
STUDENT PAPER: GPU Acceleration for SQL Queries on
Large-Scale Distributed Systems

Linh Nguyen
Hampden-Sydney College

1 College Road
Hampden-Sydney, VA 23943 USA

nguyenl16@hsc.edu

Paul Hemler
Hampden-Sydney College

1 College Road
Hampden-Sydney, VA 23943 USA

phemler@hsc.edu

ABSTRACT
General purpose GPUs are a powerful hardware with a num-
ber of applications in the realm of relational databases. We
further extended a database framework designed to allow
for GPU execution queries. Our technique is novel in that
it implements Dynamic Parallelism, a new feature in recent
hardware, to accelerate SQL JOINs. Query execution re-
sults in 1.25X speedup on average with respect to a pre-
vious method, also accelerated by GPUs, which employs a
multi-dimensional CUDA Grid.

More importantly, we divided the queries to run on multi-
ple BW nodes to investigate the scalability of both SELECT
and JOIN.

Keywords
GPGPU, BWSIP, CUDA, SQL, Distributed Computing

1. INTRODUCTION
A relational database management system (RDBMS) man-

ages the organization, storage, access, security, and integrity
of data. Manipulating an RDBMS requires the use of Struc-
tured Query Language (SQL), an industry-standard declar-
ative language capable of performing very complex queries
and aggregations over data sets. In an RDBMS, these data
sets are organized in structured tables, and SQL serves as
an intermediary between a client program and its databases.
The explosive growth of various types of unstructured data,
has called for the next wave of innovation in data storage,
management, and analysis, otherwise known as Big Data.

MapReduce presents one such innovation. Initially devel-
oped by Google, MapReduce is a programming paradigm
widely used for data intensive and large-scale data analysis
applications [10]. The architecture is simple abstraction that
allows programmers to write a map function that processes
key-value pair associated with the input data. The reduce
function then merges all the intermediate values associated
with the same intermediate key. The programming model
involves three phases: Map; Shuffle and Sort; Reduce.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©JOCSE, a supported publication of
the Shodor Education Foundation Inc.
DOI: https://doi.org/10.22369/issn.2153-4136/8/1/5

In some cases, a MapReduce framework has replaced tra-
ditional SQL database, though the advantage of one over
another remains a debated topic. Both approaches are very
general methods through which data can be processed. In
fact, there are efforts to combine the two in order to ease
programmers’ learning curve. In particular, Apache Hive al-
lows programmers to write queries in SQL-like fashion and
then converts the queries to map/reduce [1]. Regardless of
the specifics, SQL remains highly applicable in the Big Data
era thanks to the power of its declarative syntax. As such,
significant efforts have been made in improving the perfor-
mance of SQL, targeting parallel heterogeneous hardware
architectures, which incorporates many processor types in a
single machine [5, 6, 7, 8, 11, 12, 13, 14, 16].

The SQL model of data organization fits a parallel ex-
ecution model extremely well since different processors can
work on different portions of a table simultaneously. Among
relevant attempts, the most promising approach currently
utilizes the newest generation of Graphics Processing Units
(GPUs), which are implemented as massively parallel archi-
tectures designed for rapidly rendering complex and realistic
graphical scenes. More importantly, several general purpose
software development frameworks for programming GPUs
have become standard. Two such frameworks are Com-
pute Unified Device Architecture (CUDA) [19] and the Open
Compute Language (OpenCL) [17]. These frameworks al-
low applications to simply and effectively harness the power
of the GPU. In addition, they have also become a common
method of accelerating many compute-intensive applications
[9].

This project aims to extend a GPU-based database to al-
low for the execution of SQL queries on multiple GPUs con-
tained within the Blue Waters (BW) supercomputer system
[18]. The specific focus of this project targets two common
but extremely important SQL queries: SELECT and JOIN.
While most previous papers utilize parallel primitives, our
implementation executes with an opcode virtual machine
model. In short, the key contributions of this paper include:

• Dynamic Parallelism Approach - Earlier GPU hard-
ware did not include the ability to launch new GPU func-
tions directly from threads. The BW compute nodes pro-
vide newer GPUs with the Kepler Architecture, which
includes this important feature, referred to as Dynamic
Parallelism (DP). We employ DP to enhance hardware
utilization in accelerating JOIN.

• Multi-GPU Configuration - To the best of our knowl-
edge, all previous work has shown speedups on a single-

Volume 8, Issue 1 Journal of Computational Science Education

20 ISSN 2153-4136 January 2017



GPU system. However, databases often reside on many
compute nodes and querying data incurs additional expen-
sive communication costs. Since the BW is a large-scale
distributed system with thousands of nodes, it is particu-
larly suitable to investigate this necessary aspect of both
SELECT and JOIN queries.

• Educational Values - Work on this project has exposed
me to a multitude of areas in Computational Sciences,
such as Compilers, Computer Architecture, and Parallel
Computing. Most importantly, I have gained significant
experiences in multi-GPU programming. Our specific im-
plementation is under the MapReduce dwarf. The rele-
vant characteristics will be discussed in subsequent sec-
tions.

In summary, we performed an in-depth investigation of
dividing queries across multiple GPUs and the implications
of novel hardware features to explore the potential benefits
of GPU acceleration for SQL queries.

2. RELATED BACKGROUND
This section provides overviews of SQL queries, and MapRe-

duce. It also discusses current solutions in parallel SQL ex-
ecution on the GPUs

2.1 SQL SELECTs and JOINs
In the following discussion, we denote a table as Ti and

each column in a table as ci where i is their corresponding
enumeration.

A SELECT statement extracts data from a database in
an organized and readable format. A typical SELECT state-
ment is accompanied by clauses such as FROM, WHERE,
and ORDER BY. These clauses specify the conditions on
which the data is filtered. A predicate includes one or more
of these conditions.

T1

c1 c2
1 w
2 z
3 z

⇒
c1 c2
2 z
3 z

Figure 1: The result rows of a SELECT query:
SELECT ∗ FROM T1 WHERE T1.c1 ≥ 2

A JOIN query requires at least two tables that share a
common attribute, referred to as a foreign key. While there
are many types of JOINs, we focus only on the cross-join,
denoted ./, since it is the simplest JOIN query but still em-
bodies all the computational characteristics of other JOINS.
A cross-join computes the Cartesian product of all the keys
in the relevant tables. Figure 2 highlights the result rows
of a cross-join between T1 and T2 based on the predicate
T1.c2 = T2.c2, where c2 is the foreign key. While the re-
sult consists of nine rows in total, the predicate reduces the
result to just three rows.

A SELECT query involves a loop that examines every row
in a table. A JOIN entails a nested loop, where for each row
in the first table, the corresponding loop iterates over the
entire second table and emits rows that match the predicate.
Clearly, this entire process is computationally demanding for
very large tables with millions of rows.

T1

c1 c2
1 w
2 z
3 z

./

T2

c2 c1
x 5
z 6
w 7

⇒

T1 ./ T2

c1 c2 c2 c3
1 w x 5
1 w z 6
1 w w 7
2 z x 5
2 z z 6
2 z w 7
3 z x 5
3 z z 6
3 z w 7

Figure 2: The cross join T1 ./ T2:
SELECT ∗ FROM T1, T2 WHERE T1.c2 = T2.c2

2.2 MapReduce
As previously mentioned, the MapReduce paradigm is an

active research area. The three main phases are shown in
Figure 3.

Figure 3: The three phases of MapReduce.

Map Phase: The input data is partitioned into splits
and each is assigned to Map tasks to be processed in separate
nodes in the cluster. These Map tasks perform computations
on each input key-value pair from its assigned partition of
data. Finally, they generate a set of intermediate results for
each key.

Shuffle and Sort Phase: This phase sorts the data gen-
erated by the Map tasks from other nodes and divides this
data into regions to be further processed by the Reduce task.
Therefore, all Map tasks must complete prior to this phase.
In addition, this phase distributes the data as necessary to
nodes where the Reduce tasks will execute.

Reduce Phase: The Reduce tasks perform additional
operations on the intermediate data by merging values as-
sociated with a particular key to a smaller set of values to
produce the output. The number of Reduce tasks does not
need to be equal to the number of Map tasks. For more
complex data processing procedures, multiple MapReduce
calls may be linked together in sequence.

MapReduce is a simple and scalable approach to achieve
high speed and efficient parallel processing over a massive
amount of data.

2.3 Parallel SQL Databases

Journal of Computational Science Education Volume 8, Issue 1

January 2017 ISSN 2153-4136 21



There have been other works in the literature [7, 8, 11, 14]
that employ the parallel primitives such as scan, sort, or fil-
ter to process queries on the GPUs. Each of these primitives
is a kernel launched on a given set of data in an order spec-
ified by programmers. Every kernel then needs to retrieve
relevant data from global memory. Fundamentally, this ap-
proach entails many memory accesses and consequently af-
fects performance.

We build directly on the work presented in [3, 4, 5, 6].
This line of research proposes using a virtual machine (VM)
instead. From a high-level point of view, a VM is a sequence
of jump instructions inside the GPU. Each instruction is
identified by an opcode and performs a certain operation.
Each thread is mapped to a data point, small enough to be
loaded directly into a register.

The source code of the Virginian database, which em-
bodies this approach, is open source [4]. While inspired by
SQLite [2] , the initial implementation presents a completely
custom VM, which we will describe in Section 3. We mod-
ified this VM to accommodate the distributed architecture
of the BW system.

3. IMPLEMENTATION
The program first builds an abstract syntax tree (AST)

from the SQL query. The AST is then processed in several
passes to generate a virtual program, namely a set of jump
instructions that represents the query. The details of the
parsing algorithm and code generations are documented in
the Virginian database page [4].

3.1 Virtual Machine Infrastructure
A VM is implemented as a CUDA kernel that executes

a sequence of instructions procedurally. Each instruction is
identified by an opcode and contains four registers. Each
opcode serves a certain functionality.

The aforementioned work partitions a SQL table into chunks
of data, called the tablet [4, 5]. Each tablet is a fix-sized
group of rows. As a result, accessing an entire table of data
may involve multiple tablets, but accessing a single row of
data involves only a single tablet. Partitioning is beneficial
at two levels of parallelism, especially for SQL SELECT.
First, for a heavily distributed table, each of this table’s
tablets resides on a different node and thus can be processed
independently. Second, for each tablet, threads in a CUDA
grid handle their corresponding rows.

Since SELECT operates only on single source table, an
extension was developed to this model to support opera-
tions over two or more tables, namely JOIN [3]. CUDA’s
organization of threads into a grid of up to three dimensions
coincides with the structure of a Cartesian product where
a two-table join corresponds to a two dimensional grid. We
recall the example from Figure 2, where two tables T1 and
T2 are cross-joined on the same foreign key. Here, the x-
dimension of the CUDA grid corresponds to the row index
of T1 while the y-dimension corresponds to row index of T2.
The shortcoming, however, is that this approach is limited
to joining at most three tables since this is the maximum
supported dimensions of a CUDA grid.

This method, which we will now refer to as the Grid
method, is used as the baseline performance for our novel
technique for accelerating JOIN, which will be discussed
shortly. In addition, we scale both SELECT and JOIN to ex-

ecute on multiple nodes and compare the performance with
that of a single node.

3.2 Dynamic Parallelism for SQL JOINs
DP is a new functionality provided by the Kepler Archi-

tecture [19]. DP allows kernels to be launched from the
device without going back to the host. The kernel, block
or thread that initiates the launch is referred to as parent.
Also, the kernel, block, or thread that is launched is referred
to as the child. DP allows explicit synchronization between
the parent and the child through a built-in device function.
Launches can be nested from parent to child, then child to
grandchild and so on. The deepest nesting level that requires
explicit synchronization is the synchronization depth. Par-
ent and child kernels have coherent access to global memory.
Shared and local memories are exclusive for parent and child
kernels.

The JOIN algorithm involves at least two data arrays,
taken from the related data tables. Each thread takes one
element from the first array in the JOIN predicate and finds
the matching keys from the other array. DP implementation
launches a kernel to gather the result elements in parallel for
each thread.

3.3 Multi-GPU Configuration
To further improve the performance of large-scale data

processing, it is essential to share workloads among dis-
tributed compute nodes equipped with GPUs. As discussed
in Section 1, this project is the first to examine the possi-
bility of breaking up a data set and running a query con-
currently on multiple GPUs. Our custom data structure is
useful in the context of a heavily distributed database by
enabling efficient management of data between networked
machines. In our implementation, tablets play a major role
since they vastly simplify the process of moving data to and
from different nodes. Tablets allow each node to operate
exclusively on known-size records.

Node 0 Node 0 Node N

Tablet 0 Tablet 1 Tablet N

Result 0 Result 1 Result N

Final

. . .

. . .

Figure 4: Query plan for SQL SELECT

A table is first divided into tablets. This step is trivial
thanks to the partitioning scheme of a SQL table. Each
tablet is sent to a XK compute node through MPI. On each
node, each tablet is then processed by the same virtual ma-
chine row by row on the node’s GPU. After producing its
corresponding set of result rows, each node passes these rows
back to the master node, which then reorganizes these rows
and emits the final table to the user. Figure 4 illustrates
this approach for the SELECT queries.

Volume 8, Issue 1 Journal of Computational Science Education

22 ISSN 2153-4136 January 2017



Node 0 . . . Node N

...

Node N ×M

T1
T
2

Figure 5: Query plan for SQL JOIN

Similarly, the two tables in a JOIN query are each di-
vided into an array of tablets. Figure 5 demonstrates this
plan. Table T1 contains N tablets, and table T2 contains
M tablets. Since a JOIN statement is a Cartesian product
of two arrays of data, each node is responsible for a dif-
ferent section of the cross product. For instance, Node 0
computes T1.Tablet 0 ./ T2.Tablet 0. The results of these
computations are again passed to the master node in the
same procedure as in Figure 4.

Splitting data across multiple nodes has a two-fold ad-
vantage: data can be processed more quickly and a larger
quantity of data can be processed. The database can now
support much larger tables while retaining the same per-
formance. For the same data set, more computing powers
reduce the processing time.

4. RESULTS
We adopted the test data from [4, 3, 6], which includes

8 million rows randomly generated numerical values. The
columns consists of an integer primary key and 2 columns
each with distribution in [-100,100], a normal distribution
with standard deviation 5, and another with standard de-
viation 20. Each of these distributions was generated once
each for a 32-bit integer column and a IEEE 754 32-bit float-
ing point column. The GNU Scientific Library was used to
ensure the quality of the random distribution.

A suite of ten different queries were written to thoroughly
test the different characteristics for both SELECT and JOIN.
Hence, there are twenty queries in total. For SELECT, five
of the queries for each suite involve integer values; the rest
of the suite test floating point values. For JOIN, only one
query operates exclusively on integer values; one query tests
floating point exclusively; the rest of the suite test a arith-
metic and conditional statements with a mixture of both
integer and floating points.

We have little reason to believe results would change sig-
nificantly with realistic data sets, since all rows are checked.
Also, both textual and non-textual data are ultimately rep-
resented by numeric values. Besides, we have tested virtu-

ally all basic possible combinations of common case queries.
This section also highlights the educational values of our

project.

4.1 Performance
We analyze in detail the runtime growth of our implemen-

tation and then discuss performance improvement relatively
to the baseline as well as the scalability of our implementa-
tion as a function of the number of nodes.

4.1.1 SELECT
The characteristics of runtime growth on a single node has

been discussed [5]. We therefore focus mainly on the scaling
factor of the implementation. Figure 6 visually presents the
speedups observed as we scale our program. Single-node
execution was predictably slower by factors proportional to
the number of nodes used in computation.

2 4 6 8 10 12 14 16
0

2

4

6

8

10

Number of Nodes

S
p

ee
d
u
p
(X

)

Scaling Performance of SELECT and JOIN

SELECT

JOIN

Figure 6: Scaling factors for SELECT and JOIN

4.1.2 JOIN
Test were performed using two 3500 row tables contain-

ing randomly generated values in the same layout as for
SELECT. We chose this number of rows since the Carte-
sian product of two tables with 3500 rows each will space
3500 · 3500 = 12, 250, 000 rows, larger than the test number
of rows for SELECT.

Figure 8(a) graphically demonstrates the differences in
running times using DP and Grid methods. The mean ex-
ecution time for all ten queries for Grid is 0.2526 seconds
and 0.233 seconds for DP. We noticed that floating points
are slightly faster and reported the average between integer
and floating points. Figure 8(b) depicts the speedups of DP
with respect to Grid, which averaged to be 1.245X.

Scaling SQL JOINs on distributed is less straightforward
than with SELECT. Since the Cartesian product is a two-
dimensional product, we chose the sizes of the two tables in
Figure 5 as {1 × 2, 2 × 2, 2 × 3, 2 × 4, 3 × 4, 2 × 7, 4 × 4}.
These numbers correspond to the same number of nodes for
SELECT and their speedups are also displayed in Figure 6.
We chose these dimensions to examine the effects of the ra-

Journal of Computational Science Education Volume 8, Issue 1

January 2017 ISSN 2153-4136 23



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Proportions of Cross Product

E
x
ec

u
ti

o
n

T
im

e(
s)

Proportions of Rows Returned vs. Execution Time

GPU Kepler K20c

Figure 7: As fewer rows in the Cartesian product
are filtered, the GPU becomes less efficient

tio N
M

have on the scalability of JOINs. The graph showed
a weaker scalability for JOINs due to a more complex dis-
tribution plan. The mean percentage to theoretical speedup
is 54.4%.

Figure 9 provides the latency breakdown as percentages
of critical parts in the execution cycle of a program. Pre-
dictably, as the number of nodes increases, the system incurs
much more overhead to organize data to the assigned nodes.
We notice a gradual decline in the role actual computation
plays with respect to total runtime. In contrast, the node-
to-node communication overhead increases linearly, up to
75.2% at 16 nodes.

4.2 Educational Values
The use of GPU in HPC is becoming extremely popular

due to the high computational power and high bandwidth
coupled with the availability of (de facto) frameworks. How-
ever, effectively programming a hybrid system with MPI
and CUDA is especially difficult as the growing complexi-
ties of applications require more and more processors. Be-
cause the communication patterns and resource scheduling
are common to a wide range of domains, we generalize our
experiences and hope that they could be helpful to future
programmers faced with similar problems.

4.2.1 Multi-GPU Programming
MPI and CUDA combine the two parallel programming

frameworks enables solving problems with a data size too
large to fit into the memory of a single GPU, or that would
require an unreasonably long compute time on a single node.
Also, this combination allows programmers to efficiently ac-
celerate existing MPI applications with GPUs.

In multi-GPU programming, an MPI launcher starts mul-
tiple instances of an application and distributes these in-
stances across the nodes of the BW. Each instance then
launches its own CUDA kernel. A major problem arises
when each node does not receive an even amount of data
or does not return the same amount of data, referred to

(a) Query Execution Times

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

Query

E
x
ec

u
ti

o
n

T
im

e
(s

)

Grid

DP

(b) DP Query Speedup

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Query

S
p

ee
d
u
p

(X
)

Figure 8: Variations of two different methods for
accelerating JOINs

as workload imbalance. Our implementation automatically
solves the first problem since data is evenly divided into
tablets. The latter is harder to address since imbalance
may occur due to the specific characteristics of an appli-
cation. For instance, we chose a uniform distribution for
our test data since the distribution has equal probability for
any random region of data, thus minimizes the chance for
load imbalance. It is critical for the programmer to be aware
of these challenges in order to address them properly.

4.2.2 MapReduce Introduction
MapReduce has been shown to work well on the BW [15],

which gives a compelling reason to develop a section on how
to effectively utilize this paradigm. Database aggregation
falls into the MapReduce dwarf since each stage is directly
mapped to a phase in MapReduce, as described in Figure
3. In our case, the input data is the original tables and the
output data is the result table.

Map: Each of the partitioned tablets in a table is mapped
to a node. The node’s number and its corresponding tablet
form a key/value pair. Each node then executes the VM gen-
erated and then produces its own set of result rows. These
are the intermediate results to be passed to next phase.

Shuffle and Sort: Each node sorts its own result table
based on programmer’s specification. For instance, these
nodes arrange the numeric values in ascending/descending
order.

Reduce: The master node is responsible for this phase,
collecting other nodes’ intermediate tables based on their
keys and then rearrange these tables to into one single final
table to display.

5. CONCLUSION
The Virginian database was used as a platform for the

Volume 8, Issue 1 Journal of Computational Science Education

24 ISSN 2153-4136 January 2017



2 4 6 8 10 12 14 16
0

20

40

60

80

100
P

er
ce

n
ta

g
e(

%
)

MPI PCIe Kernel Execution

Figure 9: The fraction of each query runtime due to
core parts of computation

project, enabling the use of an existing SQL parsing mecha-
nism and switching between host and device. Execution on
the GPU was supported by a completely custom VM im-
plemented as a CUDA kernel. Our DP approach shows an
average of 1.245X faster than the previously implemented
Grid method. The characteristics of each query, the type
of data being queried, the size of the result set, and the
numbers of nodes involved were all significant factors in the
performance of GPU-enabled database. Despite these vari-
ation, the minimum speedup for DP was 1.1X.

SQL is an excellent interface through which the GPU
can be accessed: it is much simpler and more widely used
than many alternatives. Using SQL represents a break from
the paradigm of previous research which drove GPU queries
through the use of operational primitives. Additionally, SQL
dramatically reduces the effort required to employ GPUs for
database acceleration. While still enjoying the simplicity of
SQL, users can now benefit from a much reduced runtime.
All the details are hidden so that users do not need to learn
any additional materials besides their existing SQL knowl-
edge.

Our opcode model allows the programmer to choose any
granularity for database operation in conjunction with a rel-
atively simple VM, while also enabling efficient data han-
dling. Programmers can simply add or modify opcodes to
support more complex queries. We also generalize the mod-
ule to help with the learning curve by presenting the general
challenges associated with multi-GPU programming as well
as the project’s relation to MapReduce.

6. REFLECTIONS
The Blue Waters Student Internship Program (BWISP)

impacts me significantly on many aspects of my personal
and professional developments.

The Petascale Institute (PI) allowed me the opportunity
to learn how to use the Blue Waters supercomputer, us-
ing the various parallel programming frameworks it pro-

vides. This experience and exchanges with my fellow stu-
dents and the instructors improved my programming skills
greatly. Also, the exposure to other disciplines though these
conversations opened my eyes to the vast application of
Computer Science (CS). The areas I was introduced to in-
clude biomathematics, physical simulations, and financial
modelling.

After the PI, working on my own project helped me apply
these learned skills in practice. I gained invaluable experi-
ences working with large software project that utilizes many
software tools and involves various areas of CS, such as Com-
pilers, Computer Architecture, and Software Development.
More importantly, the experience provides me with the ma-
terials to discuss in my graduate school applications. As a
result, I was accepted to all programs I applied to, includ-
ing well-known institutions in High Performance Computing
such as University of Michigan and Georgia Tech.

All in all, the BWISP was an immense success and equipped
me with the necessary skills to succeed in my career as a
Computer Science researcher.

7. FUTURE WORK
Our implementation has been designed partly to demon-

strate a very general framework for GPU data processing.
Using this framework, a next step is to implement and test
additional database features such as other types of join, in-
cluding inner,outer, and natural Joins. Modern RDBMSs
are extremely complex, and much more work in this area
is required to fully replicate this functionality in a GPU-
friendly manner. We have shown that our opcode framework
will be adaptable to this additional functionality, with mod-
ifications to our VM as appropriate to facilitate inter-opcode
communication [4, 3].

Regardless of the direction, the general area of GPU ap-
plication development is ripe for future research.

8. ACKNOWLEDGMENTS
This work is supported by a grant from the Shodor Ed-

ucation Foundataion through the Blue Waters Student In-
ternship Program (BWSIP) and by the National Center for
Supercomputing Applications, who provides the hardware
used in this project.

9. REFERENCES
[1] apache hive. https://hive.apache.org/. Date accessed:

2016-04-11.

[2] the sqlite virtual machine.
https://www.sqlite.org/opcode.html. Date accessed:
2016-04-06.

[3] K. Angstadt and E. Harcourt. A virtual machine
model for accelerating relational database joins using
a general purpose gpu. In Proceedings of the
Symposium on High Performance Computing, HPC
’15, pages 127–134, San Diego, CA, USA, 2015.
Society for Computer Simulation International.

[4] P. Bakkum. The Virginian Database.
https://github.com/bakks/virginian. Date accessed:
2015-05-10.

[5] P. Bakkum and S. Chakradhar. Efficient data
management for gpu databases. Technical report,
NEC Laboratories America, Princeton, NJ, 2013.

Journal of Computational Science Education Volume 8, Issue 1

January 2017 ISSN 2153-4136 25



[6] P. Bakkum and K. Skadron. Accelerating sql Database
Operations on a GPU with CUDA. In Proceedings of
the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units (GPGPU’ 10), pages
94–103, New York, NY, 2010. ACM.

[7] S. Baxter. Relational Joins.
https://nvlabs.github.io/moderngpu/join.html. Date
accessed: 2016-03-19.

[8] S. Bress, M. Heimel, N. Siegmund, L. Bellatreche, and
G. Saake. Gpu-accelerated database systems: Survey
and open challenges. 2014.

[9] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn,
L. Wang, and K. Skadron. A characterization of the
rodinia benchmark suite with comparison to
contemporary cmp workloads. In Workload
Characterization (IISWC), 2010 IEEE International
Symposium on, pages 1–11, Dec 2010.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[11] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations
using graphics processors. In Proceedings of the 2004
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’04, pages 215–226,
New York, NY, USA, 2004. ACM.

[12] R. J. Halstead, I. Absalyamov, W. A. Najjar, and
V. J. Tsotras. Fpga-based multithreading for
in-memory hash joins. In Conference on Innovative
Data System Research (CIDR’ 15), 2015.

[13] R. J. Halstead, B. Sukhwani, H. Min, M. Thoennes,
P. Dube, S. Asaad, and B. Iyer. Accelerating join
operation for relational databases with fpgas. In
Field-Programmable Custom Computing Machines
(FCCM), 2013 IEEE 21st Annual International
Symposium on, pages 17–20, April 2013.

[14] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
coprocesing on graphics processors. ACM Trans.
Database Syst., 34(4):21:1–21:39, Dec. 2009.

[15] G. B. W. K. Manisha Gajbe, Kalyana Chadalavada.
Benchmarking and performance studies of mapreduce
/ hadoop framework on blue waters supercomputer. In
WorldComp 15 - ABDA’15 International Conference
on Advances in Big Data Analytics. ISBN, 2015.

[16] S. Meki and Y. Kambayashi. Acceleration of relational
database operations on vector processors. Systems and
Computers in Japan, 31(8):79–88, 2000.

[17] Advanced Micro Devices. Opencl programming guide.
http://developer.amd.com/wordpress/media/2013/07/
AMD Accelerated Parallel Processing OpenCL
Programming Guide-rev-2.7.pdf. Date accessed:
2015-05-10.

[18] National Center for Supercomputing Applications.
Brief blue waters system overview.
https://bluewaters.ncsa.illinois.edu/user-guide. Date
accessed: 2016-03-19.

[19] NVIDIA Corporation. Nvidia cuda programming
guide. http://docs.nvidia.com/cuda/pdf/CUDA C
Programming Guide.pdf. Date accessed: 2015-05-10.

Volume 8, Issue 1 Journal of Computational Science Education

26 ISSN 2153-4136 January 2017


	GPU Acceleration for SQL Queries onLarge-Scale Distributed Systems



