
GPU-Accelerated VLSI Routing using Group Steiner Trees

Venkata Suhas Maringanti
Department of Computer Science
Trinity College Hartford, CT 06106

venkatasuhas.maringanti@trincoll.edu

 Basileal Imana
Department of Computer Science
Trinity College Hartford, CT 06106

basileal.imana@trincoll.edu

Peter Yoon
Department of Computer Science
Trinity College Hartford, CT 06106

peter.yoon@trincoll.edu

ABSTRACT
The problem of interconnecting nets with multi-port terminals in
VLSI circuits is a direct generalization of the Group Steiner
Problem (GSP). The GSP is a combinatorial optimization problem
which arises in the routing phase of VLSI circuit design. This
problem has been intractable, making it impractical to be used in
real-world VLSI applications. This paper presents our work on
designing and implementing a parallel approximation algorithm
for the GSP based off an existing heuristic on a distributed
architecture. Our implementation uses the CUDA-aware MPI
approach to compute the approximate minimum-cost Group
Steiner tree for several industry-standard VLSI graphs. Our
implementation achieves up to 103x speedup compared to the best
known serial work for the same graph. We present the speedup
results for graphs up to 3k vertices. We also investigate some
performance bottleneck issues by analyzing and interpreting the
program performance data.

1. INTRODUCTION
A number of optimization problems with different application
areas can be modeled by the GSP: given an undirected weighted
graph G = (V, E) and a family N = {N1,…,Nk} of k disjoint groups
of nodes Ni ⊆ V, find a minimum-cost tree which contains at least
one node from each group Ni. One of such problems is the global
routing phase in VLSI design. The exponential increase in
complexity of integrated circuits where tens and thousands of
non-overlapping nets may need to be routed simultaneously
makes VLSI design a broad area where combinatorial
optimization methods can be applied. The problem of
interconnecting a net with multi-port terminals is a direct
generalization of the GSP.

The advent of modern petascale supercomputing architectures has
enabled scientists and engineers to solve several complex
problems. Today's supercomputers can not only perform
calculations with blazing speed, but also process vast amounts of
data in parallel by distributing computing tasks to thousands of
processing elements. With portable Application Programming
Interfaces (APIs) such as MPI (Message Passing Interface) and
CUDA (Compute Unified Device Architecture), researchers can
now exploit parallelism to not only solve bigger problems, but
also solve more problems in shorter time. This paper presents our
work on the design and implementation of a parallel
approximation algorithm for the GSP that uses Depth Bounded

Steiner Tree Approximation [1]. Our goal was to achieve a better
run time to make the heuristic practical for very large scale
problems.

2. A GPU-BASED ALGORITHM
Given an instance of the GSP, our parallel implementation returns
a minimum-cost group Steiner tree. Our parallel algorithm follows
the following steps in order.

2.1 Metric Closure on GPU
In general, the given graph G may violate the triangle inequality,
i.e., there may be edges in G whose cost is greater than the cost of
the minimum u-v path in G. An optimal group Steiner tree will
contain no such edges, since replacing such edges with the
corresponding shortest paths will decrease the total tree cost.
Therefore, without loss of generality, we replace G by its Metric
Closure. The Metric Closure is defined as the complete graph
where the cost of each edge (u, v) is equal to the cost of the
minimum u-v path in G. In other words, our first task is to
compute the All Pair Shortest Paths (APSP) for the given graph
and replace every edge cost with the corresponding minimum u-v
path cost. For the APSP, we use a highly efficient CUDA
implementation for the Blocked Floyd-Warshall APSP algorithm
from [2] on a GPU. After computing the metric closure and
replacing the original graph with it, we modify G as follows. We
duplicate and replace every port with a new node and add a zero-
cost edge between the two. The original port is now a non-port
and the newly added node is now a port. An optimal tree in the
modified graph G’ has the same cost as an optimal tree in the
original graph. Hence, this transformation allows us to seek a
near-optimal Steiner tree in the original graph.

2.2 Group Steiner Heuristic on CPU
Using G’ from the previous step, we now construct a minimum-
cost Group Steiner tree by launching multiple processes using
CUDA-aware MPI. A d-star is defined to be a rooted tree of depth
at most d. With every vertex as the potential root r, we follow the
following steps in order to construct the final solution.

2.2.1 1-Star
We construct 1-star tree rooted at the root of the optimal solution
tree, i.e. a tree of depth 1 where all leaves are ports, one from each
group.

2.2.2 Minimum-Norm Partial Star
We then select the intermediate nodes and determine a set of
groups that should be connected to each intermediate node. A
root, an intermediate node and a set of groups together form a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Copyright ©JOCSE, a
supported publication of the Shodor Education Foundation Inc.
DOI: https://doi.org/10.22369/issn.2153-4136/8/1/4

Volume 8, Issue 1 Journal of Computational Science Education

16 ISSN 2153-4136 January 2017

Partial-Star. Each partial-star is a sub-tree of the solution tree. We
compute all such partial stars until all the groups are spanned.

2.2.3 2-Star
We combine all the partial-stars computed in the previous step to
form the 2-star solution tree for the given vertex.

2.2.4 Minimum-cost 2-Star
We then collect all such 2-star solution trees obtained from the
previous step and select the one with the minimum cost as the
final solution. This is the minimum cost Steiner tree that the
algorithm is supposed to output.

As shown in Figure 1, (a) constructs a rooted 1-star, i.e. a tree of
depth 1 where all leaves are ports, one from each group. A root,
an intermediate node and a set of groups together form a partial-
star. Each minimum-norm partial-star is a sub-tree of the solution
tree [1]. Steps (c) though (e) compute such partial-stars until all
groups are spanned. Step (f) combines all the partial-stars
computed in the previous step to form a 2-star tree for the given
root r. Out of all such 2-star trees obtained from the previous step,
the one with the minimum cost is the final solution.

2.3 Work Distribution
Our Hybrid CPU-GPU approach uses CUDA-aware MPI as the
standard for launching multiple processes on the Blue Waters
supercomputer. In distributing work, the popular master-slave
approach was used, wherein process 0 is the “master” process and
the remaining ones are “slave” processes. The master performs
step 2.1 and then broadcasts the modified graph to all the slaves.
Each vertex (a potential root) is then mapped to a slave, whose
task is to perform step 2.2 and communicate the result back to the
master. After receiving all such results, the master then performs
reduction to compute the overall solution.

2.4 NP-Hardness of GSP
The Group Steiner Problem (GSP) is a direct generalization of
Classical Steiner Tree Problem, and has been known to be NP-
hard. Hence it is not known whether an optimal solution to the
GSP can be found by using a polynomial-time algorithm. The
GPU-based algorithm as described above is a polynomial-time
approximation scheme that efficiently outputs a near-optimal
Group Steiner Tree.

The performance ratio is defined as the ratio of the approximate
cost to the optimal cost for a given instance of the GSP. The
Group Steiner Heuristic as described above returns a solution with
a performance ratio no more than 2. 2 +	 ln()

*
) . √𝑘 where k is

the number of groups in the given instance of GSP [1].

The results in Table 1 show the comparison between the best
known upper bound of the optimal cost (Opt. Cost) and the
approximate cost(Approx. cost) returned by our GPU-based
approach. Our results show that the GPU-based approach returns a
nearly optimal solution with negligible cost error and a
performance ratio within the given upper bound.

3. PERFORMANCE EVALUATION
We ran our performance tests on Blue Waters supercomputer
which uses a Cray XE6/XK7 system. We tested both our serial
and parallel implementations using several Wire Routing Problem
(WRP) instances from industry. The instances are in a widely
accepted standard STP format [3]. We compare our approximate
solutions for WRP instances with optimal solutions from [4]. Our
analysis shows the cost error is less than 1% for all the input
graphs that we tested on.

Graph
name

Opt. cost Approx.
cost

Error %

wrp3-11 1100361 1100427 0.006

wrp3-39 3900450 3900600 0.004

wrp3-96 96001172 96003009 0.002

wrp3-83 8300906 8302279 0.017

 Table 1. Error of approximate cost

The graph below shows a comparison between the running times
for the best known serial work [4] and our parallel
implementation. We tested on several graph sizes ranging from
128 to 3168 vertices. Our analysis shows that our algorithm
achieves speed-ups for bigger graph sizes (>600 vertices), with a
maximum speed-up of 103x for the wrp3-83 graph with 3168
vertices.

Journal of Computational Science Education Volume 8, Issue 1

January 2017 ISSN 2153-4136 17

A common task in HPC is measuring the scalability (also referred
to as the scaling efficiency) of an application. This measurement
indicates how efficient an application is when using increasing
numbers of parallel processing elements. The graph in figure 3
shows that our problem is highly scalable for a problem size of
2518 vertices (wrp3-96).

4. CONCLUSION
After careful analysis, we have noticed some subtle yet interesting
points about our algorithm. Our algorithm is highly dynamic in
the sense that it is not possible to predict the size of the solution at
any point before actually computing it. Because of this, the work
needed to be done at every step, which is proportional to the
output size, cannot be predicted. This means that work
distribution is highly irregular and this leads to load imbalance
among processes which inhibits performance. This uncertainty
also contributes to a lot of irregular memory accesses which is
also a performance bottleneck. Our algorithm is also adaptively
refined, in the sense that it uses several steps to refine the solution
for each vertex and then chooses the best solution among all the
vertices. Algorithms that share the same characteristics as ours
also share the problems of load imbalance and memory hierarchy.

5. FUTURE WORK
Our implementation suffers from the problems of load imbalance
and irregular memory accesses due to the highly dynamic nature
of our algorithm. Hence we wish to design a better load balancing
mechanism and optimize the memory consumption of our

implementation. Future work also includes making modifications
to overlap more computation with data-communication.

6. REFLECTIONS
The project described in this paper was Venkata’s Blue Waters
Student Internship project where he learned to incorporate several
principles of computation and high-performance computing into
his research. This section presents Venkata’s reflections about his
internship and the impact that it has had on his current and future
academic endeavors: My interest in computer science was ignited
right from the introductory courses that I took my freshman year
in college. I was fortunate to have received an opportunity to work
with Prof. Yoon on this research project right from my freshman
summer. At the end of the summer, we had the sequential and
parallel versions of the code running on our local cluster. To our
surprise, the parallel version was slower than its sequential
counterpart in terms of run-time. After thorough investigation we
concluded that our implementation had suffered from load
balancing and thread divergence issues that hurt the performance
a lot. We articulated that significant parts of our algorithm were
more suitable to be handled by the CPU than the GPU and hence
we started looking into distributed computing architectures like
the Blue Waters Supercomputer. I then applied for the Blue
Waters Internship Program and was fortunately accepted for the
summer after my sophomore year in college. At the 2-week
workshop, I learned parts of the C and FORTRAN programming
languages in order to learn the basics of the parallel computing
libraries OpenMP, CUDA, MPI, and OpenACC. I was taught how
to use profiling and debugging tools like CPMAT and TAU. I was
also exposed to parallel I/O libraries such as Lustre. Thanks to this
experience, I am now confident using the Linux command line to
navigate Blue Waters and write basic shell scripts to execute the
code for my research. Having learned these skills, I am capable of
using supercomputers for my research, which is at the intersection
of engineering and computer science. This research experience
has given me a glimpse of how computer scientists carry out
research that continually shapes the world we live in. I am
planning on pursuing a doctorate at a graduate school in the field
of computational science, and I believe that these experiences will
make me a good candidate in the application process. The Blue
Waters Internship is definitely a turning point in my college career
and my life in general, and having this opportunity to do cutting-
edge research with real-world implications is an invaluable
experience.

Volume 8, Issue 1 Journal of Computational Science Education

18 ISSN 2153-4136 January 2017

Figure 4. A graphical flow chart representation of the parallel
algorithm.

Figure 5. A parallel approximation algorithm for GSP.

7. ACKNOWLEDGMENTS
This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science
Foundation (awards OCI-0725070 and ACI-1238993) and the
state of Illinois. Blue Waters is a joint effort of the University of
Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications. We thank the Blue Waters Student
Internship Program for providing Venkata with this opportunity.
We also thank the Summer Science program at Trinity College,
which provided Venkata and Basileal with room and board for the
summer.

8. REFERENCES
[1] Helvig C.S., Robins, G. and Zelikovsky, A. New

Approximation Algorithms for Routing with Multi-Port
Terminals. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 19(10), 1118-1128.

[2] Lund, B. D., and Smith, J. W. A multi-stage CUDA Kernel
for Floyd-Warshall. CoRR abs/1001.4108 (2010).

[3] Koch, T., Martin, A. and Voß, S. SteinLib: an updated
library on Steiner tree problems in graphs. in Cheng, X. and
Du, D.Z. eds. Steiner Trees in Industry, Springer US, Berlin,
2001, 285–326.

[4] Polzin, T., Vahdati, S. The Steiner tree challenge: An
updated study, 11th DIMACS Implementation Challenge.
Retrieved July 06, 2015, from Princeton University:
http://dimacs11.cs.princeton.edu/papers/PolzinVahdatiDIMA
CS.pdf.

Journal of Computational Science Education Volume 8, Issue 1

January 2017 ISSN 2153-4136 19

