 
routing phase in VLSI design. The exponential increase in 
complexity of integrated circuits where tens and thousands of 
non-overlapping nets may need to be routed simultaneously 
makes VLSI design a broad area where combinatorial 
optimization methods can be applied. The problem of 
interconnecting a net with multi-port terminals is a direct 
generalization of the GSP.  

The advent of modern petascale supercomputing architectures has 
enabled scientists and engineers to solve several complex 
problems. Today's supercomputers can not only perform 
calculations with blazing speed, but also process vast amounts of 
data in parallel by distributing computing tasks to thousands of 
processing elements. With portable Application Programming 
Interfaces (APIs) such as MPI (Message Passing Interface) and 
CUDA (Compute Unified Device Architecture), researchers can 
now exploit parallelism to not only solve bigger problems, but 
also solve more problems in shorter time. This paper presents our 
work on the design and implementation of a parallel 
approximation algorithm for the GSP that uses Depth Bounded 

Steiner Tree Approximation [1]. Our goal was to achieve a better 
run time to make the heuristic practical for very large scale 
problems. 

2. A GPU-BASED ALGORITHM 
Given an instance of the GSP, our parallel implementation returns 
a minimum-cost group Steiner tree. Our parallel algorithm follows 
the following steps in order. 

2.1 Metric Closure on GPU 
In general, the given graph G may violate the triangle inequality, 
i.e., there may be edges in G whose cost is greater than the cost of 
the minimum u-v path in G. An optimal group Steiner tree will 
contain no such edges, since replacing such edges with the 
corresponding shortest paths will decrease the total tree cost. 
Therefore, without loss of generality, we replace G by its Metric 
Closure. The Metric Closure is defined as the complete graph 
where the cost of each edge (u, v) is equal to the cost of the 
minimum u-v path in G. In other words, our first task is to 
compute the All Pair Shortest Paths (APSP) for the given graph 
and replace every edge cost with the corresponding minimum u-v 
path cost. For the APSP, we use a highly efficient CUDA 
implementation for the Blocked Floyd-Warshall APSP algorithm 
from [2] on a GPU. After computing the metric closure and 
replacing the original graph with it, we modify G as follows. We 
duplicate and replace every port with a new node and add a zero-
cost edge between the two. The original port is now a non-port 
and the newly added node is now a port. An optimal tree in the 
modified graph G’ has the same cost as an optimal tree in the 
original graph. Hence, this transformation allows us to seek a 
near-optimal Steiner tree in the original graph. 
 

2.2 Group Steiner Heuristic on CPU 
Using G’ from the previous step, we now construct a minimum-
cost Group Steiner tree by launching multiple processes using 
CUDA-aware MPI. A d-star is defined to be a rooted tree of depth 
at most d. With every vertex as the potential root r, we follow the 
following steps in order to construct the final solution. 

2.2.1 1-Star 
We construct 1-star tree rooted at the root of the optimal solution 
tree, i.e. a tree of depth 1 where all leaves are ports, one from each 
group. 

2.2.2 Minimum-Norm Partial Star 
We then select the intermediate nodes and determine a set of 
groups that should be connected to each intermediate node. A 
root, an intermediate node and a set of groups together form a 
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Partial-Star. Each partial-star is a sub-tree of the solution tree. We 
compute all such partial stars until all the groups are spanned. 

2.2.3 2-Star 
We combine all the partial-stars computed in the previous step to 
form the 2-star solution tree for the given vertex. 

2.2.4 Minimum-cost 2-Star 
We then collect all such 2-star solution trees obtained from the 
previous step and select the one with the minimum cost as the 
final solution. This is the minimum cost Steiner tree that the 
algorithm is supposed to output. 

 
As shown in Figure 1, (a) constructs a rooted 1-star, i.e. a tree of 
depth 1 where all leaves are ports, one from each group. A root, 
an intermediate node and a set of groups together form a partial-
star. Each minimum-norm partial-star is a sub-tree of the solution 
tree [1]. Steps (c) though (e) compute such partial-stars until all 
groups are spanned. Step (f) combines all the partial-stars 
computed in the previous step to form a 2-star tree for the given 
root r. Out of all such 2-star trees obtained from the previous step, 
the one with the minimum cost is the final solution. 

2.3 Work Distribution 
Our Hybrid CPU-GPU approach uses CUDA-aware MPI as the 
standard for launching multiple processes on the Blue Waters 
supercomputer. In distributing work, the popular master-slave 
approach was used, wherein process 0 is the “master” process and 
the remaining ones are “slave” processes. The master performs 
step 2.1 and then broadcasts the modified graph to all the slaves. 
Each vertex (a potential root) is then mapped to a slave, whose 
task is to perform step 2.2 and communicate the result back to the 
master. After receiving all such results, the master then performs 
reduction to compute the overall solution. 

2.4 NP-Hardness of GSP 
The Group Steiner Problem (GSP) is a direct generalization of 
Classical Steiner Tree Problem, and has been known to be NP-
hard. Hence it is not known whether an optimal solution to the 
GSP can be found by using a polynomial-time algorithm. The 
GPU-based algorithm as described above is a polynomial-time 
approximation scheme that efficiently outputs a near-optimal 
Group Steiner Tree. 

The performance ratio is defined as the ratio of the approximate 
cost to the optimal cost for a given instance of the GSP. The 
Group Steiner Heuristic as described above returns a solution with 
a performance ratio no more than 2. 2 +	 ln()

*
) . √𝑘 where k is 

the number of groups in the given instance of GSP [1]. 

The results in Table 1 show the comparison between the best 
known upper bound of the optimal cost (Opt. Cost) and the 
approximate cost(Approx. cost) returned by our GPU-based 
approach. Our results show that the GPU-based approach returns a 
nearly optimal solution with negligible cost error and a 
performance ratio within the given upper bound. 

3. PERFORMANCE EVALUATION 
We ran our performance tests on Blue Waters supercomputer 
which uses a Cray XE6/XK7 system. We tested both our serial 
and parallel implementations using several Wire Routing Problem 
(WRP) instances from industry. The instances are in a widely 
accepted standard STP format [3]. We compare our approximate 
solutions for WRP instances with optimal solutions from [4]. Our 
analysis shows the cost error is less than 1% for all the input 
graphs that we tested on. 
 

Graph 
name 

Opt. cost Approx. 
cost 

Error % 

wrp3-11 1100361 1100427 0.006 

wrp3-39 3900450 3900600 0.004 

wrp3-96 96001172 96003009 0.002 

wrp3-83 8300906 8302279 0.017 

 Table 1. Error of approximate cost 

The graph below shows a comparison between the running times 
for the best known serial work [4] and our parallel 
implementation.  We tested on several graph sizes ranging from 
128 to 3168 vertices. Our analysis shows that our algorithm 
achieves speed-ups for bigger graph sizes (>600 vertices), with a 
maximum speed-up of 103x for the wrp3-83 graph with 3168 
vertices. 
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A common task in HPC is measuring the scalability (also referred 
to as the scaling efficiency) of an application. This measurement 
indicates how efficient an application is when using increasing 
numbers of parallel processing elements. The graph in figure 3 
shows that our problem is highly scalable for a problem size of 
2518 vertices (wrp3-96). 

 

4. CONCLUSION 
After careful analysis, we have noticed some subtle yet interesting 
points about our algorithm. Our algorithm is highly dynamic in 
the sense that it is not possible to predict the size of the solution at 
any point before actually computing it. Because of this, the work 
needed to be done at every step, which is proportional to the 
output size, cannot be predicted. This means that work 
distribution is highly irregular and this leads to load imbalance 
among processes which inhibits performance.  This uncertainty 
also contributes to a lot of irregular memory accesses which is 
also a performance bottleneck. Our algorithm is also adaptively 
refined, in the sense that it uses several steps to refine the solution 
for each vertex and then chooses the best solution among all the 
vertices. Algorithms that share the same characteristics as ours 
also share the problems of load imbalance and memory hierarchy. 

5. FUTURE WORK 
Our implementation suffers from the problems of load imbalance 
and irregular memory accesses due to the highly dynamic nature 
of our algorithm. Hence we wish to design a better load balancing 
mechanism and optimize the memory consumption of our 

implementation. Future work also includes making modifications 
to overlap more computation with data-communication. 

6. REFLECTIONS 
The project described in this paper was Venkata’s Blue Waters 
Student Internship project where he learned to incorporate several 
principles of computation and high-performance computing into 
his research. This section presents Venkata’s reflections about his 
internship and the impact that it has had on his current and future 
academic endeavors: My interest in computer science was ignited 
right from the introductory courses that I took my freshman year 
in college. I was fortunate to have received an opportunity to work 
with Prof. Yoon on this research project right from my freshman 
summer. At the end of the summer, we had the sequential and 
parallel versions of the code running on our local cluster. To our 
surprise, the parallel version was slower than its sequential 
counterpart in terms of run-time. After thorough investigation we 
concluded that our implementation had suffered from load 
balancing and thread divergence issues that hurt the performance 
a lot. We articulated that significant parts of our algorithm were 
more suitable to be handled by the CPU than the GPU and hence 
we started looking into distributed computing architectures like 
the Blue Waters Supercomputer. I then applied for the Blue 
Waters Internship Program and was fortunately accepted for the 
summer after my sophomore year in college. At the 2-week 
workshop, I learned parts of the C and FORTRAN programming 
languages in order to learn the basics of the parallel computing 
libraries OpenMP, CUDA, MPI, and OpenACC. I was taught how 
to use profiling and debugging tools like CPMAT and TAU. I was 
also exposed to parallel I/O libraries such as Lustre. Thanks to this 
experience, I am now confident using the Linux command line to 
navigate Blue Waters and write basic shell scripts to execute the 
code for my research. Having learned these skills, I am capable of 
using supercomputers for my research, which is at the intersection 
of engineering and computer science. This research experience 
has given me a glimpse of how computer scientists carry out 
research that continually shapes the world we live in. I am 
planning on pursuing a doctorate at a graduate school in the field 
of computational science, and I believe that these experiences will 
make me a good candidate in the application process. The Blue 
Waters Internship is definitely a turning point in my college career 
and my life in general, and having this opportunity to do cutting-
edge research with real-world implications is an invaluable 
experience. 
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Figure 4. A graphical flow chart representation of the parallel 
algorithm. 
 

Figure 5. A parallel approximation algorithm for GSP. 
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ABSTRACT
General purpose GPUs are a powerful hardware with a num-
ber of applications in the realm of relational databases. We
further extended a database framework designed to allow
for GPU execution queries. Our technique is novel in that
it implements Dynamic Parallelism, a new feature in recent
hardware, to accelerate SQL JOINs. Query execution re-
sults in 1.25X speedup on average with respect to a pre-
vious method, also accelerated by GPUs, which employs a
multi-dimensional CUDA Grid.

More importantly, we divided the queries to run on multi-
ple BW nodes to investigate the scalability of both SELECT
and JOIN.

Keywords
GPGPU, BWSIP, CUDA, SQL, Distributed Computing

1. INTRODUCTION
A relational database management system (RDBMS) man-

ages the organization, storage, access, security, and integrity
of data. Manipulating an RDBMS requires the use of Struc-
tured Query Language (SQL), an industry-standard declar-
ative language capable of performing very complex queries
and aggregations over data sets. In an RDBMS, these data
sets are organized in structured tables, and SQL serves as
an intermediary between a client program and its databases.
The explosive growth of various types of unstructured data,
has called for the next wave of innovation in data storage,
management, and analysis, otherwise known as Big Data.

MapReduce presents one such innovation. Initially devel-
oped by Google, MapReduce is a programming paradigm
widely used for data intensive and large-scale data analysis
applications [10]. The architecture is simple abstraction that
allows programmers to write a map function that processes
key-value pair associated with the input data. The reduce
function then merges all the intermediate values associated
with the same intermediate key. The programming model
involves three phases: Map; Shuffle and Sort; Reduce.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©JOCSE, a supported publication of
the Shodor Education Foundation Inc.
DOI: https://doi.org/10.22369/issn.2153-4136/8/1/5

In some cases, a MapReduce framework has replaced tra-
ditional SQL database, though the advantage of one over
another remains a debated topic. Both approaches are very
general methods through which data can be processed. In
fact, there are efforts to combine the two in order to ease
programmers’ learning curve. In particular, Apache Hive al-
lows programmers to write queries in SQL-like fashion and
then converts the queries to map/reduce [1]. Regardless of
the specifics, SQL remains highly applicable in the Big Data
era thanks to the power of its declarative syntax. As such,
significant efforts have been made in improving the perfor-
mance of SQL, targeting parallel heterogeneous hardware
architectures, which incorporates many processor types in a
single machine [5, 6, 7, 8, 11, 12, 13, 14, 16].

The SQL model of data organization fits a parallel ex-
ecution model extremely well since different processors can
work on different portions of a table simultaneously. Among
relevant attempts, the most promising approach currently
utilizes the newest generation of Graphics Processing Units
(GPUs), which are implemented as massively parallel archi-
tectures designed for rapidly rendering complex and realistic
graphical scenes. More importantly, several general purpose
software development frameworks for programming GPUs
have become standard. Two such frameworks are Com-
pute Unified Device Architecture (CUDA) [19] and the Open
Compute Language (OpenCL) [17]. These frameworks al-
low applications to simply and effectively harness the power
of the GPU. In addition, they have also become a common
method of accelerating many compute-intensive applications
[9].

This project aims to extend a GPU-based database to al-
low for the execution of SQL queries on multiple GPUs con-
tained within the Blue Waters (BW) supercomputer system
[18]. The specific focus of this project targets two common
but extremely important SQL queries: SELECT and JOIN.
While most previous papers utilize parallel primitives, our
implementation executes with an opcode virtual machine
model. In short, the key contributions of this paper include:

• Dynamic Parallelism Approach - Earlier GPU hard-
ware did not include the ability to launch new GPU func-
tions directly from threads. The BW compute nodes pro-
vide newer GPUs with the Kepler Architecture, which
includes this important feature, referred to as Dynamic
Parallelism (DP). We employ DP to enhance hardware
utilization in accelerating JOIN.

• Multi-GPU Configuration - To the best of our knowl-
edge, all previous work has shown speedups on a single-
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GPU system. However, databases often reside on many
compute nodes and querying data incurs additional expen-
sive communication costs. Since the BW is a large-scale
distributed system with thousands of nodes, it is particu-
larly suitable to investigate this necessary aspect of both
SELECT and JOIN queries.

• Educational Values - Work on this project has exposed
me to a multitude of areas in Computational Sciences,
such as Compilers, Computer Architecture, and Parallel
Computing. Most importantly, I have gained significant
experiences in multi-GPU programming. Our specific im-
plementation is under the MapReduce dwarf. The rele-
vant characteristics will be discussed in subsequent sec-
tions.

In summary, we performed an in-depth investigation of
dividing queries across multiple GPUs and the implications
of novel hardware features to explore the potential benefits
of GPU acceleration for SQL queries.

2. RELATED BACKGROUND
This section provides overviews of SQL queries, and MapRe-

duce. It also discusses current solutions in parallel SQL ex-
ecution on the GPUs

2.1 SQL SELECTs and JOINs
In the following discussion, we denote a table as Ti and

each column in a table as ci where i is their corresponding
enumeration.

A SELECT statement extracts data from a database in
an organized and readable format. A typical SELECT state-
ment is accompanied by clauses such as FROM, WHERE,
and ORDER BY. These clauses specify the conditions on
which the data is filtered. A predicate includes one or more
of these conditions.

T1

c1 c2
1 w
2 z
3 z

⇒
c1 c2
2 z
3 z

Figure 1: The result rows of a SELECT query:
SELECT ∗ FROM T1 WHERE T1.c1 ≥ 2

A JOIN query requires at least two tables that share a
common attribute, referred to as a foreign key. While there
are many types of JOINs, we focus only on the cross-join,
denoted ./, since it is the simplest JOIN query but still em-
bodies all the computational characteristics of other JOINS.
A cross-join computes the Cartesian product of all the keys
in the relevant tables. Figure 2 highlights the result rows
of a cross-join between T1 and T2 based on the predicate
T1.c2 = T2.c2, where c2 is the foreign key. While the re-
sult consists of nine rows in total, the predicate reduces the
result to just three rows.

A SELECT query involves a loop that examines every row
in a table. A JOIN entails a nested loop, where for each row
in the first table, the corresponding loop iterates over the
entire second table and emits rows that match the predicate.
Clearly, this entire process is computationally demanding for
very large tables with millions of rows.

T1

c1 c2
1 w
2 z
3 z

./

T2

c2 c1
x 5
z 6
w 7

⇒

T1 ./ T2

c1 c2 c2 c3
1 w x 5
1 w z 6
1 w w 7
2 z x 5
2 z z 6
2 z w 7
3 z x 5
3 z z 6
3 z w 7

Figure 2: The cross join T1 ./ T2:
SELECT ∗ FROM T1, T2 WHERE T1.c2 = T2.c2

2.2 MapReduce
As previously mentioned, the MapReduce paradigm is an

active research area. The three main phases are shown in
Figure 3.

Figure 3: The three phases of MapReduce.

Map Phase: The input data is partitioned into splits
and each is assigned to Map tasks to be processed in separate
nodes in the cluster. These Map tasks perform computations
on each input key-value pair from its assigned partition of
data. Finally, they generate a set of intermediate results for
each key.

Shuffle and Sort Phase: This phase sorts the data gen-
erated by the Map tasks from other nodes and divides this
data into regions to be further processed by the Reduce task.
Therefore, all Map tasks must complete prior to this phase.
In addition, this phase distributes the data as necessary to
nodes where the Reduce tasks will execute.

Reduce Phase: The Reduce tasks perform additional
operations on the intermediate data by merging values as-
sociated with a particular key to a smaller set of values to
produce the output. The number of Reduce tasks does not
need to be equal to the number of Map tasks. For more
complex data processing procedures, multiple MapReduce
calls may be linked together in sequence.

MapReduce is a simple and scalable approach to achieve
high speed and efficient parallel processing over a massive
amount of data.

2.3 Parallel SQL Databases
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There have been other works in the literature [7, 8, 11, 14]
that employ the parallel primitives such as scan, sort, or fil-
ter to process queries on the GPUs. Each of these primitives
is a kernel launched on a given set of data in an order spec-
ified by programmers. Every kernel then needs to retrieve
relevant data from global memory. Fundamentally, this ap-
proach entails many memory accesses and consequently af-
fects performance.

We build directly on the work presented in [3, 4, 5, 6].
This line of research proposes using a virtual machine (VM)
instead. From a high-level point of view, a VM is a sequence
of jump instructions inside the GPU. Each instruction is
identified by an opcode and performs a certain operation.
Each thread is mapped to a data point, small enough to be
loaded directly into a register.

The source code of the Virginian database, which em-
bodies this approach, is open source [4]. While inspired by
SQLite [2] , the initial implementation presents a completely
custom VM, which we will describe in Section 3. We mod-
ified this VM to accommodate the distributed architecture
of the BW system.

3. IMPLEMENTATION
The program first builds an abstract syntax tree (AST)

from the SQL query. The AST is then processed in several
passes to generate a virtual program, namely a set of jump
instructions that represents the query. The details of the
parsing algorithm and code generations are documented in
the Virginian database page [4].

3.1 Virtual Machine Infrastructure
A VM is implemented as a CUDA kernel that executes

a sequence of instructions procedurally. Each instruction is
identified by an opcode and contains four registers. Each
opcode serves a certain functionality.

The aforementioned work partitions a SQL table into chunks
of data, called the tablet [4, 5]. Each tablet is a fix-sized
group of rows. As a result, accessing an entire table of data
may involve multiple tablets, but accessing a single row of
data involves only a single tablet. Partitioning is beneficial
at two levels of parallelism, especially for SQL SELECT.
First, for a heavily distributed table, each of this table’s
tablets resides on a different node and thus can be processed
independently. Second, for each tablet, threads in a CUDA
grid handle their corresponding rows.

Since SELECT operates only on single source table, an
extension was developed to this model to support opera-
tions over two or more tables, namely JOIN [3]. CUDA’s
organization of threads into a grid of up to three dimensions
coincides with the structure of a Cartesian product where
a two-table join corresponds to a two dimensional grid. We
recall the example from Figure 2, where two tables T1 and
T2 are cross-joined on the same foreign key. Here, the x-
dimension of the CUDA grid corresponds to the row index
of T1 while the y-dimension corresponds to row index of T2.
The shortcoming, however, is that this approach is limited
to joining at most three tables since this is the maximum
supported dimensions of a CUDA grid.

This method, which we will now refer to as the Grid
method, is used as the baseline performance for our novel
technique for accelerating JOIN, which will be discussed
shortly. In addition, we scale both SELECT and JOIN to ex-

ecute on multiple nodes and compare the performance with
that of a single node.

3.2 Dynamic Parallelism for SQL JOINs
DP is a new functionality provided by the Kepler Archi-

tecture [19]. DP allows kernels to be launched from the
device without going back to the host. The kernel, block
or thread that initiates the launch is referred to as parent.
Also, the kernel, block, or thread that is launched is referred
to as the child. DP allows explicit synchronization between
the parent and the child through a built-in device function.
Launches can be nested from parent to child, then child to
grandchild and so on. The deepest nesting level that requires
explicit synchronization is the synchronization depth. Par-
ent and child kernels have coherent access to global memory.
Shared and local memories are exclusive for parent and child
kernels.

The JOIN algorithm involves at least two data arrays,
taken from the related data tables. Each thread takes one
element from the first array in the JOIN predicate and finds
the matching keys from the other array. DP implementation
launches a kernel to gather the result elements in parallel for
each thread.

3.3 Multi-GPU Configuration
To further improve the performance of large-scale data

processing, it is essential to share workloads among dis-
tributed compute nodes equipped with GPUs. As discussed
in Section 1, this project is the first to examine the possi-
bility of breaking up a data set and running a query con-
currently on multiple GPUs. Our custom data structure is
useful in the context of a heavily distributed database by
enabling efficient management of data between networked
machines. In our implementation, tablets play a major role
since they vastly simplify the process of moving data to and
from different nodes. Tablets allow each node to operate
exclusively on known-size records.

Node 0 Node 0 Node N

Tablet 0 Tablet 1 Tablet N

Result 0 Result 1 Result N

Final

. . .

. . .

Figure 4: Query plan for SQL SELECT

A table is first divided into tablets. This step is trivial
thanks to the partitioning scheme of a SQL table. Each
tablet is sent to a XK compute node through MPI. On each
node, each tablet is then processed by the same virtual ma-
chine row by row on the node’s GPU. After producing its
corresponding set of result rows, each node passes these rows
back to the master node, which then reorganizes these rows
and emits the final table to the user. Figure 4 illustrates
this approach for the SELECT queries.
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Node 0 . . . Node N

...

Node N ×M

T1
T
2

Figure 5: Query plan for SQL JOIN

Similarly, the two tables in a JOIN query are each di-
vided into an array of tablets. Figure 5 demonstrates this
plan. Table T1 contains N tablets, and table T2 contains
M tablets. Since a JOIN statement is a Cartesian product
of two arrays of data, each node is responsible for a dif-
ferent section of the cross product. For instance, Node 0
computes T1.Tablet 0 ./ T2.Tablet 0. The results of these
computations are again passed to the master node in the
same procedure as in Figure 4.

Splitting data across multiple nodes has a two-fold ad-
vantage: data can be processed more quickly and a larger
quantity of data can be processed. The database can now
support much larger tables while retaining the same per-
formance. For the same data set, more computing powers
reduce the processing time.

4. RESULTS
We adopted the test data from [4, 3, 6], which includes

8 million rows randomly generated numerical values. The
columns consists of an integer primary key and 2 columns
each with distribution in [-100,100], a normal distribution
with standard deviation 5, and another with standard de-
viation 20. Each of these distributions was generated once
each for a 32-bit integer column and a IEEE 754 32-bit float-
ing point column. The GNU Scientific Library was used to
ensure the quality of the random distribution.

A suite of ten different queries were written to thoroughly
test the different characteristics for both SELECT and JOIN.
Hence, there are twenty queries in total. For SELECT, five
of the queries for each suite involve integer values; the rest
of the suite test floating point values. For JOIN, only one
query operates exclusively on integer values; one query tests
floating point exclusively; the rest of the suite test a arith-
metic and conditional statements with a mixture of both
integer and floating points.

We have little reason to believe results would change sig-
nificantly with realistic data sets, since all rows are checked.
Also, both textual and non-textual data are ultimately rep-
resented by numeric values. Besides, we have tested virtu-

ally all basic possible combinations of common case queries.
This section also highlights the educational values of our

project.

4.1 Performance
We analyze in detail the runtime growth of our implemen-

tation and then discuss performance improvement relatively
to the baseline as well as the scalability of our implementa-
tion as a function of the number of nodes.

4.1.1 SELECT
The characteristics of runtime growth on a single node has

been discussed [5]. We therefore focus mainly on the scaling
factor of the implementation. Figure 6 visually presents the
speedups observed as we scale our program. Single-node
execution was predictably slower by factors proportional to
the number of nodes used in computation.
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Figure 6: Scaling factors for SELECT and JOIN

4.1.2 JOIN
Test were performed using two 3500 row tables contain-

ing randomly generated values in the same layout as for
SELECT. We chose this number of rows since the Carte-
sian product of two tables with 3500 rows each will space
3500 · 3500 = 12, 250, 000 rows, larger than the test number
of rows for SELECT.

Figure 8(a) graphically demonstrates the differences in
running times using DP and Grid methods. The mean ex-
ecution time for all ten queries for Grid is 0.2526 seconds
and 0.233 seconds for DP. We noticed that floating points
are slightly faster and reported the average between integer
and floating points. Figure 8(b) depicts the speedups of DP
with respect to Grid, which averaged to be 1.245X.

Scaling SQL JOINs on distributed is less straightforward
than with SELECT. Since the Cartesian product is a two-
dimensional product, we chose the sizes of the two tables in
Figure 5 as {1 × 2, 2 × 2, 2 × 3, 2 × 4, 3 × 4, 2 × 7, 4 × 4}.
These numbers correspond to the same number of nodes for
SELECT and their speedups are also displayed in Figure 6.
We chose these dimensions to examine the effects of the ra-
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have on the scalability of JOINs. The graph showed
a weaker scalability for JOINs due to a more complex dis-
tribution plan. The mean percentage to theoretical speedup
is 54.4%.

Figure 9 provides the latency breakdown as percentages
of critical parts in the execution cycle of a program. Pre-
dictably, as the number of nodes increases, the system incurs
much more overhead to organize data to the assigned nodes.
We notice a gradual decline in the role actual computation
plays with respect to total runtime. In contrast, the node-
to-node communication overhead increases linearly, up to
75.2% at 16 nodes.

4.2 Educational Values
The use of GPU in HPC is becoming extremely popular

due to the high computational power and high bandwidth
coupled with the availability of (de facto) frameworks. How-
ever, effectively programming a hybrid system with MPI
and CUDA is especially difficult as the growing complexi-
ties of applications require more and more processors. Be-
cause the communication patterns and resource scheduling
are common to a wide range of domains, we generalize our
experiences and hope that they could be helpful to future
programmers faced with similar problems.

4.2.1 Multi-GPU Programming
MPI and CUDA combine the two parallel programming

frameworks enables solving problems with a data size too
large to fit into the memory of a single GPU, or that would
require an unreasonably long compute time on a single node.
Also, this combination allows programmers to efficiently ac-
celerate existing MPI applications with GPUs.

In multi-GPU programming, an MPI launcher starts mul-
tiple instances of an application and distributes these in-
stances across the nodes of the BW. Each instance then
launches its own CUDA kernel. A major problem arises
when each node does not receive an even amount of data
or does not return the same amount of data, referred to
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Figure 8: Variations of two different methods for
accelerating JOINs

as workload imbalance. Our implementation automatically
solves the first problem since data is evenly divided into
tablets. The latter is harder to address since imbalance
may occur due to the specific characteristics of an appli-
cation. For instance, we chose a uniform distribution for
our test data since the distribution has equal probability for
any random region of data, thus minimizes the chance for
load imbalance. It is critical for the programmer to be aware
of these challenges in order to address them properly.

4.2.2 MapReduce Introduction
MapReduce has been shown to work well on the BW [15],

which gives a compelling reason to develop a section on how
to effectively utilize this paradigm. Database aggregation
falls into the MapReduce dwarf since each stage is directly
mapped to a phase in MapReduce, as described in Figure
3. In our case, the input data is the original tables and the
output data is the result table.

Map: Each of the partitioned tablets in a table is mapped
to a node. The node’s number and its corresponding tablet
form a key/value pair. Each node then executes the VM gen-
erated and then produces its own set of result rows. These
are the intermediate results to be passed to next phase.

Shuffle and Sort: Each node sorts its own result table
based on programmer’s specification. For instance, these
nodes arrange the numeric values in ascending/descending
order.

Reduce: The master node is responsible for this phase,
collecting other nodes’ intermediate tables based on their
keys and then rearrange these tables to into one single final
table to display.

5. CONCLUSION
The Virginian database was used as a platform for the
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project, enabling the use of an existing SQL parsing mecha-
nism and switching between host and device. Execution on
the GPU was supported by a completely custom VM im-
plemented as a CUDA kernel. Our DP approach shows an
average of 1.245X faster than the previously implemented
Grid method. The characteristics of each query, the type
of data being queried, the size of the result set, and the
numbers of nodes involved were all significant factors in the
performance of GPU-enabled database. Despite these vari-
ation, the minimum speedup for DP was 1.1X.

SQL is an excellent interface through which the GPU
can be accessed: it is much simpler and more widely used
than many alternatives. Using SQL represents a break from
the paradigm of previous research which drove GPU queries
through the use of operational primitives. Additionally, SQL
dramatically reduces the effort required to employ GPUs for
database acceleration. While still enjoying the simplicity of
SQL, users can now benefit from a much reduced runtime.
All the details are hidden so that users do not need to learn
any additional materials besides their existing SQL knowl-
edge.

Our opcode model allows the programmer to choose any
granularity for database operation in conjunction with a rel-
atively simple VM, while also enabling efficient data han-
dling. Programmers can simply add or modify opcodes to
support more complex queries. We also generalize the mod-
ule to help with the learning curve by presenting the general
challenges associated with multi-GPU programming as well
as the project’s relation to MapReduce.

6. REFLECTIONS
The Blue Waters Student Internship Program (BWISP)

impacts me significantly on many aspects of my personal
and professional developments.

The Petascale Institute (PI) allowed me the opportunity
to learn how to use the Blue Waters supercomputer, us-
ing the various parallel programming frameworks it pro-

vides. This experience and exchanges with my fellow stu-
dents and the instructors improved my programming skills
greatly. Also, the exposure to other disciplines though these
conversations opened my eyes to the vast application of
Computer Science (CS). The areas I was introduced to in-
clude biomathematics, physical simulations, and financial
modelling.

After the PI, working on my own project helped me apply
these learned skills in practice. I gained invaluable experi-
ences working with large software project that utilizes many
software tools and involves various areas of CS, such as Com-
pilers, Computer Architecture, and Software Development.
More importantly, the experience provides me with the ma-
terials to discuss in my graduate school applications. As a
result, I was accepted to all programs I applied to, includ-
ing well-known institutions in High Performance Computing
such as University of Michigan and Georgia Tech.

All in all, the BWISP was an immense success and equipped
me with the necessary skills to succeed in my career as a
Computer Science researcher.

7. FUTURE WORK
Our implementation has been designed partly to demon-

strate a very general framework for GPU data processing.
Using this framework, a next step is to implement and test
additional database features such as other types of join, in-
cluding inner,outer, and natural Joins. Modern RDBMSs
are extremely complex, and much more work in this area
is required to fully replicate this functionality in a GPU-
friendly manner. We have shown that our opcode framework
will be adaptable to this additional functionality, with mod-
ifications to our VM as appropriate to facilitate inter-opcode
communication [4, 3].

Regardless of the direction, the general area of GPU ap-
plication development is ripe for future research.
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