

Educational Module on Genomic Sequence Alignment
Using HPC

Angela B. Shiflet
George W. Shiflet

Wofford College
Department of Computer Science

Department of Biology
Spartanburg, S. C. 29303 USA

+01 (864) 909-5396
shifletab@wofford.edu
shifletgw@wofford.edu

Daniel S. Couch
Wofford College Student

Blue Waters Intern
Spartanburg, S. C. 29303 USA

+01 (864) 597-4000
couchds@email.wofford.edu

Pietro Hiram Guzzi
Mario Cannataro

University “Magna Græcia” of
Catanzaro

Department of Medical and Surgical
Sciences

Catanzaro, Italy
+39 0961-369 4100
hguzzi@unicz.it

cannataro@unicz.it

ABSTRACT
“Aligning Sequences-Sequentially and Concurrently,” an
educational computational science module by the authors and
available online, develops a sequential algorithm to determine the
highest similarity score and the alignments that yield this score for
two DNA sequences. Moreover, the module considers several
approaches to parallelization and speedup. Besides a serial
implementation in C, a parallel program in C/MPI is available.
This paper describes the module and details experiences using the
material in a bioinformatics course at University “Magna Græcia”
of Catanzaro, Italy. Besides being appropriate for such a course,
the module can provide a meaningful application for a high
performance computing or a data structures class.

CCS Concepts
• Social and professional topics~Computing
education • Theory of computation~Parallel
algorithms • Theory of computation~Dynamic
programming • Applied computing~Bioinformatics

Keywords
Computational Science; High-Performance Computing;
Educational Modules; Blue Waters; Fulbright.

1. INTRODUCTION
In a Fulbright Specialist visit to University “Magna Græcia” of
Catanzaro, Italy, in January 2015, Angela Shiflet and George
Shiflet initiated a project with Mario Cannataro and Pietro Guzzi
to develop educational modules on high-performance-computing
bioinformatics algorithms. Wofford College student Daniel
Couch, supported by a one-year internship with the Blue Waters
Student Program, implemented the sequential and high-
performance computing algorithms associated with the first two of
the resulting modules.

The first product of this collaboration is a module that uses
algorithms to determine the highest similarity score and the
alignments that yield this score for two DNA sequences.
Sequence comparison to determine the similarity or difference of
two sequences is a fundamental operation of the interdisciplinary
field of bioinformatics. Bioinformatics, which relies on
mathematics, statistics, and computer science, provides tools to
compile, organize, and analyze the overwhelming volumes of data
that are being generated from genomic studies. Because of the
enormous quantity of data involved, high performance computing
is an essential tool in bioinformatics. Similarities in gene
sequences from different organisms, such as human and mouse,
can help establish the function of the gene, and through sequence
alignment, scientists can help establish the genetic causes of
certain diseases. Moreover, sequence alignment is used to study
protein functions and as a basis to predict protein structure.

The educational module, “Aligning Sequences-Sequentially and
Concurrently,” available at [6], develops the sequential
Needleman-Wunsch Algorithm for sequence alignment and two
parallel versions of the algorithm, the Pipeline Algorithm and the
Block-and-Band Version of the Pipeline Algorithm. Also
included in the module are the necessary biological background,
quick review questions, exercises, and projects. The module was
class tested in the course Advanced Techniques for
Bioinformatics at University “Magna Græcia” in Spring, 2016,
under the direction of Dr. Pietro Guzzi. This paper describes and
examines the module and our experiences using it.

2. Module
2.1 Pedagogy
A variety of courses can incorporate the educational module
“Aligning Sequences-Sequentially and Concurrently.” For
instance, a bioinformatics course can encompass the concepts and
algorithms and consider or omit the programming components.
The module can also be useful in an entry-level programming or
data structures course to show an application of two-dimensional
arrays. Moreover, a high-performance computing class can cover
the module emphasizing the HPC algorithms and concepts.

The module provides the biological background necessary to
understand the applications and references for further study.
Eighteen (18) multi-part quick review questions throughout the
module, with answers at the end of the module, provide
immediate feedback. Nine (9) exercises give additional practice to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Copyright ©JOCSE, a
supported publication of the Shodor Education Foundation Inc.

DOI: https://doi.org/10.22369/issn.2153-4136/8/1/2

Journal of Computational Science Education Volume 8, Issue 1

January 2017 ISSN 2153-4136 7

aid understanding of various aspects of the algorithms. The
module also provides five (5) project assignments for further
exploration using sequential and/or parallel programming.
Instructors can obtain implementations of the sequential algorithm
in C and the parallel algorithms in C with MPI from [5] or the
authors.

2.2 Biological Background
The introduction begins with a story of a woman diagnosed with
breast cancer, possibly caused by inherited, mutated genes, and a
general discussion of genes. Subsequent background sections are
on “Nucleic Acids,” “Proteins,” “Connecting DNA Code to
Protein Sequence,” “Mutations and Cancer,” and “Genomics and
Bioinformatics.” The latter section indicates the importance of
computation to biology by emphasizing that bioinformatics
employs mathematics, statistics, and computer science to organize
and store in databases vast amounts of data generated from
genomic studies and to analyze that data.

Some of the biological material in the module will be familiar to
some students but is included for students with minimal science
backgrounds. Crucial to the understanding of the material is a
basic understanding of deoxyribonucleic acid (DNA). DNA is a
long chain of molecules, each containing a nitrogenous base,
adenine (A), guanine (G), cytosine (C), or thymine (T).

Among the different bioinformatics algorithms, pairwise sequence
alignment was chosen because it is largely used in various fields
of biology, e.g. to highlight conserved DNA sequences or protein
motifs along evolution, or as a basis of the protein structure
prediction algorithms used to predict secondary and tertiary
structure of proteins.

In particular, pairwise sequence alignment algorithms arrange the
two input sequences (e.g. representing DNA, RNA, or proteins) to
discover similar regions that may be due to functional, structural
or evolutionary relations among the sequences. On the other hand

Moreover, sequence alignment algorithms use a very simple and
intuitive metrics, i.e. the similarity among sequences, as a
criterion to evaluate the quality of alignment. Finally, the chosen
Needleman-Wunsch algorithm works on tabular data that is a data
format very familiar to the students to whom the educational
module is addressed.

2.3 Sequential Algorithm
Using bioinformatics, we can align DNA sequences to identify
regions that are similar. Such a similarity might indicate that the
two regions have the same function or evolve from a common
ancestor in a sequence of mutations. In comparing two sequences,
such as ATGAC and ACGC, we can employ a metric, called a
similarity score, or score, to rate various alignments. For a
scoring scheme, the highest possible similarity score indicates the
best alignment(s). As the module discusses, an alignment of two
DNA sequences has spaces in the sequences so that they are of the
same length but so that a space in one sequence is not in the same
position as a space in the other sequence. For example, with a
dash (-) indicating a space, one alignment of s = ATGAC and t =
ACGC follows:

s: A T G A C
t: A - C G C

Another possible alignment is as follows:

s: A T G A C - -

t: - - - A C G C

Although we can rate the quality of an alignment in many ways,
this example in the module defines the score for an alignment as
the total of column, or position, scores, where the column scores
have the following values: +1 for a match, -1 for a mismatch,
and -2 for a space in one of the corresponding positions. Adding
all the position scores, the following alignment, with a dash (-)
indicating a space, has a score of 1 + (-2) + (-1) + (-1) + 1 = -2:

s: A T G A C
t: A - C G C

column scores: 1 -2 -1 -1 1

The Needleman-Wunsch Algorithm is a technique to determine
the similarity and the alignments that yield this score [4]. The
algorithm employs dynamic programming, which divides a
problem into a collection of smaller problems and uses the
solutions to these smaller problems to solve the larger problem.
The Needleman-Wunsch Algorithm makes the best decision for
prefixes, or subsequences from the start of the sequences (the
smaller problems), as it iterates over the length of those prefixes.
The module used the notation s[i..j] to indicate the subsequence
from position i to position j, where the first position number is 0.
For example, in s = ATGAC, s[1..2] is TG.

We write the developing intermediate similarity scores in a two-
dimensional array, or matrix, a. A blank (dash) and the bases of
one sequence, such as s, are row labels, while a blank and the
bases of the other sequence, such as t, label the columns. As
indicated in Figure 1, in row 0 and column 0, we write the on-
going scores for matching all spaces with prefixes of sequence s
and t, respectively.

 0 1 2 3
 - A C G C

 0 1 2 3 4

 - 0 0 __ -2 __ -4 __ -6 __ -8

 |

0 A 1 -2

 |

1 T 2 -4

 |

2 G 3 -6

 |

3 A 4 -8

 |

4 C 5 -10

Figure 1. Initial values in similarity matrix

Volume 8, Issue 1 Journal of Computational Science Education

8 ISSN 2153-4136 January 2017

 0 1
 - A C
 0 1 2
 - 0

0 A 1

1 T 2 -1 0
 (-1) + (-1) = -2 \ | 0 + (-2) = -2
2 G 3 -3 __ ?
 |

(-3) + (-2) = -5

Figure 2. Determine a[3][2] from a[2][2], a[3][1], and a[2][1]

To determine the matrix scoring values, we proceed row by row,
from left to right, calculating elements. Figure 3 contains the
entire similarity matrix, with line segments marking the paths
from the maximum element(s). The value in the bottom, right
corner, 0, is the similarity of ATGAC and ACGC. Following line
segments from that corner backward to a[0][0], we obtain a
corresponding alignment for the sequences, such as the following
optimal alignment:

s: A T G A C
t: A C G - C

 - A C G C
 0 1 2 3 4
- 0 0 __ -2 __ -4 __ -6 __ -8
 | \

A 1 -2 1 __ -1 __ -3 __ -5
 | | \ \

T 2 -4 -1 0 __ -2 __ -2
 | | \ | \ \

G 3 -6 -3 -2 1 __ -1
 | \ | \ | | \

A 4 -8 -5 -4 -1 0
 | | \ | \

C 5 -10 -7 -4 -3 0

Figure 3. Array of similarity values for ATGAC and ACGC

2.4 HPC in Module
After covering this material, the module shows that employing a
two-dimensional array, the complexity of the sequential algorithm
is on the order of n2, O(n2), where n is the length of a sequence.
To illustrate the problem, the module displays a graph of timings
using a C implementation of the Needleman-Wunsch Algorithm
with an increasing number of nucleotides (Figure 4). When we
are trying to match a sequence to multiple sequences in a
database, the timing challenge of employing an O(n2) algorithm so
often becomes evident.

Figure 4 runtime = 1.62585 ´ 10-8 nucleotides2

Thus, discussion of complexity motivates the need for parallel
processing. We can have different processes aligning the search
sequence to different database sequences in a way called
“embarrassingly parallel,” and/or we can have a parallel
alignment algorithm, such as the Pipeline Algorithm, to operate
on each pair of sequences.
In the Pipeline Algorithm, for simplicity, the module assumes that
the number of processes equals the number of rows, n, in the
similarity matrix and that Process j is responsible for making the
calculations on row j. The processes can simultaneously compute
their first column elements without communication with the other
processes using the formula j * spacePenalty for a[0][j]. Then,
Process j, for j = 0, 1, …, n – 2, can send a[0][j] to Process (j + 1).
Similarly, Process 0 can compute the ith element in row 0 as i *
spacePenalty. Immediately after calculation of a[i][0], Process 0
can communicate the value to Process 1. Now, knowing the
crucial values on the row above, a[0][0] and a[0][1], and the
value to the left, a[1][0], Process 1 can calculate a[1][1].
Moreover, while this calculation is occurring, Process 0 can be
calculating its next value, a[0][2]. Then, Process 0 sends a[0][2]
to Process 1, and Process 1 sends a[1][1] to Process 2, so that
enough information will be available to occupy the first three
processes. With each step, an additional process is drafted to
work. Figure 5 depicts the progress of this pipelining system for
sequences of length n = 5 and m = 8. After receiving
communication of the value above, a process can start
computation of its element in darker outline. Thus, calculation of
values on this anti-diagonal can proceed in parallel [2].

 Process 0

 Process 1

 Process 2

 Process 3

 Process 4

 Process 5

Figure 5 Pipelining the similarity matrix for sequences of
length n = 5 and m = 8

After discussing the algorithm, the module considers the number
of steps for n processes to calculate the similarity matrix for
sequences of length n, O(n). However, as the module illustrates,
one disadvantage is the amount of communication, which is O(n),
too. Besides a theoretical discussion in the module, a table

10000 20000 30000 40000
! Nucleotides

5

10

15

20

25

Runtime !s"
Journal of Computational Science Education Volume 8, Issue 1

January 2017 ISSN 2153-4136 9

presents runtime and speedup results versus number of
nucleotides for sequential and pipeline C implementations of the
Needleman-Wunsch Algorithm. The table shows that with more
than 10,000 nucleotides the pipeline algorithm is faster than the
sequential one, but speedup is not linear. Increasing
communication between processes dampens the runtime of the
HPC version.

The problem of communication motivates consideration of the
block-and-band version of the Pipeline Algorithm. To reduce
communication, each process calculates a block of several column
values. Moreover, as Figure 6 illustrates, we can make a process
responsible for a band, or several rows, of elements. After
calculating a submatrix, a process sends the block of elements in
the last submatrix row to the next process so that the latter can
start evaluation of a submatrix. Not only does a process transmit
fewer elements, communication can involve a block of elements
instead of multiple separate send operations, which is slower.
One of the module’s projects has the students implementing the
algorithm and determining optimal block and band sizes.
Consideration of the results can lead to a class discussion of
scaling and load balancing.

 }
 Process 0

 }

 Process 1

Figure 6 Pipelining a similarity matrix with block size of 2 and

band size of 3

2.5 Reinforcement of Material
Eighteen, often multipart, Quick Review Questions throughout the
module provide an assessment of the student's comprehension of
the material. For example, one question has the students
calculating the value of a scoring matrix element by hand.
Another 17-part question has the student trace through the scoring
algorithm using particular sequences. Answers at the end of the
module provide immediate feedback to determine if the student is
understanding the concepts.

Nine exercises provide additional reinforcement. For example,
three exercises ask the students to develop entire scoring matrices
for particular sequences, two involve complexity, and two
consider modifications to the sequential algorithm.

Five projects have the students developing various sequential
and/or parallel algorithms, performing timings, calculating
speedup, and determining advantageous band and block sizes.

3. Class Testing
3.1 Class
In Spring, 2016, the course Advanced Techniques for
Bioinformatics at the University “Magna Græcia” of Catanzaro in
Italy covered the module. The course is a requirement during the
last semester of their Master’s Degree in Biomedical Engineering.
The thirty (30) students in the class had BS degrees in biomedical
engineering and, thus, had more skills on the biological side than
in computer science. The students covered the module in one
week with four class contact hours. A final assignment, done

individually, was to implement the sequential version in Python
and to compare their times to those in the module for the
sequential and parallel implementations.

3.2 Results
After coverage of the material, seventeen (17) students completed
a survey about the module. Table 1 gives the list of survey
questions, eliciting a response from 1 for “strongly disagree” to 5
for “strongly agree,” with the average scores. The responses were
mostly very favorable but indicated some challenges with the
parallel algorithms and programming.

Score Statement

4.47 I understood the science in the module.

4.29 I understood the sequential algorithms in the module.

3.76 I understood the parallel algorithms in the module.

4.53 I understood the importance of using high performance
computing.

4.47 The module was readable.

4.59 The Quick Review Questions helped me understand the
material.

4.25 The exercises helped me understand the material.

3.13 The project helped me understand the material.

Table 1 Student survey averages (1 – strongly agree and 5 –
strongly agree)

The survey also included the following questions that required
free responses:

• Please elaborate about the above scores, particularly
those below 4.

• What did you like best about the module?
• What did you find most difficult in the module?
• Please give corrections and suggestions for

improvement.
• Please make further comments.

These responses indicated a desire by many students for the
module to have more examples and explanation of the parallel
algorithms. In response, the authors revised the sections on
“Pipeline Algorithm” and “Block-and-Band Version of the
Pipeline Algorithm” to include three specific, detailed examples
and three additional multipart quick review questions with
answers on the parallel versions (pipeline and block-and-band
with bands of size 1 and greater than 1) of the algorithm.

The students’ free responses contained numerous compliments.
Students indicated that they liked the linkage between genomics
and bioinformatics, the correlation between genetic mutations and
cancer, and the discussion of bioinformatics. Several stated that
the quick review questions, figures, tables, and pseudocode for the
Needleman-Wunsch Algorithm were helpful. One student
commented, “The way in which alignment algorithms were
explained in the module is better than other articles I read, I really
like it,” and another stated, “The article was interesting, from
which we learned new concepts.” About one-third of the students
volunteered that the module was “interesting” or “very
interesting.”

Volume 8, Issue 1 Journal of Computational Science Education

10 ISSN 2153-4136 January 2017

4. CONCLUSION
Based on the survey responses and the students’ performance, the
module, “Aligning Sequences-Sequentially and Concurrently,”
accomplishes conveying some of the basic principles of
bioinformatics, the Needleman-Wunsch Algorithm, HPC versions
of the algorithm (pipeline and block-and-band), and the utility of
high performance computing. Moreover, the students understood
and appreciated the material and successfully completed the
assignment. As a result of their suggestions, the authors improved
the module, making it an even better educational module
incorporating HPC topics in the context of other applications
learning.

5. ACKNOWLEDGMENTS
Our thanks go to the Fulbright Specialist Program, University
“Magna Græcia” of Catanzaro, and Wofford College for funding
the Shiflets’ visit to the university and to the National
Computational Science Institute Blue Waters Student Internship
Program for funding Daniel Couch’s internship.

6. REFERENCES
[1] Cannataro, M., and Guzzi, P. 2011. Data Management of

Protein Interaction Networks, Wiley.

[2] Chen, Y., Yu, S., and Le, M.. 2006. “Parallel Sequence
Alignment Algorithm for Clustering System” in

International Federation for Information Processing (IFIP),
Volume 207, Knowledge Enterprise: Intelligent Strategies In
Product Design, Manufacturing, and Management, eds. K.
Wang, Kovacs G., Wozny M., Fang M., (Boston: Springer),
pp. 311-321.

[3] National Computational Science Institute Blue Waters
Student Internship Program. 2016.
http://computationalscience.org/bwsip/ Accessed
April 6, 2016.

[4] Needleman, S. and Wunsch, C. 1970. “A General Method
Applicable to the Search for Similarities in the Amino Acid
Sequence of Two Proteins.” J. Molecular Biology, vol. 48,
pp. 443-453.

[5] Website associated with Shiflet, A. and Shiflet, G. 2014.
Introduction to Computational Science: Modeling and
Simulation for the Sciences, 2nd ed., Princeton University
Press https://ics.wofford-ecs.org/ Accessed April
6, 2016.

[6] Shiflet, A., Shiflet, G., Couch, D., Guzzi, P., and Cannataro,
M. 2016. “Aligning Sequences-Sequentially and
Concurrently” https://wofford-ecs.org/ Accessed
April 6, 2016.

Journal of Computational Science Education Volume 8, Issue 1

January 2017 ISSN 2153-4136 11

