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Introduction to Volume 7 Issue 1

Steven I. Gordon
Editor

Ohio Supercomputer Center
Columbus, OH

sgordon@osc.edu

Forward
This issue presents articles that provide a theoretical basis
for computational science education as well as some practical
tools that can be used in those endeavors. In addition there
are two student articles detailing the results of their learning
experiences.

The article by Osman reviews the relationships between
modeling and simulation and the literature on cognitive psy-
chology. He goes on to discuss a training program for K-12
STEM educators and the impacts of that training on instruc-
tional uses of modeling and simulation in their classrooms.

The article by Gordon, Cervenec, and Durand discuss the
release of a curriculum focused on teaching urban hydrol-
ogy concepts using a combination of physical and computer
models. Links are provided to the curriculum and a web-
based water runoff model along with exercises that can im-
plemented in the classroom.

Viera, Penmetcha, Magana, and Matson provide a frame-
work for assessing the design of computer learning experi-
ences. It was applied to an exercise using robotics and pro-
vides an approach to gauging the success of that exercise.

There are two articles detailing the projects and impacts of
student internships. The article by Catlett and Toth focuses
on the revision of a parallel computing learning experience
tied to the Blue Waters Internship program. The article by
LePain and Durach discusses the simulation that calculates
electromagnetic fields in a nanostructure. Their work was
also supported by the Blue Waters Internship program as
well as support from Georgia Southern University.
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ABSTRACT 
We discuss cognitive aspects of modeling and simulation in an 
efficacy study of computational pedagogical content knowledge 
professional development of K-12 STEM teachers. Evidence 
includes data from a wide range of educational settings over the 
past ten years. We present a computational model of the mind 
based on an iterative cycle of deductive and inductive cognitive 
processes. The model is aligned with empirical research from 
cognitive psychology and neuroscience and it opens door to a 
whole series of future studies on computational thinking. 

General Terms 
Computational Theory of Mind, K-12 Teaching and Learning 

Keywords 
Deductive and Inductive, Cognitive Processes, Memory Retrieval 

1. INTRODUCTION 
Educators structure training and curriculum based on learning 
theories of how the human mind works. Recent findings from 
empirical research by cognitive psychologists and neuroscientists 
have created a critical mass to change the way we prepare 
teachers and support their classroom instruction. This is an 
opportune time for computer science educators to ground in 
cognitive theories the well-known concepts and processes in 
computational science. 

Make it Stick, an ostensibly groundbreaking book published 
recently and coauthored by several prominent cognitive scientists 
has turned conventional ideas of learning upside down (Brown et 
al. 2014). The book offers many sound practices to help students 
easily retrieve content they learned in class, retain it, and apply it 
in different contexts to solve problems. New research suggests 
that repeated, delayed and interleaved retrievals make new 
concepts stick in memory longer if the process is effortful (pp. 
47). Learning is mediated by memory, because human brain 
attempts to interpret new concepts in terms of previously 
registered knowledge and facts. However, some degree of 
forgetting is also good for learning because it forces the learner to 
use effort to cognitively engage oneself to recall or reconstruct 
newly acquired concepts through different neural pathways or 
links that exists and are retrievable.  

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial 
advantage and that copies bear this notice and the full citation on 
the first page. To copy otherwise, or republish, to post on servers 
or to redistribute to lists, requires prior specific permission and/or a 
fee. Copyright ©JOCSE, a supported publication of the Shodor 
Education Foundation Inc. 

According to neuroscience, information is stored into the memory 
in the form of a specific pattern of neurons placed on a pathway 
and fired together (Restak 2001, Brown et al. 2014). The number 
and strength of such pathways improve the storage and retrieval of 
information. A memory or a newly learned concept can be a 
combination of previously formed memories, each of which might 
also involve a vast network of concepts and details mapped onto 
the brain’s neural network in a hierarchical way shown in Fig. 1.  

The key to storing a concept more permanently into the memory 
is to link it to previously stored basic and retrievable concepts. 
And, the more links to associated concepts, the higher the chances 
of recalling this concept when needed later. Spaced-out cognitive 
retrieval practices attempted at different times, various settings 
and contexts is good because every time the recall is attempted it 
establishes more links that will help the remembering and 
learning. Exposure to new concepts through links to multiple 
views from different fields of study is, therefore, an effective 
retrieval strategy recommended by cognitive psychologists 
(Brown et al. 2014). This is called interleaved retrieval practice 
and it now forms a cognitive foundation for the computational 
pedagogical content knowledge (CPACK) framework that we 
developed for teacher professional development (Yaşar et al. 
2015). In the following Sections (2.1 - 2.5) we describe theoretical 
foundation of CPACK followed by its implementation and impact 
on teaching and learning (Sec. 3) in secondary school classrooms. 

 Concept 

Basic concepts, details & facts 

Figure. 1: Distributive and associative aspects of 
information storage and processing (Yaşar 2015). 
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2. THEORETICAL FOUNDATION 
2.1 Interdisciplinary Education 
Interleaving retrieval practices by weaving together multi-
disciplinary features around a common topic (i.e., 
interdisciplinary education) has great advantages for gaining deep 
and lasting knowledge but it is not easy for several reasons. It 
would require a more cognitive effort than usual and as such, it 
would slow down the process of learning. In college, it would 
delay graduation and in public schools’ packed schedules it would 
risk compliance with local and state-mandated curriculum. 
Technology can be used to speed up this interdisciplinary learning 
but it needs training of teachers to teach content in pedagogically 
appropriate ways, thereby requiring a close integration of 
technology, pedagogy, and content as shown in Fig. 2. Recently, a 
theoretical framework, namely technological pedagogical content 
knowledge (TPACK), has been developed by Mishra & Koehler 

(2006) to address challenges of T, P, and C integration. Practicing 
teachers have been offered professional development (PD) to help 
them deploy appropriate technologies in the classroom, stay up-
to-date with emerging technologies, and assess efficacies of 
different pedagogical approaches (Loucks-Horsley et al. 2010). 
But, due to frequent changes in available tools, challenges might 
never go away as far as transferring curriculum inventories and 
PD content to new circumstances. Furthermore, teaching with 
technology often requires customization and the needed 
technologies must be both content specific and pedagogically 
suitable at the same time (Koehler & Mishra 2008). While the 
latest technologies offer more capacity for applicability, their 
optimum utilization may necessitate knowledge of tools’ 
operational underlying principles for easier transfer into new 
circumstances and better integration (Koehler & Mishra 2008, 
Niess 2005, Flick & Bell 2000).  

It is not very common to come across presentations or papers in 
teacher education conferences that report use of a pedagogically 
appropriate technology that is widely applicable to topics in a 
STEM content area. It is even less uncommon to see one that 
applies to teaching of topics in multiple content areas. This is 
what led scientists such as us who heavily used computational 
modeling and simulation technology (C-MST) in scientific 
research in the past several decades to cross paths with pedagogy 

and teacher education experts. We need their help to get more and 
better students from public schools to enter computational science 
programs and they need help with interdisciplinary TPACK 
training of teachers. At the 2014 and 2015 SITE (Society for 
Information Technology and Teacher Education) conferences, we 
presented a case study (i.e., CPACK) by demonstrating how we 
have integrated computational methodology and technology into 
teacher education. Encouraged by a warm reception and a TPACK 
paper award (Yaşar et al. 2015) from the SITE education 
community, we started a fruitful collaboration with other 
researchers and this has resulted in a better understanding of 
cognitive foundations of computational modeling and simulations. 

There is an important feature of interdisciplinary education that 
can be best described by Aristotle’s well-known statement, “the 
whole is more than the sum of its parts,” or the theory of Gestalt 
psychology, “the whole is other than the sum of its parts,” which 
means that the whole has a reality of its own, independent of the 
parts (Koffka 1935). Accordingly, educators have noted an 
emerging nature of TPACK when technology, pedagogy, and 
content closely interact (Mishra & Koehler 2006), which is 
illustrated as the overlap of Venn diagrams in Fig. 2.  There is 
even a stronger case, CPACK, when mathematics, computing, and 
sciences are integrated through CMST (see Fig. 3). Not only has it 
given rise to a new content domain of computational science as 
witnessed by degree programs in the past two decades (Swanson 
2002, Little 2003, Yaşar & Landau 2003) but it also led to a 
particular pedagogy which was not even there among the 
constitutive domains of computing, mathematics, and sciences to 
start with (Yaşar & Maliekal 2014a). Below, we explain cognitive 
foundations of this computational pedagogy. 

Figure 3: CPACK framework. While pedagogy is a separate 
domain in TPACK, it shows up inherently here as an outcome of 
interdependencies of computing, math, science and technology. 

2.2 Mind as a Computational Device 
Modeling and testing has been an important tool for scientific and 
engineering research for hundreds of years. Scientists often start 
with a model (e.g., a hypothesis or a concept) deductively based 
on the current research, facts, and information. They test the 
model’s predictions against experimental data. If results do not 
match, they, then break down the model into its parts (sub 
models) to identify what needs to be tweaked. They retest the 
revised model through what-if scenarios by changing relevant 
parameters and characteristics of the sub models. By putting 

Figure 2: TPACK framework (Mishra & Koehler 2006). 
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together new findings and relationships inductively among sub 
models, the initial model gets revised again. This 
(deductive/inductive) cycle of modeling, testing, what-if 
scenarios, synthesis, decision-making, and re-modeling is 
repeated  similar to the bidirectional distributive/associative 
structure in Fig. 1  as resources permit until there is confidence 
in the revised model’s validity.  

In recent years, computers have been very effective in conducting 
scientific research because they speed up the model building and 
testing of different scenarios through simulations that provide 
quick feedback to researchers in order to improve the initial model 
(NSF Blue Ribbon Report 2006). CMST’s role in scientific and 
industrial research was proven beyond doubt when computational 
predictions matched behavior of physical models in high-stake 
cases (e.g., safety of cars and planes, emissions from engines, and 
approaching storms). Its use was uniquely justified when a study 
was impossible to do experimentally because of its size (too big 
such as the universe or too small such as subatomic systems), 
environmental conditions (too hot or dangerous) or cost. CMST 
eventually demonstrated to be generating innovation and insight, 
just like experimental and theoretical research and this ultimately 
led to the recognition of computation by the scientific community 
as a third pillar of doing science besides theory and experiment 
(PITAC Report 2005). 

While such capacity was available only to a small group of 
scientists in national labs, their demand for computationally 
competent post-docs and doctoral students led to graduate 
programs in research universities. A dramatic increase in access to 
and power of high performance computing and the drop in its cost 
in the past 20 years helped spread the use of CMST tools into the 
manufacturing industry. Driven by market needs and trends, rather 
than empirical research into their effectiveness in education, 
funding agencies and colleges started investing in new CMST-
based BS and MS degree programs across the world (Swanson 
2002; SIAM Report 2001, 2007, Yaşar et al. 2000). It was not 
until friendly versions of such tools were available and considered 
for use in K-12 settings that a detailed and thorough empirical 
research was undertaken to measure their effectiveness in 
education.  

If used appropriately, CMST tools can involve students in inquiry-
based, authentic science practices that are highlighted in the recent 
framework for K-12 science education (NRC 2012). A growing 
body of research (Bell & Smetana 2008; Wieman et al. 2008) 
identifies computer simulation as an exemplar of inquiry-guided 
(inductive) learning through students’ active and increasingly 
independent investigation of questions, problems and issues. 
Research into the use of computer simulations in science 
education has been reviewed periodically and quite frequently in 
recent years. These include early efforts by de Jong & van 
Joolingen (1998) and by Bell & Smetana (2008), as well as recent 
efforts by Rutten et al. (2012) and by Smetana & Bell (2012). The 
article by the Rutten et al. (2012) reviewed (quasi) experimental 
research in the past decade (2001-2010) and the one by Smetana 
& Bell (2012) reviewed outcomes of 61 empirical studies since 
1972. The overall findings support effectiveness of computer 
simulations. In many ways simulation has been found to be even 
more effective than traditional instructional practices. In 
particular, the literature shows that computer simulations can be 
effective in: 1) developing science content knowledge and process 
skills, and 2) promoting inquiry-based learning and conceptual 
change. Effectiveness of CMST in education is also well 
grounded in contemporary learning theories that recognize the 

role of experience, abstract thinking, and reflection in constructing 
knowledge and developing ideas and skills (Hammond 2001; 
Donovan & Bransford 2005; Illeris 2009; Mooney 2013). 

Since CMST is beneficial to both scientists and students in their 
inquiry and learning, one might wonder in what ways it resonates 
with the basic functions of the mind. Although the literature 
suggests linking modeling and simulation to some cognitive 
functions such as abstract thinking and decomposition skills 
(Wing 2006), empirical research in cognitive psychology and 
neuroscience (Brown et al. 2014) encourages us to search further, 
as there might be a deeper link at more fundamental levels. For 
example, according to the computational theory of mind (CTOM), 
the deepest link between electronic and biological (mental) 
computing devices is a) the common nature of the information 
that they both process, and b) the way that they process it (i.e., 
addition & subtraction), regardless of the underlying infrastructure 
that does the computation (Montague 2006).  

Many fields have their hands in the study of how learning takes 
place in the mind. Cognitive psychologists try to understand how 
the mind works through empirical research into how people 
perceive, remember, and think. Developmental and educational 
psychologists form theories of human development and how they 
can be used in education. At the same time, neuroscientists use 
imaging techniques to understand the brain mechanisms that take 
part in learning. What was started by Alan Turing, the father of 
computer science, still continues to shed light today on the study 
of the mind. Basically, Turing’s idea was that if thoughts (i.e., 
information) can be broken up into simple algorithmic steps, then, 
machines can add, subtract or rearrange them as our brains do 
(Montague 2006; pp. 6). Turing also provided an insight that there 
should be a distinction between the patterns of computations (e.g., 
computer software and mind) running on a device and the device 
parts (e.g., computer hardware and brain). His insight keeps 
fueling the work of computer, computational, and cognitive 
scientists (Montague 2006; pp. 7). Basically, he laid foundations 
of a devise that could imitate the mind, thereby giving us a 
simplified representation (model) of the mind to understand how 
it would work in different contexts.  

While CTOM played a central role within the cognitive sciences 
during 1960s and 1970s, modern philosophers think that equating 
mental representations with information processing leaves out the 
meaning associated with mental events (Montague 2006; pp.8). 
We know that CTOM is far from complete, as information 
processing alone cannot define mental states. But, we also know 
from scientific research that computational modeling and 
simulation can generate insight when done in a bi-directional 
iterative way as shown in Fig. 1. If today’s advanced computer 
hardware and software have grown to a capacity to generate 
insight and conceptual change through a structured and cyclic 
computation with many levels involving various sizes and 
constructs of information at each level, then we should investigate 
if the same structure and mechanism support fundamental 
cognitive processes that may be common to both biological and 
electronic computation.  

In his book, “How We Make Decisions,” the neuroscientist 
Montague (2006), an ardent supporter of CTOM, describes how 
the mind attaches value to the computations in order to make 
meaningful decisions. He argues that the concern for survival 
pressures us to be efficient in the way we consume our available 
energy. As an extremely efficient computational device, the brain 
actually runs on orders of magnitude less electricity than 
mechanistic computers and mobile devices (p. 26). Furthermore, 
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he suggests that the concern for efficiency makes us assign 
“value” to our thoughts, decisions and actions by computing and 
evaluating different scenarios before we take an action (p. 51). 
And, that, he thinks is the root of our intelligence and why we 
have pushed ourselves to be smarter over time. 

2.3 Electronic & Biological Computation 
Humans have long been curious about how the mind works in 
ways that are meaningful, plausible, and fruitful for further 
research possibilities. Studying the mind has been much 
complicated as it takes place in a delicate, inaccessible, and 
complicated organ, the brain. However, consideration of the 
information in terms of simpler and computable pieces by Alan 
Turing led to an electronic device to imitate the biological brain. 
After almost a century, the imitation has gotten so complicated, 
both structurally and functionally, that we may be able to discover 
how the original (mind) computes by studying how the imitation 
(computer) does it. Yet, despite similarities of computational 
processes between electronic and biological computing devices, 
each uses a different hardware to accomplish what it does. While 
electronic computers have evolved into distributed structures like 
the brain’s neural network, there exist many differences. Much of 
the literature on “computation” today refers to how it is done on 
electronic devices and it may be time to use the term computation 
in a device-independent way.  

As briefly mentioned in the introduction, the latest neuroscience 
studies now shed light on how information storage, retrieval 
(remembering), and processing (thinking) take place by the brain 
hardware (Brown et al. 2014). While electronic computing 
machines handle information storage and processing separately 
through different hardware components, our brains have no 
separate place for information storage  storing and retrieval are 
part of information processing (thinking). Both the long-term 
storage and processing of information involve a synchronized 
distributed participation of all neurons in related regions of the 
brain (MacDonald 2008: 97). Programmers of parallel computers 
know that management and utilization of a distributed hardware 
necessitates scatter and gather type communication functionalities 
in software. That is similar to what is going on in the brain 
circuitry. When new information arrives, it lights up all related 
cues, neurons and pathways in a distributive process that is similar 
to the top-down action in Fig. 1, where new concept is broken up 
into related pieces. With the same token, retrieving a memory is a 
reassembly of its original pattern of neurons and pathways in an 
associative process that is similar to the bottom-up action in Fig. 
1. Retrieval is often regarded as an act of creative re-imagination 
and what is retrieved is probably not the original pattern but one 
with some holes or extra bits (Brown et al. 2014: 75, MacDonald 
2008: 101). Neuroscientists argue now that there is no distinction 
between the act of remembering and thinking (MacDonald 2008: 
97).  

The distributive and associative way of information processing by 
the brain circuitry is consistent with the dual deductive and 
inductive process of computational modeling and simulation that 
we discussed in earlier sections. While the brain’s neural circuitry 
offers a chance for full utilization, the efficiency, intactness, and 
effort-fullness with which it is used depends on each individual. A 
scientist is a good example of a person who exercises this bi-
directional thinking methodology in a complete cycle. Since the 
latest learning theories recommend that student learn science the 
way a scientist does his inquiries, these thinking skills should then 
be taught to young learners. They are actually part of the 
electronic computational thinking (CT) skill set as described by 

Jeannette Wing (2006). Some of the currently described CT skills 
may be grounded in cognitive processes that we have discussed 
here. For example, the decomposition skills of CT roughly 
correspond to the distributive, deductive, and top-down cognitive 
process of information we have described here. And, the 
abstraction skills roughly correspond to what we have described 
as associative, inductive, and bottom-up cognitive process of 
information.  

Abstraction is an inductive process, whereby details are filtered 
out and focus is placed on more general patterns, thereby allowing 
one to assign priority and importance to the newly acquired 
information. Researchers find it amazing that we make strong 
generalizations from sparse, noisy, and ambiguous data 
(Tenenbaum et al. 2011). Abstraction helps our cognition, 
especially at its developmental stages, by simplifying, 
categorizing, and registering key information and knowledge for 
quicker retrieval and processing (Bransford et al. 2000). Perhaps, 
we developed abstract thinking skills as a result of a survival 
concern for having limited resources (i.e., time, memory, 
attention). Our tendency to summarize and generalize information 
─ before we permanently store it ─ might be a strategy to 
overcome limited storage capacity. Such tendency can shield us 
from details that have no practical value for survival. Another 
evolutionary idea is that the brain’s tendency to process 
information in a dual fashion might be because it has sought a 
way to adjust to dual behavior of matter and the incoming 
information that reflects matter’s dual behavior. Whatever the 
origins are, findings in neuroscience indicate that it is not just the 
limited capacity of our brain or our survival instinct but also the 
distributed structure of the brain hardware that drives a bi-
directional (distributive and associative) flow of information, 
which results in tendencies that benefit us.  

The growth of our brain hardware and software is a bit complex 
and many things can go wrong during a lifespan. Normally, at 
birth, the circuitry at the inner part of the brain is up and running 
to manage vital and involuntary functions (e.g., breathing, 
heartbeat, and some degree of sound and visual tracking), but the 
outer part (cerebral cortex) takes some time to be ready for 
voluntary actions (e.g., conscious thought, information storage 
and processing) (Restak 2001). Actually, the majority of neurons 
that a human is born with are contained within this thin cortex that 
separates humans from other animals. While only a few neurons 
develop during adulthood, we can take comfort that mental 
growth is not solely based on the number of neurons in the brain, 
but rather the increasing complexity of the connections between 
them. Other factors that affect mental growth include the 
functionality that each neuron or groups of neurons assume, the 
size they grow into, and the placement in different parts of the 
brain that they migrate towards. Even more important is the 
number of inter-neuronal connections, which are estimated to be 
near 100 trillion.  New neural connections are being made all the 
time as we learn new things. In fact, these connections constitute 
the definition of learning, and the existing connections are 
strengthened, weakened, or even eliminated if not revisited often 
enough. Genetics plays only a partial role determining the growth 
of the brain, as there are not enough genes on the human 
chromosome to code for the placement of billions of neurons and 
trillions of connections (Restak 2001). This luckily leaves plenty 
of room for the brain (and the mind) to continue growing as a 
result of one’s free will, experience, and environment.  
So, the good news is both deductive (e.g., decomposition) and 
inductive (e.g., abstraction) thinking skills can be improved 
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beyond what is inherited, through training, education, additional 
knowledge and experience. In computer science, we use 
abstraction skills heavily and students get opportunities to sharpen 
them while writing large-scale complex codes (such as operating 
systems, compilers, and networking) in which the complexity is 
distributed into seemingly independent layers and protocols of the 
code in such a way to hide the details of how each layer does the 
requested service (Armoni 2013). Decomposition skills are also 
equally important in computational and mathematical problem 
solving. When facing a complicated situation (just like a complex 
science concept), one is often advised to divide (scatter) the 
complexity into smaller pieces and then attack each one separately 
until a cumulative (gather) solution is found. For example, domain 
decomposition is a common method in parallel computing to 
distribute the workload among multiple processors. In 
mathematics and physics, the Fourier series offers great benefits 
to deal with seemingly complex periodic functions by 
decomposing them into the sum of a set of simpler, namely sines 
and cosines, functions. In public culture, the famous “divide and 
conquer” phrase, supposedly by Napoleon, as well as ‘many a 
little makes a mickle’ by Benjamin Franklin all point to our 
awareness of the importance of the decomposition strategy. But, 
as stated above, not everyone is equally aware of the importance 
of such skills, nor are we all practicing and utilizing them fully 
and equally. So, some of us educate others, and in doing so, we 
have historically chosen different methods, as explained below, 
based on circumstances and needs. The good news is that 
technology (e.g., CMST) has now made it possible to combine 
seemingly competing and disparate methods into one that might 
do it all. 

2.4 Learning Processes Supported by CMST 
The issue of why STEM subjects may not be as engaging as 
others is complex. According to a study in 20 developed countries 
(Sjøberg & Schreiner 2005, Osborne & Dillon 2008), student 
attitudes towards science become increasingly negative as a 
country advances economically. The study suggests this 
phenomenon to be deeply cultural. Born in the early-to-mid 20th 
century as a reaction to the rigid and formal style of discipline-
based education, today’s progressive education system in the U.S. 
continues to engage students by making learning fun and exciting 
(Mooney 2013). There is nothing wrong with that. However, 
learning some subjects, such as science and mathematics, can be 
overwhelming because it involves factual details and requires 
application, discipline and delayed gratification ─ values the 
contemporary culture does not seem to encourage. Effortful 
learning is the key as we discussed earlier, according to the latest 
research in cognitive sciences and neuroscience. While the need 
for guiding young minds into the process of effortful learning had 
already been theorized by Vygotsky around the time of 
progressive education movement in America, the theory did not 
find its way across the Atlantic until two decades ago (Mooney 
2013; Hammond et al. 2001).  

There is no doubt that factual details in science and mathematics 
coursework are often overwhelming, causing high degrees of 
frustration for some students. Such individuals perceive science 
and mathematics topics to be more complex than they are and 
abandon their pursuit altogether. However, learning can be a 
joyful activity, if one is predisposed to delayed gratification, 
which is seldom the case with middle and high schoolers. Hence 
teachers everywhere face challenges that are daunting. Perhaps, 
there are two ways to overcome this. One of them requires a 
cultural change to teach new generations how to become effortful 
learners and predispose them to delayed gratification. This would 

take a whole village to do. And, it might take a lot longer than we 
have come to know Vygotsky’s theory, which says pushing a 
learner to reach his potential is a lot more important than giving 
him freedom to choose between effort and withdrawal. This 
would be like swimming against the flow in today’s educational 
system and cultural setting. The other option requires a 
pedagogical practice to employ a general simplistic framework 
from which instructors can introduce a topic and then move 
deeper with more content only after students gain a level of 
interest to help them endure the hardships. As explained in the 
next section, educators have often opted for this latter deductive 
approach. 

Teacher organizations and national standards (Bell et al. 2008) 
have suggested ways to create “antidotes” from the very thing 
(technology) that is known to have caused distraction and a 
tendency for an easy living. At the same time, the latest learning 
theories suggest that students should learn science the way 
scientists do their work (Bransford et al. 2000). For example, the 
framework for next generation science standards (NRC 2012) 
suggests that students learn better if they are engaged in activities 
closely resembling the way scientists think and work. If we 
combine these suggestions ─ that is, using technology with the 
way scientists conduct their work ─ we would recall from Section 
2.2 that scientists today heavily use CMST to do their work. So, 
the antidote can be computational modeling and simulation but it 
has some strings attached to it according to a national report (NSF 
Report 2008). Young learners cannot use the same CMST tools 
that the scientists use, as they might need prerequisite knowledge 
that they surely will not have. The report states that at early stages 
computational modeling approach should involve easy 
experimentation (learners must be able to quickly set up and run a 
model using an intuitive user interface, with no knowledge of 
programming or system commands) and high interactivity 
(models need to evolve quickly and include smooth visualizations 
for providing interactions and feedback to users).  

Modeling is a simplification of reality ─ it eliminates the details 
and draws attention to what is being studied. It enables the learner 
to grasp important facts surrounding a topic before revealing the 
underlying details. Tools, such as those in Table 1, now make it 
possible for instructors to offer easy experimentation in the 
classroom without having to expose students to STEM principles. 
For example, as described in later sections, Interactive Physics 
(IP) and AgentSheets (AS) can be used to create many fun things 
that could engage students into science experimentation, either by 
modifying an existing model or creating one from scratch.  

Table 1. List of CMST tools used in the CPACK PD. 
Interactive Physics (IP): investigate concepts in physics without 
prior physics background. http://www.design-simulation.com/IP. 

AgentSheets (AS): create games and simulations through agents and 
rules of engagement. http://www.agentsheets.com. 

STELLA: model a system by a pictorial diagram of initial values and 
rate of change equations. http://www.iseesystems.com. 

Geometer’s Sketchpad (GSP): model geometrical concepts; compute 
distances, angles & areas. http://www.dynamicgeometry.com. 

Project Interactivate (PI): online courseware for exploring scientific 
and mathematical concepts. http://www.shodor.org. 

Excel Spreadsheets: conduct modeling and simulations using a 
simple algebraic (new = old + change) for rate of change. 

Texas Instruments (TI) Tools: advanced graphing tools to conduct 
algebra, functions, and rates of change 
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Simulation adds another level of benefit on top of easy modeling 
by providing a dynamic medium for the learner to conduct 
scientific experiments in a friendly, playful, predictive, eventful, 
and interactive way to test hypothetical scenarios. For example, in 
a harmonic motion of an object attached to a spring (Fig. 4), IP 
can provide control buttons to change physical parameters such as 
string constant, mass of the swinging object and its initial 
velocity, intensity of gravitational acceleration, among others. It 
also gives the user the ability to change some operational 
parameters, such as the run-time and accuracy desired from the 
simulation. Furthermore, it allows the learner to go into the initial 
model’s details and break it into its constitutive parts in order to 
run various what-if scenarios. Based on these scenarios and their 
outcomes, the learner can go back to the design phase and change 
the model (spring and box) to his desire. This dynamics of making 
decisions that lead to modifications to the initial model based on 
what-if scenarios is an inductive process because it lets the learner 
to put pieces of the puzzle to come up with a revised model. When 
used together, then, modeling and simulations affords the learner 
the opportunity to cycle iteratively back and forth between the 
inductive and deductive approaches to learning (Yaşar & Maliekal 
2014). This resonates with how the mind itself works because it, 
too, uses a similar dual methodology (distributive and associative) 
in its information storage and processing as we explained before. 
 

Figure 4. A typical user-created simulation in Interactive Physics: 
harmonic motion of a box attached to a spring on a flat surface.  

2.5 Deductive & Inductive Approach to 
Instruction 
There are many advantages of deductive and inductive approach 
in teaching and learning. The deductive approach to instruction 
entails the teacher introducing a new concept or theory to students 
by explaining it first, then showing an application or two of the 
theory or concept, and wrapping up the instruction by affording 
students an opportunity to apply the theory or concept by 
completing homework problems (Prince & Felder 2006). This has 
been and continues to be the traditional approach to science 
instruction, and it often leads to apathy and eventual attrition of 
students. The inductive approach to instruction, by contrast, first 
presents students with a problem, a case, or data from an 
experiment. Students are then guided to explore underlying facts, 
issues and the like. As the culminating step, students are led to 
acquire on their own an understanding of the underlying concept 

or organizing principle (Prince & Felder 2007). Inquiry-guided 
learning, problem-based learning, and project-based learning are 
all among forms of inductive instruction. While empirical 
evidence suggests that the inductive approach to instruction is 
superior and that it fosters greater intellectual growth (Bransford 
et al. 2000, Donovan & Bransford 2005), prudent educators 
should take advantage of different approaches of teaching. 

Modeling- and simulation-based computational pedagogy carries 
many characteristics of the constructivist approach (Grabinger & 
Dunlap 1995), including inquiry-based, generative, cooperative, 
and interactive learning as well as project and team based 
instruction. Creating a model through step-wise process and 
running it at each stage of the development have the added 
advantage that learners get immediate feedback about their work. 
It may be used in situations when learning about the underlying 
theories and mathematical concepts that are important. Through 
this process, learners can be led to develop an understanding of 
scientific reductionism that studying a system or solving a 
complex problem requires breaking the system into its 
components or the complex problem into smaller chunks (i.e., 
decomposition). Using models and simulations, learners become 
actively engaged in “doing,” rather than passively “receiving” 
knowledge. In so doing, the learner becomes the center of the 
learning process, allowing self-interpretation of the problem and 
revise it if necessary, mediated by own biases, beliefs, 
preconceptions, prior knowledge and observations. Once learners 
successfully infer an organizing principle or theory, they can 
embark on the next logical and necessary step; one that involves 
predicting the consequences of the organizing principle or theory 
that learner just inferred and ascertaining whether the organizing 
principle or theory is viable, given the consequences. Anyone who 
learns in this fashion would, in fact, be practicing the craft of 
scientists (Wieman et al. 2008).  

Because simulation modules of differing complexity and 
flexibility have already been developed and made public, it is now 
possible to lead learners to perform a series of simulations to 
explore a scientific process in a manner that is similar to how 
scientists conduct controlled experiments, by holding all except 
one variable invariant. A teaching and learning method reliant on 
CMST is being welcomed by today’s traditional college and 
school students, as they are digital natives, attracted to and 
captivated by all things digital! Even non-science students, with 
no prior knowledge of physics, who used CMST tools and web-
based simulations, have shown the ability to provide good 
explanations of scientific phenomena much more quickly (within 
hours) than physics majors after a year of physics (Wieman et al. 
2008). So, having believed in the promise of dual pedagogical 
aspects of CMST, we ran a professional development program for 
in-service and pre-service teachers, hoping that it would engage 
teachers in their profession and improve both the teaching and 
learning in their classroom. The next section will detail 
implementation of our decade-long program along with data 
collected and analyzed by independent evaluators.  

3. IMPLEMENTATION & KEY FINDINGS 
While the results of our CPACK professional development 
program have already been documented in earlier publications, 
such as Yaşar et al. (2014), their importance for and relevance to 
the aforementioned theoretical frameworks have gradually come 
to our attention in recent years as a result of our work in pedagogy 
and cognitive sciences. In this section, we briefly review findings 
on teaching and learning that are relevant to our discussion.  
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While the main activity of our study has been teachers’ 
computational pedagogical content knowledge professional 
development, the ultimate desired outcome was better student 
engagement and learning as well as teacher engagement/retention 
and teaching. A mixed-methods approach (Creswell 2012) was 
used to collect and analyze qualitative data (interviews, activity 
logs, observations, pre- and post-activity surveys, and artifacts) as 
well as quantitative data (student grades and report cards, test 
scores, and standardized exams by the NY State) for the purpose 
of formative and summative assessment. 
Integration of modeling and simulation tools, such as those in 
Table 1, into secondary school teaching was initially done in three 
steps by incrementally adding a new domain of knowledge each 
year for the first three years. As shown in Table 2, the first step of 
the multi-tier incentive-based PD included technological 
knowledge (TK) training, the second step included technological 
content knowledge (TCK) training, and the final step included 
teaching of content through computational and pedagogical tools. 
Here, technology knowledge (TK) means knowledge of 
technology tools and their use. Technological content knowledge 
(TCK) means integrating knowledge of technology and STEM 
(physics, chemistry, biology, math, etc.) for the purpose of 
teaching its content. Technological pedagogical content 
knowledge (TPCK) means applying pedagogical technologies to 
the teaching of STEM content.  

Table 2. Profiles of teachers from Urban (U) and Suburban (SU) 
School Districts at the CPACK summer training (2003-2007).  

Training TK TCK TPCK Total 
School  U SU U SU U SU 

Math 96 14 42 2 22 0 176 

Science 38 15 17 9 12 5 96 

Tech 7 3 5 1 2 1 19 
Special Ed 14 1 2 0 1 0 18 

TOTAL 155 33 66 12 37 6 309 
 
Supported by the National Science Foundation through various 
grants, we formed a CMST Institute in 2002 and have since been 
offering CPACK PD to in-service and pre-service secondary 
school teachers. The professional development program has both 
summer and academic-year components. While we constantly 
explore new tools, we continue to use those in Table 1 because of 
a large database of artifacts and lesson plans we have developed 
using them over the past decade. Table 2 shows the number of in-
service teachers who benefited from the summer institute 
component offered through NSF support in partnership with local 
school districts (Rochester City School District (RCSD) and 
Brighton Central School District (BCSD)) and several national 
organizations (Shodor Foundation, Krell Institute, and Texas 
Instruments). Almost half of teachers who attended TK training 
returned for additional TCK training, and half of those returned 
for TPCK training. This is typical of an incentive-based PD 
(Loucks-Hersley et al. 2010). Teachers have multiple summer 
engagements and some teach in district summer schools. So, the 
dates and time impact attendance. For those who could not attend 
due to such circumstances, we offered similar short courses during 
the school year. The partnering districts also offered a condensed 
version of the training to additional 160 teachers through turnkey 
training and PD days. For the purpose of gathering data for 
research and evaluation, we only worked with teachers who 
attended the summer institute as part of commitment to the study. 

The initiative displayed elements of a scalable innovation (Dede 
et al. 2005), especially in mathematics. There was a cultural 
change in all 15 secondary schools at the urban RCSD and the 
suburban BCSD. They were fully engaged all the way from 
superintendents and principals down to teachers and students. 
Improved teacher retention and student achievement reported by 
partnering districts drew national attention to this initiative, 
including testimony by the author, Jeff Mikols (a RCSD math 
teacher who is now a district curriculum director), and Ed Chi (a 
BCSD science teacher who has left the district) before the U.S. 
Congress (House Hearing 2003).  

In a 2010 survey of 40 TCK and TPCK teachers, 94% agreed that 
the training made them more effective in the classroom; 87% 
agreed that it strengthened their pedagogical skills; 73% agreed 
that it strengthened their pedagogical content knowledge; 100% 
agreed that training strengthened their skills related to modeling 
and simulation; 86% reported that they continue to use the 
hardware, software and other materials made available through 
the project in their classrooms; and 80% believed that their 
participation served to build leadership skills. Seven years after 
the start of the initiative, 73% of participating teachers at RCSD 
were still teaching while 10% had moved to lead positions (Yaşar 
et al. 2014). According to the National Center for Education 
Statistics (NCES 2014), about 16% of STEM teachers either move 
to another school or leave the profession every year. The national 
average is that nearly half of all new STEM teachers leave the job 
within five years (Graziano 2005). Although we do not have the 
2002 baseline data from participating districts to compare with, 
urban schools such as RCSD generally perform much worse than 
the national average. RCSD district officials reported throughout 
the initiative (Crowley 2007) that it not only helped retain veteran 
teachers but it also drew more and better teachers to an urban 
school district, which usually has a hard time recruiting teachers 
because of the well-known urban problems (Margolis et al. 2008). 

Table 3: Frequency of technology tools used by trained teachers. 
Subject
/Grade 

Daily Weekly Bi-weekly Special 
Projects 

Math 
Grades
7-8  

Laptop, 
smartboard 

Power Point, 
PI, TI tools, 
GSP, Excel, 
Flash 

AgentSheets Interactive 
Physics (IP), 
Stella, Java, 
GIS/GPS 

Math 
Grades
9-12  

Laptop, 
smartboard, 
TI tools 

Power Point, 
PI 

Excel, Flash IP, Stella, 
Java, 
GIS/GPS 

Science 
Grades
7-8  

Laptop, 
smartboard, 
Power Point 

AgentSheets, 
Excel, PI 

TI, GIS/GPS, 
Flash, Java 

Stella, GSP, 
Interactive 
Physics (IP) 

Science 
Grades 
9-12  

Laptop, 
smartboard 

Flash, Excel, 
Power Point 

Interactive 
Physics (IP), 
Java, GPS 

Stella, 
AgentSheet, 
GIS, PhET 

 
All of the trained secondary school (grades 7-12) teachers 
reported that on a daily base they used laptops for presentations, 
graphing calculators for math instruction, and electronic smart 
boards for interactive lessons (see Table 3). Positive experience 
with C-MST tools is believed to have initiated use of additional 
tools such as GIS/GPS, Java, Flash, and PhET (Wieman et al. 
2008). Annual surveys of teachers showed that usage of the tools 
in the classroom was directly linked to the amount of training they 
had received. In post-training journals, while only 60% of the 
teachers reported occasional use of modeling tools in their 
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classrooms after the initial TK training, 78% reported that they 
used them regularly after the TPCK training.  

Table 4: Percent of teachers using modeling in class 
Grade Level 

 

Frequency 

Regularly Special Projects No 

7-8 Math 46% 46% 8% 

9-12 Math 60% 35% 5% 

7-8 Science 25% 75% 25% 

9-12 Science 54% 38% 8% 
 
In a 2007 survey by 65 active teachers who had received at least 
two years of training, many reported a significant use of modeling 
tools for both classroom instruction and special projects (see 
Table 4). It appears that the higher the grade level, the more 
regularly these tools are used in the classroom. Less frequent use 
of tools in RCSD middle school science classes was a concern, 
which resulted from access and scheduling problems but it got 
better over time as the concern was conveyed to the district 
administration. At BCSD, access to computing resources was not 
an issue. For example, participating teachers ended up fully 
integrating Interactive Physics into their high school physics labs. 

Figures 5 through 8 show some of the survey results in graphical 
format regarding student engagement and learning as a result of 
CMST-enhanced teaching. More than 92% of surveyed teachers 
agreed that computational inquiry made math and science 
concepts significantly more comprehensible to students (Fig. 5). 
 

Figure: 5. Improved comprehension of STEM concepts. 

Figure 6: Deeper understanding of STEM concepts. 

100% of technology, 72% of math, and 31% of science teachers 
reported observed improvement in students’ problem solving 
skills. Student reaction to modeling (versus traditional techniques) 
was found to be 97% favorable in math and 77% in science 
classes. While science classes utilized technology less due to 
limited access and lack of science-related modeling examples, in 
instances where it was utilized, a deeper understanding of science 
topics was achieved, compared to math topics (83% vs. 76%, see 
Fig. 6). As seen in Fig. 7, students in higher-grade levels found 
computational modeling more engaging in both math classes 
(grades 7-8: 77% vs. grades 9-12: 90%) and science classes 
(grades 7-8: 75% vs. grades 9-12: 85%). Modeling was even 
found helpful to non-traditional (special education) learners (Fig. 
8); again the higher the grade level the higher the engagement: 
math classes (grades 7-8: %76 vs. grades 9-12: 100%) and science 
classes (grades 7-8: 75% vs. grades 9-12: 85%). 

Figure 7: Student engagement per grade level and subject. 

Figure 8: Impact on non-traditional learners. 

Qualitative data from journal entries, activity logs, and teacher 
interviews pointed out to an emerging pattern regarding gender 
response to CMST-based teaching. Two independent coders read 
the 2010 teacher survey data and coded the text segments to arrive 
at descriptions and common themes. An inductive process 
(Creswell 2012) was used to group these codes in order to form 
even broader themes. Based on detailed accounts of 26 teachers 
(out of 40), the evaluators arrived at the following broad theme:  

While male students showed more interest in playing with 
technology and plowing through the details with less regard 
to the big picture, female students initially seemed reluctant 
and timid but excelled when details (curriculum) were put 
into context of real-world problems and projects.  
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This is consistent with national findings by our collaborators such 
as Repenning (2012). It is also consistent with our own data when 
triangulated against student scores and graduation rates. For 
example, while cohorts of 8th grader male and female students 
from both districts had a gap in their average math performance at 
the beginning of the initiative, not only were the gaps closed but 
also reversed four years later (12th grade) as shown in Table 5. At 
RCSD, while both male and female students did much better than 
four years earlier, the graduation rate of the same cohorts still 
reflected a gender-based trend in performance growth, favoring 
female students. To examine whether the difference is statistically 
significant, we calculated the z-scores assuming a normal 
distribution approximation (Brase & Brase 2012). The sample 
sizes for male and female students were roughly the same at both 
districts, with about 1200 at RCSD and 150 at BCSD. The column 
p indicates the confidence level that the difference between males 
and females may be due to a nonrandom effect. Normally, any 
confidence level below 90% is less than significant. Here, with 
more than 90% confidence level female cohorts outperformed 
male cohorts in both math performance and graduation rates. 

Table 5: Gender-based performance history at RCSD & BCSD. 
 2001-2002 2005-2006 

Gender Gender Z 
score 

P 
(%) M F M F 

R 
C 
S 
D 

Math 
Cohort 

13% 10% 41% 49% 3.97 99 

Graduation 
Rate 

 34% 44% 5.06 99 

B 
C 
S 
D 

Math 
Cohort 

92% 84% 93% 93% 0 0 

Graduation 
Rate 

 85% 90% 1.29 90 

 
To further triangulate self-reporting data by teachers, annual 
student achievement data were analyzed in the partnering school 
districts via report cards and standardized test scores. While we 
cannot fully isolate the impact of teacher training from other 
contributing factors, an upward district-wide trend was noted in 
both urban and suburban districts during the initiative. The 
percentage of students receiving a Regents diploma increased 
significantly from the baseline (RCSD: 21%  59%, BCSD: 84% 
 95%). The initiative exposed students from the urban district to 
college experiences and opportunities, and this may have led to an 
increased interest (78%  83%) in both 2-year and 4-year college 
enrollments over the period examined. Furthermore, the passing 
rate (>65/100) in NY State Grade-8 Math exam increased in 
Rochester City SD from 10% to 33%, while the passing rate in 
NY Regents Math-A exam (Grade 11-12) also increased from 
13% to 67%. Passing rate in sciences also increased in areas such 
as Physics (3%  22%) and Chemistry (9%  27%). At BCSD, 
passing rates improved in mathematics (Math-A: 51%  99%) 
and sciences (Physics: 52%  78%). The number of students 
taking General Physics at Brighton increased from 50% to ~100% 
and the number of students taking AP Physics also doubled. 
Student passing rates at both districts seemed to reflect relative 
participation of district’s math and science teachers in the 
initiative. All of the improvements have been found to be 
statically significant for typical sample sizes from each district. 

The main goal of the sponsoring No Child Left Behind program 
was to train as many teachers as possible to potentially create a 
district wide impact on student achievement scores. As a result we 
trained twice as many as we had committed to (see Table 2). 

While the goals of the sponsoring agency were met, as witnessed 
by gains in the standardized test scores reported by partnering 
districts, no comprehensive research was done by the project to 
more closely link the gains in student achievement scores to the 
teaching and learning resulted from the initiative. By the time the 
goals of sponsoring NSF program shifted from ‘leaving no child 
behind’ outreach to ‘researching the interventions’ we had almost 
run out of control groups in partnering school districts’ math 
classrooms. The initiative invited science teachers but limited 
access to computer labs, skepticism about use of technology, and 
inadequate number of readymade curricular modules discouraged 
many to invest in trainings that lacked significant science content 
and representative lesson plans. By the end of the project while 
almost all secondary math teachers in RCSD and BCSD received 
training and yearlong PD, only 20% of science teachers took part.  

In final years of the study, when focus shifted towards researching 
the intervention, a few treatment-control comparisons were 
conducted. A pair of CMST and non-CMST high school teachers 
from the same school taught properties of quadrilaterals in a 
mathematics class. The CMST teacher used GSP in a class of 24 
pupils while the non-CMST teacher used conventional methods in 
a class of 14 pupils. Both teachers conducted the same unit test. 
Even though the CMST teacher taught a more crowded class, his 
classroom average was 82.5 versus 49.5 for the other class. The 
second study involved a math triathlon similar to Regents Math A 
and B tests involving use of TI graphing calculators. Scored by 
external judges, including teachers and college faculty, this study 
revealed that students taught by CMST teachers outperformed 
other students in all categories: Math-A: 60.26 vs. 49.54; Math-B: 
71.9 vs. 55.6; and 7-8 Grade Math: 64.0 vs. 58.6. 

Over the past decade, institute staff and participants created a 
large database of more than 300 CMST curriculum modules and 
lesson plans. Curriculum modules and lesson plans from the 
database have been downloaded by people around the world at a 
rate of 50-80 per day, totaling almost 100,000 since the database 
was launched. The database has also provided content for two 
local pre-service methods courses (NAS 401/501 C-MST Tools 
and NAS 402/502 Computational Pedagogy) in the college’s 
teacher education program. Table 6 shows pre-service enrollments 
in these credit-bearing NAS courses. Additionally, the database 
supported turnkey training offered by partnering districts during 
professional development days, serving 160 in-service teachers.  

The CMST database (www.brockport.edu/cmst) continues to 
support three general education courses reported earlier in this 
journal (Yaşar 2013). They have since served 500 more STEM 
undergraduates. The two NAS methods and 3 general education 
courses have become part of the NSF Robert Noyce Scholarship 
program since 2012, serving a new cadre of 50 computationally 
competent STEM teachers, some of whom have already started 
teaching in high needs school districts both locally and nationally.   

Table 6. Number of pre-service teachers trained. 
Courses 2003-07 2008-12 2013-15 Total 
C-MST Tools & 
Pedagogy 

113 107 105 325 

 
In Rochester City and Brighton Central secondary school 
classrooms taught by CMST teachers, students were all given a 
chance to experience the deductive and inductive learning 
processes. As mentioned earlier, 97% of mathematics and 92% of 
sciences classes using the CMST approach agreed that it made 
subject-related concepts more comprehensible. Furthermore, 83% 
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of science classes and 76% of math classes found that it led to 
even a deeper understanding of STEM concepts. While modeling 
is a common practice in mathematics and science classes, science 
classes often go beyond modeling to utilize simulations in order to 
investigate time-dependent dynamics of scientific phenomena. 
When used together, modeling and simulation affords the learner 
a constructivist opportunity (Grabinger & Dunlap 1995) to cycle 
iteratively back and forth between the inductive and deductive 
approaches to learning (Yaşar & Maliekal 2014). Teaching 
mathematical and computing concepts contextually has been 
recommended for quite some time by national learning standards 
(NGSS, Computing Curriculum 2005) but we now additionally 
know from cognitive sciences that retrieval practices attempted at 
various contexts is good  because every time the recall is 
attempted in a different context, it establishes more links that will 
help the remembering and learning (Brown et al. 2014).  

Benefits of constructivist and contextual learning was observed in 
an annual after-school CMST challenge competition, which 
allowed students more time and freedom than a regular classroom 
setting to apply, test, and revise the constructed computational 
models. Participating students had a full semester to develop a 
team project. Scoring rubric included problem statement, 
application of the model to a problem of interest, data analysis, 
teamwork, originality, electronic demonstration, and presentation 
of the results before a panel. Extra points were given for use of 
multiple CMST tools, demonstrated understanding of 
computational, mathematical and scientific content, and level of 
challenge, knowledge and skills demonstrated beyond team’s 
grade level. As expected, the incentives helped push students to 
go beyond initial job of model construction, playful 
experimentation, and introductory exposure to STEM concepts. A 
project-based experience reported in Yaşar et al. (2005) by a 
group of 9th grade high school students from Brighton High 
School (NY), who used the Interactive Physics and Geometer’s 
Sketch Pad to prove Kepler’s Laws in an afterschool program 
(annual CMST Challenge), is a testimony of how students gained 
a deeper understanding of computational and scientific content of 
the planetary motion.  Following is a sentiment by these high 
school students after their CMST experience to prove Kepler’s 
laws:  

“We had not taken any physics courses and we were not fully 
knowledgeable about laws of universe that govern planetary 
motion. That is not different from the situation of Kepler; as 
no one quite knew how gravitational forces worked until 
Newton came. Kepler had access to data compiled by Tycho 
Brahe and he looked for patterns. We had access to modern 
tools and we looked for miracles! We learned how to transfer 
visuals images and data from Interactive Physics to 
Geometer’s Sketchpad to measure angles, distance, and areas 
of triangles needed for the proofs… While it was initially 
frustrating to learn new tools, realizing what Kepler would 
have done if he had such tools; we quickly learned to 
appreciate the opportunity in our hands. In the end, we did 
not make a discovery in physics, but we certainly discovered 
that physics was not a threatening or boring subject. We also 
discovered the role of mathematics in physics. The foreboding 
nature of complicated physics was abolished and we all 
looked forward to taking physics classes.” 

The authors followed progression of these students as a case 
study. In their project the following year, these 10th graders 
inquired further about fundamental STEM principles of their 
projects and operational principles of the tools they used for 

modeling and simulations. Using Excel to compute a simple 
algebraic form of rate of change equation, new = old + change, 
that they had learned in the mathematics class that year, they 
attempted to replicate the Interactive Physics results found earlier 
for the harmonic and planetary motion. For the harmonic motion 
in Fig. 4, this involved computing algebraic formulas for the 
position (xnew = xold + dx) and velocity (vnew= vold + dv) of the 
spring-driven object at times (tnew = told + dt) separated by interval 
dt. While time (t) was an independent variable, and change in x 
was dependent on the velocity as dx= v · dt, and the change in v 
was dependent on the acceleration as dv= a· dt, where 
acceleration (a) is Force/mass. The force applied by a spring unto 
an attached box is F= - k · x, where k is the stiffness coefficient of 
the spring and x is the displacement of the box from the 
equilibrium position (x=0). The details of their self-constructed 
simulations is given in Yaşar et al. (2006), yet the brief statement 
below summarizes the progress they had made ─ they were no 
longer threatened or frustrated by learning of science. 

“Through Excel, we were able to use a simple algebraic 
equation (new = old + change) to manually construct our 
own simulations as an alternative way and compared them to 
those done earlier by the Interactive Physics. To compute the 
“change” all we needed was some basic knowledge of the 
force that governed the system, whether it was the harmonic 
or the planetary motion.” 

The progression by these students show that the learner can start 
either with a readymade model, or construct one using a pull-
down menu, that represents the scientific phenomenon under 
study and conduct fun experiments without having to know the 
details of the model and the laws that govern its motion. If it stops 
there, then we can say that the top-down deductive approach has 
engaged students in STEM activities. But, if the learner is tempted 
to continue and inquire about the initial model’s constitutive parts 
and forces that act on them, then he can run simulations by 
changing characteristics of the parts and forces to inductively 
construct a new model and physical setting that better represent 
the reality. This cycle can be repeated until the desired knowledge 
or outcome is reached. This way of learning, through inquiry and 
experience, is nothing but how scientists do their work (Bransford 
et al. 2000, Donovan & Bransford 2005). Such an iterative and 
stepwise progression in constructive learning is also consistent 
with several pedagogical frameworks, including scaffolding, zone 
of proximal development (ZPD) that we discussed earlier by 
Vygotsky, and the Optimal Flow (Csikszentmihalyi 1990) shown 
in Fig. 9, which suggests the importance of balancing challenges 
and abilities using pedagogical stepping-stones in order to attain 
optimal flow for a learner.  

Figure 9: Illustration of Optimal Flow as a path of learning.   

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 11



4. CONCLUSION 
Cognitive psychology research has shown that interleaved 
retrieval practice has great advantages for gaining deep and 
lasting knowledge. Interdisciplinary education is a form of this 
practice at course and curriculum levels but it takes effort and 
time, thereby slowing down the learning process. In college, it 
delays graduation and in K-12 it slows down the pace of teaching. 
Technology can speed it up but this throws another ranch into the 
works by adding another domain of knowledge. So, the question 
becomes of finding a technology that will facilitate mixing of 
multiple views around a topic in a pedagogically way. This, we 
claim, calls for the use of computational modeling and simulation 
technology because it naturally adds a deductive and inductive 
pedagogy to teaching of STEM content. The final question, then, 
becomes, “OK, we got this wonderful thing, how do we go about 
institutionalizing it?’ And, this is where the need for teacher 
training becomes the central task, as they are the agents of change 
for any reform in the schools (Bybee & Loucks-Hersley 2000, 
Loucks-Hersley et al. 2010).  

We have run a decade-long experiment to study the task explained 
above, using CMST tools within an interdisciplinary CPACK 
framework for teacher professional development. Triangulated 
data from multiple sources indicated that the use of CMST tools 
and pedagogy not only supported basic interleaved retrieval 
practices but it enriched such practices by putting the learner on 
the driver seat through an iterative cycle of constructivism, 
interactivity and immediate assessment. Not only did this cyclic 
process helped students: a) engage in a topic through a general 
simplistic introduction and b) move deeper deductively into more 
content as they gained more skills, but it also enabled them to 
construct significant knowledge through easy experimentation to 
inductively draw conclusions about the topic they started with. 
Computational modeling and simulation involves all of these as 
demonstrated in our initiative in public schools. The deductive 
aspect of modeling helped teachers present science concepts to 
learners by simplification of reality, which was instrumental to 
draw young minds into science learning. High levels of student 
engagement reported by our participating teachers strongly 
support the effectiveness of computational modeling as a 
deductive pedagogical tool. The CMST tools did exactly as 
expected by shielding students from having to know detailed 
content knowledge of mathematics (e.g., differential equations), 
computing (e.g., algorithmic and programming) and science (e.g., 
physics) to conduct experiments of linear, harmonic, and 
planetary motion using IP. The inductive process resulting from 
experimentation through simulations helped learners to rediscover 
principles of computing and sciences, therefore leading to deeper 
content learning. Since it is the inductive reasoning that help us 
come up with general patterns and simplifications from paralyzing 
details, one cannot have a chance to utilize a deductive approach 
if there had not been an inductive counteract to simplify concepts 
for later use. So, we do not have an option of choosing one over 
the other in education; we need to use both, as they complete  
not compete with  each other. Improved student achievement 
scores in both local and statewide exams at partnering school 
districts point out to a lasting impact of the dual nature of 
computational pedagogy.  

Our initial focus on pedagogical aspects of CMST was to develop 
a tool-independent CPACK training for our teacher education 
program in order to maximize transfer of curriculum inventories 
to new conditions when newer technologies become available. 
However, we stumbled upon much more. Information revolution 

has taken electronic computing devices to every corner of the 
globe but very few would be familiar with and relate to 
computational modeling and simulation. In fact, even some 
researchers and educators might consider CMST as an ad hoc 
technology. Computing is not usually considered as a branch of 
science (Denning 2009) because it deals with artificial 
phenomena, not natural phenomena. However, as artificial and 
imitational as electronic computation is, it might actually help us 
discover how the biological computation generates complex 
mental states. We think it is going to do more than that, as 
understanding how pervasive the computational behavior is might 
change the way we relate to ourselves and everything else in the 
universe.  

Computational theory of mind considers electronic and biological 
computing devices to compute the same way at the fundamental 
level, but much is needed to reduce our complex mental states to 
mere computational processing of information. Regardless of 
what high level processes a computing device is performing, we 
think that the way computing is done at the most fundamental 
level will carry itself all the way to the top level. Computational 
modeling and simulation is a high level electronic process whose 
dual characteristic does reflect the two fundamental modes of 
computing (i.e., addition and subtraction). Deductive and 
inductive thinking, on the other hand, are also two high-level 
cognitive processes that similarly reflect the same modes of 
computation. So, one can suggest that it is the computable nature 
of information that leads to commonality of electronic and 
cognitive outcomes of computing regardless of the underlying 
structure. A million-dollar question would then be ‘what is the 
source of information’s computable (associative and distributive) 
behavior?’ Is it merely reflecting how the matter itself behaves?  

Computability actually appears to be a universal characteristic of 
both granular matter and quantifiable information. Anything 
quantifiable has three distinguishable outcomes: quantity, 
sequence, and pattern. If quantifiable stuff ─ be it matter or 
information ─ can form various patterns to make up atomic and 
cellular structures as well as instructions and thoughts, then 
everything we see out there is computable (Montague 2006; pp. 
14). If so, then perhaps we can start examining a computational 
theory of everything (Yaşar 2016) that would mean everything in 
the universe behaves computationally by either uniting with 
(addition) or departing from (subtraction) other things to form a 
new sum as, again, depicted in Fig. 1. Our current and future 
studies will continue along these lines. Any traction that it might 
gain will be a tribute to Turing. 
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ABSTRACT 
Geoscience educators in K-12 have limited experience with the 
quantitative methods used by professionals as part of their 
everyday work.  Many science teachers at this level have 
backgrounds in other science fields.  Even those with geoscience 
or environmental science backgrounds have limited experience 
with applying modeling and simulation tools to introduce real-
world activities into their classrooms.  This article summarizes a 
project aimed at introducing K-12 geoscience teachers to project 
based exercises using urban hydrology models that can be 
integrated into their classroom teaching.  The impact of teacher 
workshops on teacher’s confidence and willingness to utilize 
computer modeling in their classes is also reported. 

Categories and Subject Descriptors 

Social and professional topics~Computational science and 
engineering education   • Social and professional topics~K-12 
education   • Social and professional topics~Computational 
thinking  

General Terms 
Teacher professional development; Geoscience education; 

Keywords 
Stormwater modeling; Curriculum development 

1. INTRODUCTION 
Promoting careers in the geosciences to high school students 

requires hands-on projects that engage the students in solving real 
problems, introduce the types of work undertaken by 
geoscientists, and fit comfortably into the existing curriculum. In 
geosciences, as in most scientific fields, addressing practical 
problems requires multi-disciplinary skills that include the 
understanding of scientific principles, the application of 

mathematics, the use of computational tools, and the effective 
presentation of the results both orally and in writing. Focusing on 
an applied problem can provide students with the motivation to 
learn and apply concepts and techniques from all of the relevant 
disciplines while illustrating the nature of the work undertaken in 
the geosciences. 

Inquiry-, project-, and problem-based (PBL) learning is a 
recognized strategy to build interest and depth of understanding of 
science and math concepts [1].  Research has shown that PBL can 
be more effective in preparing students to integrate concepts, 
improve retention, and improve achievement on assessments at 
the state level [4,8,10].  Mathematical models and computer 
simulations are one approach to creating PBL experiences for 
students. Models are a key component of the science and math 
common core standards [6,9]. 

Teachers’ implementation of modeling and simulation in their 
classrooms is often constrained by their understanding of the 
underlying principles.  K-12 geoscience classes can be taught by 
teachers who majored in other science disciplines.  Even if they 
came from a geoscience major, teachers may lack the expertise in 
quantitative modeling to feel comfortable in using models in their 
classrooms. 

To address these issues, we developed a curriculum focused on 
urban hydrology modeling as part of our effort on a National 
Science Foundation geosciences education project. The 
curriculum includes components of data collection, physical 
models, and computer models of urban hydrology [3].  The 
materials were presented to teachers in summer workshops in 
2013 and 2014.  It included the development and presentation of 
two computer models of urban hydrology.  Below, we present a 
description of the model development and its impacts on teachers’ 
willingness to make them part of their classroom activities. 

2. SIMPLE MODEL OF STORMWATER 
RUNOFF 
2.1 Adaptation of HEC-HMS Model 
Understanding the relationships among rainfall intensity and 
duration, land cover, and the quantity and distribution of 
stormwater runoff are keys to a deep understanding of urban 
hydrology.  Urban development creates impervious surfaces that 
reduce soil infiltration and groundwater flow while increasing 
surface runoff and the peak runoff of urban streams, often causing 
flooding.  To illustrate these relationships, projects were created 
using two hydrology models. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
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The first model chosen for this purpose was the Hydrologic 
Engineering Center – Hydrologic Modeling System (HEC-HMS) 
of the US Army Corps of Engineers [11].  The model provides 
options to use several different methods to create simulations of 
basin-wide stormwater runoff hydrographs.  However, the 
interface and available options are quite complex and probably 
not suited to novice users.  For this reason, we began by creating a 
Java front end interface that provides only selected options to the 
user.  The data from the interface is then passed to the installed 
HEC-HMS model to run in batch mode and create an output file.  
The Java interface then reads this output file and presents the user 
with graphs of the results and the ability to export the data to a 
spreadsheet format for further analysis. 

Before introducing the models, teachers participated in several 
exercises that introduced hydrologic modeling concepts and 
measurements. Teachers were immersed in the inquiry exercises 
as teams – just as their students would be in the classroom. 
Participants developed laboratory procedures, reviewed data sets, 
took measurements, calculated volumes, and presented results. 

In the first unit, participants completed a simple experiment with a 
sprinkler simulating rainfall into a rain gauge and two large soup 
cans with pea gravel and topsoil as experimental porous media.  
Measurements were taken to demonstrate the principles of soil 
retention and runoff as it relates to the type of soil. 

In a second unit, the instructor introduces a miniature watershed, 
named a GeoSandbox, to provide a conceptual bridge between the 
schema created in the first unit and the watersheds and models 
used in the next unit. Students introduce known quantities of 
water to the GeoSandbox using spray bottles and measure the 
resulting surface flow and infiltration. The concepts of topography 
and land use are also introduced. Additional instructional 
materials are provided to firmly establish the concept of 
watershed for students who need the support. 

Unit three uses a local school yard, with measurements of land 
use, surface area, and slope, to estimate the flow of water during a 
rainfall event.  Free, online tools, such as Google Earth Pro, 
Google Maps, and various sites from the U.S. Geological Survey 
and National Weather Service are also introduced so that students 
can expand their geographic scope without needing to personally 
collect every measurement.  Detailed instructions for these 
activities can be found on the project site [3]. 

With these activities as background, students can then use the 
simple hydrologic model to explore the relationships between land 
use, land cover, and the amount of runoff produced during a storm 
event. 

Figures 1 and 2 show the data input windows of the Java interface 
to the simple hydrologic model.  In the first window, the user 
inputs information on the flow length, elevation change, and area 
of the watershed.  These can be measured from U.S. Geological 
Survey maps or digital elevation maps.  The distribution of land 
cover is also input.  The pull down menus include categories of 
woodland, agricultural, residential, commercial, and industrial 
land uses that comprise the surface of the watershed.  These in 
turn are linked to runoff coefficients in the model that are related 
to the degree of imperviousness of each of the land use categories. 
This allows the exploration of the impacts of different land use 
mixes on stormwater runoff. 

In the second window, users enter the hourly storm precipitation 
information for up to twelve hours.  Thus, the stormwater of 
different storm amounts and time distributions could be 

compared.  For example, students could compare the impact of a 
sudden downpour lasting only an hour or two to a steady rain with 
the same amount of rainfall spread over twelve hours. 

 

Figure 1: First Data Input Screen for HEC-HMS Java 
Interface 

 
Figure 2: Second Data Input Screen for HEC-HMS Java 
Interface 
Once the input data are created, the applet launches the 
background model which simulates the stormwater hydrograph 
for the storm.  These data are then read by the applet and display a 
graphic such as the one in Figure 3. 

The interface also allows for up to three scenarios where the user 
inputs either different land cover data or different storm volumes 
and distributions.  These are then shown on the same graph for 
comparison purposes as shown in Figure 4. In that example, high 
density residential land cover was replaced with lower density 
residential development for the same storm.  Data can also be 
exported to a spreadsheet for further analyses and comparisons. 
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Figure 3: Output Hydrograph from HEC-HMS Model 

 
Figure 4: Hydrographs Comparing Two Land Use Scenarios 
 

2.2  Simulating Water Quality Impacts 
Real watersheds have complex mixtures of different land uses 
spread across much larger areas than those can be represented in 
our simple model example.  In addition, the runoff from human 
disturbed watersheds carries with it a number of pollutants that 
may also cause environmental problems.   

Modeling these conditions requires an expertise level far beyond 
what most if not all high school instructors.  However, illustrating 
the nature of the conditions and their outcomes should be part of a 
comprehensive urban hydrology curriculum.  To address this 
challenge, we built a third Java applet that allows exploration of 
the conditions and outcomes of human development in a real 
watershed.  For this exercise, we used the U.S. EPA Stormwater 
Management Model [12].   

Based on a previous study of the Hellbranch Watershed in central 
Ohio, a large number of land cover combinations for a single, real 

storm, were run using PCWSMM, a version of the model with a 
graphical user interface [7].  The model outputs include a forecast 
of the runoff as well as the potential pollutant load arising from 
the storm event.  An interface was then created which allows the 
user to choose one or more land cover scenarios and observe their 
impacts on runoff and water quality. 
Unit four of our activities expanded the view of hydrology to the 
watershed scale by looking at changes in watershed land use and 
hydrology for a particular watershed over time.  USGS quadrangle 
sheets and/or aerial photographs are used to identify major 
changes in land use as well as changes in the water features over 
time in the Big Darby Creek watershed in Ohio [3].  This provides 
the basis for thinking about long-term watershed changes that are 
simulated in the PCSWMM model. 

The unit on the SWMM model includes a detailed explanation of 
the model operation and options, a set of exercises on stormwater 
runoff and water quality, and links to related materials on the 
impacts of stormwater on urban stream flooding and water quality 
[9].  The exercises provide instructions on selecting and 
comparing a few of the scenarios that illustrate the impacts of 
urbanization on stream flow and water quality. 

Figure 5 is a representation of the watershed showing the 
subcatchments that were used to specify the land cover scenarios 
and the channels used in the simulation.  Table 1 shows an 
example of one of the land cover scenarios where medium density 
residential development is added to most of the watershed 
subcatchments.  In the table, one can see that a significant 
proportion of the land cover in most of the subcatchments of the 
watershed are assigned to medium density residential uses.  This 
implies the creation of single family housing at about four units 
per acre.  This also implies the creation of impervious surfaces 
from streets and rooftops that will impact the volume of runoff 
coming from those areas.  

 
Figure 5: Subcatchments and Stream Network for 
The model user can choose the amount of each development type 
to create in the model run and can then compare a variety of 
outcomes associated with each of the selected examples.  Along 
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with the runoff hydrograph for the storm, the user can also see 
pollutographs that show the volume of sediments and oxygen 
demanding wastes that are likely to be carried by that runoff.  
These are illustrated in figures 6 and 7.  Finally, the model has 
generated a set of runoff videos which illustrate whether flooding 
will occur at selected locations in the watershed. 
The numerical outputs in the form of selected maximum and 
minimum values can be chosen by the user and saved in a 
spreadsheet for further comparisons and analysis.  The graphs can 
also be saved in a separate file.   

 
Figure 6: SWMM Hydrograph for 10 and 30 Percent Medium 
Density Urban Cover 

 
Figure 7:SWMM Sediment Load for 10% and 30% Medium 
Density Residential Cover 
 

Table 1: Land Cover Distribution Scenario Example 
 
Urban	
  
Medium
Develop
ment

Upper Upper Upper Upper

Scenario East	
  1 East	
  2 West	
  1 West	
  2

Forest 10 10 20 20 20 20
Agriculture 80 80 80 80 80 80
Low	
  Density 0 0 0 0 0 0
Medium	
  
Density

10 10 0 0 0 0

High	
  Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 70 70 80 80 80 80
Low	
  Density 0 0 0 0 0 0
Medium	
  
Density

20 20 0 0 0 0

High	
  Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 60 60 80 80 80 80
Low	
  Density 0 0 0 0 0 0
Medium	
  
Density

30 30 0 0 0 0

High	
  Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 50 50 80 80 80 80
Low	
  Density 0 0 0 0 0 0
Medium	
  
Density

40 40 0 0 0 0

High	
  Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 40 40 80 80 80 80
Low	
  Density 0 0 0 0 0 0
Medium	
  
Density

50 50 0 0 0 0

High	
  Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 30 30 80 80 80 80
Low	
  Density 0 0 0 0 0 0
Medium	
  
Density

60 60 0 0 0 0

High	
  Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 20 20 80 80 80 80
Low	
  Density 0 0 0 0 0 0
Medium	
  
Density

70 70 0 0 0 0

High	
  Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 10 10 80 80 80 80
Low	
  Density 0 0 0 0 0 0
Medium	
  
Density

80 80 0 0 0 0

High	
  Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 0 0 80 80 80 80
Low	
  Density 0 0 0 0 0 0
Medium	
  
Density

90 90 0 0 0 0

High	
  Density 0 0 0 0 0 0

10%

Land	
  use

Sub-­‐category	
  of	
  Hellbranch	
  Watershed

Middle Lower

%

80%

90%

20%

30%

40%

50%

60%

70%

 
 

2.3 Initial Testing 
The entire curriculum was presented at a summer workshop for K-
12 geoscience teachers in 2013.  This included working through 
each of the introductory units and a set of exercises using the 
computer models.   

Although the teachers were able to understand the simple 
hydrologic model and complete the exercises, a number of 
problems with our approach arose.  The installation of the 
underlying model and the Java applet was difficult.  Slight 
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deviation from the installation instructions caused the model to 
fail.  Teachers also pointed out that installation on their school 
computers would be a problem and thus asked us to try to develop 
a model with the same underlying goals but with an interface that 
could be run in a web browser. 

A second model using the same underlying modeling approach 
was developed to run in a browser [2].  Specifically, the Natural 
Resources Conservation Service (NRCS) Curve Number approach 
was used to calculate overall runoff volume, and a hydrograph 
produced using the NRCS unit hydrograph [5], with time-of-
concentration calculated from channel slope [5]. Figure 8 shows 
the model input screen.  The web-based model allows the 
comparison of up to four land cover scenarios and three 
precipitation scenarios.  Output is available as either a bar or line 
graph and the data can be exported to a CSV file for further 
analysis.  This model was introduced to teachers in a second 
summer workshop in 2014. 

 
Figure 8: Model Input Screen for Web-based Model 
Other critical lessons were learned during the first summer 
workshop that led to subsequent improvements to the module and 
Simple Storm Runoff Model for Geosciences Education. First, 
teachers from the upper elementary and middle school grades 
indicated that they were more likely to deploy the experimental 
units 1, 2 and possibly the simple hydrologic model – unit 3. 
Teachers at the high school level were more likely to deploy units 
2, 3, and the watershed scale unit 4 with teachers of advanced 
courses, such as A.P. Environmental Science, more likely to 
deploy unit 4 than other teachers. Unit 5, the SWMM model 
exercise, was seen as applicable to both middle school and high 
school audiences and was seen as a way to approach land use 
impacts when time was limited in the classroom or to look at 
impacts beyond water volume for advanced courses. Rather than 
look for teachers to deploy all five units of the module, the project 
team worked with teachers to customize and implement portions 
appropriate for their curriculum and circumstances. 
 

3. Evaluating Workshop Impacts 
3.1 Workshop Background 
The workshops for geoscience teachers were held in the summers 
of 2013 and 2014. Teachers were asked to fill out a pre-workshop 
survey with questions about their background and reasons for 
attending the workshop.  Following the workshop, they also filled 
out a post-workshop survey with questions concerning the 
potential impacts of the workshop and workshop materials on 
their own classrooms, the quality of the workshop, and their 
overall comments on the experience. 

Most teachers wanted to increase the number of real world 
experiences in the classroom as well as to increase the use of 
technology in their classrooms.  There was also a desire to 
improve their instruction on the related topics. 
 

3.2 Workshop Outcomes 
In advance of the workshop, teachers were asked a number of 
questions about their preparation to effectively implement 
instruction related to the workshop content.  
 
Teachers were highly confident in managing the use of hands on 
materials in their classes, implementing inquiry or problem-based 
learning, and developing assessments to measure specific learning 
outcomes.  They were much less confident in their ability to 
describe the movement of water through a watershed or to 
measure that movement.  Perhaps most significantly, very few 
teachers were confident in their ability to use computers to model 
the movement of water through a watershed prior to the 
workshop. 
 
The post-survey on the same questions serves as one measure of 
the impact of the workshops and the related modeling materials.  
This is shown in Table 2. 
 
Table 2: Post Survey Opinions on Workshop Impacts 

 Teachers 2013 
End-of-Summer 

N=15 

Teachers 2014 
End-of-Summer 

N=5 
N % N % 

Locate ideas for geosciences lessons and units either 
online or in print. 15 100.0 5 100.0 
Apply the principles of the inquiry cycle (ask question, 
design experiment, conduct experiment, collect data, 
analyze and draw conclusions, and share). 

 
15 

 
100.0 

 
5 

 
100.0 

Locate geoscience professionals to collaborate on 
lessons or serve as guest speakers. 15 100.0 5 100.0 

Describe the movement of water through a watershed. 15 100.0 5 100.0 
Measure the movement of water through a watershed. 15 100.0 5 100.0 
Use computers to model the movement of water through 
a watershed. 15 100.0 5 100.0 
Collaborate with other teachers on the development of 
geosciences lessons and units. 14 93.3 5 100.0 

Use mathematics as part of a science lesson. 13 86.7 5 100.0 
Use science as part of a mathematics lesson. 12 80.0 5 100.0 
Implement inquiry or problem-based learning. 15 100.0 4 80.0 
Incorporate geosciences lessons and units into my 
curriculum. 15 100.0 4 80.0 
Apply the principles of the design cycle (identify problem, 
design solution, build solution, test, evaluate, and share). 14 93.3 4 80.0 
Inform students about career opportunities in the 
geosciences. 14 93.3 4 80.0 
Organize a field trip to a site related to geosciences or 
geosciences careers. 13 86.7 4 80.0 

  
There are a number of observations that can be made by 
comparing responses before and after the workshop.  All of the 
items that had a lower percentage of agreement on the pre-survey 
increased markedly to nearly 100% or 100% agreement.  These 
include the ability to locate ideas for geosciences lessons, the 
description and measurement of the movement of water through a 
watershed, and the use of mathematics in a science lesson.  Most 
important from the perspective of the computer models, 100% of 
both groups of teachers felt they could use computers to model the 
movement of water through a watershed. 

The success of the effort is also reflected in some of the open-
ended comments from teachers: 
 
How to use real time data to model events. How to connect 
curriculum to local issues in community. Field trips improved my 
personal understanding. Other teachers’ ideas! 
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The lesson plans (i.e. watershed modeling, Geo Sandbox, etc.) 
were definitely awesome inquiry and project-based ideas to add to 
my toolbox. The potential for continued collaboration in 
workshops or perhaps a distance-learning course for STEM 
students was also great. 
 
Learning how to access all the data through software, etc., as this 
is exactly what common core is looking to do. Also, the 
information about Darby watershed as it is in my backyard and 
this ignited my curiosity to investigate more. 
 

4. CONCLUSIONS 
Although our sample size is small, our experience with creating 
and testing computer models for use in K-12 geosciences 
classrooms leads to several important conclusions. 

First, computer models for classroom use should avoid 
components that involve any installation complexity.  Teachers 
generally lack the computer expertise to trouble-shoot problems 
with the download and installation of complex software as 
evidenced by our first attempt at creating a stormwater runoff 
model.  Moreover, such installations may be impossible on school 
computers.  Models that are available online or entirely self-
contained as applets are much more likely to be used successfully 
in the classroom. 

Second, and perhaps most important, the majority of teachers lack 
the modeling and simulation expertise required to feel confident 
in using computer models in their classroom.  Although all of our 
participating teachers were seeking materials that meet the new 
science standards, very few were confident in the use of computer 
models as part of that effort.  The completion of a professional 
development workshop that provided examples and help in 
understanding how the models worked resulted in a dramatic 
change in their confidence and attitudes toward using computer 
models in their classrooms.  The workshop included building a 
conceptual framework of the geocscience processes that aided in 
the understanding of the more abstract modeling activities.  If we 
truly want to integrate computer modeling and the related analysis 
skills into the K-12 curriculum, it will require a concerted effort to 
provide existing teachers with similar professional development 
experiences and the integration of those materials into the pre-
service teacher curriculum. 
Our hope is that the release of these curricular materials, along 
with models that are relatively easy to implement in the 
classroom, will encourage more teachers to incorporate them into 
their curricula. 
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ABSTRACT 
This study proposes a research and learning framework for 
developing and assessing computational thinking under the lens of 
representational fluency.  Representational fluency refers to 
individuals’ ability to (a) comprehend the equivalence of different 
modes of representation and (b) make transformations from one 
representation to another. Representational fluency was used in this 
study to guide the design of a robotics lab.  This lab experience 
consisted of a multiple step process in which students were 
provided with a learning strategy so they could familiarize 
themselves with representational techniques for algorithm design 
and the robot programming language.  The guiding research 
question for this exploratory study was: Can we design a learning 
experience to effectively support individuals’ computing 
representational fluency? We employed representational fluency as 
a framework for the design of computing learning experiences as 
well as for the investigation of student computational thinking. 
Findings from the implementation of this framework to the design 
of robotics tasks suggest that the learning experiences might have 
helped students increase their computing representational fluency. 
Moreover, several participants identified that the robotics activities 
were engaging and that the activities also increased their interest 
both in algorithm design and robotics. Implications of these 
findings relate to the use of representational fluency coupled with 
robotics to integrate computing skills in diverse disciplines.  

Categories and Subject Descriptors 
K.3.2 [Computers And Education]: Computer and Information 
Science Education – Computer science 

General Terms 
Algorithms, Human Factors 

Keywords 
Computation, Representational Fluency, Programming Education, 
Robotics 

 

1. INTRODUCTION 
Calls for action in the field of computer science education and 
computing educational research have identified, among other 
issues, the lack of a variety of methodological approaches to the 

design and investigation of computing learning experiences [i.e. 1, 
2, 3].  These calls for action are based on searches of published 
research literature in which authors have concluded that there is a 
relative sparseness of research regarding how students learn 
computer science and, a lack of rigor in most of the existing 
investigations [2].  As a pathway to addressing this need, Clement 
[1] proposed applying findings from science education to the 
design of evidence-based learning experiences in computer science. 
We would like to extend this call and include the use of theoretical 
frameworks in the evaluation of student learning and not only in the 
design stage. 

Our aim is first and foremost to contribute to the field of computing 
education by proposing the use of representational fluency as a 
theoretical framework for the design of computing learning 
experiences as well as a way to investigate how students learn 
computer science related concepts under this lens.  To this end, the 
guiding research question is: Can we design learning experiences 
to effectively support individuals’ computing representational 
fluency? Specifically, this study proposes a learning experience 
that uses representational fluency as a way for students to develop 
computational thinking mediated by the use of robotics.  The 
research questions that helped us assess this proposed approach are: 

(i) What are individuals’ representational abilities for 
problem solving in the context of robotics challenges? 

(ii) What is the effect of computational robotics challenges 
for improving individuals’ computing representational 
fluency? 

(iii) Do individuals’ background (computing or non-
computing), academic level (freshmen or sophomore), 
and/or gender have an effect in their computing 
representational abilities for problem solving in the 
context of a robotics problem solving task?  

(iv) What are individuals’ perceptions about the usefulness of 
computational robotics challenges to learn algorithmic 
design and robotics? 

We believe that representational fluency can help us (a) to design 
learning experiences that can help students manage complexity by 
means of abstractions and (b) have a clearer understanding of how 
learners learn and develop expertise in computational thinking. 
Findings can then inform effective methods and pedagogies to train 
the next generation of workers with readily available computing 
skills. 

2. Background 
We begin with a definition of computational thinking and its 
relationship with abstraction.  We then explore some of the learning 
difficulties in the field of computer science education and briefly 
describe the role of robotics as a pedagogical and motivational tool 
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to integrate computational thinking in the context of problem 
solving.  Next, we make an argument of how computational 
thinking relates to representational fluency and proceed to the 
application of the proposed theoretical framework to the design of 
a robotics learning activity. Finally, we assess the effectiveness of 
this approach by means of an exploratory study. 

2.1 Computational Thinking 
Computational thinking [4] has been recognized as a collection of 
understandings and skills required for new generations of students 
to be proficient not only at using tools, but also at creating them and 
understanding the nature and implication of that creation [5]. 
Computational thinking refers to the combination of disciplinary 
knowledge (e.g. physics, biology, nanotechnology) [6] with 
thought processes (e.g. engineering thinking, quantitative 
reasoning, algorithmic thinking, systems thinking) involved in 
formulating problems and their solutions so that the solutions are 
represented in a form that can be effectively carried out by an 
information-processing agent [7]. This requires using a set of 
concepts, such as abstraction, recursion, and iteration, to process 
and analyze data and to create real and virtual artifacts [8, 9]. 

The use and creation of computing models are an important step in 
understanding problems and identifying potential solutions.  
Algorithmic thinking and abstraction are two of the constructs that 
are at the core of computational thinking.  Algorithmic thinking 
consists of the ability to perform “functional decomposition, 
repetition (iteration and/or recursion), basic data organizations 
(record, array, list), generalization and parameterization, algorithm 
vs. program, top-down design, and refinement" [10]. Abstraction 
refers to the act or process of removing detail to simplify and focus 
attention to salient characteristics based on a given criteria [11]. 
Therefore, investigations of what it means to solve problems 
through different forms of representations, in which students need 
to couple abstraction with algorithmic thinking in the context of 
computational problem solving tasks, should result in productive 
venues to advance relevant learning science theories [12, 13].   

2.2 Challenges in Computer Science 
Education 
Research described in the computer science education literature has 
identified for a long time that learning to program is difficult [14-
16].  For instance, computer programs, in order to function 
appropriately, require some level of complexity and adherence to 
formalisms.  Some identified difficulties occur in following areas: 
(i) orientation- to identify the purpose of the programming task; (ii) 
the notional machine- to identify the general properties or 
functionality of the machine that one is intending to control; (iii) 
notation- to master the syntax and semantics of the programming 
language; (iv) structure- to deal with the difficulties of acquiring 
standard patterns or schemas that can be implemented to attain 
small-scale goals; and (v) pragmatics- to develop the skills to be 
able to specify, develop, test, and debug programs using whatever 
tools are available [17, 18]. Consequently, teaching programming 
to people who are not familiar with algorithm design (at least flow 
diagrams design) can also be a hard task. The process includes not 
only abstraction and algorithmic design capabilities, but also 
programming languages syntax and semantics (Cliburn, 2006). 
Additionally, the non-user-friendly outcomes of a program might 
become a constraint leading to lack of motivation on the part of the 
students.  

2.3 Robotics in Computer Science Education 
Robotics has been included in computing science classes and 
curricula as one of the strategies to teach artificial intelligence and 
programming in an engaging way [19-22]. Several studies using 
tools such as Lego Mindstorms [19, 23], Robocode [24, 25] or 
Moway [26] have explored the development of programming skills 
coupled with robotics.  Klassner & Anderson (2003) highlighted its 
use in areas such as: Programming Fundamentals to learn 
conditionals, loops, and object-oriented paradigm; Algorithms and 
Complexity to be aware of efficiency in order to improve battery 
lifetime and the motion speed; and Programming Languages, 
Architecture, and Operative Systems to understand concepts such 
as syntax and multitasking.  Cilburn (2006) also highlighted its 
usefulness for beginner courses, such as Fundamental Concepts of 
Computer Science, in which students prefer building and 
programming over lecture courses. On the other hand, he found that 
in some robotics experiences there might be external factors that 
frustrate students, such as light sensors that may be affected by the 
environmental light or battery life. 

While the computer science community has taken strides to address 
issues of methodological rigor in their investigations, to date, little 
work has been done to apply existing learning theories and 
theoretical frameworks to the design of learning experiences and 
also to create new discipline-specific learning theories.  This study 
attempts to use research from the learning sciences to link 
constructs of initial learning conditions, initial learning context, 
problem representations, transfer as an active, dynamic process, 
and, specifically, representational fluency for computational 
thinking. 

3. Theoretical Foundations 
Expertise, transfer, and representational fluency are key theoretical 
constructs that guided the design of the learning experience and 
subsequent investigation. 

3.1 Expertise 
Expertise consists of those characteristics, skills, and knowledge of 
a person (that is, expert) or of a system, which distinguish experts 
from novices and less experienced people. A sine qua non 
characteristic of experts is the ability to fluently transfer what they 
have learned from one situation to another; novices cannot do this.  
Novices’ learning is closely connected to the conditions in which 
they learn; novices tie principles and concepts that they know to the 
surface features of how they were taught the principle or concept. 
Consequently, when the context changes, novices often fail to 
transfer the principle to a new situation.  Experts, on the other hand, 
have abstracted the knowledge that is associated with a particular 
context.  This abstracted knowledge is based on principles and is 
usually derived from repeated learning across varying contexts 
where the need for abstraction is designed into the problem.  

Experts possess both general problem solving skills and domain 
knowledge. Furthermore, there is a symbiotic relationship between 
general cognitive skills and domain-specific knowledge: “general 
heuristics that fail to make contact with a rich, domain-specific 
knowledge base are weak. But when a domain-specific knowledge 
base operates without general heuristics, it is brittle—it serves 
mostly in handling formulaic problems” [27]. These are important 
points to remember as we consider the design, development and 
evaluation of educational environments that contribute to the 
development of expertise.  Expertise does not magically happen.  
The development of expertise is a complex phenomenon.  One 
useful perspective for approaching and understanding the design 
and development of educational environments that contribute to the 
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development of expertise is through exploration of the construct of 
“transfer.”  A second perspective underpinning this project is that 
of representational fluency.   

3.2 Transfer 
“Transfer” is about educating so that the learner will be able to use 
the newly acquired knowledge on a different problem, in a different 
situation, and it is not about  simply training people to accomplish 
tasks ([NRC], 2000).  A common goal for educators is to help the 
learner acquire knowledge that extends to other contexts. In 2000, 
The National Research Council published findings that suggest the 
following key characteristics of learning and transfer that are 
helpful for educators: 

• Initial learning is necessary for transfer, and a considerable 
amount is known about the conditions of initial learning 
experiences that support transfer. 

• All new learning involves transfer based on previous learning.  
Transfer is affected by the context of initial learning, and this 
has important implications for the design of instruction that 
helps students learn. 

• Knowledge that is overly contextualized can reduce transfer; 
transfer is enhanced by instruction that guides students toward 
the representation of problems at higher levels of abstraction. 

• Transfer is best viewed as an active, dynamic process rather 
than a passive end-product of a particular set of learning 
experiences. 

Conditions of Initial Learning. Initial learning is a key factor for 
transfer, and it is often overlooked.  Initial learning consists of 
mastery of a particular topic or subject matter [28].  In a study to 
evaluate the effects of transfer when using the programming 
language LOGO, it was found that there were no benefits of transfer 
unless a significant degree of knowledge was gained during the 
learning process [28].   Additionally, further studies have shown 
that the following characteristics of initial learning that affect 
transfer are: a) understanding versus memorizing, b) time to learn, 
c) beyond “Time on Task,” and d) motivation to learn [28].  When 
learners are only required to memorize facts, they may have 
difficulty understanding the “why?” and the “how come?”  By 
organizing facts around principles, students will better answer these 
questions and will start to organize a mental framework that more 
closely resembles that of experts [28].  Moreoever, it is important 
to understand the amount of time initial learning takes to move 
knowledge into long-term memory; for example, to become a chess 
master, an individual requires around 100,000 hours of playing to 
reach world class expertise [28].  Much of the time spent on initial 
learning is used to develop patterns of recognition that can be 
recalled and applied to new experiences [28].   The different ways 
time is used is also a key factor to initial learning.  Deliberate 
practice with feedback is considered a more effective use of time 
than spending time practicing without feedback [28].  Motivation 
should be considered as one of the most important aspects of initial 
learning and will help the learner stay on-task and dedicate the time 
necessary to move knowledge into long-term memory.  Varying the 
degrees of difficulty is one way of helping the learner to stay 
motivated; however, educators should be careful not to make the 
learning so difficult that the learner loses interest, or so easy that 
the learner becomes bored [28].   Each of these characteristics of 
learning (understanding, time to learn, “Time on Task,” and 
motivation) should be considered when providing instruction 
because each has been shown as important to initial learning 
conditions that support later transfer. 

Initial Learning Context and Transfer. The context in which 
learning is initially achieved is important to subsequent transfer. It 
has been shown that learning is situated in practice and that 
traditional classroom cultures and environments are not the most 
effective contexts for student learning.  Transfer can be better 
served through authentic practices or cognitive apprenticeships 
[29]. These authentic practices might include embedding tasks with 
familiar activities, pointing to different decompositions, and 
allowing students to generate their own solution paths [29]. While 
authentic practices can be useful for creating a rich initial learning 
opportunity, research has also shown that novices often fail to 
invoke prior learning when the context changes, resulting in poor 
or no transfer.  This can partly be corrected through additional 
examples in different contexts like providing additional similar 
cases, “what if” analysis, and the abstraction of general principles 
[28]. 

Problem Representation. Problem representations also affect 
transfer. Research shows that the more abstracted the knowledge, 
the more transferrable it is [28]. Learning experiences that help 
students see how problems relate to principles and how those 
principles can be applied to other situations promote positive 
transfer. A study of algebra students that involved word problems 
using mixtures showed that those students who were shown 
pictures of mixtures did worse when trying to transfer their learning 
to new problems than did other students that were shown abstract 
tabular representations [28].  Studies have also shown that when 
learners develop multiple representations they are better able to 
transfer knowledge to new domains with increased flexibility [30]. 

Active, Dynamic Approaches to Transfer. In the literature, transfer 
is often treated as static, where it is conceived and operationalized 
as an outcome of learning.  An alternate approach is to treat transfer 
as a dynamic process that requires learners to actively choose 
strategies, evaluate those strategies, consider relevant resources, 
and receive timely and relevant feedback.  Experts spontaneously 
transfer appropriate knowledge without prompting, and, when they 
get stuck, they are usually capable of self-regulating their learning 
so as to redirect.  In other words, experts use metacognition 
(thinking about thinking) to support transfer by re-invoking initial 
learning, learning context, and problem representation strategies.  
Transfer can be improved by treating it as an active, dynamic 
process wherein metacognitive strategies are taught to learners 
within the abstraction/transfer process.  

3.3 Representational Fluency 
Generally, fluency is the ability to express oneself readily and 
effortlessly, as well as the ability to move effortlessly between the 
spoken word and the written word, which are two different 
representations.  A representation in the abstract refers to instances 
that are equivalent in meaning, but different in mode of expression.  
While the idea of fluency is often associated with the written and 
spoken word, researchers have extended work fluency and 
representations to other disciplines, (e.g. physics, biochemistry, and 
mathematics).  The idea of fluency in these other fields includes the 
ability to comprehend the equivalence of different modes of 
representation [31], a phenomenon that has been called 
“representational fluency.”  In science, technology, engineering, 
and mathematics, commonly used modes of representation include 
verbal vs. mathematical, graphical vs. equational, macroscopic vs. 
microscopic, physical vs. virtual, etc.  Representational fluency is 
the ability to comprehend equivalence in different modes of 
expression, to read out information presented in different 
representations, to transform information from one representation 
to another, and to learn in one representation and apply that learning 
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to another.  Therefore, representational fluency is an important 
aspect of deep conceptual understanding that has been shown to 
promote transfer and expertise.  

3.4 Computational Thinking as a Practice of 
Representation 
One of the main goals of computational thinking involves 
individuals’ ability to define models in the form of algorithms, data 
analysis, or visualization techniques [8, 32].  A model can be 
referred to as a tool that (a) serves as an approximate representation 
of the real item that is being built and (b) helps individuals to work 
at a higher level of abstraction by bringing out the big picture and 
by focusing on different aspects of a model [33]. Thus, abstraction 
is at the core of algorithmic thinking, which at the same time is one 
of the principles that is right at the heart of computational thinking; 
however, abstraction is as hard to teach as it is important [34]. 

We argue that, for accomplishing a working level of abstraction, 
techniques such as problem decomposition, pattern recognition, 
and pattern generalization can be fostered by having students 
familiarize themselves with diverse forms of representations, create 
these representations, and translate meaning from one 
representation to another. Hence, we propose the use of 
representational fluency as a conceptual framework that can help 
us to identify and describe different forms of computational 
representations and their application in the manipulation, 
construction, interpretation, application, revision, and refinement 
of models through the process of solving real life problems. 

4. Methods 
The methods of this study describe how we used the framework of 
representational fluency to design a robotics learning experience 
and to explore if students benefited from it.  We expected that 
students would develop representational abilities by using the 
designed robotics lab experience embedding the as use-modify-
create strategy. To this end, we developed a test case study 
exploring the following guiding research questions:  

(i) What are individuals’ representational abilities for 
problem solving in the context of robotics challenges? 

(ii) What is the effect of computational robotics challenges 
for improving individuals’ computing representational 
fluency? 

(iii) Do individuals’ background (computing or non-
computing), academic level (freshmen or sophomore), 
and/or gender have an effect in their computing 
representational abilities for problem solving in the 
context of a robotics problem solving task? 

(iv) What are individuals’ perceptions about the usefulness of 
computational robotics challenges to learn algorithmic 
design and robotics? 

4.1 Learning materials to scaffold 
representational fluency 
To guide student learning, a lab experience was created guided by 
the notion of representational fluency.  This lab experience 
consisted of a multiple step process in which students were 
provided with a framework so they could familiarize themselves 
with representational techniques for algorithm design and the robot 
programming language.  This strategy has been described as use-
modify-create [35]. This scaffolding strategy consists of a three-
stage progression of deeper interactions [36]. The main objective 
of the lab module was to make the robot travel through predefined 

paths forming simple shapes. This lab module had the following 
steps: 

Introduction. This section provided the overview of the activity. A 
scenario was presented in the introduction of the lab module in 
which a fictional company is assumed to supply unmanned robots 
to the US military services. This fictional company is looking to 
hire a software developer to program the robot to travel through 
different predefined routes. The participant had been assumed as a 
software developer and will work on the entire lab module. 

[Use] In this part of the lab module, participants were provided 
with the process required to make the robot travel through the 
square path and the programming basics. Participants were 
provided with a sample of a program. To program the robot, 
participants need to understand the basic functionalities. For 
instance, students should know that all the four wheels need to be 
programmed accordingly.  Also, students were presented with the 
variables and the functions to be used. Specifically, the robot is 
programmed on two variables (time and speed) and it had four basic 
functions available to students (i.e. stop, forward, turn right, and 
turn left). A flowchart and a table were also provided to the 
participants with explanations concerning the procedure used in 
programming a robot to make a square path (see Figure 1). 

This part of the lab module also provided a manual to assemble a 
robot. This part of the lab was optional to the user. Setting up 
RoboPlus software [37] and how to connect Robot to the computer 
were also explained. RoboPlus is a computer program that consists 
of instructions to control the robot's actions. After writing the 
program, the file is saved in .tsk format, which was uploaded into 
CM 510 (Servo Controller) using RoboPlus software. Figure 2 
shows a screenshot of the program’s interface. 

[Modify] Participants modified the above program to create a 
program where the robot travels through a rectangle-shaped path. 
The steps participants followed were: (1) create the pseudo code 
and flowchart of the path, (2) program the robot, (3) test the robot, 
(4) assess the accuracy of the program versus the design, and (5) 
modify your code as necessary. 

 

 
Fig.1 Path of robot making a squared shape. 
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Fig.2 Screenshot of the RoboPlus interface 

 

 [Create] After participants became familiarized with the basic 
concepts of flowchart and programming, they started designing, 
implementing and testing the robot to accomplish the task assigned 
and to make the robot travel through pre-defined paths. To this end, 
participants were guided through a step-by-step scaffolded 
procedure in which they created diverse forms of representations 
by building form one to another.  The step-by-step procedure was: 

Analysis Task. Drawing a flowchart and writing a pseudo code are 
two forms of representation that participants were asked to perform 
as part of this task. Each participant was exposed to a natural 
scenario where he or she was treated as a software developer. The 
participant was responsible for drawing a flowchart based on the 
scenario provided (i.e. converting natural language to flowchart).  

Design Task. The flowchart produced as part of the Analysis Task 
was intended to serve as a starting point to then construct the 
corresponding pseudo code. To create the pseudo code, participants 
were required to use short English phrases to explain specific 
instructions needed for the robot to travel the predefined path.  

Implementation Task. After creating a flowchart from natural 
language and then the pseudo code based on the flowchart, 
participants used those artifacts to program the robot. 

Testing Task. The reason for testing was to see if the path traveled 
by the robot matched the predefined figure. The path traveled by 
the robot was supposed to be directly related to the program and the 
deviations from the pre-defined path would indicate the mistakes 
made in the flowchart, pseudo code, or computer program. 

4.2 Participants 
Participants of this test case consisted of 44 college students from 
a Midwestern university with computing (n=16) and non-
computing (n=28) backgrounds.  The participants in this study were 
either in their freshmen (n=11) or sophomore (n=33) years. Student 
majors or disciplines were: Mechanical Engineering (7), Chemistry 
or Chemical Engineering (5), Computer Engineering or Computer 
Science (4), Behavioral Neuroscience or Psychology (4), Medical 
Laboratory Science, Nursing, Health or Applied Exercise (3), 
Electrical Engineering (2), Biology (2), Biomedical Engineering 
(2), Business Management (2), Communication (2), 

Interdisciplinary Engineering (2), Animal/Soil and Crop Science 
(2), Speech and Language (1), Acting (1), Materials Science and 
Engineering(1), Aviation Engineering Technology (1), Fine Arts 
(1), Physics (1), and History (1). 

Recruitment of participants was conducted by posting flyers 
throughout campus. After the participants made initial contact with 
us, we used a purposeful sampling method.  We gave preference to 
freshmen students.  We also gave preference to students from 
diverse backgrounds (i.e. from a variety of disciplines) in an effort 
to have a balance between students from computing and non-
computing oriented disciplines.  Students were then invited to 
participate in a two hour lab session.  This study was approved by 
the institutional review board.  

4.3 Data Collection Method and Procedures 
A process assessment rubric (PAR) was employed to evaluate 
student performance in the planning of the task, implementation of 
the task, and the program produced.  For each step in the process, 
students were evaluated on the representations they produced and 
how they translated from one representation to another one; 
therefore, alignment between representations was considered as 
part of the rubric to identify how students built from one 
representation to the following one. 

Students’ perceptions were collected using three Likert-scale 
questions scored from strongly disagree (1) to strongly agree (5). 
The statements to be rated were: (1) The activities presented were 
very engaging; (2) The activities increased my interest in algorithm 
design; and (3) The activities increased my interest in robotics.  

During the two-hour lab session, students were exposed to three 
main activities.  First, they responded the pretest assessment, then 
they were exposed to the learning experience, and, finally, they 
responded the posttest. The perception questions were responded to 
by the participants at the same time as the posttest. 

4.4 Data Analysis Method 
All the participants responded to the same pretest and posttest 
instrument to determine the effects of the treatment on Analysis, 
Design (flowchart and pseudo-code), and the representational 
fluency of students among the several artifacts required on the tests 
(i.e. how they built and aligned the flowchart, pseudo-code, and 
implementation code).  The Implementation score assessed the 
actual program that manipulated the robot. This category was only 
scored as part of the posttest assessment. All data from the two 
rubrics were rated on a scale from 1 to 4, and it was treated as 
interval data. The responses to the perception questions were 
normalized so the results ranged from 0% (strongly disagree) to 
100% (strongly agree). 

All pre and posttest results were tested for normality, none of which 
were normally distributed. After scoring each rubric individually 
for the pretest and posttest measures, a non-parametric t-test was 
used to identify significant differences between the two groups. 

A correlational analysis was carried out among the rubric criteria 
for the pretest and for the posttest. The Pearson coefficient for a 
weak correlation was considered to be less than 0.1, for a moderate 
correlation to be between 0.25 and 0.45, and for a strong correlation 
to be higher than 0.5 [46]. 
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Table 1. Process assessment rubric (PrT=pretest scores, PoT=posttest scores) 

Category 4 3 2 1 PrT PoT 

Flowchart 
Independent to 

Robotics 

All the components are 
clearly defined, shaped, 

and labeled. The 
flowchart describes the 
process in an accurate 

manner 

The flow chart 
describes the process, 

but its components 
are not correctly 

labeled, shaped, or 
defined 

Most of the shapes in 
the flowchart are 

incorrectly labeled or 
shaped 

The flowchart 
is incomplete 

or non-
understandable 

  

Analysis Flowchart 

The flowchart design is 
accurate. Also, it has all 
the components labeled 
and shaped. The initial 

and end steps are 
clearly represented 

The flowchart design 
is accurate but there 

are some components 
that are not correctly 
labeled, shaped, or 

defined 

The flowchart design 
lacks of precision to 
the chosen route and 
some of the shapes in 

the flowchart are 
incorrectly labeled or 

shaped 

The flowchart 
is incomplete 

or non-
understandable 

  

Design Pseudo-code 

The flowchart and 
pseudo-code are 

correctly aligned, and 
they lead the robot to an 

accurate result 

The pseudo-code is 
accurate, but it is not 

aligned to the 
flowchart design 

The pseudo-code is 
not precise, and it is 

not aligned to the 
design 

The pseudo-
code is 

incomplete or 
non-

understandable 

  

Implementation 
The implemented 

program is accurate and 
is aligned to the design 

The implemented 
program is accurate 

but not aligned to the 
design 

The implemented 
program has some 

deviation of the 
chosen route and is 
not aligned to the 

design 

The 
implemented 

program is not 
complete or it 

has syntax 
errors 

N/A  

 
4.5 Validity and Reliability of the Instrument 
A pilot was conducted with two students with a computer and 
information technology background. The pilot lasted 15 minutes 
for the pretest and 47 minutes for the posttest. Participants’ 
impressions of the lab module were overall positive. Participants 
found some difficulties in attaining the exact pre-specified path. 
Participants found it enjoyable to work with the robot. These 
observations were used to refine the instructions and the learning 
materials. 

5. Results 
5.1 What are individuals’ representational 
abilities for problem solving in the context of 
robotics challenges? 
Table 2 depicts descriptive statistics for the individual rubric 
criterion as well as the total score. The results suggests a good 
performance by the students to move between different 
representations to solve a problem in robotics challenges. During 
the pretest, all participants (n = 44) were able to get a high average 
score (mean = 67.24%; SD = 15.81%) even though some of them 
(n = 28) did not have previous experience in programming courses. 
As mentioned earlier, the pretest assessment did not include the 
scores associated with the implementation task. The posttest score 
depicts even higher average scores both including the 
implementation score (mean = 82.39%; SD = 11.54%) and without 
the implementation score (mean = 78.60%; SD = 12.76%). The 
implementation score was 93.75%, with a moderate standard 
deviation of 12.21%. The results suggest that students with and 
without computing backgrounds were able to implement the 
robotics challenge. 

Table 2. Pre and post –test performance to solve a robotics 
challenge problem  

Test  
(N=44) Mean Mean 

(%) SD SD 
(%) 

Pretest 

Flowchart 2.64 65.91 0.97 24.17 

Analysis 2.64 65.91 0.75 18.75 

Design 2.80 69.89 0.73 18.35 

Total 2.69 67.23 0.63 15.81 

Posttest 

Flowchart 3.20 80.11 0.85 21.28 

Analysis 3.05 76.14 0.57 14.22 

Design 3.18 79.55 0.58 14.54 

Implementation 3.75 93.75 0.49 12.21 

Total w/o 
Implementation  3.14 78.60 0.51 12.76 

Total with 
Implementation  3.30 82.39 0.46 11.54 

 

5.2 What is the effect of computational 
robotics challenges for improving individuals’ 
computing representational fluency? 
Figure 3 presents the comparison between the means of the pretest 
and posttest results. There are two different values related to 
posttest because it included an implementation question that was 
not part of the pretest. Therefore, both analysis with and without 
implementation scores are presented. Significant differences were 
found from pretest to posttest, both without implementation t(43)=-
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5.7, p-value<0.001 and with implementation t(43)=-7.91, p-
value<0.001. The test results suggest that the robotics activity 
increased students’ computing representational fluency. 

 
Fig.3 Comparison Pre and Post –Test performance to solve a 

robotics challenge problem 
 
A correlational analysis was also performed to identify student 
representational fluency. Table 3 and Table 4 depict the 
correlations for the rubric criteria on the pretest and on the posttest 
correspondingly. 

 
Table 3. Correlation among the rubric criteria on the pretest 

 Flowchart Design Pseudo 

Flowchart 1.00   

Design 0.26 1.00  

Pseudo 0.22 0.79 1.00 
 

Table 4. Correlation among the rubric criteria on the posttest 

 Flowchart Design Pseudo Implemen
t 

Flowchart 1.00    

Design 0.32 1.00   

Pseudo 0.25 0.61 1.00  

Implement 0.35 0.46 0.49 1.00 
 
The flowchart that was independent from the assignment moved 
from a weak-to-moderate correlation on the pretest to a moderate 
one on the posttest. The design, which consisted of a flowchart for 
the assignment, was strongly correlated to the pseudo-code written 
by the students both on the pretest and the posttest. Finally, the 
implementation showed a moderate-to-strong correlation to the 
design and to the pseudo-code criteria. The results suggest that 
students were able to build different representations for the 
phenomenon, both on the pretest and on the posttest. 

 

5.3 Do individuals’ background, academic 
level, and/or gender have an effect in their 
computing representational abilities for 
problem solving in the context of a robotics 
problem solving task? 
Test results were also analyzed based on the independent variables 
Student Gender, Student Level, and Previous Experience in 
Programming Courses. Results suggest that there is no evidence of 
significant differences between genders F(43,1)=1.11, p-value=0.3, 
students’ level F(43,1)=0.01, p-value=0.87, or previous 
experiences F(43,1)=0.15, p-value=0.7. 

5.4 What are the individuals’ perceptions 
about the usefulness of computational robotics 
challenges to learn algorithmic design and 
robotics? 
Students’ perceptions about usefulness related to the activity are 
described in Table 5. Engagement is highlighted as an important 
factor in this kind of activity (mean=84.09%; SD = 13.20). Also, 
although more than 60% of the participants did not have previous 
experience in programming courses (n=28), a large portion of the 
sample (74.09%) reported that the activity increased their interest 
in algorithms. Likewise, 78.18% of the participants felt that the 
activity increased their interest in robotics. 
Table 5. Posttest students’ perceptions related to the activity 

Test  Mean 
Norm 
Mean 
(%) 

Std. 
Dev 

Norm. 
Std. Dev 

(%) 
Activities are 
engaging(N=44) 4.21 84.09 0.66 13.20 

Activities increase 
interest in 
algorithms (N=44) 

3.71 74.09 0.73 14.51 

Activities increase 
interest in robotics 
(N=44) 

3.91 78.18 0.73 14.66 

 

6. Discussion and implications 
From the analysis of student performance before and after being 
exposed to the learning experience, we can suggest that the design 
of learning activities guided by the use-modify-create pedagogy 
scaffolded the development of student computational 
representational abilities. This learning strategy might have 
supported learners in breaking down the activities in multiple steps 
so that they could make explicit connections between 
representations [35].  Since learning programming is a complex 
task[38], using multiple representations organized as Analysis, 
Design, and Implementation seemed to have helped students break 
down the problem in a step-by-step process. That is, by means of 
the scaffolding provided, students were able to decompose the 
posed problem into a flowchart to propose an initial solution [39]. 
Then, students transformed this representation into a pseudo-code 
and finally into a programming language. The scores for different 
representations, both on the pretest and on the posttest, showed a 
moderate-to-strong correlation, suggesting that high performer 
students in, for example, the flowchart design, also were high 
performers in the creation of the pseudo-code. 

The artifacts the students produced and the progression they 
followed using one artifact and leveraging it to the creation of the 
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next one is what we believe was particularly useful for them. 
Moving from natural language to flowchart, from flowchart to 
pseudo-code, from the actual code to testing, and the mappings 
between them, supported students in accomplishing their design 
task [30].  

Findings also indicated no significant differences between pre- and 
posttest scores based on student academic level, gender, or 
disciplinary background. Based on these results, we speculate that 
the pedagogical strategy of use-modify-create coupled with 
robotics, can be used to integrate computational thinking concepts 
and skills with a diverse population of learners in terms of gender, 
interests, and expertise. On the other hand, since the interaction 
with multiple representations improves transfer [30], providing 
scaffolding for the students to go through these representations 
might also have had a positive impact. 

In terms of motivation, several of the participants reported that the 
robotics-based activities were engaging.  For instance, these 
students reported increased interest in both algorithm design and 
robotics. Furthermore, 60% of the students who had a non-
computing background also reported positive perceptions of the 
usefulness of robotics challenges for their learning. These results 
are aligned with findings from other studies reporting that robotics 
activities are also useful for students with non-computing 
backgrounds [i.e., 19, 21]. Therefore, we speculate that the use of 
robotics can lower the barriers of entry into computing related 
fields.  

6.1 Implications for Teaching and Learning 
The implications for teaching and learning relate to the design of 
computational thinking learning experiences that are grounded in 
effective pedagogical methods and learning strategies.  Firstly, this 
study provides a learning activity and learning assessments that can 
be easily adapted for learning purposes. Secondly, this study 
provides key insights into how literature from the learning sciences 
can be used to design learning experiences and their corresponding 
assessments. The emphasis on representational fluency, within the 
broader context of computational and algorithmic thinking, can 
guide the design of additional learning experiences following the 
process presented in this study.  

This study also collected and analyzed evidence to weigh in on 
what kinds of learning resources we should bring to bear and the 
conceptual trade-offs they entail. The evaluation of learning 
materials suggests that, in a way, humans can build representational 
fluency effectively by exercising their physical intuitions. 
Specifically, robotics-based challenges can provide a tangible or 
sensory medium that, according to theories of embodied cognition, 
can foster development of conceptual understanding [40].  
Therefore, we suggest that robotics can have a strong potential to 
serve as an effective and engaging vehicle to integrate principles 
and practices of computational thinking, such as algorithm design 
and principles of programming.  Moreover, exposing students to an 
explicit representation and transformation processes scaffolded 
through the use-modify-create strategy can enhance their 
computational representational abilities. 

6.2 Implications for Computing Educational 
Research 
From a computing educational research perspective, this study 
portrays computational thinking as a practice of representation.  
Considering computational thinking in such way can allow 
researchers to investigate how students can manage complexity 
through a series of abstractions. Specifically, through the lens of 

representational fluency, the assessment of the learning process for 
this study was not only focused on the final product, but on the 
transitions from one representation to the next one. That is, the unit 
of analysis focused on (a) the process students followed in creating 
those artifacts and the mappings they produced between one 
representation to the other one (e.g. from a flowchart to a 
programming language) as well as (b) the outcome or final solution 
of the challenge presented to students (e.g. how the robot moved). 

Computer science educators have called for the need to identify 
bridges between education research and computer science research 
with the goal to facilitate student learning of computing knowledge 
and practices [41].  This study provides a possible example of such 
process by integrating representational fluency to the design of a 
learning experience, and, then, to the investigation of its 
effectiveness.  

The scholarship of teaching and learning implicates “engagement 
with research into teaching and learning, critical reflection of 
practice, and communication and dissemination about the practice 
of one’s subject” [42]. This study, in a way, went through a similar 
process by first designing the learning experience, then conducting 
the research and assessment components, disseminating the results, 
and then moving into iteration and revision to improve the learning 
materials and the research design.  This process represents an initial 
stage toward a design-based research program that will investigate 
the role of representations in computing education. Design-based 
research approaches will allow us to understand learning in real-
world practice [43]. It considers education as an applied field where 
researchers have transformative agendas [43].  As such, they 
develop contexts, frameworks, tools, and pedagogical models with 
the intent to produce new theories, artifacts, and practices that can 
impact teaching, learning, and engagement in naturalistic settings 
[43]. Therefore, design-based research will provide us with a series 
of approaches that allow us to “engineer” and at the same time 
study particular forms of learning that will be subject to test, 
revision, and iteration [44].  

6.3 Limitations of the Study 
Methodologically, this study had some limitations. One of the 
limitations in the research design was the lack of a control group.  
Another limitation included the sample size and the fact that 
participants were voluntarily recruited. This heterogeneous group 
led to small demographic subgroups that constrained the possible 
significant differences between them. Also, the study did not take 
place in a naturalistic classroom environment, where students are 
usually part of a longer learning process involving more variables. 
Therefore, the implementation of these practices should be further 
explored by means of more rigorous experimental designs to 
validate the learning experiences and the use of ethnographic 
methods to identify how students progress from one representation 
to another one; however, the results of this study empower us to 
implement, as future work, the robotics-based learning activities in 
classroom settings with a bigger and more homogenous sample of 
students and include a control group. It also provides us with a 
proof-of-concept that can allow us to explore computational 
thinking as a practice of representation.  

7. Conclusion 
This study proposed representational fluency as a research and 
learning framework that can allow the investigation of how people 
develop computational thinking.  Under this perspective, this study 
presented the development of a learning module that integrated and 
validated pedagogical methods and scaffolding techniques to 
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introduce computing principles and procedures by means of 
robotics-based challenges. 

Findings from the implementation of these challenges suggest a 
positive impact on computational thinking in general and 
computational representational fluency specifically. Students with 
computing and non-computing backgrounds benefited from the use 
of robotics, and they performed equally in the posttest.  These 
findings suggest that robotics can be used to learn computational 
thinking related concepts for designing, programming, and testing 
with a detailed level of abstraction. Results from this study also 
suggest that robotics may serve as a common theme to integrate 
STEM related concepts and computing and engineering skills. For 
instance, robotics can be used as viable source to teach students 
from both computing and non-computing backgrounds. Similarly, 
the robotics-based challenge can be adopted and adapted by 
educators for classroom use.  It can also be used as a guide to 
develop new and more complex robotics-based challenges.  The 
pedagogy presented here can also be used for other kinds of 
learning experiences not involving robotics.  

The broader educational research community has made major calls 
to pursue discipline-based educational research [45], where we 
believe computer science education needs to be more strongly 
represented. The computer science community has also identified 
the need of more rigorous methodological approaches to pursue 
computer science education research [2, 3].  One of the key 
components toward a more rigorous path to discipline-based 
educational research in computer science is the consideration of 
theoretical foundations that can provide a perspective into how 
research has been grounded in literature and the scope and 
generalizability of the results [41]. Another key component would 
be the use of educational research findings to design computer 
science learning experiences [1].  A natural way to couple these two 
worlds could be by means of design-based research approaches that 
will allow educational practitioners and researchers to develop 
learning materials and pedagogical models with the intent of 
producing new theories, artifacts, and practices that can impact 
teaching, learning, and engagement in naturalistic settings [43]. 
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ABSTRACT 
The party problem is a mathematical problem in the discipline of 
Ramsey Theory.  Because of the problem’s embarrassingly 
parallel nature, its extreme computational requirements, and its 
relative ease of understanding implementation with a naïve 
algorithm, it is well suited to serve as an example problem for 
teaching parallel computing.  Years ago, a curriculum module for 
Blue Waters was developed using this problem.  However, delays 
in the delivery of Blue Waters resulted in the module being 
released before Blue Waters was accessible.  Therefore, 
performance data and compilation instructions for Blue Waters 
were not available.  We have revised the module to provide source 
code for new versions of the programs to demonstrate more 
parallel computing libraries.  We have also added performance 
data and compilation instructions for the code in the old version of 
the module and for the new implementations, which take 
advantage of the capabilities of the Blue Waters supercomputer 
now that it is available.   

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 
parallel programming. 

General Terms 
Experimentation. 

Keywords 
Parallel computing education, Ramsey theory. 

1. INTRODUCTION 
The party problem is a problem in Ramsey Theory, an area of 
mathematics that focuses on "the mathematical study of 
combinatorial objects in which a certain degree of order must 
occur as the scale of the objects becomes large" [1].  The general 
form of the party problem, R(m, n) seeks to determine the number 
of people that must attend a party such that there is guaranteed to 
be a group of m people who all know each other, a group of n 
people who are all complete strangers, or both [2].  The R(5, 5) 
instance of the party problem is still unsolved, requiring immense 
computational power to solve [3].  We refer the reader to [4] for 
more information on the party problem and an algorithm used by 

some programs that attempt to solve it.  In 2012, a curriculum 
module for teaching parallel computing using the party problem 
as an example was released [4].  While this module was designed 
for the Blue Waters supercomputer, Blue Waters was delayed and 
the module was released before the hardware, so it could not 
include compilation instructions and performance data for Blue 
Waters.  While the module could still be used for teaching parallel 
computing, we have updated it significantly with the information 
specific to the Blue Waters supercomputer, including instructions 
to compile the all the code and performance data from Blue 
Waters.  We have also added two additional versions of the 
programs, one using MPI and the other one which is an 
MPI/CUDA hybrid.  

2. RELATED WORK 
Toth and Bryant developed code to test 335,544,320,000 graphs 
for the party problem, producing sequential, OpenMP, and CUDA 
versions of the code [4].  While the code would not solve the party 
problem for the R(5, 5) instance due to the need to test more 
graphs than could be tested by a dedicated supercomputer in a 
lifetime, its three implementations that all use the same algorithm 
and the embarrassingly parallel nature of the problem made it a 
nice way to introduce students to parallel computing.  Thus, the 
code formed the foundation for the curriculum module [5].  
However, the lack of performance data from Blue Waters, a 
system that could be used by multiple people, and the lack of 
instructions to compile and run the code on Blue Waters made the 
module less useful than it would be with those features.  We note 
that there are a number of other such modules available at 
http://www.shodor.org/petascale/materials/modules/ from a wide 
range of disciplines, but few have implementations in all of MPI, 
OpenMP, and CUDA [6]. 1 

3. MODULE UPDATES 
For this update we looked at the existing module which included a 
sequential version, a two-file Compute Unified Device 
Architecture (CUDA) version, and an Open Multi-Processing 
(OpenMP) version.  In addition, there were some instructions and 
many comments in the code.  The institute held in Illinois at the 
beginning of this project taught how to use the CUDA, OpenMP, 
and Message Passing Interface (MPI) libraries as well as how to 
make hybrids with the libraries.  The first steps of the code 
writing portion of the project were to write an MPI version and an 
MPI and CUDA hybrid.  In writing the MPI and CUDA hybrid 
we found it was easier to use if the CUDA was in one file so we 
edited the CUDA version to be one file and added command line 
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arguments so the user can specify the number of blocks and 
threads in the kernel call.  We also made sure that every version 
was testing the same number of graphs and was creating the same 
output, printing out either a graph that did not have a K5 or, a 
statement saying that no such graph was found. 

With all of these added versions we also had to add compilation 
and execution instructions for each version.  We also tested 
different numbers of nodes and cores so that we could provide 
users accurate performance information. This also showed us how 
efficient each version was in with different numbers of nodes. 

The different versions allowed us to highlight the different ways 
we can use the parallel hardware of Blue Waters.  The MPI library 
allowed us to use multiple nodes on Blue Waters.  MPI allowed us 
to start processes on multiple nodes and enabled them to 
coordinate their graph testing to divide the graphs to be tested and 
reduce the wall clock time to run the program.  The CUDA library 
allowed us to divide the graphs among the GPU cores on a single 
node, and the MPI and CUDA hybrid allowed us to use multiple 
GPUs, enabling us to test the graphs in a very short amount of 
time. 

4. METHODS 
We conducted performance tests on Blue Waters for each of the 
programs.  For the sequential, OpenMP, and MPI versions of the 
program, ten runs were done for each version and the average of 
the ten trials was taken.  The performance of the CUDA version is 
dependent upon the number of threads and blocks that the 
program uses and there is no particular set of values that work for 
every program.  Some people have stated that there should be at 
least 64 threads per block and that number should be a multiple of 
64 [7].  Threads per block between 128 and 256 gave others the 
best performance for their applications [8].  Therefore, for the 
CUDA version of the program, we tested the program with 
different numbers of threads and blocks to determine the best  

values for those parameters.  For the number of threads per block, 
we tested 4096, 8192, and 16384.  For the number of blocks, we 
tested 64, 128, 256, 512, and 1024.  Once we determined the best 
values for blocks and threads per block, we did the performance 
testing for the MPI and CUDA hybrid program using those 
values. 

5. RESULTS 
The times each of the ten runs took for the sequential version, the 
OpenMP version, and the MPI version are shown in Table 1 and 
Table 2.  The times from the tests of the CUDA version that we 
used to determine which numbers of blocks and threads per block 
are shown in Tables 3-5.  For the CUDA version, we found that 
64 threads per block resulted in a runtime of over 1.5 times the 
runtimes using 128, 256, 512, and 1024 threads per block.  
Although the runtimes using the other numbers of threads per 
block and all of the numbers of blocks that we tried were close, 
128 threads per block and 16,384 blocks produced the fastest 
average times.  The results of the MPI/CUDA hybrid version of 
the program are shown in Table 6.  

While the runtime of the OpenMP version of the program 
decreased as the number of CPU cores it used was increased as 
shown in Figure 1, the speedup achieved shown in Table 7 was 
not linear with the number of cores.  This could be because 
different graphs take different times to examine.  If the graphs that 
take a longer time are concentrated in a single or a couple sections 
of the graphs, then that could result in the speedup being less than 
linear.  The speedups for the MPI program and the MIP and 
CUDA hybrid programs are shown in Table 8 and Table 9.  Thos 
speedups show similar results to the OpenMP speedups, but are 
not quite as good.  We expect that this is because in addition to 
the distribution of the graphs that take longer to examine, these 
programs also need to send information between nodes, which 
should result in a performance loss.  

 
 

Table 1 - Runtime for Sequential and OpenMP Versions 

Trial Sequential  
OpenMP 
Using 1 

Core 

OpenMP 
Using 2 
Cores 

OpenMP 
Using 4 
Cores 

OpenMP 
Using 8 
Cores 

OpenMP 
Using 16 

Cores 

OpenMP 
Using 32 

Cores 

1 17839 17794 12977 6425 3616 1801 917 

2 17838 17720 12811 6416 3601 1815 912 

3 17740 17684 12816 6438 3599 1808 906 

4 17792 17666 12829 6426 3600 1804 908 

5 17899 17631 12819 6410 3581 1800 910 

6 17911 17679 12825 6487 3595 1802 914 

7 17928 17813 12918 6417 3565 1806 912 

8 17835 17641 12831 6526 3556 1811 905 

9 18053 17743 12819 6413 3591 1810 911 

10 17882 17778 12833 6415 3597 1819 907 

Average 17871.7 17714.9 12847.8 6437.3 3590.1 1807.6 910.2 
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Table 2 - Runtimes for MPI Version 

Trial 
MPI 

Using 1 
Node  

MPI 
Using 2 
Nodes 

MPI 
Using 4 
Nodes 

MPI 
Using 8 
Nodes 

MPI 
Using 16 

Nodes 

MPI 
Using 32 

Nodes 

1 927 469 238 127 66 37 

2 921 478 239 124 67 37 

3 925 472 240 124 67 37 

4 914 473 238 123 67 36 

5 917 476 239 124 65 39 

6 926 471 238 124 65 37 

7 927 471 238 124 66 38 

8 918 479 240 124 66 38 

9 918 475 239 124 66 36 

10 912 469 239 123 67 37 

Average 920.5 473.3 238.8 124.1 66.2 37.2 

 

 

Table 3 - Runtimes for CUDA Version with 4096 Blocks 

Trial 
64 

Threads 
Per Block 

128 
Threads 

Per Block 

256 
Threads 

Per Block 

512 
Threads 

Per Block 

1024 
Threads Per 

Block 

1 142 86 84 86 87 

2 142 85 84 86 87 

3 142 85 84 85 87 

4 143 85 85 85 87 

5 143 85 84 86 87 

6 143 85 85 85 86 

7 143 85 85 85 86 

8 143 85 85 85 86 

9 143 85 85 86 87 

10 142 85 84 86 87 

Average 142.6 85.1 84.5 85.5 86.7 
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Table 4 - Runtimes for CUDA Version with 8192 Blocks 

Trial 
64 

Threads 
Per Block 

128 
Threads 

Per Block 

256 
Threads 

Per Block 

512 
Threads 

Per Block 

1024 
Threads Per 

Block 

1 140 85 84 86 88 

2 140 84 84 86 88 

3 140 84 85 86 87 

4 140 84 84 86 87 

5 140 85 84 86 87 

6 140 84 85 86 88 

7 141 84 85 86 88 

8 140 84 85 86 87 

9 140 84 84 86 88 

10 140 85 84 86 88 

Average 140.1 84.3 84.4 86 87.6 

 

 

Table 5 - Runtimes for CUDA Version with 16384 Blocks 

Trial 
64 

Threads 
Per Block 

128 
Threads 

Per Block 

256 
Threads 

Per Block 

512 
Threads 

Per Block 

1024 
Threads Per 

Block 

1 140 84 85 86 90 

2 139 85 86 86 90 

3 139 84 85 87 89 

4 140 84 85 86 89 

5 140 84 85 86 89 

6 140 85 85 87 90 

7 139 84 85 87 89 

8 140 84 85 87 90 

9 139 84 85 87 89 

10 140 84 85 87 89 

Average 139.6 84.2 85.1 86.6 89.4 
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Table 6 - Runtimes for MPI-CUDA Hybrid Version 

Trial 2 Compute 
Nodes 

4 Compute 
Nodes 

8 Compute 
Nodes 

16 Compute 
Nodes 

32 Compute 
Nodes 

64 Compute 
Nodes 

1 43 22 12 7 4 3 

2 43 22 12 7 3 3 

3 43 22 12 6 4 3 

4 43 22 12 7 4 2 

5 43 22 11 6 4 2 

6 44 22 12 6 4 3 

7 43 22 12 7 4 3 

8 43 22 12 6 5 3 

9 43 22 11 7 4 3 

10 43 22 11 7 4 2 

Average 43.1 22 11.7 6.6 4 2.7 

 

 

Table 7 - OpenMP Speedups and Efficiencies vs. Sequential Program 

Cores Speedup Maximum Possible Speedup 

1 1.0 1 

2 1.4 2 

4 2.8 4 

8 5.0 8 

16 9.9 16 

32 19.6 32 

 

 

Table 8 - MPI Speedups and Efficiencies vs. Sequential Program 

Nodes Speedup Maximum Possible Speedup 

1 19.4 32 

2 37.8 64 

4 74.8 128 

8 144.0 256 

16 270.0 512 

32 480.4 1024 
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Table 9 - MPI/CUDA Hybrid Speedups vs. 1 Node CUDA Program 

Nodes Speedup Maximum Possible Speedup 

2 1.95 2 

4 3.83 4 

8 7.20 8 

16 12.73 16 

32 20.87 32 

64 30.90 64 

 

 

 

 

 
Figure 1 - Average Runtimes vs. Cores Used with OpenMP 
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Figure 2 - Average Runtimes vs. Nodes Used with MPI 

 

 

 
Figure 3 - Average Runtimes vs. Nodes Used with MPI/CUDA Hybrid 
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6. CONCLUSIONS 
During the internship, we developed additional versions of a 
program to test graphs for the party problem.  We were able to 
develop instructions to compile and the run the programs on Blue 
Waters and conduct performance testing.  These things all have 
made the existing curriculum module more useful. 

7. REFLECTIONS 
This experience has been special to me in many ways. I think it is 
a wonderful opportunity to allow undergraduates a chance to work 
one-on-one with a mentor doing some research project, especially 
this project which allowed me the unique opportunity to work on 
the Blue Waters supercomputer. I loved being able to not only 
work on Blue Waters but also getting to see it in person and learn 
how to use it. The Petascale Institute was amazing, meeting other 
students and having the ability to dedicate two weeks to learning 
about the system and parallel computing. Learning about the 
different libraries was extremely useful to me since I wrote and 
used code in almost every library and hybrid we discussed.  

The Petascale Institute allowed me, as a computer science major, 
to expand my knowledge base beyond what I had learned in the 
classroom. I am now more confident with using remote systems, 
Linux command and shell scripts. Even without any previous 
knowledge about parallel languages or programming I left the 
institute with a general understanding and the internship itself has 
allowed me to help others learning parallel too. The internship this 
year encouraged me to take a class in parallel at my school and I 
felt that I gained even more knowledge from that class and was 
also able to help those who struggled because of my experience 
with Blue Waters.  

In the field of computer science there are a lot of options for 
career paths. I came into this internship no knowing what really 
interested me specifically in computer science. But the work I did 
this year made me realize why I love computer science so much, I 
love solving puzzles and figuring out how the pieces work 
together. All the Party Problem code in different libraries each 
required a different understanding of parallelism, and getting them 
to work together was an even bigger challenge, but with lots of 
guidance from my mentor we figured them out and got some 
interesting results. I also discovered how interesting parallel 
computing is to me. I still have another year of college left, so I 
am not ready to decide where I go from here; but, I know now I 
would enjoy working on parallel in the future. I feel like it is a 
growing field and now I have a unique experience thanks to this 
internship. 

8. ACKNOWLEDGMENTS 
This research is part of the Blue Waters sustained-petascale 
computing project, which is supported by the National Science 
Foundation (awards OCI-0725070 and ACI-1238993) and the 
state of Illinois. Blue Waters is a joint effort of the University of 
Illinois at Urbana-Champaign and its National Center for 
Supercomputing Applications.  We thank the Blue Waters Student 
Internship Program for providing Ruth with this opportunity.  
Finally, we thank the University of Mary Washington, which 
provided Ruth with room and board for the summer through their 
Summer Science Institute and funding for the wet-lab studies.   

9. REFERENCES 
 

[1] ramsey theory - Wolfram|Alpha. (2012). 
http://www.wolframalpha.com/input/?i=ramsey+theory. 

[2] Weisstein, Eric W. "Ramsey Number." From MathWorld--A 
Wolfram Web Resource. 
http://mathworld.wolfram.com/RamseyNumber.html.   

[3] S. P. Radziszowski, Small Ramsey Numbers, The Electronic 
Journal of Combinatorics. DS1.10. (originally published July 
3, 1994, last updated August 4, 2009), 
http://www.combinatorics.org/ojs/index.php/eljc/article/view
/DS1/pdf.  

[4] D. Toth and M. Bryant, A Performance Comparison of a 
Naïve Algorithm to Solve the Party Problem using GPUs, 
Journal of Computational Science Education, v. 3, issue 2, 
December 2012. 

[5] http://www.shodor.org/petascale/materials/UPModules/how
ManyPeople/ 

[6] http://www.shodor.org/petascale/materials/modules/ 
[7] S. Walkowiak, K. Wawruch, M. Nowotka, L. Ligowski, W. 

Rudnicki, Exploring utilization of GPU for database 
applications, Procedia Computer Science 1(2010) 505-513. 

[8] V. W. Lee, C. Kim, J. Chhugani, M. Desiher, D. Kim, A. D. 
Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. 
Hammarlund, R. Singhal, P. Dubey, Debunking the 100X 
GPU vs. CPU Myth: An Evaluation of Throughput 
Computing on CPU and GPU, Proceedings of the 37th 
annual international symposium on Computer architecture 
(2010) 451-454. 

 

 

Volume 7, Issue 1 Journal of Computational Science Education

38 ISSN 2153-4136 April 2016

http://mathworld.wolfram.com/RamseyNumber.html
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1/pdf
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1/pdf
http://www.shodor.org/petascale/materials/UPModules/howManyPeople/
http://www.shodor.org/petascale/materials/UPModules/howManyPeople/
http://www.shodor.org/petascale/materials/modules/


Abatement of Computational Issues Associated 

with Dark Modes in Optical Metamaterials 

Matthew LePain 
Georgia Southern University 

Physics Department 

ml03213@georgiasouthern.edu 

Maxim Durach 
Georgia Southern University 

Physics Department 

mdurach@georgiasouthern.edu 

ABSTRACT 
Optical fields in metamaterial nanostructures can be separated 
into bright modes, whose dispersion is typically described by 
effective medium parameters, and dark fluctuating fields. Such 
combination of propagating and evanescent modes poses a serious 
numerical complication due to poorly conditioned systems of 
equations for the amplitudes of the modes. We propose a 
numerical scheme based on a transfer matrix approach, which 
resolves this issue for a parallel plate metal-dielectric 
metamaterial, and demonstrate its effectiveness. 

Categories and Subject Descriptors 
J.2 [Physical Sciences And Engineering]: Physics. 

General Terms 
Nanotechnology. 

Keywords 
Photonics, Plasmonics, Metasurfaces. 

1. INTRODUCTION 
Modern nanotechnology poses a plethora of cutting-edge research 
problems in the fields of nano-optics and electronics, which are 
ideal for reinforcement of the knowledge gained in the upper 
division physics courses, such as Classical Electromagnetics and 
Quantum Mechanics, as well as for training in numerical methods 
and computational techniques. Due to exquisite spatial profile of 
nanostructures, the solutions to these problems feature 
combinations of propagating and evanescent waves. This is 
known to pose considerable numerical complications if care is not 
taken. In particular, applying the straightforward routine of setting 
boundary conditions at nanostructure boundaries results in poorly 
conditioned systems of equations and unacceptable errors due to 
evanescent waves. This has been discussed for a number of 
optical structures, including stratified media [1], and sine-wave 
grating [2]. 

Plasmonic metamaterials and metasurfaces is a rapidly developing 

field, which encompasses such phenomena as negative refraction 
[3], superlensing [4], optical cloaking [5], wavefront control [6] 
and much more. Plasmons are evanescent waves bound to the 
interfaces between metal and dielectric materials. The new 
functionalities are achieved when metal-dielectric structures 
feature subwavelength design forming metamaterials. The bright 
modes of these structures behave according to the effective 
metamaterial medium approximation, whereas the dark plasmonic 
modes are strongly localized. This leads to the numerical issues 
related to presence of both propagating and evanescent fields to 
be strongly expressed in metamaterial structures.  

2. PROBLEM FORMULATION 
In this paper, we present a comparison of two techniques to 
calculate electromagnetic fields in a nanostructure, which contains 
an array of nanoscale metal plates separated by layers of high-
index dielectric placed above a transparent substrate. This 
problem is very important for the fields of photonics and 
metamaterials and its solution will allow the modeling of ultra-
thin polarization rotators and nanoscale light emitters with 
controlled polarization [7].  

 

Figure 1: Structure Schematics. The three-layer structure 
considered in this paper contains a one-dimensional 
metamaterial in layer 2. Note that the selection of coordinates 
that are shown here are explained in the text. 
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From the computational perspective this structure requires 
simultaneous consideration of propagating and evanescent waves, 
therefore the boundary condition equations are numerically 
unstable [1, 2]. We devise a transfer matrix computational 
technique specific to this structure to resolve this issue by 
dynamically removing the evanescent waves from the 
computation as they decay in the structure. 

3. METHODS 
Consider a three-layered structure composed of layers 1 and 3, 
which are homogeneous and isotropic and layer 2, which is a one 
dimensionally periodic array of two different homogeneous and 
isotropic materials (Fig. 1). Because of the periodicity of layer 2 
diffraction waves will be produced in layers 1 and 3 with 
diffraction wave vectors 

 
𝑘𝑥

(𝑛)
= 𝑘𝑥 +

2𝜋𝑛

𝑑
 (1) 

Here d is the period of the structure. The fields in layer 1 will be 
represented as: 

 
𝑭 = 𝑅𝑒 [𝑒𝑖𝜔𝑡 (𝐼 𝑒𝑖𝒌𝟎∙𝒓 + ∑ 𝑅𝑛 𝑒−𝑖𝒌𝒏∙𝒓

∞

𝑛=−∞

)] 𝒇̂ (2) 

where F is either the magnetic field H (for TM polarization) or the 
electric field E (TE polarization) and 𝒇̂ is in the transverse 
direction. The 𝑅𝑛s are amplitudes of the reflected waves, and 𝐼 =

𝑃 for TM fields and 𝐼 = 𝑆 for TE fields is the incident wave 
amplitude. Also ω is the angular frequency, 𝒌𝟎 = 𝑘𝑥𝒙̂ + 𝑘𝑦𝒚̂ +

𝑘𝑧𝒛̂, r is the position vector, and 𝒌𝒏 = 𝑘𝑥
(𝑛)

𝒙̂ + 𝑘𝑦𝒚̂ +

√𝑘0
2𝜀𝐼 − 𝑘𝑥

(𝑛)2
− 𝑘𝑦

2𝒛̂. In layer 3 the fields are represented as: 

 
𝑭 = 𝑅𝑒 [𝑒𝑖𝜔𝑡 ∑ 𝑇𝑛 𝑒𝑖𝒌𝒏∙𝒓

∞

𝑛=−∞

] 𝒇̂ (3) 

Where the 𝑇𝑛s are amplitudes of transmitted waves. 

The fields in layer 2 are more complicated. Because of the 
reflections on the layers’ boundaries, waves that propagate in the 
positive and negative x directions are present in each material. In 
the case that the incidence plane is at an angle to the stratification 
of layer 2 (x direction), the convenient directions in which to 
define polarization are different within each layer. This leads to 
the fields being excessively complicated to solve in the x-y-z 
coordinate system. Thus, we simply consider a wave propagating 
in the 𝑧′ direction and rotate the coordinates back when 
convenient (see Fig. 1). The un-rotated field equations look like 
this: 

 𝐹
𝑦′
(𝑚)

= 𝑅𝑒 [𝑒𝑖𝜔𝑡 (𝐴𝑚𝑒
𝑖𝑘

𝑧′
(𝑚)

𝑧′

+ 𝐵𝑚𝑒
−𝑖𝑘

𝑧′
(𝑚)

𝑧′

) × 

{
𝐶𝑚𝑒𝑖𝛼1𝑥 + 𝐷𝑚𝑒−𝑖𝛼1𝑥 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 1

𝐺𝑚𝑒𝑖𝛼2𝑥 + 𝐽𝑚𝑒−𝑖𝛼2𝑥 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 2
] 

(4) 

𝐴𝑚, 𝐵𝑚, 𝐶𝑚, 𝐷𝑚, 𝐺𝑚, and 𝐽𝑚 are unknown amplitudes, and  

𝛼𝑛 = √𝑘0
2𝜀𝑛 − 𝑘

𝑧′

(𝑚)2
. 

This equation alone has in it 7 unknowns. Fortunately 𝐴𝑚 and 𝐵𝑚 
can be found via the upper and lower boundary conditions, but 

𝐶𝑚, 𝐷𝑚, 𝐺𝑚, 𝐽𝑚, and 𝑘
𝑧′
(𝑚) must be solved for. To do this we must 

use Maxwell’s equations and the boundary conditions for E and H 
fields at metal/dielectric boundaries. For p polarization (𝑭 → 𝑯): 

 
𝐸𝑥 =

𝑘
𝑧′
(𝑚)

𝑘0𝜀
𝐻𝑦′ (5) 

   
 

𝐸𝑧′ =
𝑖

𝑘0𝜀

𝜕𝐻𝑦′

𝜕𝑥
 (6) 

The field components 𝐻𝑦′ and 𝐸𝑧′ are continuous across the 
boundary therefore: 

 𝐶𝑚𝑒𝑖𝛼1𝑑1 + 𝐷𝑚𝑒−𝑖𝛼1𝑑1 = 𝐺𝑚 + 𝐽𝑚 (7) 
   
 𝛼1

𝑘0𝜀1

(𝐶𝑚𝑒𝑖𝛼1𝑑1 − 𝐷𝑚𝑒−𝑖𝛼1𝑑1) =
𝛼2

𝑘0𝜀2

(𝐺𝑚 − 𝐽𝑚) (8) 

Here 𝑑1 is the width of the first layer. In matching the period 
boundary we must take into account the phase factor 𝑒𝑖𝑘𝑥𝑑 in 
order to be able to match the phase in layers 1 and 3 to this one. 
This leads to the equations 

 (𝐶𝑚 + 𝐷𝑚)𝑒𝑖𝑘𝑥𝑑 = 𝐺𝑚𝑒𝑖𝛼2𝑑2 + 𝐽𝑚𝑒−𝑖𝛼2𝑑2 (9) 
   
 𝛼1

𝑘0𝜀1

(𝐶𝑚 − 𝐷𝑚)𝑒𝑖𝑘𝑥𝑑 =
𝛼2

𝑘0𝜀2

(𝐺𝑚𝑒𝑖𝛼2𝑑2 − 𝐽𝑚𝑒−𝑖𝛼2𝑑2) (10) 

Where 𝑑2 is the width of the second layer. 

These four boundary conditions result in the Kronig-Penny (KP) 
equation: 

 
cos 𝛼1𝑑1 cos 𝛼2𝑑2 −

1

2
(

𝑝1

𝑝2
+

𝑝2

𝑝1
) sin 𝛼1𝑑1 sin 𝛼2𝑑2 

= cos 𝑘𝑥𝑑 
(11) 

with 𝑝𝑖 =
𝛼𝑖

𝑘0𝜀𝑖
. For s polarization (𝑭 → 𝑬) the characteristic 

equation is similar, except that 𝑝𝑖 = −
𝛼𝑖

𝑘0
. 

The KP equation provides the means to find 𝑘
𝑧′
(𝑚) and the 

corresponding 𝐶𝑚, 𝐷𝑚, 𝐺𝑚, and 𝐽𝑚 coefficients. Unfortunately, 
the KP equation is transcendental and has an infinite number of 
roots. It is however quite possible to find a finite set of roots for 
an individual set of parameters [8, 9]. But to get any directly 
relatable data we need to be able to look at a wide swath of the 
parameter space with good resolution simultaneously.  

The process to find roots for a single set of parameters is to first 
choose a maximum value for |𝑘

𝑧′
(𝑚)

|, this gives a minimum decay 
length and wavelength to be considered. Then we create a graph 
overlaying the zero contours of the real and imaginary parts of the 
KP equation as a function of the real and imaginary parts of 

𝑘
𝑧′
(𝑚)2

(see Fig. 2). The desired roots are at the intersections of 
these contours. 
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Figure 2: A graph of the zero contour curves of the real (blue) 
and imaginary (orange) parts of the left side of KP equation 
[Eq. (11)] using 8.5 nm GaAs and 1.5 nm Ag at 𝝎 = 𝟐. 𝟒𝟕 𝐞𝐕 
and normal incidence (𝒌𝒙 = 𝟎). 

To find the 𝑘
𝑧′
(𝑚) in the desired range of parameters we use an 

iterative method in which we first do the above process for one set 
of parameters. Then we use those roots as the starting point for 
very slightly different parameters iterating until the whole 
parameter space is covered. 

This process leads to roots jumping from one branch to another 
even as we reached the upper limit of a reasonable number of 
iterations. To avoid this we use a pair of equations that split the 
KP equation into even and odd roots as long as the angle of 
incidence is zero, in other words 𝑘𝑥 = 0. [9] 

 
𝑝1 tan (

𝑝2𝑑2

2
) + 𝑝2 tan (

𝑝1𝑑1

2
) = 0 (12) 

   
 

𝑝2 tan (
𝑝2𝑑2

2
) + 𝑝1 tan (

𝑝1𝑑1

2
) = 0 (13) 

These equations split all the troublesome roots apart into the two 
separate equations as visible in Fig. 3. However, there are still two 
roots of Eqn. (13) in p polarization that continue to have this 
issue. We have gotten around this issue by simultaneously 
changing multiple parameters in a single step such that the roots 
change much slower throughout the sections where the roots 
would nor mally need much higher resolution.  

 

 

Figure 3: A graph of the zero contour curves of the real 
(green) and imaginary (red) parts of the left sides of Eqs. (12) 
(top) and (13) (bottom) using the same parameters as Fig. 2 
and overlaid on top of Fig. 2. 
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Figure 4: Roots of the KP equation [Eq. (11)-(13)] as a 
function of frequency for 7.5 nm GaAs & 2.5 nm Ag, at 
normal incidence. 

After the modes in layer 2 are found (see Fig. 4) the fields need to 
be matched at the upper and lower boundaries. First we need to 
identify all the independent waves that are present. 

Table 1: The waves and their amplitudes within each layer 
Layer 1 

TM Incident P 
TE Incident S 

TM Diffraction 𝑅𝑀𝑛 
TE Diffraction 𝑅𝐸𝑛 

Layer 2 
p Waveguide 𝐴𝑝𝑚 & 𝐵𝑝𝑚 
s Waveguide 𝐴𝑠𝑚 & 𝐵𝑠𝑚 

Layer 3 
TM Diffraction 𝑇𝑀𝑛 
TE Diffraction 𝑇𝐸𝑛 

Amplitudes P and S can be set as desired but all the rest must be 
found. We follow a usual method for matching infinite sets of 
plane and waveguide waves [10]. First we set the fields we intend 
to match equal to each other and multiply through by 𝑒−𝑖𝑘𝑥

(𝑙)
𝑥. 

Then we integrate both sides over a single period of the structure. 
This gives 

 
∫ 𝑒𝑖𝑘𝑥

(𝑛)
𝑥𝑒−𝑖𝑘𝑥

(𝑙)
𝑥𝑑𝑥

𝑑

0

= 𝛿𝑛𝑙𝑑 (14) 

on the side of layers 1 or 3. As for layer 2 there are terms of the 
form: 

 
∫ 𝑒−𝑖𝑘𝑥

(𝑙)
𝑥 {

𝐶𝑚𝑒𝑖𝛼1𝑥 + 𝐷𝑚𝑒−𝑖𝛼1𝑥 𝑥 < 𝑑1

𝐺𝑚𝑒𝑖𝛼2𝑥 + 𝐽𝑚𝑒−𝑖𝛼2𝑥 𝑥 > 𝑑1

𝑑𝑥
𝑑

0

 (15) 

At this point we reduced the system to a set of eight matrix 
equations, one for each x and y component of the E and H fields 
on the upper and lower boundaries. Then using block matrices we 
reduce those eight equations to these four: 

 Χ̂𝐴𝑥𝑨 + Χ̂𝐵𝑥𝑩 + 𝐾𝑅𝑥𝑹 = 𝑫𝒙 (16) 
   
 Χ̂𝑦(𝑨 + 𝑩) + 𝐾𝑅𝑦𝑹 = 𝑫𝒚 (17) 

   
 𝑊̂𝐴𝑥𝑨 + 𝑊̂𝐵𝑥𝑩 + 𝐾𝑇𝑥𝑻 = 𝟎 (18) 
   
 𝑊̂𝐴𝑦𝑨 + 𝑊̂𝐵𝑦𝑩 + 𝐾𝑇𝑦𝑻 = 𝟎 (19) 

Where the Χ̂s and 𝑊̂s contain matrices with entries similar to Eqn. 
(14) while the 𝐾s are 2x2 block matrices of diagonal matrices 
containing coefficients due to angles, derivatives, and the like. 

These four equations can be reduced further to a single equation: 

 𝑀̂𝑽 = 𝑫 (20) 
   
 

𝑀̂ = (

Χ̂𝐴𝑥 Χ̂𝐵𝑥 𝐾𝑅𝑥 0̂
Χ̂𝑦 Χ̂𝑦 𝐾𝑅𝑦 0̂

𝑊̂𝐴𝑥 𝑊̂𝐵𝑥 0̂ 𝐾𝑇𝑥

𝑊̂𝐴𝑦 𝑊̂𝐵𝑦 0̂ 𝐾𝑇𝑦

) (20a) 

   
 

𝑽 = (

𝑨
𝑩
𝑹
𝑻

) & 𝑫 = (

𝑫𝒙

𝑫𝒚

𝟎
𝟎

) (20c/d) 

At this point it seems to be a simple task to invert 𝑀̂ to solve for 
V, however when using any roots that decay significantly in layer 
2, 𝑀̂ quickly becomes so poorly conditioned that even double 
precision isn’t enough to produce anything but zeros (see Fig. 5 
and discussion after Eqn. (35)). The major issue is the matrix 𝐻 
and its inverse contained within the 𝑊̂s, where 𝐻𝑚𝑙 = 𝑒𝑖𝑘𝑧

(𝑚)
ℎ𝛿𝑚𝑙 

and h is the height of layer 2. This issue can be resolved by using 
the transfer matrix method we developed. 

In this method, we consider each boundary independently to find 
how an incident wave is converted into outgoing waves. Then we 
propagate and feed the outgoing waves as incident onto the other 
boundary and so on, which forms an iterative process. 

The full set of waves coming off the upper and lower boundaries 
can be found by constructing the formulas: 

 𝑹 = 𝑹𝑰 + 𝑅̂𝑃̂𝑩 (21) 
   
 𝑨 = 𝑨𝑰 + 𝐴̂𝑃̂𝑩 (22) 
   
 𝑩 = 𝐵̂𝑃̂𝑨 (23) 
   
 𝑻 = 𝑇̂𝑃̂𝑨 (24) 

Here RI (AI) is a vector containing the amplitudes of diffraction 
(waveguide) waves created as a direct result of the incident waves 
coming from the top medium. 𝐴̂ and 𝐵̂ are matrices that convert a 
waveguide wave amplitude vector into a counter-propagating 
waveguide wave amplitude vector on the upper and lower 
boundaries respectively. 𝑅̂ and 𝑇̂ convert waveguide wave 
amplitude vectors into reflected and transmitted wave amplitude 
vectors respectively. 𝐻 is used to propagate the waveguide vectors 
down or up the structure. 

Substituting B into the formula for A we find: 

 𝑨 = 𝑨𝑰 + 𝐴̂𝑃̂𝐵̂𝑃̂𝑨 = 𝑨𝑰 + 𝑅𝑇̂𝑨 (25) 

Solving for A: 
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 𝑨 = (1̂ − 𝑅𝑇̂)
−1

𝑨𝑰 (26) 

Then to avoid taking the inverse we expand Eq. (26) to finally get 
to the equation: 

 𝑨 = (1̂ + 𝑅𝑇̂ + 𝑅𝑇̂2 + 𝑅𝑇̂3 + ⋯ )𝑨𝑰 (27) 

Here 𝑅𝑇̂ is a matrix, which we call a round-trip matrix. It 
propagates a set of modes at the top boundary to the bottom of 
layer 2, reflects them, propagates them back and reflects them 
once more. The expansion (27) can be understood as a sum of a 
series of roundtrips and eliminates the evanescent modes as they 
decay. This is the root of the effectiveness of the method. 

To use this method we must start by finding RI and AI. Consider 
a two-layer system consisting of layers 1 and 2 only. In this case, 
we deal with P, S, R, and A coefficients. We again matched the x 
and y components of the E and H fields on the boundary by 
multiplying by 𝑒−𝑖𝑘𝑥

(𝑙)
𝑥 and integrating. This time having just the 

four boundary conditions we only get two equations on the first 
block matrix system: 

 χ̂𝑥𝑨𝑰 + 𝐾𝑅𝑥𝑹𝑰 = 𝑫𝑥 (28) 
   
 χ̂𝑦𝑨𝑰 + 𝐾𝑅𝑦𝑹𝑰 = 𝑫𝑦 (29) 

Thus we recreate Eqn. (20) as a 2x2 system making the inversion 
even simpler, and without a 𝑊̂ there is no 𝐻 and thus 𝑀̂ is not 
poorly conditioned.  

The next step is to find 𝐵̂ and 𝑇̂. Consider the boundary between 
layers 2 and 3. In this case we have a set of incident waveguide 
waves, A, reflected waveguide waves, B, and transmitted 
diffraction waves, T. Using these waves the system only changes 
slightly to become: 

 χ̂𝑥𝑩 + 𝐾𝑇𝑥𝑻 = 𝐷̂𝐴𝑥𝑨 (30) 
   

 𝑀̂−1 = (
(𝜒̂𝑥 − 𝐾𝑥𝐾̂𝑦−1

𝜒̂𝑦)
−1

−𝜒̂𝑥 −1
𝐾̂𝑥(𝐾̂𝑦 − 𝜒̂𝑦𝜒̂𝑥 −1

𝐾𝑥)
−1

−𝐾𝑦−1
𝜒𝑦 (𝜒̂𝑥 − 𝐾𝑥𝐾̂𝑦−1

𝜒̂𝑦)
−1

(𝐾𝑦 − 𝜒̂𝑦𝜒̂𝑥 −1
𝐾̂𝑥)

−1
) (32) 

 

  

  

Figure 5: a comparison of the results of the two different methods for a structure composed of a 100 nm thick  
Ag (100 nm)/vacuum (100 nm) array on top of a Ag substrate. Blue: transfer matrix method using double precision.  
Purple: characteristic matrix approach using double precision. Red: characteristic matrix with 32 digit precision.  

Green: characteristic matrix with 64 digit precision. Orange: characteristic matrix with 128 digit precision. 
(Non-standard precision done using Mathematica’s variable precision) 

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 43



 χ̂𝑦𝑩 + 𝐾𝑇𝑦𝑻 = 𝐷̂𝐴𝑦𝑨 (31) 

The As will be defined later, the 𝐷̂s are constructed in the same 
way as the 𝜒̂s, and the 𝐾s are the same sans slight differences due 
to material choice on the upper and lower boundaries.  

Next, we returned to the boundary between layers 1 and 2. This 
time the incident waves being waveguide waves. The resultant 
equations are the same as Eqns. (30)-(31) except 𝐵 → 𝐴, 𝐴 → 𝐵, 
and 𝑇 → 𝑅. 

Now we need to use Eqns. (28)-(31) to create matrices that 
directly convert a set of incident waves to reflected and 
transmitted waves.  

 𝑀̂−1𝑫 = 𝑽 = (
𝑨𝑰
𝑹𝑰

) (33) 
   
 

𝑀̂ (
𝑩
𝑻

) = (𝐷̂𝐴𝑥

𝐷̂𝐴𝑦
) 𝑨 (34) 

 ∴  
 

𝑀̂−1 (𝐷̂𝐴𝑥

𝐷̂𝐴𝑦
) = (𝐵̂

𝑇̂
) (35) 

To do this we need the 𝑀̂−1 associated with each set of equations, 
the general form being Eqn. (32). Doing Eqns. (34) and (35) again 
for the other side, mutatis mutandis, yields the 𝐴̂ and 𝑅̂ 
conversion matrices. 

4. RESULTS AND CONCLUSIONS 
To compare the boundary condition approach and the transfer 
matrix method we devised, we plot the magnitudes of amplitudes 
of 0th order waves in the structure in Fig. 5. In each panel the blue 
dots represent the results of the transfer matrix method in double 
precision. For convergence one seems to needs to truncate the 
infinite system of equations at about |𝑘𝑧|2 ≈ (1 Å)

−2
 which 

occurs at 𝑁𝑡𝑟 ≈ 200 waveguide modes in Fig. 5’s structure. This 
means that taking just one propagating waveguide mode [8] is not 
enough for determining the optical properties of such structures. 
The evanescent modes may not contribute to the determination of 
the spectral positions of the resonances in subwavelength 
structures, but they determine the power distribution at interfaces 
between layers. Additionally the possibility of including multiple 
modes in our method allows for consideration of large period 
structures and the establishing of the exact conditions under which 
the metamaterial approximations fail. 

The results of the calculation using the boundary condition 
method are shown for double precision (purple), 32-digit 
precision (red), 64-digit precision (green) and 128-digit precision 
(orange). Even when using 128-digit precision, which requires 
significantly more time to calculate, the boundary condition 
method is not capable of reaching the convergence requirement 
for the system due to poorly conditioned matrices.  

Currently, there is a strong interest in applicability of effective 
medium approximation for describing fields in metamaterials. To 
evaluate the correctness of the results of this approximation, one 
has to compare it to an exact calculation. In Fig. 6 we provide a 
calculation of the total reflectivity of a metal-dielectric array with 
period of 10 nm, different metal fractions 𝑓 and suspended in 
vacuum.  

The graph shows a set of alternating Fabri-Perot resonances with 
special properties, which allow for the polarization rotation effect 
to be explained more fully in our upcoming paper [11]. 

To conclude, we have developed a new transfer matrix method for 
calculating the fields in metal-dielectric parallel-plate arrays. This 
method allows reaching convergence and obtaining reliable 
results. We apply this method to model metasurface polarization 
rotators. 

 

Figure 6: The reflectivity of a 10nm period, 150nm height 
structure suspended in air, made of Ag and GaAs smoothly 
varying from all GaAs (left), to all Ag (right) over varied 
frequency. 

5. REFLECTIONS 
The subject matter of this paper was produced as part of an 
internship program with Shodor and Blue Waters. Here are some 
of M. L.’s thoughts and reflections on this internship: 

This all started my junior year; I was going for a physics degree 
and wanted to go to graduate school in physics, but I had yet to 
find a subject that really got me excited. I figured some 
undergraduate research would look good when applying to 
graduate programs so I joined Dr. Durach. He quickly convinced 
me to sign up for the internship and began teaching me about 
plasmons. 

A couple months later, I was headed to a two-week crash course 
in parallel computing with just barely enough programing 
knowledge to make a two-body numerical integration program in 
C. While there, I learned about MPI; Open MP; CUDA; 
OpenACC; and computer structure, from clusters all the way to 
CPU memory, and how to efficiently use it. What I learned there 
was absolutely invaluable in the process of creating the code used 
to complete this project. 

The CPU memory structure, and array structure, has to have been 
one of the most valuable. At one point I had a program running at 
about 10% the speed it should have been and all I had to do was 
flip which index was being parallelized so that the CPU would 
call consecutive array entries into its cache and use all of them 
before calling more. I would never have come to that conclusion 
otherwise. 

Volume 7, Issue 1 Journal of Computational Science Education

44 ISSN 2153-4136 April 2016



Without the internship, I likely would have had to spend at least 
an extra half a year on this project just learning the computational 
side of things and/or floundering through the creation of the 
programs. That extra half a year could have made it much more 
difficult to publish considering the number of groups looking into 
similar structures. 

This internship has also indirectly given me the chance to present 
at the 2015 APS March meeting through funding from the Physics 
Department at Georgia Southern. 
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