
Volume 7 Issue 1

April 2016

Volume 7, Issue 1 April 2016

Editor: Steven Gordon
Associate Editors: Thomas Hacker, Holly Hirst, David Joiner,

Ashok Krishnamurthy, Robert Panoff,
Helen Piontkivska, Susan Ragan, Shawn Sendlinger,
D.E. Stevenson, Mayya Tokman, Theresa Windus

CSERD Project Manager: Patricia Jacobs. Managing Editor: Levi Di-
ala. Web Development: Phil List. Graphics: Stephen Behun, Heather
Marvin.

The Journal Of Computational Science Education (JOCSE), ISSN 2153-4136,
is published quarterly in online form, with more frequent releases if submission
quantity warrants, and is a supported publication of the Shodor Education
Foundation Incorporated. Materials accepted by JOCSE will be hosted on the
JOCSE website, and will be catalogued by the Computational Science Education
Reference Desk (CSERD) for inclusion in the National Science Digital Library
(NSDL).

Subscription: JOCSE is a freely available online peer-reviewed publication
which can be accessed at http://jocse.org.

Copyright c©JOCSE 2016 by the Journal Of Computational Science Education,
a supported publication of the Shodor Education Foundation Incorporated.

Contents

Introduction to Volume 7 Issue 1
Steven I. Gordon, Editor 1

Cognitive Aspects of Computational Modeling and Simulation in Teaching
and Learning
Osman Yasar 2

Introducing Teachers to Modeling Water in Urban Environments
Steven I. Gordon, Jason Cervenec, Michael Durand 15

Computational Thinking as a Practice of Representation: A Proposed Learning
and Assessment Framework
Camilo Vieira, Manoj Penmetcha, Alejandra J. Magana, Eric Matson 21

Revising and Expanding a Blue Waters Curriculum Module as a Parallel
Computing Learning Experience
Ruth Catlett, David Toth 31

Abatement of Computational Issues Associated with Dark Modes in Optical
Metamaterials
Matthew LePain, Maxim Durach 39

Introduction to Volume 7 Issue 1

Steven I. Gordon
Editor

Ohio Supercomputer Center
Columbus, OH

sgordon@osc.edu

Forward
This issue presents articles that provide a theoretical basis
for computational science education as well as some practical
tools that can be used in those endeavors. In addition there
are two student articles detailing the results of their learning
experiences.

The article by Osman reviews the relationships between
modeling and simulation and the literature on cognitive psy-
chology. He goes on to discuss a training program for K-12
STEM educators and the impacts of that training on instruc-
tional uses of modeling and simulation in their classrooms.

The article by Gordon, Cervenec, and Durand discuss the
release of a curriculum focused on teaching urban hydrol-
ogy concepts using a combination of physical and computer
models. Links are provided to the curriculum and a web-
based water runoff model along with exercises that can im-
plemented in the classroom.

Viera, Penmetcha, Magana, and Matson provide a frame-
work for assessing the design of computer learning experi-
ences. It was applied to an exercise using robotics and pro-
vides an approach to gauging the success of that exercise.

There are two articles detailing the projects and impacts of
student internships. The article by Catlett and Toth focuses
on the revision of a parallel computing learning experience
tied to the Blue Waters Internship program. The article by
LePain and Durach discusses the simulation that calculates
electromagnetic fields in a nanostructure. Their work was
also supported by the Blue Waters Internship program as
well as support from Georgia Southern University.

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 1

Cognitive Aspects of Computational Modeling and
Simulation in Teaching and Learning

Osman Yaşar

The College at Brockport
State University of New York

Brockport, NY 14420
Tel: +1 (585) 395-2595

oyasar@brockport.edu

ABSTRACT
We discuss cognitive aspects of modeling and simulation in an
efficacy study of computational pedagogical content knowledge
professional development of K-12 STEM teachers. Evidence
includes data from a wide range of educational settings over the
past ten years. We present a computational model of the mind
based on an iterative cycle of deductive and inductive cognitive
processes. The model is aligned with empirical research from
cognitive psychology and neuroscience and it opens door to a
whole series of future studies on computational thinking.

General Terms
Computational Theory of Mind, K-12 Teaching and Learning

Keywords
Deductive and Inductive, Cognitive Processes, Memory Retrieval

1. INTRODUCTION
Educators structure training and curriculum based on learning
theories of how the human mind works. Recent findings from
empirical research by cognitive psychologists and neuroscientists
have created a critical mass to change the way we prepare
teachers and support their classroom instruction. This is an
opportune time for computer science educators to ground in
cognitive theories the well-known concepts and processes in
computational science.

Make it Stick, an ostensibly groundbreaking book published
recently and coauthored by several prominent cognitive scientists
has turned conventional ideas of learning upside down (Brown et
al. 2014). The book offers many sound practices to help students
easily retrieve content they learned in class, retain it, and apply it
in different contexts to solve problems. New research suggests
that repeated, delayed and interleaved retrievals make new
concepts stick in memory longer if the process is effortful (pp.
47). Learning is mediated by memory, because human brain
attempts to interpret new concepts in terms of previously
registered knowledge and facts. However, some degree of
forgetting is also good for learning because it forces the learner to
use effort to cognitively engage oneself to recall or reconstruct
newly acquired concepts through different neural pathways or
links that exists and are retrievable.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee. Copyright ©JOCSE, a supported publication of the Shodor
Education Foundation Inc.

According to neuroscience, information is stored into the memory
in the form of a specific pattern of neurons placed on a pathway
and fired together (Restak 2001, Brown et al. 2014). The number
and strength of such pathways improve the storage and retrieval of
information. A memory or a newly learned concept can be a
combination of previously formed memories, each of which might
also involve a vast network of concepts and details mapped onto
the brain’s neural network in a hierarchical way shown in Fig. 1.

The key to storing a concept more permanently into the memory
is to link it to previously stored basic and retrievable concepts.
And, the more links to associated concepts, the higher the chances
of recalling this concept when needed later. Spaced-out cognitive
retrieval practices attempted at different times, various settings
and contexts is good because every time the recall is attempted it
establishes more links that will help the remembering and
learning. Exposure to new concepts through links to multiple
views from different fields of study is, therefore, an effective
retrieval strategy recommended by cognitive psychologists
(Brown et al. 2014). This is called interleaved retrieval practice
and it now forms a cognitive foundation for the computational
pedagogical content knowledge (CPACK) framework that we
developed for teacher professional development (Yaşar et al.
2015). In the following Sections (2.1 - 2.5) we describe theoretical
foundation of CPACK followed by its implementation and impact
on teaching and learning (Sec. 3) in secondary school classrooms.

 Concept

Basic concepts, details & facts

Figure. 1: Distributive and associative aspects of
information storage and processing (Yaşar 2015).

Volume 7, Issue 1 Journal of Computational Science Education

2 ISSN 2153-4136 April 2016

2. THEORETICAL FOUNDATION
2.1 Interdisciplinary Education
Interleaving retrieval practices by weaving together multi-
disciplinary features around a common topic (i.e.,
interdisciplinary education) has great advantages for gaining deep
and lasting knowledge but it is not easy for several reasons. It
would require a more cognitive effort than usual and as such, it
would slow down the process of learning. In college, it would
delay graduation and in public schools’ packed schedules it would
risk compliance with local and state-mandated curriculum.
Technology can be used to speed up this interdisciplinary learning
but it needs training of teachers to teach content in pedagogically
appropriate ways, thereby requiring a close integration of
technology, pedagogy, and content as shown in Fig. 2. Recently, a
theoretical framework, namely technological pedagogical content
knowledge (TPACK), has been developed by Mishra & Koehler

(2006) to address challenges of T, P, and C integration. Practicing
teachers have been offered professional development (PD) to help
them deploy appropriate technologies in the classroom, stay up-
to-date with emerging technologies, and assess efficacies of
different pedagogical approaches (Loucks-Horsley et al. 2010).
But, due to frequent changes in available tools, challenges might
never go away as far as transferring curriculum inventories and
PD content to new circumstances. Furthermore, teaching with
technology often requires customization and the needed
technologies must be both content specific and pedagogically
suitable at the same time (Koehler & Mishra 2008). While the
latest technologies offer more capacity for applicability, their
optimum utilization may necessitate knowledge of tools’
operational underlying principles for easier transfer into new
circumstances and better integration (Koehler & Mishra 2008,
Niess 2005, Flick & Bell 2000).

It is not very common to come across presentations or papers in
teacher education conferences that report use of a pedagogically
appropriate technology that is widely applicable to topics in a
STEM content area. It is even less uncommon to see one that
applies to teaching of topics in multiple content areas. This is
what led scientists such as us who heavily used computational
modeling and simulation technology (C-MST) in scientific
research in the past several decades to cross paths with pedagogy

and teacher education experts. We need their help to get more and
better students from public schools to enter computational science
programs and they need help with interdisciplinary TPACK
training of teachers. At the 2014 and 2015 SITE (Society for
Information Technology and Teacher Education) conferences, we
presented a case study (i.e., CPACK) by demonstrating how we
have integrated computational methodology and technology into
teacher education. Encouraged by a warm reception and a TPACK
paper award (Yaşar et al. 2015) from the SITE education
community, we started a fruitful collaboration with other
researchers and this has resulted in a better understanding of
cognitive foundations of computational modeling and simulations.

There is an important feature of interdisciplinary education that
can be best described by Aristotle’s well-known statement, “the
whole is more than the sum of its parts,” or the theory of Gestalt
psychology, “the whole is other than the sum of its parts,” which
means that the whole has a reality of its own, independent of the
parts (Koffka 1935). Accordingly, educators have noted an
emerging nature of TPACK when technology, pedagogy, and
content closely interact (Mishra & Koehler 2006), which is
illustrated as the overlap of Venn diagrams in Fig. 2. There is
even a stronger case, CPACK, when mathematics, computing, and
sciences are integrated through CMST (see Fig. 3). Not only has it
given rise to a new content domain of computational science as
witnessed by degree programs in the past two decades (Swanson
2002, Little 2003, Yaşar & Landau 2003) but it also led to a
particular pedagogy which was not even there among the
constitutive domains of computing, mathematics, and sciences to
start with (Yaşar & Maliekal 2014a). Below, we explain cognitive
foundations of this computational pedagogy.

Figure 3: CPACK framework. While pedagogy is a separate
domain in TPACK, it shows up inherently here as an outcome of
interdependencies of computing, math, science and technology.

2.2 Mind as a Computational Device
Modeling and testing has been an important tool for scientific and
engineering research for hundreds of years. Scientists often start
with a model (e.g., a hypothesis or a concept) deductively based
on the current research, facts, and information. They test the
model’s predictions against experimental data. If results do not
match, they, then break down the model into its parts (sub
models) to identify what needs to be tweaked. They retest the
revised model through what-if scenarios by changing relevant
parameters and characteristics of the sub models. By putting

Figure 2: TPACK framework (Mishra & Koehler 2006).
Math

C

Comp
Science

T

Science
C

Computational
Pedagogical Content Knowledge

(CPACK)

Computational
Math, Science and Technology

(C-MST)

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 3

together new findings and relationships inductively among sub
models, the initial model gets revised again. This
(deductive/inductive) cycle of modeling, testing, what-if
scenarios, synthesis, decision-making, and re-modeling is
repeated  similar to the bidirectional distributive/associative
structure in Fig. 1  as resources permit until there is confidence
in the revised model’s validity.

In recent years, computers have been very effective in conducting
scientific research because they speed up the model building and
testing of different scenarios through simulations that provide
quick feedback to researchers in order to improve the initial model
(NSF Blue Ribbon Report 2006). CMST’s role in scientific and
industrial research was proven beyond doubt when computational
predictions matched behavior of physical models in high-stake
cases (e.g., safety of cars and planes, emissions from engines, and
approaching storms). Its use was uniquely justified when a study
was impossible to do experimentally because of its size (too big
such as the universe or too small such as subatomic systems),
environmental conditions (too hot or dangerous) or cost. CMST
eventually demonstrated to be generating innovation and insight,
just like experimental and theoretical research and this ultimately
led to the recognition of computation by the scientific community
as a third pillar of doing science besides theory and experiment
(PITAC Report 2005).

While such capacity was available only to a small group of
scientists in national labs, their demand for computationally
competent post-docs and doctoral students led to graduate
programs in research universities. A dramatic increase in access to
and power of high performance computing and the drop in its cost
in the past 20 years helped spread the use of CMST tools into the
manufacturing industry. Driven by market needs and trends, rather
than empirical research into their effectiveness in education,
funding agencies and colleges started investing in new CMST-
based BS and MS degree programs across the world (Swanson
2002; SIAM Report 2001, 2007, Yaşar et al. 2000). It was not
until friendly versions of such tools were available and considered
for use in K-12 settings that a detailed and thorough empirical
research was undertaken to measure their effectiveness in
education.

If used appropriately, CMST tools can involve students in inquiry-
based, authentic science practices that are highlighted in the recent
framework for K-12 science education (NRC 2012). A growing
body of research (Bell & Smetana 2008; Wieman et al. 2008)
identifies computer simulation as an exemplar of inquiry-guided
(inductive) learning through students’ active and increasingly
independent investigation of questions, problems and issues.
Research into the use of computer simulations in science
education has been reviewed periodically and quite frequently in
recent years. These include early efforts by de Jong & van
Joolingen (1998) and by Bell & Smetana (2008), as well as recent
efforts by Rutten et al. (2012) and by Smetana & Bell (2012). The
article by the Rutten et al. (2012) reviewed (quasi) experimental
research in the past decade (2001-2010) and the one by Smetana
& Bell (2012) reviewed outcomes of 61 empirical studies since
1972. The overall findings support effectiveness of computer
simulations. In many ways simulation has been found to be even
more effective than traditional instructional practices. In
particular, the literature shows that computer simulations can be
effective in: 1) developing science content knowledge and process
skills, and 2) promoting inquiry-based learning and conceptual
change. Effectiveness of CMST in education is also well
grounded in contemporary learning theories that recognize the

role of experience, abstract thinking, and reflection in constructing
knowledge and developing ideas and skills (Hammond 2001;
Donovan & Bransford 2005; Illeris 2009; Mooney 2013).

Since CMST is beneficial to both scientists and students in their
inquiry and learning, one might wonder in what ways it resonates
with the basic functions of the mind. Although the literature
suggests linking modeling and simulation to some cognitive
functions such as abstract thinking and decomposition skills
(Wing 2006), empirical research in cognitive psychology and
neuroscience (Brown et al. 2014) encourages us to search further,
as there might be a deeper link at more fundamental levels. For
example, according to the computational theory of mind (CTOM),
the deepest link between electronic and biological (mental)
computing devices is a) the common nature of the information
that they both process, and b) the way that they process it (i.e.,
addition & subtraction), regardless of the underlying infrastructure
that does the computation (Montague 2006).

Many fields have their hands in the study of how learning takes
place in the mind. Cognitive psychologists try to understand how
the mind works through empirical research into how people
perceive, remember, and think. Developmental and educational
psychologists form theories of human development and how they
can be used in education. At the same time, neuroscientists use
imaging techniques to understand the brain mechanisms that take
part in learning. What was started by Alan Turing, the father of
computer science, still continues to shed light today on the study
of the mind. Basically, Turing’s idea was that if thoughts (i.e.,
information) can be broken up into simple algorithmic steps, then,
machines can add, subtract or rearrange them as our brains do
(Montague 2006; pp. 6). Turing also provided an insight that there
should be a distinction between the patterns of computations (e.g.,
computer software and mind) running on a device and the device
parts (e.g., computer hardware and brain). His insight keeps
fueling the work of computer, computational, and cognitive
scientists (Montague 2006; pp. 7). Basically, he laid foundations
of a devise that could imitate the mind, thereby giving us a
simplified representation (model) of the mind to understand how
it would work in different contexts.

While CTOM played a central role within the cognitive sciences
during 1960s and 1970s, modern philosophers think that equating
mental representations with information processing leaves out the
meaning associated with mental events (Montague 2006; pp.8).
We know that CTOM is far from complete, as information
processing alone cannot define mental states. But, we also know
from scientific research that computational modeling and
simulation can generate insight when done in a bi-directional
iterative way as shown in Fig. 1. If today’s advanced computer
hardware and software have grown to a capacity to generate
insight and conceptual change through a structured and cyclic
computation with many levels involving various sizes and
constructs of information at each level, then we should investigate
if the same structure and mechanism support fundamental
cognitive processes that may be common to both biological and
electronic computation.

In his book, “How We Make Decisions,” the neuroscientist
Montague (2006), an ardent supporter of CTOM, describes how
the mind attaches value to the computations in order to make
meaningful decisions. He argues that the concern for survival
pressures us to be efficient in the way we consume our available
energy. As an extremely efficient computational device, the brain
actually runs on orders of magnitude less electricity than
mechanistic computers and mobile devices (p. 26). Furthermore,

Volume 7, Issue 1 Journal of Computational Science Education

4 ISSN 2153-4136 April 2016

he suggests that the concern for efficiency makes us assign
“value” to our thoughts, decisions and actions by computing and
evaluating different scenarios before we take an action (p. 51).
And, that, he thinks is the root of our intelligence and why we
have pushed ourselves to be smarter over time.

2.3 Electronic & Biological Computation
Humans have long been curious about how the mind works in
ways that are meaningful, plausible, and fruitful for further
research possibilities. Studying the mind has been much
complicated as it takes place in a delicate, inaccessible, and
complicated organ, the brain. However, consideration of the
information in terms of simpler and computable pieces by Alan
Turing led to an electronic device to imitate the biological brain.
After almost a century, the imitation has gotten so complicated,
both structurally and functionally, that we may be able to discover
how the original (mind) computes by studying how the imitation
(computer) does it. Yet, despite similarities of computational
processes between electronic and biological computing devices,
each uses a different hardware to accomplish what it does. While
electronic computers have evolved into distributed structures like
the brain’s neural network, there exist many differences. Much of
the literature on “computation” today refers to how it is done on
electronic devices and it may be time to use the term computation
in a device-independent way.

As briefly mentioned in the introduction, the latest neuroscience
studies now shed light on how information storage, retrieval
(remembering), and processing (thinking) take place by the brain
hardware (Brown et al. 2014). While electronic computing
machines handle information storage and processing separately
through different hardware components, our brains have no
separate place for information storage  storing and retrieval are
part of information processing (thinking). Both the long-term
storage and processing of information involve a synchronized
distributed participation of all neurons in related regions of the
brain (MacDonald 2008: 97). Programmers of parallel computers
know that management and utilization of a distributed hardware
necessitates scatter and gather type communication functionalities
in software. That is similar to what is going on in the brain
circuitry. When new information arrives, it lights up all related
cues, neurons and pathways in a distributive process that is similar
to the top-down action in Fig. 1, where new concept is broken up
into related pieces. With the same token, retrieving a memory is a
reassembly of its original pattern of neurons and pathways in an
associative process that is similar to the bottom-up action in Fig.
1. Retrieval is often regarded as an act of creative re-imagination
and what is retrieved is probably not the original pattern but one
with some holes or extra bits (Brown et al. 2014: 75, MacDonald
2008: 101). Neuroscientists argue now that there is no distinction
between the act of remembering and thinking (MacDonald 2008:
97).

The distributive and associative way of information processing by
the brain circuitry is consistent with the dual deductive and
inductive process of computational modeling and simulation that
we discussed in earlier sections. While the brain’s neural circuitry
offers a chance for full utilization, the efficiency, intactness, and
effort-fullness with which it is used depends on each individual. A
scientist is a good example of a person who exercises this bi-
directional thinking methodology in a complete cycle. Since the
latest learning theories recommend that student learn science the
way a scientist does his inquiries, these thinking skills should then
be taught to young learners. They are actually part of the
electronic computational thinking (CT) skill set as described by

Jeannette Wing (2006). Some of the currently described CT skills
may be grounded in cognitive processes that we have discussed
here. For example, the decomposition skills of CT roughly
correspond to the distributive, deductive, and top-down cognitive
process of information we have described here. And, the
abstraction skills roughly correspond to what we have described
as associative, inductive, and bottom-up cognitive process of
information.

Abstraction is an inductive process, whereby details are filtered
out and focus is placed on more general patterns, thereby allowing
one to assign priority and importance to the newly acquired
information. Researchers find it amazing that we make strong
generalizations from sparse, noisy, and ambiguous data
(Tenenbaum et al. 2011). Abstraction helps our cognition,
especially at its developmental stages, by simplifying,
categorizing, and registering key information and knowledge for
quicker retrieval and processing (Bransford et al. 2000). Perhaps,
we developed abstract thinking skills as a result of a survival
concern for having limited resources (i.e., time, memory,
attention). Our tendency to summarize and generalize information
─ before we permanently store it ─ might be a strategy to
overcome limited storage capacity. Such tendency can shield us
from details that have no practical value for survival. Another
evolutionary idea is that the brain’s tendency to process
information in a dual fashion might be because it has sought a
way to adjust to dual behavior of matter and the incoming
information that reflects matter’s dual behavior. Whatever the
origins are, findings in neuroscience indicate that it is not just the
limited capacity of our brain or our survival instinct but also the
distributed structure of the brain hardware that drives a bi-
directional (distributive and associative) flow of information,
which results in tendencies that benefit us.

The growth of our brain hardware and software is a bit complex
and many things can go wrong during a lifespan. Normally, at
birth, the circuitry at the inner part of the brain is up and running
to manage vital and involuntary functions (e.g., breathing,
heartbeat, and some degree of sound and visual tracking), but the
outer part (cerebral cortex) takes some time to be ready for
voluntary actions (e.g., conscious thought, information storage
and processing) (Restak 2001). Actually, the majority of neurons
that a human is born with are contained within this thin cortex that
separates humans from other animals. While only a few neurons
develop during adulthood, we can take comfort that mental
growth is not solely based on the number of neurons in the brain,
but rather the increasing complexity of the connections between
them. Other factors that affect mental growth include the
functionality that each neuron or groups of neurons assume, the
size they grow into, and the placement in different parts of the
brain that they migrate towards. Even more important is the
number of inter-neuronal connections, which are estimated to be
near 100 trillion. New neural connections are being made all the
time as we learn new things. In fact, these connections constitute
the definition of learning, and the existing connections are
strengthened, weakened, or even eliminated if not revisited often
enough. Genetics plays only a partial role determining the growth
of the brain, as there are not enough genes on the human
chromosome to code for the placement of billions of neurons and
trillions of connections (Restak 2001). This luckily leaves plenty
of room for the brain (and the mind) to continue growing as a
result of one’s free will, experience, and environment.
So, the good news is both deductive (e.g., decomposition) and
inductive (e.g., abstraction) thinking skills can be improved

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 5

beyond what is inherited, through training, education, additional
knowledge and experience. In computer science, we use
abstraction skills heavily and students get opportunities to sharpen
them while writing large-scale complex codes (such as operating
systems, compilers, and networking) in which the complexity is
distributed into seemingly independent layers and protocols of the
code in such a way to hide the details of how each layer does the
requested service (Armoni 2013). Decomposition skills are also
equally important in computational and mathematical problem
solving. When facing a complicated situation (just like a complex
science concept), one is often advised to divide (scatter) the
complexity into smaller pieces and then attack each one separately
until a cumulative (gather) solution is found. For example, domain
decomposition is a common method in parallel computing to
distribute the workload among multiple processors. In
mathematics and physics, the Fourier series offers great benefits
to deal with seemingly complex periodic functions by
decomposing them into the sum of a set of simpler, namely sines
and cosines, functions. In public culture, the famous “divide and
conquer” phrase, supposedly by Napoleon, as well as ‘many a
little makes a mickle’ by Benjamin Franklin all point to our
awareness of the importance of the decomposition strategy. But,
as stated above, not everyone is equally aware of the importance
of such skills, nor are we all practicing and utilizing them fully
and equally. So, some of us educate others, and in doing so, we
have historically chosen different methods, as explained below,
based on circumstances and needs. The good news is that
technology (e.g., CMST) has now made it possible to combine
seemingly competing and disparate methods into one that might
do it all.

2.4 Learning Processes Supported by CMST
The issue of why STEM subjects may not be as engaging as
others is complex. According to a study in 20 developed countries
(Sjøberg & Schreiner 2005, Osborne & Dillon 2008), student
attitudes towards science become increasingly negative as a
country advances economically. The study suggests this
phenomenon to be deeply cultural. Born in the early-to-mid 20th
century as a reaction to the rigid and formal style of discipline-
based education, today’s progressive education system in the U.S.
continues to engage students by making learning fun and exciting
(Mooney 2013). There is nothing wrong with that. However,
learning some subjects, such as science and mathematics, can be
overwhelming because it involves factual details and requires
application, discipline and delayed gratification ─ values the
contemporary culture does not seem to encourage. Effortful
learning is the key as we discussed earlier, according to the latest
research in cognitive sciences and neuroscience. While the need
for guiding young minds into the process of effortful learning had
already been theorized by Vygotsky around the time of
progressive education movement in America, the theory did not
find its way across the Atlantic until two decades ago (Mooney
2013; Hammond et al. 2001).

There is no doubt that factual details in science and mathematics
coursework are often overwhelming, causing high degrees of
frustration for some students. Such individuals perceive science
and mathematics topics to be more complex than they are and
abandon their pursuit altogether. However, learning can be a
joyful activity, if one is predisposed to delayed gratification,
which is seldom the case with middle and high schoolers. Hence
teachers everywhere face challenges that are daunting. Perhaps,
there are two ways to overcome this. One of them requires a
cultural change to teach new generations how to become effortful
learners and predispose them to delayed gratification. This would

take a whole village to do. And, it might take a lot longer than we
have come to know Vygotsky’s theory, which says pushing a
learner to reach his potential is a lot more important than giving
him freedom to choose between effort and withdrawal. This
would be like swimming against the flow in today’s educational
system and cultural setting. The other option requires a
pedagogical practice to employ a general simplistic framework
from which instructors can introduce a topic and then move
deeper with more content only after students gain a level of
interest to help them endure the hardships. As explained in the
next section, educators have often opted for this latter deductive
approach.

Teacher organizations and national standards (Bell et al. 2008)
have suggested ways to create “antidotes” from the very thing
(technology) that is known to have caused distraction and a
tendency for an easy living. At the same time, the latest learning
theories suggest that students should learn science the way
scientists do their work (Bransford et al. 2000). For example, the
framework for next generation science standards (NRC 2012)
suggests that students learn better if they are engaged in activities
closely resembling the way scientists think and work. If we
combine these suggestions ─ that is, using technology with the
way scientists conduct their work ─ we would recall from Section
2.2 that scientists today heavily use CMST to do their work. So,
the antidote can be computational modeling and simulation but it
has some strings attached to it according to a national report (NSF
Report 2008). Young learners cannot use the same CMST tools
that the scientists use, as they might need prerequisite knowledge
that they surely will not have. The report states that at early stages
computational modeling approach should involve easy
experimentation (learners must be able to quickly set up and run a
model using an intuitive user interface, with no knowledge of
programming or system commands) and high interactivity
(models need to evolve quickly and include smooth visualizations
for providing interactions and feedback to users).

Modeling is a simplification of reality ─ it eliminates the details
and draws attention to what is being studied. It enables the learner
to grasp important facts surrounding a topic before revealing the
underlying details. Tools, such as those in Table 1, now make it
possible for instructors to offer easy experimentation in the
classroom without having to expose students to STEM principles.
For example, as described in later sections, Interactive Physics
(IP) and AgentSheets (AS) can be used to create many fun things
that could engage students into science experimentation, either by
modifying an existing model or creating one from scratch.

Table 1. List of CMST tools used in the CPACK PD.
Interactive Physics (IP): investigate concepts in physics without
prior physics background. http://www.design-simulation.com/IP.

AgentSheets (AS): create games and simulations through agents and
rules of engagement. http://www.agentsheets.com.

STELLA: model a system by a pictorial diagram of initial values and
rate of change equations. http://www.iseesystems.com.

Geometer’s Sketchpad (GSP): model geometrical concepts; compute
distances, angles & areas. http://www.dynamicgeometry.com.

Project Interactivate (PI): online courseware for exploring scientific
and mathematical concepts. http://www.shodor.org.

Excel Spreadsheets: conduct modeling and simulations using a
simple algebraic (new = old + change) for rate of change.

Texas Instruments (TI) Tools: advanced graphing tools to conduct
algebra, functions, and rates of change

Volume 7, Issue 1 Journal of Computational Science Education

6 ISSN 2153-4136 April 2016

Simulation adds another level of benefit on top of easy modeling
by providing a dynamic medium for the learner to conduct
scientific experiments in a friendly, playful, predictive, eventful,
and interactive way to test hypothetical scenarios. For example, in
a harmonic motion of an object attached to a spring (Fig. 4), IP
can provide control buttons to change physical parameters such as
string constant, mass of the swinging object and its initial
velocity, intensity of gravitational acceleration, among others. It
also gives the user the ability to change some operational
parameters, such as the run-time and accuracy desired from the
simulation. Furthermore, it allows the learner to go into the initial
model’s details and break it into its constitutive parts in order to
run various what-if scenarios. Based on these scenarios and their
outcomes, the learner can go back to the design phase and change
the model (spring and box) to his desire. This dynamics of making
decisions that lead to modifications to the initial model based on
what-if scenarios is an inductive process because it lets the learner
to put pieces of the puzzle to come up with a revised model. When
used together, then, modeling and simulations affords the learner
the opportunity to cycle iteratively back and forth between the
inductive and deductive approaches to learning (Yaşar & Maliekal
2014). This resonates with how the mind itself works because it,
too, uses a similar dual methodology (distributive and associative)
in its information storage and processing as we explained before.

Figure 4. A typical user-created simulation in Interactive Physics:
harmonic motion of a box attached to a spring on a flat surface.

2.5 Deductive & Inductive Approach to
Instruction
There are many advantages of deductive and inductive approach
in teaching and learning. The deductive approach to instruction
entails the teacher introducing a new concept or theory to students
by explaining it first, then showing an application or two of the
theory or concept, and wrapping up the instruction by affording
students an opportunity to apply the theory or concept by
completing homework problems (Prince & Felder 2006). This has
been and continues to be the traditional approach to science
instruction, and it often leads to apathy and eventual attrition of
students. The inductive approach to instruction, by contrast, first
presents students with a problem, a case, or data from an
experiment. Students are then guided to explore underlying facts,
issues and the like. As the culminating step, students are led to
acquire on their own an understanding of the underlying concept

or organizing principle (Prince & Felder 2007). Inquiry-guided
learning, problem-based learning, and project-based learning are
all among forms of inductive instruction. While empirical
evidence suggests that the inductive approach to instruction is
superior and that it fosters greater intellectual growth (Bransford
et al. 2000, Donovan & Bransford 2005), prudent educators
should take advantage of different approaches of teaching.

Modeling- and simulation-based computational pedagogy carries
many characteristics of the constructivist approach (Grabinger &
Dunlap 1995), including inquiry-based, generative, cooperative,
and interactive learning as well as project and team based
instruction. Creating a model through step-wise process and
running it at each stage of the development have the added
advantage that learners get immediate feedback about their work.
It may be used in situations when learning about the underlying
theories and mathematical concepts that are important. Through
this process, learners can be led to develop an understanding of
scientific reductionism that studying a system or solving a
complex problem requires breaking the system into its
components or the complex problem into smaller chunks (i.e.,
decomposition). Using models and simulations, learners become
actively engaged in “doing,” rather than passively “receiving”
knowledge. In so doing, the learner becomes the center of the
learning process, allowing self-interpretation of the problem and
revise it if necessary, mediated by own biases, beliefs,
preconceptions, prior knowledge and observations. Once learners
successfully infer an organizing principle or theory, they can
embark on the next logical and necessary step; one that involves
predicting the consequences of the organizing principle or theory
that learner just inferred and ascertaining whether the organizing
principle or theory is viable, given the consequences. Anyone who
learns in this fashion would, in fact, be practicing the craft of
scientists (Wieman et al. 2008).

Because simulation modules of differing complexity and
flexibility have already been developed and made public, it is now
possible to lead learners to perform a series of simulations to
explore a scientific process in a manner that is similar to how
scientists conduct controlled experiments, by holding all except
one variable invariant. A teaching and learning method reliant on
CMST is being welcomed by today’s traditional college and
school students, as they are digital natives, attracted to and
captivated by all things digital! Even non-science students, with
no prior knowledge of physics, who used CMST tools and web-
based simulations, have shown the ability to provide good
explanations of scientific phenomena much more quickly (within
hours) than physics majors after a year of physics (Wieman et al.
2008). So, having believed in the promise of dual pedagogical
aspects of CMST, we ran a professional development program for
in-service and pre-service teachers, hoping that it would engage
teachers in their profession and improve both the teaching and
learning in their classroom. The next section will detail
implementation of our decade-long program along with data
collected and analyzed by independent evaluators.

3. IMPLEMENTATION & KEY FINDINGS
While the results of our CPACK professional development
program have already been documented in earlier publications,
such as Yaşar et al. (2014), their importance for and relevance to
the aforementioned theoretical frameworks have gradually come
to our attention in recent years as a result of our work in pedagogy
and cognitive sciences. In this section, we briefly review findings
on teaching and learning that are relevant to our discussion.

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 7

While the main activity of our study has been teachers’
computational pedagogical content knowledge professional
development, the ultimate desired outcome was better student
engagement and learning as well as teacher engagement/retention
and teaching. A mixed-methods approach (Creswell 2012) was
used to collect and analyze qualitative data (interviews, activity
logs, observations, pre- and post-activity surveys, and artifacts) as
well as quantitative data (student grades and report cards, test
scores, and standardized exams by the NY State) for the purpose
of formative and summative assessment.
Integration of modeling and simulation tools, such as those in
Table 1, into secondary school teaching was initially done in three
steps by incrementally adding a new domain of knowledge each
year for the first three years. As shown in Table 2, the first step of
the multi-tier incentive-based PD included technological
knowledge (TK) training, the second step included technological
content knowledge (TCK) training, and the final step included
teaching of content through computational and pedagogical tools.
Here, technology knowledge (TK) means knowledge of
technology tools and their use. Technological content knowledge
(TCK) means integrating knowledge of technology and STEM
(physics, chemistry, biology, math, etc.) for the purpose of
teaching its content. Technological pedagogical content
knowledge (TPCK) means applying pedagogical technologies to
the teaching of STEM content.

Table 2. Profiles of teachers from Urban (U) and Suburban (SU)
School Districts at the CPACK summer training (2003-2007).

Training TK TCK TPCK Total
School  U SU U SU U SU

Math 96 14 42 2 22 0 176

Science 38 15 17 9 12 5 96

Tech 7 3 5 1 2 1 19
Special Ed 14 1 2 0 1 0 18

TOTAL 155 33 66 12 37 6 309

Supported by the National Science Foundation through various
grants, we formed a CMST Institute in 2002 and have since been
offering CPACK PD to in-service and pre-service secondary
school teachers. The professional development program has both
summer and academic-year components. While we constantly
explore new tools, we continue to use those in Table 1 because of
a large database of artifacts and lesson plans we have developed
using them over the past decade. Table 2 shows the number of in-
service teachers who benefited from the summer institute
component offered through NSF support in partnership with local
school districts (Rochester City School District (RCSD) and
Brighton Central School District (BCSD)) and several national
organizations (Shodor Foundation, Krell Institute, and Texas
Instruments). Almost half of teachers who attended TK training
returned for additional TCK training, and half of those returned
for TPCK training. This is typical of an incentive-based PD
(Loucks-Hersley et al. 2010). Teachers have multiple summer
engagements and some teach in district summer schools. So, the
dates and time impact attendance. For those who could not attend
due to such circumstances, we offered similar short courses during
the school year. The partnering districts also offered a condensed
version of the training to additional 160 teachers through turnkey
training and PD days. For the purpose of gathering data for
research and evaluation, we only worked with teachers who
attended the summer institute as part of commitment to the study.

The initiative displayed elements of a scalable innovation (Dede
et al. 2005), especially in mathematics. There was a cultural
change in all 15 secondary schools at the urban RCSD and the
suburban BCSD. They were fully engaged all the way from
superintendents and principals down to teachers and students.
Improved teacher retention and student achievement reported by
partnering districts drew national attention to this initiative,
including testimony by the author, Jeff Mikols (a RCSD math
teacher who is now a district curriculum director), and Ed Chi (a
BCSD science teacher who has left the district) before the U.S.
Congress (House Hearing 2003).

In a 2010 survey of 40 TCK and TPCK teachers, 94% agreed that
the training made them more effective in the classroom; 87%
agreed that it strengthened their pedagogical skills; 73% agreed
that it strengthened their pedagogical content knowledge; 100%
agreed that training strengthened their skills related to modeling
and simulation; 86% reported that they continue to use the
hardware, software and other materials made available through
the project in their classrooms; and 80% believed that their
participation served to build leadership skills. Seven years after
the start of the initiative, 73% of participating teachers at RCSD
were still teaching while 10% had moved to lead positions (Yaşar
et al. 2014). According to the National Center for Education
Statistics (NCES 2014), about 16% of STEM teachers either move
to another school or leave the profession every year. The national
average is that nearly half of all new STEM teachers leave the job
within five years (Graziano 2005). Although we do not have the
2002 baseline data from participating districts to compare with,
urban schools such as RCSD generally perform much worse than
the national average. RCSD district officials reported throughout
the initiative (Crowley 2007) that it not only helped retain veteran
teachers but it also drew more and better teachers to an urban
school district, which usually has a hard time recruiting teachers
because of the well-known urban problems (Margolis et al. 2008).

Table 3: Frequency of technology tools used by trained teachers.
Subject
/Grade

Daily Weekly Bi-weekly Special
Projects

Math
Grades
7-8

Laptop,
smartboard

Power Point,
PI, TI tools,
GSP, Excel,
Flash

AgentSheets Interactive
Physics (IP),
Stella, Java,
GIS/GPS

Math
Grades
9-12

Laptop,
smartboard,
TI tools

Power Point,
PI

Excel, Flash IP, Stella,
Java,
GIS/GPS

Science
Grades
7-8

Laptop,
smartboard,
Power Point

AgentSheets,
Excel, PI

TI, GIS/GPS,
Flash, Java

Stella, GSP,
Interactive
Physics (IP)

Science
Grades
9-12

Laptop,
smartboard

Flash, Excel,
Power Point

Interactive
Physics (IP),
Java, GPS

Stella,
AgentSheet,
GIS, PhET

All of the trained secondary school (grades 7-12) teachers
reported that on a daily base they used laptops for presentations,
graphing calculators for math instruction, and electronic smart
boards for interactive lessons (see Table 3). Positive experience
with C-MST tools is believed to have initiated use of additional
tools such as GIS/GPS, Java, Flash, and PhET (Wieman et al.
2008). Annual surveys of teachers showed that usage of the tools
in the classroom was directly linked to the amount of training they
had received. In post-training journals, while only 60% of the
teachers reported occasional use of modeling tools in their

Volume 7, Issue 1 Journal of Computational Science Education

8 ISSN 2153-4136 April 2016

classrooms after the initial TK training, 78% reported that they
used them regularly after the TPCK training.

Table 4: Percent of teachers using modeling in class
Grade Level

Frequency

Regularly Special Projects No

7-8 Math 46% 46% 8%

9-12 Math 60% 35% 5%

7-8 Science 25% 75% 25%

9-12 Science 54% 38% 8%

In a 2007 survey by 65 active teachers who had received at least
two years of training, many reported a significant use of modeling
tools for both classroom instruction and special projects (see
Table 4). It appears that the higher the grade level, the more
regularly these tools are used in the classroom. Less frequent use
of tools in RCSD middle school science classes was a concern,
which resulted from access and scheduling problems but it got
better over time as the concern was conveyed to the district
administration. At BCSD, access to computing resources was not
an issue. For example, participating teachers ended up fully
integrating Interactive Physics into their high school physics labs.

Figures 5 through 8 show some of the survey results in graphical
format regarding student engagement and learning as a result of
CMST-enhanced teaching. More than 92% of surveyed teachers
agreed that computational inquiry made math and science
concepts significantly more comprehensible to students (Fig. 5).

Figure: 5. Improved comprehension of STEM concepts.

Figure 6: Deeper understanding of STEM concepts.

100% of technology, 72% of math, and 31% of science teachers
reported observed improvement in students’ problem solving
skills. Student reaction to modeling (versus traditional techniques)
was found to be 97% favorable in math and 77% in science
classes. While science classes utilized technology less due to
limited access and lack of science-related modeling examples, in
instances where it was utilized, a deeper understanding of science
topics was achieved, compared to math topics (83% vs. 76%, see
Fig. 6). As seen in Fig. 7, students in higher-grade levels found
computational modeling more engaging in both math classes
(grades 7-8: 77% vs. grades 9-12: 90%) and science classes
(grades 7-8: 75% vs. grades 9-12: 85%). Modeling was even
found helpful to non-traditional (special education) learners (Fig.
8); again the higher the grade level the higher the engagement:
math classes (grades 7-8: %76 vs. grades 9-12: 100%) and science
classes (grades 7-8: 75% vs. grades 9-12: 85%).

Figure 7: Student engagement per grade level and subject.

Figure 8: Impact on non-traditional learners.

Qualitative data from journal entries, activity logs, and teacher
interviews pointed out to an emerging pattern regarding gender
response to CMST-based teaching. Two independent coders read
the 2010 teacher survey data and coded the text segments to arrive
at descriptions and common themes. An inductive process
(Creswell 2012) was used to group these codes in order to form
even broader themes. Based on detailed accounts of 26 teachers
(out of 40), the evaluators arrived at the following broad theme:

While male students showed more interest in playing with
technology and plowing through the details with less regard
to the big picture, female students initially seemed reluctant
and timid but excelled when details (curriculum) were put
into context of real-world problems and projects.

0%

20%

40%

60%

80%

Very
Significant

Significant Not
Significant

Computational pedagogy led to a deeper
understanding of STEM concepts

Math

Science

0%

20%

40%

60%

Strongly
Agree

Agree Do not
Agree

CMST approach made math &science concepts
more comprehensible

Math

Science

0%
10%
20%
30%
40%
50%
60%

Math 7-
8

Math 9-
12

Science
7-8

Science
9-12

Is CMST approach more helpful to non-
traditional learners?

Very Much

Moderately

Not at all

Don't know

0%
20%
40%
60%
80%

100%

Math 7-
8

Math 9-
12

Science
7-8

Science
9-12

CMST increased student engagement

Agree

Disagree

Uncertain

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 9

This is consistent with national findings by our collaborators such
as Repenning (2012). It is also consistent with our own data when
triangulated against student scores and graduation rates. For
example, while cohorts of 8th grader male and female students
from both districts had a gap in their average math performance at
the beginning of the initiative, not only were the gaps closed but
also reversed four years later (12th grade) as shown in Table 5. At
RCSD, while both male and female students did much better than
four years earlier, the graduation rate of the same cohorts still
reflected a gender-based trend in performance growth, favoring
female students. To examine whether the difference is statistically
significant, we calculated the z-scores assuming a normal
distribution approximation (Brase & Brase 2012). The sample
sizes for male and female students were roughly the same at both
districts, with about 1200 at RCSD and 150 at BCSD. The column
p indicates the confidence level that the difference between males
and females may be due to a nonrandom effect. Normally, any
confidence level below 90% is less than significant. Here, with
more than 90% confidence level female cohorts outperformed
male cohorts in both math performance and graduation rates.

Table 5: Gender-based performance history at RCSD & BCSD.
 2001-2002 2005-2006

Gender Gender Z
score

P
(%) M F M F

R
C
S
D

Math
Cohort

13% 10% 41% 49% 3.97 99

Graduation
Rate

 34% 44% 5.06 99

B
C
S
D

Math
Cohort

92% 84% 93% 93% 0 0

Graduation
Rate

 85% 90% 1.29 90

To further triangulate self-reporting data by teachers, annual
student achievement data were analyzed in the partnering school
districts via report cards and standardized test scores. While we
cannot fully isolate the impact of teacher training from other
contributing factors, an upward district-wide trend was noted in
both urban and suburban districts during the initiative. The
percentage of students receiving a Regents diploma increased
significantly from the baseline (RCSD: 21%  59%, BCSD: 84%
 95%). The initiative exposed students from the urban district to
college experiences and opportunities, and this may have led to an
increased interest (78%  83%) in both 2-year and 4-year college
enrollments over the period examined. Furthermore, the passing
rate (>65/100) in NY State Grade-8 Math exam increased in
Rochester City SD from 10% to 33%, while the passing rate in
NY Regents Math-A exam (Grade 11-12) also increased from
13% to 67%. Passing rate in sciences also increased in areas such
as Physics (3%  22%) and Chemistry (9%  27%). At BCSD,
passing rates improved in mathematics (Math-A: 51%  99%)
and sciences (Physics: 52%  78%). The number of students
taking General Physics at Brighton increased from 50% to ~100%
and the number of students taking AP Physics also doubled.
Student passing rates at both districts seemed to reflect relative
participation of district’s math and science teachers in the
initiative. All of the improvements have been found to be
statically significant for typical sample sizes from each district.

The main goal of the sponsoring No Child Left Behind program
was to train as many teachers as possible to potentially create a
district wide impact on student achievement scores. As a result we
trained twice as many as we had committed to (see Table 2).

While the goals of the sponsoring agency were met, as witnessed
by gains in the standardized test scores reported by partnering
districts, no comprehensive research was done by the project to
more closely link the gains in student achievement scores to the
teaching and learning resulted from the initiative. By the time the
goals of sponsoring NSF program shifted from ‘leaving no child
behind’ outreach to ‘researching the interventions’ we had almost
run out of control groups in partnering school districts’ math
classrooms. The initiative invited science teachers but limited
access to computer labs, skepticism about use of technology, and
inadequate number of readymade curricular modules discouraged
many to invest in trainings that lacked significant science content
and representative lesson plans. By the end of the project while
almost all secondary math teachers in RCSD and BCSD received
training and yearlong PD, only 20% of science teachers took part.

In final years of the study, when focus shifted towards researching
the intervention, a few treatment-control comparisons were
conducted. A pair of CMST and non-CMST high school teachers
from the same school taught properties of quadrilaterals in a
mathematics class. The CMST teacher used GSP in a class of 24
pupils while the non-CMST teacher used conventional methods in
a class of 14 pupils. Both teachers conducted the same unit test.
Even though the CMST teacher taught a more crowded class, his
classroom average was 82.5 versus 49.5 for the other class. The
second study involved a math triathlon similar to Regents Math A
and B tests involving use of TI graphing calculators. Scored by
external judges, including teachers and college faculty, this study
revealed that students taught by CMST teachers outperformed
other students in all categories: Math-A: 60.26 vs. 49.54; Math-B:
71.9 vs. 55.6; and 7-8 Grade Math: 64.0 vs. 58.6.

Over the past decade, institute staff and participants created a
large database of more than 300 CMST curriculum modules and
lesson plans. Curriculum modules and lesson plans from the
database have been downloaded by people around the world at a
rate of 50-80 per day, totaling almost 100,000 since the database
was launched. The database has also provided content for two
local pre-service methods courses (NAS 401/501 C-MST Tools
and NAS 402/502 Computational Pedagogy) in the college’s
teacher education program. Table 6 shows pre-service enrollments
in these credit-bearing NAS courses. Additionally, the database
supported turnkey training offered by partnering districts during
professional development days, serving 160 in-service teachers.

The CMST database (www.brockport.edu/cmst) continues to
support three general education courses reported earlier in this
journal (Yaşar 2013). They have since served 500 more STEM
undergraduates. The two NAS methods and 3 general education
courses have become part of the NSF Robert Noyce Scholarship
program since 2012, serving a new cadre of 50 computationally
competent STEM teachers, some of whom have already started
teaching in high needs school districts both locally and nationally.

Table 6. Number of pre-service teachers trained.
Courses 2003-07 2008-12 2013-15 Total
C-MST Tools &
Pedagogy

113 107 105 325

In Rochester City and Brighton Central secondary school
classrooms taught by CMST teachers, students were all given a
chance to experience the deductive and inductive learning
processes. As mentioned earlier, 97% of mathematics and 92% of
sciences classes using the CMST approach agreed that it made
subject-related concepts more comprehensible. Furthermore, 83%

Volume 7, Issue 1 Journal of Computational Science Education

10 ISSN 2153-4136 April 2016

http://www.brockport.edu/cmst

of science classes and 76% of math classes found that it led to
even a deeper understanding of STEM concepts. While modeling
is a common practice in mathematics and science classes, science
classes often go beyond modeling to utilize simulations in order to
investigate time-dependent dynamics of scientific phenomena.
When used together, modeling and simulation affords the learner
a constructivist opportunity (Grabinger & Dunlap 1995) to cycle
iteratively back and forth between the inductive and deductive
approaches to learning (Yaşar & Maliekal 2014). Teaching
mathematical and computing concepts contextually has been
recommended for quite some time by national learning standards
(NGSS, Computing Curriculum 2005) but we now additionally
know from cognitive sciences that retrieval practices attempted at
various contexts is good  because every time the recall is
attempted in a different context, it establishes more links that will
help the remembering and learning (Brown et al. 2014).

Benefits of constructivist and contextual learning was observed in
an annual after-school CMST challenge competition, which
allowed students more time and freedom than a regular classroom
setting to apply, test, and revise the constructed computational
models. Participating students had a full semester to develop a
team project. Scoring rubric included problem statement,
application of the model to a problem of interest, data analysis,
teamwork, originality, electronic demonstration, and presentation
of the results before a panel. Extra points were given for use of
multiple CMST tools, demonstrated understanding of
computational, mathematical and scientific content, and level of
challenge, knowledge and skills demonstrated beyond team’s
grade level. As expected, the incentives helped push students to
go beyond initial job of model construction, playful
experimentation, and introductory exposure to STEM concepts. A
project-based experience reported in Yaşar et al. (2005) by a
group of 9th grade high school students from Brighton High
School (NY), who used the Interactive Physics and Geometer’s
Sketch Pad to prove Kepler’s Laws in an afterschool program
(annual CMST Challenge), is a testimony of how students gained
a deeper understanding of computational and scientific content of
the planetary motion. Following is a sentiment by these high
school students after their CMST experience to prove Kepler’s
laws:

“We had not taken any physics courses and we were not fully
knowledgeable about laws of universe that govern planetary
motion. That is not different from the situation of Kepler; as
no one quite knew how gravitational forces worked until
Newton came. Kepler had access to data compiled by Tycho
Brahe and he looked for patterns. We had access to modern
tools and we looked for miracles! We learned how to transfer
visuals images and data from Interactive Physics to
Geometer’s Sketchpad to measure angles, distance, and areas
of triangles needed for the proofs… While it was initially
frustrating to learn new tools, realizing what Kepler would
have done if he had such tools; we quickly learned to
appreciate the opportunity in our hands. In the end, we did
not make a discovery in physics, but we certainly discovered
that physics was not a threatening or boring subject. We also
discovered the role of mathematics in physics. The foreboding
nature of complicated physics was abolished and we all
looked forward to taking physics classes.”

The authors followed progression of these students as a case
study. In their project the following year, these 10th graders
inquired further about fundamental STEM principles of their
projects and operational principles of the tools they used for

modeling and simulations. Using Excel to compute a simple
algebraic form of rate of change equation, new = old + change,
that they had learned in the mathematics class that year, they
attempted to replicate the Interactive Physics results found earlier
for the harmonic and planetary motion. For the harmonic motion
in Fig. 4, this involved computing algebraic formulas for the
position (xnew = xold + dx) and velocity (vnew= vold + dv) of the
spring-driven object at times (tnew = told + dt) separated by interval
dt. While time (t) was an independent variable, and change in x
was dependent on the velocity as dx= v · dt, and the change in v
was dependent on the acceleration as dv= a· dt, where
acceleration (a) is Force/mass. The force applied by a spring unto
an attached box is F= - k · x, where k is the stiffness coefficient of
the spring and x is the displacement of the box from the
equilibrium position (x=0). The details of their self-constructed
simulations is given in Yaşar et al. (2006), yet the brief statement
below summarizes the progress they had made ─ they were no
longer threatened or frustrated by learning of science.

“Through Excel, we were able to use a simple algebraic
equation (new = old + change) to manually construct our
own simulations as an alternative way and compared them to
those done earlier by the Interactive Physics. To compute the
“change” all we needed was some basic knowledge of the
force that governed the system, whether it was the harmonic
or the planetary motion.”

The progression by these students show that the learner can start
either with a readymade model, or construct one using a pull-
down menu, that represents the scientific phenomenon under
study and conduct fun experiments without having to know the
details of the model and the laws that govern its motion. If it stops
there, then we can say that the top-down deductive approach has
engaged students in STEM activities. But, if the learner is tempted
to continue and inquire about the initial model’s constitutive parts
and forces that act on them, then he can run simulations by
changing characteristics of the parts and forces to inductively
construct a new model and physical setting that better represent
the reality. This cycle can be repeated until the desired knowledge
or outcome is reached. This way of learning, through inquiry and
experience, is nothing but how scientists do their work (Bransford
et al. 2000, Donovan & Bransford 2005). Such an iterative and
stepwise progression in constructive learning is also consistent
with several pedagogical frameworks, including scaffolding, zone
of proximal development (ZPD) that we discussed earlier by
Vygotsky, and the Optimal Flow (Csikszentmihalyi 1990) shown
in Fig. 9, which suggests the importance of balancing challenges
and abilities using pedagogical stepping-stones in order to attain
optimal flow for a learner.

Figure 9: Illustration of Optimal Flow as a path of learning.

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 11

4. CONCLUSION
Cognitive psychology research has shown that interleaved
retrieval practice has great advantages for gaining deep and
lasting knowledge. Interdisciplinary education is a form of this
practice at course and curriculum levels but it takes effort and
time, thereby slowing down the learning process. In college, it
delays graduation and in K-12 it slows down the pace of teaching.
Technology can speed it up but this throws another ranch into the
works by adding another domain of knowledge. So, the question
becomes of finding a technology that will facilitate mixing of
multiple views around a topic in a pedagogically way. This, we
claim, calls for the use of computational modeling and simulation
technology because it naturally adds a deductive and inductive
pedagogy to teaching of STEM content. The final question, then,
becomes, “OK, we got this wonderful thing, how do we go about
institutionalizing it?’ And, this is where the need for teacher
training becomes the central task, as they are the agents of change
for any reform in the schools (Bybee & Loucks-Hersley 2000,
Loucks-Hersley et al. 2010).

We have run a decade-long experiment to study the task explained
above, using CMST tools within an interdisciplinary CPACK
framework for teacher professional development. Triangulated
data from multiple sources indicated that the use of CMST tools
and pedagogy not only supported basic interleaved retrieval
practices but it enriched such practices by putting the learner on
the driver seat through an iterative cycle of constructivism,
interactivity and immediate assessment. Not only did this cyclic
process helped students: a) engage in a topic through a general
simplistic introduction and b) move deeper deductively into more
content as they gained more skills, but it also enabled them to
construct significant knowledge through easy experimentation to
inductively draw conclusions about the topic they started with.
Computational modeling and simulation involves all of these as
demonstrated in our initiative in public schools. The deductive
aspect of modeling helped teachers present science concepts to
learners by simplification of reality, which was instrumental to
draw young minds into science learning. High levels of student
engagement reported by our participating teachers strongly
support the effectiveness of computational modeling as a
deductive pedagogical tool. The CMST tools did exactly as
expected by shielding students from having to know detailed
content knowledge of mathematics (e.g., differential equations),
computing (e.g., algorithmic and programming) and science (e.g.,
physics) to conduct experiments of linear, harmonic, and
planetary motion using IP. The inductive process resulting from
experimentation through simulations helped learners to rediscover
principles of computing and sciences, therefore leading to deeper
content learning. Since it is the inductive reasoning that help us
come up with general patterns and simplifications from paralyzing
details, one cannot have a chance to utilize a deductive approach
if there had not been an inductive counteract to simplify concepts
for later use. So, we do not have an option of choosing one over
the other in education; we need to use both, as they complete 
not compete with  each other. Improved student achievement
scores in both local and statewide exams at partnering school
districts point out to a lasting impact of the dual nature of
computational pedagogy.

Our initial focus on pedagogical aspects of CMST was to develop
a tool-independent CPACK training for our teacher education
program in order to maximize transfer of curriculum inventories
to new conditions when newer technologies become available.
However, we stumbled upon much more. Information revolution

has taken electronic computing devices to every corner of the
globe but very few would be familiar with and relate to
computational modeling and simulation. In fact, even some
researchers and educators might consider CMST as an ad hoc
technology. Computing is not usually considered as a branch of
science (Denning 2009) because it deals with artificial
phenomena, not natural phenomena. However, as artificial and
imitational as electronic computation is, it might actually help us
discover how the biological computation generates complex
mental states. We think it is going to do more than that, as
understanding how pervasive the computational behavior is might
change the way we relate to ourselves and everything else in the
universe.

Computational theory of mind considers electronic and biological
computing devices to compute the same way at the fundamental
level, but much is needed to reduce our complex mental states to
mere computational processing of information. Regardless of
what high level processes a computing device is performing, we
think that the way computing is done at the most fundamental
level will carry itself all the way to the top level. Computational
modeling and simulation is a high level electronic process whose
dual characteristic does reflect the two fundamental modes of
computing (i.e., addition and subtraction). Deductive and
inductive thinking, on the other hand, are also two high-level
cognitive processes that similarly reflect the same modes of
computation. So, one can suggest that it is the computable nature
of information that leads to commonality of electronic and
cognitive outcomes of computing regardless of the underlying
structure. A million-dollar question would then be ‘what is the
source of information’s computable (associative and distributive)
behavior?’ Is it merely reflecting how the matter itself behaves?

Computability actually appears to be a universal characteristic of
both granular matter and quantifiable information. Anything
quantifiable has three distinguishable outcomes: quantity,
sequence, and pattern. If quantifiable stuff ─ be it matter or
information ─ can form various patterns to make up atomic and
cellular structures as well as instructions and thoughts, then
everything we see out there is computable (Montague 2006; pp.
14). If so, then perhaps we can start examining a computational
theory of everything (Yaşar 2016) that would mean everything in
the universe behaves computationally by either uniting with
(addition) or departing from (subtraction) other things to form a
new sum as, again, depicted in Fig. 1. Our current and future
studies will continue along these lines. Any traction that it might
gain will be a tribute to Turing.

5. ACKNOWLEDGEMENT
This work was supported by the National Science Foundation
(NSF) funds via Grants EHR-0226962, SCI-0520036, DUE-
0942569, and DUE-1136332. We would like to thank to faculty
and teachers whose efforts contributed to the development,
teaching, and assessment of the reported courses and materials.

6. REFERENCES

[1] Armoni, M. (2013) “On Teaching Abstraction to Computer
Science Novices.” J. Comp in Math & Science Teaching, 32
(3); 265-284.

[2] Bell, L. R., Gess-Newsome, J. and Luft, J. (2008)
Technology in the Secondary Science Classroom. National
Science Teachers Association (NSTA).

Volume 7, Issue 1 Journal of Computational Science Education

12 ISSN 2153-4136 April 2016

[3] Bell, L. R and Smetana, L. K. (2008). Using Computer
Simulations to Enhance Science Teaching and Learning. In
Technology in the Secondary Science Classroom (Eds. Bell
et al.). Washington, DC: NSTA Press.

[4] Bransford, J., Brown, A. and Cocking, R. (2000). How
People Learn: Brain, Mind, Experience, and School.
National Academy Press, Washington, D.C.

[5] Brase, C. H. and Brase, C. P. (2012). Understandable
Statistics. 10th Edition. ISBN: 0840048386.

[6] Brown, P. C., Roediger, H. L. and McDaniel, M. A. (2014)
Make it Stick. The Belknap Press of Harvard University.

[7] Bybee, R. W., and Loucks-Horsley, S. (2000). Advancing
Technology Education: The Role of Professional
Development. The Technology Teacher, Oct. 2000, 31-34.

[8] Creswell, J. W. (2012) Educational Research: Planning,
Conducting and Evaluating Quantitative and Qualitative
Research. 4th Edition. Pearson Education, Inc.

[9] Computing Curricula. 2005. A Cooperative Project of the
Association for Computing Machinery, the Association for
Information Sciences, and the IEEE Computer Society.
http://www.acm.org/education.

[10] Crowley, M. (2007). Rochester City School District.
Mathematics Curriculum Director. Private communication.
Email: Margaret.Crowley@rcsdk12.org.

[11] Csikszentmihalyi, M. (1990). Flow: The Psychology of
Optimal Experience. New York: Harper Collins.

[12] Dede, C., Honan, J., and Peters, L. (2005). Scaling Up
Success: Lessons Learned from Technology-Based
Educational Improvement. John Wiley and Sons.

[13] De Jong, T., & Van Joolingen, W. R. (1998). “Scientific
Discovery Learning with Computer Simulations of
Conceptual Domains.” Review of Educational Research,
68(2), 179-201.

[14] Denning, P. (2009). “Beyond Computational Thinking.”
Communications of the ACM, Vol. 52 No. 6, Pages 28-30.

[15] Donovan, S. and Bransford, J. D. (2005). How Students
Learn. The National Academies Press, Washington, D.C.

[16] Grabinger, R. S. and Dunlap, J. C. (1995). “Rich
environments for active learning: a definition,” Association
for Learning Technology, 3 (2); 5-34.

[17] Graziano, C. (2005). “Public Education Faces a Crisis in
Teacher Retention.” Edutopia, Feb. 9, 2005.
http://www.edutopia.org/new-teacher-burnout-retention.

[18] Geometer’s Sketch Pad (GSP).
http://www.dynamicgeometry.com.

[19] Flick, L. and Bell, R. L. (2000). “Preparing tomorrow’s
science teachers to use technology: guidelines for Science
educators.” Contemp Issues Technol Teach Educ 1: 39-60.

[20] Hammond, L-D., Austin, K., Orcutt, S. and Rosso, J. (2001).
“How People Learn: Introduction to Learning Theories.
Stanford University.”
http://web.stanford.edu/class/ed269/hplintrochapter.pdf.

[21] House Hearing (2003). Implementation of The Math and
Science Partnership Program: Views From The Field. 108th
Congress. https://www.gpo.gov/fdsys/pkg/CHRG-
108hhrg90162/pdf/CHRG-108hhrg90162.pdf. Oct. 30, 2003.

[22] Illeris, K. (2009). Contemporary Theories of Learning.
Taylor & Francis Group: New York.

[23] Koehler, M. J., and Mishra, P. (2008). “Introducing TPCK,”
in Handbook of Technological Pedagogical Content
Knowledge (TPCK) for Educators, Routledge Press, New
York & London.

[24] Koffka, K. (1935). Principles of Gestalt psychology. New
York: Harcourt, Brace & World.

[25] Landau, R. (2006). “Computational Physics: A Better Model
for Physics Education?” IEEE Comp. in Sci & Eng., 8 (5),
22-30.

[26] Little, L. (2003). “The computational science major at SUNY
Brockport.” FGCS, 19, pp. 1285-1292.

[27] Loucks-Horsley, S., Stiles, K. E., Mundry, S., Love, N.,
Hewson. (2010). Designing professional development for
teachers of science and mathematics. Third Edition,
Thousand Oaks, CA: Corwin Press.

[28] MacDonald, M. (2008) Your Brain: The Missing Manual.
O’Reilly Media: Canada.

[29] Margolis, J., Estrella, R., Goode, J., Holme, J. and Nao, K.
(2008). Stuck in the shallow end: Education, race, and
computing. Cambridge, MA: MIT Press.

[30] Mishra, P., Koehler, M. J. (2006). “Technological
pedagogical content knowledge: A framework for integrating
technology in teacher knowledge.” Teachers College Record,
108 (6), 1017-1054.

[31] Montague, R. (2006). Your Brain Is (Almost) Perfect: How
We Make Decisions. Plume Books: New York.

[32] Mooney, C. G. (2013). An Introduction to Dewey,
Montessori, Erikson, Piaget, and Vygotsky. Redleaf Press: St.
Paul, MN, 2013.

[33] NCES (2014). “Teacher Attrition and Mobility: Results From
the 2012-13 Teacher Follow-up Survey.” National Center for
Education Statistics, Sept. 2014. Report No. NCES 2014077.

[34] NRC (2012). A framework for K-12 science education:
practices, crosscutting concepts, and core ideas. National
Research Council Report. National Academies Press,
Washington.

[35] NGSS. Next Generation Science Standards.
http://www.nextgenscience.org.

[36] Niess, M. (2005). “Preparing teachers to teach science and
mathematics with technology: Developing a technology
pedagogical content knowledge.” Teaching and Teacher
Education, 21, 509-523.

[37] NSF Blue Ribbon Report (2006). Simulation-Based
Engineering Science: Revolutionizing Engineering through
Simulation.
http://www.nsf.gov/pubs/reports/sbes_final_report.pdf.

[38] Osborne, J. and Dillon, J. (2008). Science Education in
Europe: Critical Reflections. A Report to The Nuffield
Foundation. Retrieved November 12, 20015.
http://www.nuffieldfoundation.org/sites/default/files/Sci_Ed_
in_Europe_Report_Final.pdf

[39] PITAC Report (2005). “Computational Science: Ensuring
America’s Competitiveness,”
http://www.nitrd.gov/pitac/reports/20050609_computational/
computational.pdf.

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 13

http://www.acm.org/education
http://www.edutopia.org/new-teacher-burnout-retention
http://www.dynamicgeometry.com/
http://web.stanford.edu/class/ed269/hplintrochapter.pdf
https://www.gpo.gov/fdsys/pkg/CHRG-108hhrg90162/pdf/CHRG-108hhrg90162.pdf
https://www.gpo.gov/fdsys/pkg/CHRG-108hhrg90162/pdf/CHRG-108hhrg90162.pdf
http://www.nextgenscience.org/
http://www.nsf.gov/pubs/reports/sbes_final_report.pdf
http://www.nuffieldfoundation.org/sites/default/files/Sci_Ed_in_Europe_Report_Final.pdf
http://www.nuffieldfoundation.org/sites/default/files/Sci_Ed_in_Europe_Report_Final.pdf
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf

[40] Project Interactivate. http://www.shodor.org/interactivate/.
Supported by NSF CISE funds.

[41] Prince, M. J. and Felder, R. M. 2006. “Inductive Teaching
and Learning Methods: Definitions, Comparisons, and
Research Bases.” J. Engr. Education, 95 (2); 123-138.

[42] Prince, M. J. and Felder, R. M. 2007. "The Many Faces of
Inductive Teaching and Learning." Journal of College
Science Teaching, 36 (5); 14-20.

[43] Reed, D. & Dongarra, J. (2015). “Exascale Computing and
Big Data.” Communications of the ACM, 58 (7), pp. 56-68.

[44] Repenning, A. 2012. “Programming Goes Back to School.”
Communications of the ACM, 55 (5), 35-37.

[45] Restak, R. (2001) The Secret Life of the Brain. The Dana
Press: New York.

[46] Rutten, N., van Joolingen, R., and van der Veen. (2012).
“The Learning Effects of Computer Simulations in Science
Education.” Computer & Education, 58; 136-153.

[47] SIAM Report on Graduate CSE Education (2001), SIAM
Review, 43, pp. 163-177.

[48] SIAM Report on Undergraduate CSE Education (2007),
SIAM Conference on CSE, www.siam.org/conferences,
February 19-23, 2007, CA.

[49] Sjøberg, S. and Schreiner, C. 2005. “How do learners in
different cultures relate to science and technology? Results
and perspectives from the project ROSE.”
(http://roseproject.no). Asia Pacific Forum on Science
Learning & Teaching, 6, 1-16.

[50] Smetana, L. K. and Bell, R. L. (2012). “Computer
Simulations to Support Science Instruction and Learning: A
critical review of the literature.” Int. J. Science Education, 34
(9); 1337-1370.

[51] STELLA. http://www.iseesystems.com.
[52] Swanson, Charles. (2002). “A Survey of Computational

Science Education.”
http://cssvc.ecsu.edu/krell/Computational%20Science%20Ed
ucation%20Survey%20Paper.htm.

[53] Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N.
D. (2011). “How to Grow a Mind: Statistics, Structure, and
Abstraction.” Science, 331, 1279-1285.

[54] Turing, A.M. (1936). "On Computable Numbers, with an
Application to the Entscheidungs problem." Proceedings of
the London Mathematical Society. 2 (1937) 42: 230–265.
doi:10.1112/plms/s2-42.1.230.

[55] Vygotsky, L. S. (1978). Mind in society: The development of
higher psychological processes. Cambridge, MA: Harvard
University Press.

[56] Wieman, C. E., Adams, W. K. and Perkins, K. K. (2008).
“PhET: Simulations That Enhance Learning.” Science, 332,
682-83.

[57] Wing, J. M. 2006. “Computational Thinking,”
Communications of the ACM, Vol. 49, No. 3, 33-35.

[58] Yaşar, O. (2016). “Computational Theory of Everything.” To
be submitted. Under preparation.

[59] Yaşar, O. (2015). “A Universal Process: How Mind and
Matter Seem to Work.” Science Discovery, 3 (6), 79-87.

[60] Yaşar, O., Veronesi, P., Maliekal, J. and Little, L. (2015)
“Computational Pedagogical Content Knowledge
(CPACK).” In D. Slykhuis & G. Marks (Eds.), Proceedings
of Society for Information Technology & Teacher Education
Conference 2015 (pp. 3514-3521).

[61] Yaşar, O. (2014). “A Pedagogical Approach to Teaching
Computing Principles in the Context of Modeling and
Simulations.” J. Computing Teachers, Winter Issue.

[62] Yaşar, O. and Maliekal, J. (2014a). “Computational
Pedagogy: A Modeling and Simulation Approach.” IEEE
Comp. in Sci & Eng, 16 (3), 78-88.

[63] Yaşar, O. and Maliekal, J. (2014b). “Computational
Pedagogy Approach to STEM Teaching and Learning.” In
M. Searson & M. Ochoa (Eds.), Proceedings of Society for
Information Technology & Teacher Education International
Conference 2014 (pp. 131‐139). Chesapeake, VA: AACE.

[64] Yaşar, O., J. Maliekal, L. little, and P. Veronesi. (2104). “An
Interdisciplinary Approach to Professional Development for
Math, Science, and Technology Teachers.” Journal of Comp.
in Mathematics and Science Teaching, 33 (3), pp. 349-374.

[65] Yaşar, O. (2013a). “Computational Math, Science, and
Technology (C‐MST) Approach to General Education
Courses.” J. Computational Science Education, 4 (1), 2‐10.

[66] Yaşar, O. (2013b). “Teaching Science through
Computation.” Science, Tech and Society, Vol. 1 (1), 9-18.

[67] Yaşar, O. and R. Landau. (2003). “Elements of
Computational Science and Engineering Education.” SIAM
Review, 45, pp. 787-805.

[68] Yaşar, O. (2001). “Computational Science Education:
Standards, Learning Outcomes and Assessment.” Lecture
Notes in Computer Science, 2073, 1159-1169.

[69] Yaşar, O., Rajasethupathy, K., Tuzun, R., McCoy, A. and
Harkin, J. (2000). “A New Perspective on Computational
Science Education,” IEEE Comp. in Sci & Eng, 5 (2), 74-79.

[70] Yaşar, P., Kashyap, S., and Roxanne, R. (2005).
“Mathematical and Computational Tools to Observe Kepler’s
Laws of Motion.” NSF MSPNET Library,
http://hub.mspnet.org/index.cfm/14566.

[71] Yaşar, P., Kashyap, S., and Taylor, C. (2006). “Limitations
of the Accuracy of Numerical Integration and Simulation
Technology.” NSF MSPNET Library.
http://hub.mspnet.org/index.cfm/14568.

Volume 7, Issue 1 Journal of Computational Science Education

14 ISSN 2153-4136 April 2016

http://www.shodor.org/interactivate/
http://www.siam.org/conferences
http://www.iseesystems.com/
http://cssvc.ecsu.edu/krell/Computational%20Science%20Education%20Survey%20Paper.htm
http://cssvc.ecsu.edu/krell/Computational%20Science%20Education%20Survey%20Paper.htm
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1112%2Fplms%2Fs2-42.1.230
http://hub.mspnet.org/index.cfm/14566
http://hub.mspnet.org/index.cfm/14568

Introducing Teachers to Modeling Water in Urban
Environments

Steven I. Gordon
Senior Education Lead

Ohio Supercomputer Center
Professor Emeritus

The Ohio State University
Columbus, OH

sgordon@osc.edu

Jason Cervenec
Education & Outreach Coordinator

Byrd Polar Research Center
The Ohio State University

Columbus, OH
cervenec.1@osu.edu

Michael Durand
Assistant Professor

School of Earth Science
The Ohio State University

Columbus, OH
durand.8@osu.edu

ABSTRACT
Geoscience educators in K-12 have limited experience with the
quantitative methods used by professionals as part of their
everyday work. Many science teachers at this level have
backgrounds in other science fields. Even those with geoscience
or environmental science backgrounds have limited experience
with applying modeling and simulation tools to introduce real-
world activities into their classrooms. This article summarizes a
project aimed at introducing K-12 geoscience teachers to project
based exercises using urban hydrology models that can be
integrated into their classroom teaching. The impact of teacher
workshops on teacher’s confidence and willingness to utilize
computer modeling in their classes is also reported.

Categories and Subject Descriptors

Social and professional topics~Computational science and
engineering education • Social and professional topics~K-12
education • Social and professional topics~Computational
thinking

General Terms
Teacher professional development; Geoscience education;

Keywords
Stormwater modeling; Curriculum development

1. INTRODUCTION
Promoting careers in the geosciences to high school students

requires hands-on projects that engage the students in solving real
problems, introduce the types of work undertaken by
geoscientists, and fit comfortably into the existing curriculum. In
geosciences, as in most scientific fields, addressing practical
problems requires multi-disciplinary skills that include the
understanding of scientific principles, the application of

mathematics, the use of computational tools, and the effective
presentation of the results both orally and in writing. Focusing on
an applied problem can provide students with the motivation to
learn and apply concepts and techniques from all of the relevant
disciplines while illustrating the nature of the work undertaken in
the geosciences.

Inquiry-, project-, and problem-based (PBL) learning is a
recognized strategy to build interest and depth of understanding of
science and math concepts [1]. Research has shown that PBL can
be more effective in preparing students to integrate concepts,
improve retention, and improve achievement on assessments at
the state level [4,8,10]. Mathematical models and computer
simulations are one approach to creating PBL experiences for
students. Models are a key component of the science and math
common core standards [6,9].

Teachers’ implementation of modeling and simulation in their
classrooms is often constrained by their understanding of the
underlying principles. K-12 geoscience classes can be taught by
teachers who majored in other science disciplines. Even if they
came from a geoscience major, teachers may lack the expertise in
quantitative modeling to feel comfortable in using models in their
classrooms.

To address these issues, we developed a curriculum focused on
urban hydrology modeling as part of our effort on a National
Science Foundation geosciences education project. The
curriculum includes components of data collection, physical
models, and computer models of urban hydrology [3]. The
materials were presented to teachers in summer workshops in
2013 and 2014. It included the development and presentation of
two computer models of urban hydrology. Below, we present a
description of the model development and its impacts on teachers’
willingness to make them part of their classroom activities.

2. SIMPLE MODEL OF STORMWATER
RUNOFF
2.1 Adaptation of HEC-HMS Model
Understanding the relationships among rainfall intensity and
duration, land cover, and the quantity and distribution of
stormwater runoff are keys to a deep understanding of urban
hydrology. Urban development creates impervious surfaces that
reduce soil infiltration and groundwater flow while increasing
surface runoff and the peak runoff of urban streams, often causing
flooding. To illustrate these relationships, projects were created
using two hydrology models.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Copyright ©JOCSE, a
supported publication of the Shodor Education

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 15

The first model chosen for this purpose was the Hydrologic
Engineering Center – Hydrologic Modeling System (HEC-HMS)
of the US Army Corps of Engineers [11]. The model provides
options to use several different methods to create simulations of
basin-wide stormwater runoff hydrographs. However, the
interface and available options are quite complex and probably
not suited to novice users. For this reason, we began by creating a
Java front end interface that provides only selected options to the
user. The data from the interface is then passed to the installed
HEC-HMS model to run in batch mode and create an output file.
The Java interface then reads this output file and presents the user
with graphs of the results and the ability to export the data to a
spreadsheet format for further analysis.

Before introducing the models, teachers participated in several
exercises that introduced hydrologic modeling concepts and
measurements. Teachers were immersed in the inquiry exercises
as teams – just as their students would be in the classroom.
Participants developed laboratory procedures, reviewed data sets,
took measurements, calculated volumes, and presented results.

In the first unit, participants completed a simple experiment with a
sprinkler simulating rainfall into a rain gauge and two large soup
cans with pea gravel and topsoil as experimental porous media.
Measurements were taken to demonstrate the principles of soil
retention and runoff as it relates to the type of soil.

In a second unit, the instructor introduces a miniature watershed,
named a GeoSandbox, to provide a conceptual bridge between the
schema created in the first unit and the watersheds and models
used in the next unit. Students introduce known quantities of
water to the GeoSandbox using spray bottles and measure the
resulting surface flow and infiltration. The concepts of topography
and land use are also introduced. Additional instructional
materials are provided to firmly establish the concept of
watershed for students who need the support.

Unit three uses a local school yard, with measurements of land
use, surface area, and slope, to estimate the flow of water during a
rainfall event. Free, online tools, such as Google Earth Pro,
Google Maps, and various sites from the U.S. Geological Survey
and National Weather Service are also introduced so that students
can expand their geographic scope without needing to personally
collect every measurement. Detailed instructions for these
activities can be found on the project site [3].

With these activities as background, students can then use the
simple hydrologic model to explore the relationships between land
use, land cover, and the amount of runoff produced during a storm
event.

Figures 1 and 2 show the data input windows of the Java interface
to the simple hydrologic model. In the first window, the user
inputs information on the flow length, elevation change, and area
of the watershed. These can be measured from U.S. Geological
Survey maps or digital elevation maps. The distribution of land
cover is also input. The pull down menus include categories of
woodland, agricultural, residential, commercial, and industrial
land uses that comprise the surface of the watershed. These in
turn are linked to runoff coefficients in the model that are related
to the degree of imperviousness of each of the land use categories.
This allows the exploration of the impacts of different land use
mixes on stormwater runoff.

In the second window, users enter the hourly storm precipitation
information for up to twelve hours. Thus, the stormwater of
different storm amounts and time distributions could be

compared. For example, students could compare the impact of a
sudden downpour lasting only an hour or two to a steady rain with
the same amount of rainfall spread over twelve hours.

Figure 1: First Data Input Screen for HEC-HMS Java
Interface

Figure 2: Second Data Input Screen for HEC-HMS Java
Interface
Once the input data are created, the applet launches the
background model which simulates the stormwater hydrograph
for the storm. These data are then read by the applet and display a
graphic such as the one in Figure 3.

The interface also allows for up to three scenarios where the user
inputs either different land cover data or different storm volumes
and distributions. These are then shown on the same graph for
comparison purposes as shown in Figure 4. In that example, high
density residential land cover was replaced with lower density
residential development for the same storm. Data can also be
exported to a spreadsheet for further analyses and comparisons.

Volume 7, Issue 1 Journal of Computational Science Education

16 ISSN 2153-4136 April 2016

Figure 3: Output Hydrograph from HEC-HMS Model

Figure 4: Hydrographs Comparing Two Land Use Scenarios

2.2 Simulating Water Quality Impacts
Real watersheds have complex mixtures of different land uses
spread across much larger areas than those can be represented in
our simple model example. In addition, the runoff from human
disturbed watersheds carries with it a number of pollutants that
may also cause environmental problems.

Modeling these conditions requires an expertise level far beyond
what most if not all high school instructors. However, illustrating
the nature of the conditions and their outcomes should be part of a
comprehensive urban hydrology curriculum. To address this
challenge, we built a third Java applet that allows exploration of
the conditions and outcomes of human development in a real
watershed. For this exercise, we used the U.S. EPA Stormwater
Management Model [12].

Based on a previous study of the Hellbranch Watershed in central
Ohio, a large number of land cover combinations for a single, real

storm, were run using PCWSMM, a version of the model with a
graphical user interface [7]. The model outputs include a forecast
of the runoff as well as the potential pollutant load arising from
the storm event. An interface was then created which allows the
user to choose one or more land cover scenarios and observe their
impacts on runoff and water quality.
Unit four of our activities expanded the view of hydrology to the
watershed scale by looking at changes in watershed land use and
hydrology for a particular watershed over time. USGS quadrangle
sheets and/or aerial photographs are used to identify major
changes in land use as well as changes in the water features over
time in the Big Darby Creek watershed in Ohio [3]. This provides
the basis for thinking about long-term watershed changes that are
simulated in the PCSWMM model.

The unit on the SWMM model includes a detailed explanation of
the model operation and options, a set of exercises on stormwater
runoff and water quality, and links to related materials on the
impacts of stormwater on urban stream flooding and water quality
[9]. The exercises provide instructions on selecting and
comparing a few of the scenarios that illustrate the impacts of
urbanization on stream flow and water quality.

Figure 5 is a representation of the watershed showing the
subcatchments that were used to specify the land cover scenarios
and the channels used in the simulation. Table 1 shows an
example of one of the land cover scenarios where medium density
residential development is added to most of the watershed
subcatchments. In the table, one can see that a significant
proportion of the land cover in most of the subcatchments of the
watershed are assigned to medium density residential uses. This
implies the creation of single family housing at about four units
per acre. This also implies the creation of impervious surfaces
from streets and rooftops that will impact the volume of runoff
coming from those areas.

Figure 5: Subcatchments and Stream Network for
The model user can choose the amount of each development type
to create in the model run and can then compare a variety of
outcomes associated with each of the selected examples. Along

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 17

with the runoff hydrograph for the storm, the user can also see
pollutographs that show the volume of sediments and oxygen
demanding wastes that are likely to be carried by that runoff.
These are illustrated in figures 6 and 7. Finally, the model has
generated a set of runoff videos which illustrate whether flooding
will occur at selected locations in the watershed.
The numerical outputs in the form of selected maximum and
minimum values can be chosen by the user and saved in a
spreadsheet for further comparisons and analysis. The graphs can
also be saved in a separate file.

Figure 6: SWMM Hydrograph for 10 and 30 Percent Medium
Density Urban Cover

Figure 7:SWMM Sediment Load for 10% and 30% Medium
Density Residential Cover

Table 1: Land Cover Distribution Scenario Example

Urban	

Medium
Develop
ment

Upper Upper Upper Upper

Scenario East	
 1 East	
 2 West	
 1 West	
 2

Forest 10 10 20 20 20 20
Agriculture 80 80 80 80 80 80
Low	
 Density 0 0 0 0 0 0
Medium	

Density

10 10 0 0 0 0

High	
 Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 70 70 80 80 80 80
Low	
 Density 0 0 0 0 0 0
Medium	

Density

20 20 0 0 0 0

High	
 Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 60 60 80 80 80 80
Low	
 Density 0 0 0 0 0 0
Medium	

Density

30 30 0 0 0 0

High	
 Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 50 50 80 80 80 80
Low	
 Density 0 0 0 0 0 0
Medium	

Density

40 40 0 0 0 0

High	
 Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 40 40 80 80 80 80
Low	
 Density 0 0 0 0 0 0
Medium	

Density

50 50 0 0 0 0

High	
 Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 30 30 80 80 80 80
Low	
 Density 0 0 0 0 0 0
Medium	

Density

60 60 0 0 0 0

High	
 Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 20 20 80 80 80 80
Low	
 Density 0 0 0 0 0 0
Medium	

Density

70 70 0 0 0 0

High	
 Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 10 10 80 80 80 80
Low	
 Density 0 0 0 0 0 0
Medium	

Density

80 80 0 0 0 0

High	
 Density 0 0 0 0 0 0
Forest 10 10 20 20 20 20
Agriculture 0 0 80 80 80 80
Low	
 Density 0 0 0 0 0 0
Medium	

Density

90 90 0 0 0 0

High	
 Density 0 0 0 0 0 0

10%

Land	
 use

Sub-­‐category	
 of	
 Hellbranch	
 Watershed

Middle Lower

%

80%

90%

20%

30%

40%

50%

60%

70%

2.3 Initial Testing
The entire curriculum was presented at a summer workshop for K-
12 geoscience teachers in 2013. This included working through
each of the introductory units and a set of exercises using the
computer models.

Although the teachers were able to understand the simple
hydrologic model and complete the exercises, a number of
problems with our approach arose. The installation of the
underlying model and the Java applet was difficult. Slight

Volume 7, Issue 1 Journal of Computational Science Education

18 ISSN 2153-4136 April 2016

deviation from the installation instructions caused the model to
fail. Teachers also pointed out that installation on their school
computers would be a problem and thus asked us to try to develop
a model with the same underlying goals but with an interface that
could be run in a web browser.

A second model using the same underlying modeling approach
was developed to run in a browser [2]. Specifically, the Natural
Resources Conservation Service (NRCS) Curve Number approach
was used to calculate overall runoff volume, and a hydrograph
produced using the NRCS unit hydrograph [5], with time-of-
concentration calculated from channel slope [5]. Figure 8 shows
the model input screen. The web-based model allows the
comparison of up to four land cover scenarios and three
precipitation scenarios. Output is available as either a bar or line
graph and the data can be exported to a CSV file for further
analysis. This model was introduced to teachers in a second
summer workshop in 2014.

Figure 8: Model Input Screen for Web-based Model
Other critical lessons were learned during the first summer
workshop that led to subsequent improvements to the module and
Simple Storm Runoff Model for Geosciences Education. First,
teachers from the upper elementary and middle school grades
indicated that they were more likely to deploy the experimental
units 1, 2 and possibly the simple hydrologic model – unit 3.
Teachers at the high school level were more likely to deploy units
2, 3, and the watershed scale unit 4 with teachers of advanced
courses, such as A.P. Environmental Science, more likely to
deploy unit 4 than other teachers. Unit 5, the SWMM model
exercise, was seen as applicable to both middle school and high
school audiences and was seen as a way to approach land use
impacts when time was limited in the classroom or to look at
impacts beyond water volume for advanced courses. Rather than
look for teachers to deploy all five units of the module, the project
team worked with teachers to customize and implement portions
appropriate for their curriculum and circumstances.

3. Evaluating Workshop Impacts
3.1 Workshop Background
The workshops for geoscience teachers were held in the summers
of 2013 and 2014. Teachers were asked to fill out a pre-workshop
survey with questions about their background and reasons for
attending the workshop. Following the workshop, they also filled
out a post-workshop survey with questions concerning the
potential impacts of the workshop and workshop materials on
their own classrooms, the quality of the workshop, and their
overall comments on the experience.

Most teachers wanted to increase the number of real world
experiences in the classroom as well as to increase the use of
technology in their classrooms. There was also a desire to
improve their instruction on the related topics.

3.2 Workshop Outcomes
In advance of the workshop, teachers were asked a number of
questions about their preparation to effectively implement
instruction related to the workshop content.

Teachers were highly confident in managing the use of hands on
materials in their classes, implementing inquiry or problem-based
learning, and developing assessments to measure specific learning
outcomes. They were much less confident in their ability to
describe the movement of water through a watershed or to
measure that movement. Perhaps most significantly, very few
teachers were confident in their ability to use computers to model
the movement of water through a watershed prior to the
workshop.

The post-survey on the same questions serves as one measure of
the impact of the workshops and the related modeling materials.
This is shown in Table 2.

Table 2: Post Survey Opinions on Workshop Impacts

 Teachers 2013
End-of-Summer

N=15

Teachers 2014
End-of-Summer

N=5
N % N %

Locate ideas for geosciences lessons and units either
online or in print. 15 100.0 5 100.0
Apply the principles of the inquiry cycle (ask question,
design experiment, conduct experiment, collect data,
analyze and draw conclusions, and share).

15

100.0

5

100.0

Locate geoscience professionals to collaborate on
lessons or serve as guest speakers. 15 100.0 5 100.0

Describe the movement of water through a watershed. 15 100.0 5 100.0
Measure the movement of water through a watershed. 15 100.0 5 100.0
Use computers to model the movement of water through
a watershed. 15 100.0 5 100.0
Collaborate with other teachers on the development of
geosciences lessons and units. 14 93.3 5 100.0

Use mathematics as part of a science lesson. 13 86.7 5 100.0
Use science as part of a mathematics lesson. 12 80.0 5 100.0
Implement inquiry or problem-based learning. 15 100.0 4 80.0
Incorporate geosciences lessons and units into my
curriculum. 15 100.0 4 80.0
Apply the principles of the design cycle (identify problem,
design solution, build solution, test, evaluate, and share). 14 93.3 4 80.0
Inform students about career opportunities in the
geosciences. 14 93.3 4 80.0
Organize a field trip to a site related to geosciences or
geosciences careers. 13 86.7 4 80.0

There are a number of observations that can be made by
comparing responses before and after the workshop. All of the
items that had a lower percentage of agreement on the pre-survey
increased markedly to nearly 100% or 100% agreement. These
include the ability to locate ideas for geosciences lessons, the
description and measurement of the movement of water through a
watershed, and the use of mathematics in a science lesson. Most
important from the perspective of the computer models, 100% of
both groups of teachers felt they could use computers to model the
movement of water through a watershed.

The success of the effort is also reflected in some of the open-
ended comments from teachers:

How to use real time data to model events. How to connect
curriculum to local issues in community. Field trips improved my
personal understanding. Other teachers’ ideas!

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 19

The lesson plans (i.e. watershed modeling, Geo Sandbox, etc.)
were definitely awesome inquiry and project-based ideas to add to
my toolbox. The potential for continued collaboration in
workshops or perhaps a distance-learning course for STEM
students was also great.

Learning how to access all the data through software, etc., as this
is exactly what common core is looking to do. Also, the
information about Darby watershed as it is in my backyard and
this ignited my curiosity to investigate more.

4. CONCLUSIONS
Although our sample size is small, our experience with creating
and testing computer models for use in K-12 geosciences
classrooms leads to several important conclusions.

First, computer models for classroom use should avoid
components that involve any installation complexity. Teachers
generally lack the computer expertise to trouble-shoot problems
with the download and installation of complex software as
evidenced by our first attempt at creating a stormwater runoff
model. Moreover, such installations may be impossible on school
computers. Models that are available online or entirely self-
contained as applets are much more likely to be used successfully
in the classroom.

Second, and perhaps most important, the majority of teachers lack
the modeling and simulation expertise required to feel confident
in using computer models in their classroom. Although all of our
participating teachers were seeking materials that meet the new
science standards, very few were confident in the use of computer
models as part of that effort. The completion of a professional
development workshop that provided examples and help in
understanding how the models worked resulted in a dramatic
change in their confidence and attitudes toward using computer
models in their classrooms. The workshop included building a
conceptual framework of the geocscience processes that aided in
the understanding of the more abstract modeling activities. If we
truly want to integrate computer modeling and the related analysis
skills into the K-12 curriculum, it will require a concerted effort to
provide existing teachers with similar professional development
experiences and the integration of those materials into the pre-
service teacher curriculum.
Our hope is that the release of these curricular materials, along
with models that are relatively easy to implement in the
classroom, will encourage more teachers to incorporate them into
their curricula.

5. ACKNOWLEDGMENTS
This work was made possible, in part, through a grant from the
National Science Foundation GEO-1203035. Any opinions
expressed in this paper are those of the authors and not of the
National Science Foundation.

6. REFERENCES
[1] Barron, B. & Darling-Hammond, L. (2008). Teaching for

meaningful learning: A review of research on inquiry-based
and cooperative learning. [excerpt retrieved from Edutopia:
www.edutopia.org/pdfs/edutopia-teaching-for-meaningful-
learning.pdf]

[2] Byrd Polar Research Center. Simple Stormwater Runoff
Model for Geosciences Education.

http://research.bpcrc.osu.edu/resources/water_runoff_model/.
As viewed on 2/14/2016.

[3] Byrd Polar and Climate Research Center. Water Cycles and
Watersheds. http://bpcrc.osu.edu/educators/watersheds. As
viewed on 2/14/2016.

[4] Capon, N, & Kuhn, D. (2004). What’s so good about
problem-based learning? Cognition and Instruction, 22: 61-
79.

[5] Chin, D. A. (2012). Water Resources Engineering.
[6] Common Core State Standards Initiative. High School

Modeling.
http://www.corestandards.org/Math/Content/HSM/ (accessed
on 11/10/2015).

[7] Computational Hydraulics International. PCSWMM.
http://www.chiwater.com/Software/PCSWMM/. As viewed
on 11/10/2015.

[8] Geier, R.; Blumenfeld, P.C.; Marx, R.W.; Krajcik, J.S.;
Fishman, B.; Soloway, E.; & Clay-Chambers, J. (2008).
Standardized test outcomes for students engaged in inquiry-
based science curricula in the context of urban reform.
Journal of Research in Science Teaching, 45(8), 922-939.

[9] Land Use Change Hellbranch Run.
ftp://ftp.bpcrc.osu.edu/downloads/outreach/Watersheds/60_L
and_Use_Change.zip. As viewed on 11/10/2015.National
Research Council. (1996). National science education
standards. Washington, DC: National Academy Press.

[10] Strobel, J. & van Barneveld, A. (2008). When is PBL more
effective? A meta-synthesis of metaanalyses comparing PBL
to conventional classrooms, Interdisciplinary Journal of
Problem-based Learning, 3(1): 44-58. (Retrieved from
http://docs.lib.purdue.edu/ijpbl/vol3/iss1/4).

[11] US Army Corps of Engineers. HEC-HMS Model.
http://www.hec.usace.army.mil/software/hec-hms/. As
viewed on 11/10/2015.

[12] U.S. Environmental Protection Agency. Stormwater
Management Model (SWMM). http://www2.epa.gov/water-
research/storm-water-management-model-swmm. As
viewed on 11/10/2015.

Volume 7, Issue 1 Journal of Computational Science Education

20 ISSN 2153-4136 April 2016

Computational Thinking as a Practice of Representation:

A Proposed Learning and Assessment Framework

Camilo Vieira
cvieira@purdue.edu

Manoj Penmetcha
mpenmetc@purdue.edu

Alejandra J. Magana
admagana@purdue.edu

Eric Matson
ematson@purdue.edu

Computer and Information Technology, Purdue University,

401 N. Grant Street, West Lafayette, IN. 47906

ABSTRACT
This study proposes a research and learning framework for
developing and assessing computational thinking under the lens of
representational fluency. Representational fluency refers to
individuals’ ability to (a) comprehend the equivalence of different
modes of representation and (b) make transformations from one
representation to another. Representational fluency was used in this
study to guide the design of a robotics lab. This lab experience
consisted of a multiple step process in which students were
provided with a learning strategy so they could familiarize
themselves with representational techniques for algorithm design
and the robot programming language. The guiding research
question for this exploratory study was: Can we design a learning
experience to effectively support individuals’ computing
representational fluency? We employed representational fluency as
a framework for the design of computing learning experiences as
well as for the investigation of student computational thinking.
Findings from the implementation of this framework to the design
of robotics tasks suggest that the learning experiences might have
helped students increase their computing representational fluency.
Moreover, several participants identified that the robotics activities
were engaging and that the activities also increased their interest
both in algorithm design and robotics. Implications of these
findings relate to the use of representational fluency coupled with
robotics to integrate computing skills in diverse disciplines.

Categories and Subject Descriptors
K.3.2 [Computers And Education]: Computer and Information
Science Education – Computer science

General Terms
Algorithms, Human Factors

Keywords
Computation, Representational Fluency, Programming Education,
Robotics

1. INTRODUCTION
Calls for action in the field of computer science education and
computing educational research have identified, among other
issues, the lack of a variety of methodological approaches to the

design and investigation of computing learning experiences [i.e. 1,
2, 3]. These calls for action are based on searches of published
research literature in which authors have concluded that there is a
relative sparseness of research regarding how students learn
computer science and, a lack of rigor in most of the existing
investigations [2]. As a pathway to addressing this need, Clement
[1] proposed applying findings from science education to the
design of evidence-based learning experiences in computer science.
We would like to extend this call and include the use of theoretical
frameworks in the evaluation of student learning and not only in the
design stage.

Our aim is first and foremost to contribute to the field of computing
education by proposing the use of representational fluency as a
theoretical framework for the design of computing learning
experiences as well as a way to investigate how students learn
computer science related concepts under this lens. To this end, the
guiding research question is: Can we design learning experiences
to effectively support individuals’ computing representational
fluency? Specifically, this study proposes a learning experience
that uses representational fluency as a way for students to develop
computational thinking mediated by the use of robotics. The
research questions that helped us assess this proposed approach are:

(i) What are individuals’ representational abilities for
problem solving in the context of robotics challenges?

(ii) What is the effect of computational robotics challenges
for improving individuals’ computing representational
fluency?

(iii) Do individuals’ background (computing or non-
computing), academic level (freshmen or sophomore),
and/or gender have an effect in their computing
representational abilities for problem solving in the
context of a robotics problem solving task?

(iv) What are individuals’ perceptions about the usefulness of
computational robotics challenges to learn algorithmic
design and robotics?

We believe that representational fluency can help us (a) to design
learning experiences that can help students manage complexity by
means of abstractions and (b) have a clearer understanding of how
learners learn and develop expertise in computational thinking.
Findings can then inform effective methods and pedagogies to train
the next generation of workers with readily available computing
skills.

2. Background
We begin with a definition of computational thinking and its
relationship with abstraction. We then explore some of the learning
difficulties in the field of computer science education and briefly
describe the role of robotics as a pedagogical and motivational tool

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 21

to integrate computational thinking in the context of problem
solving. Next, we make an argument of how computational
thinking relates to representational fluency and proceed to the
application of the proposed theoretical framework to the design of
a robotics learning activity. Finally, we assess the effectiveness of
this approach by means of an exploratory study.

2.1 Computational Thinking
Computational thinking [4] has been recognized as a collection of
understandings and skills required for new generations of students
to be proficient not only at using tools, but also at creating them and
understanding the nature and implication of that creation [5].
Computational thinking refers to the combination of disciplinary
knowledge (e.g. physics, biology, nanotechnology) [6] with
thought processes (e.g. engineering thinking, quantitative
reasoning, algorithmic thinking, systems thinking) involved in
formulating problems and their solutions so that the solutions are
represented in a form that can be effectively carried out by an
information-processing agent [7]. This requires using a set of
concepts, such as abstraction, recursion, and iteration, to process
and analyze data and to create real and virtual artifacts [8, 9].

The use and creation of computing models are an important step in
understanding problems and identifying potential solutions.
Algorithmic thinking and abstraction are two of the constructs that
are at the core of computational thinking. Algorithmic thinking
consists of the ability to perform “functional decomposition,
repetition (iteration and/or recursion), basic data organizations
(record, array, list), generalization and parameterization, algorithm
vs. program, top-down design, and refinement" [10]. Abstraction
refers to the act or process of removing detail to simplify and focus
attention to salient characteristics based on a given criteria [11].
Therefore, investigations of what it means to solve problems
through different forms of representations, in which students need
to couple abstraction with algorithmic thinking in the context of
computational problem solving tasks, should result in productive
venues to advance relevant learning science theories [12, 13].

2.2 Challenges in Computer Science
Education
Research described in the computer science education literature has
identified for a long time that learning to program is difficult [14-
16]. For instance, computer programs, in order to function
appropriately, require some level of complexity and adherence to
formalisms. Some identified difficulties occur in following areas:
(i) orientation- to identify the purpose of the programming task; (ii)
the notional machine- to identify the general properties or
functionality of the machine that one is intending to control; (iii)
notation- to master the syntax and semantics of the programming
language; (iv) structure- to deal with the difficulties of acquiring
standard patterns or schemas that can be implemented to attain
small-scale goals; and (v) pragmatics- to develop the skills to be
able to specify, develop, test, and debug programs using whatever
tools are available [17, 18]. Consequently, teaching programming
to people who are not familiar with algorithm design (at least flow
diagrams design) can also be a hard task. The process includes not
only abstraction and algorithmic design capabilities, but also
programming languages syntax and semantics (Cliburn, 2006).
Additionally, the non-user-friendly outcomes of a program might
become a constraint leading to lack of motivation on the part of the
students.

2.3 Robotics in Computer Science Education
Robotics has been included in computing science classes and
curricula as one of the strategies to teach artificial intelligence and
programming in an engaging way [19-22]. Several studies using
tools such as Lego Mindstorms [19, 23], Robocode [24, 25] or
Moway [26] have explored the development of programming skills
coupled with robotics. Klassner & Anderson (2003) highlighted its
use in areas such as: Programming Fundamentals to learn
conditionals, loops, and object-oriented paradigm; Algorithms and
Complexity to be aware of efficiency in order to improve battery
lifetime and the motion speed; and Programming Languages,
Architecture, and Operative Systems to understand concepts such
as syntax and multitasking. Cilburn (2006) also highlighted its
usefulness for beginner courses, such as Fundamental Concepts of
Computer Science, in which students prefer building and
programming over lecture courses. On the other hand, he found that
in some robotics experiences there might be external factors that
frustrate students, such as light sensors that may be affected by the
environmental light or battery life.

While the computer science community has taken strides to address
issues of methodological rigor in their investigations, to date, little
work has been done to apply existing learning theories and
theoretical frameworks to the design of learning experiences and
also to create new discipline-specific learning theories. This study
attempts to use research from the learning sciences to link
constructs of initial learning conditions, initial learning context,
problem representations, transfer as an active, dynamic process,
and, specifically, representational fluency for computational
thinking.

3. Theoretical Foundations
Expertise, transfer, and representational fluency are key theoretical
constructs that guided the design of the learning experience and
subsequent investigation.

3.1 Expertise
Expertise consists of those characteristics, skills, and knowledge of
a person (that is, expert) or of a system, which distinguish experts
from novices and less experienced people. A sine qua non
characteristic of experts is the ability to fluently transfer what they
have learned from one situation to another; novices cannot do this.
Novices’ learning is closely connected to the conditions in which
they learn; novices tie principles and concepts that they know to the
surface features of how they were taught the principle or concept.
Consequently, when the context changes, novices often fail to
transfer the principle to a new situation. Experts, on the other hand,
have abstracted the knowledge that is associated with a particular
context. This abstracted knowledge is based on principles and is
usually derived from repeated learning across varying contexts
where the need for abstraction is designed into the problem.

Experts possess both general problem solving skills and domain
knowledge. Furthermore, there is a symbiotic relationship between
general cognitive skills and domain-specific knowledge: “general
heuristics that fail to make contact with a rich, domain-specific
knowledge base are weak. But when a domain-specific knowledge
base operates without general heuristics, it is brittle—it serves
mostly in handling formulaic problems” [27]. These are important
points to remember as we consider the design, development and
evaluation of educational environments that contribute to the
development of expertise. Expertise does not magically happen.
The development of expertise is a complex phenomenon. One
useful perspective for approaching and understanding the design
and development of educational environments that contribute to the

Volume 7, Issue 1 Journal of Computational Science Education

22 ISSN 2153-4136 April 2016

development of expertise is through exploration of the construct of
“transfer.” A second perspective underpinning this project is that
of representational fluency.

3.2 Transfer
“Transfer” is about educating so that the learner will be able to use
the newly acquired knowledge on a different problem, in a different
situation, and it is not about simply training people to accomplish
tasks ([NRC], 2000). A common goal for educators is to help the
learner acquire knowledge that extends to other contexts. In 2000,
The National Research Council published findings that suggest the
following key characteristics of learning and transfer that are
helpful for educators:

• Initial learning is necessary for transfer, and a considerable
amount is known about the conditions of initial learning
experiences that support transfer.

• All new learning involves transfer based on previous learning.
Transfer is affected by the context of initial learning, and this
has important implications for the design of instruction that
helps students learn.

• Knowledge that is overly contextualized can reduce transfer;
transfer is enhanced by instruction that guides students toward
the representation of problems at higher levels of abstraction.

• Transfer is best viewed as an active, dynamic process rather
than a passive end-product of a particular set of learning
experiences.

Conditions of Initial Learning. Initial learning is a key factor for
transfer, and it is often overlooked. Initial learning consists of
mastery of a particular topic or subject matter [28]. In a study to
evaluate the effects of transfer when using the programming
language LOGO, it was found that there were no benefits of transfer
unless a significant degree of knowledge was gained during the
learning process [28]. Additionally, further studies have shown
that the following characteristics of initial learning that affect
transfer are: a) understanding versus memorizing, b) time to learn,
c) beyond “Time on Task,” and d) motivation to learn [28]. When
learners are only required to memorize facts, they may have
difficulty understanding the “why?” and the “how come?” By
organizing facts around principles, students will better answer these
questions and will start to organize a mental framework that more
closely resembles that of experts [28]. Moreoever, it is important
to understand the amount of time initial learning takes to move
knowledge into long-term memory; for example, to become a chess
master, an individual requires around 100,000 hours of playing to
reach world class expertise [28]. Much of the time spent on initial
learning is used to develop patterns of recognition that can be
recalled and applied to new experiences [28]. The different ways
time is used is also a key factor to initial learning. Deliberate
practice with feedback is considered a more effective use of time
than spending time practicing without feedback [28]. Motivation
should be considered as one of the most important aspects of initial
learning and will help the learner stay on-task and dedicate the time
necessary to move knowledge into long-term memory. Varying the
degrees of difficulty is one way of helping the learner to stay
motivated; however, educators should be careful not to make the
learning so difficult that the learner loses interest, or so easy that
the learner becomes bored [28]. Each of these characteristics of
learning (understanding, time to learn, “Time on Task,” and
motivation) should be considered when providing instruction
because each has been shown as important to initial learning
conditions that support later transfer.

Initial Learning Context and Transfer. The context in which
learning is initially achieved is important to subsequent transfer. It
has been shown that learning is situated in practice and that
traditional classroom cultures and environments are not the most
effective contexts for student learning. Transfer can be better
served through authentic practices or cognitive apprenticeships
[29]. These authentic practices might include embedding tasks with
familiar activities, pointing to different decompositions, and
allowing students to generate their own solution paths [29]. While
authentic practices can be useful for creating a rich initial learning
opportunity, research has also shown that novices often fail to
invoke prior learning when the context changes, resulting in poor
or no transfer. This can partly be corrected through additional
examples in different contexts like providing additional similar
cases, “what if” analysis, and the abstraction of general principles
[28].

Problem Representation. Problem representations also affect
transfer. Research shows that the more abstracted the knowledge,
the more transferrable it is [28]. Learning experiences that help
students see how problems relate to principles and how those
principles can be applied to other situations promote positive
transfer. A study of algebra students that involved word problems
using mixtures showed that those students who were shown
pictures of mixtures did worse when trying to transfer their learning
to new problems than did other students that were shown abstract
tabular representations [28]. Studies have also shown that when
learners develop multiple representations they are better able to
transfer knowledge to new domains with increased flexibility [30].

Active, Dynamic Approaches to Transfer. In the literature, transfer
is often treated as static, where it is conceived and operationalized
as an outcome of learning. An alternate approach is to treat transfer
as a dynamic process that requires learners to actively choose
strategies, evaluate those strategies, consider relevant resources,
and receive timely and relevant feedback. Experts spontaneously
transfer appropriate knowledge without prompting, and, when they
get stuck, they are usually capable of self-regulating their learning
so as to redirect. In other words, experts use metacognition
(thinking about thinking) to support transfer by re-invoking initial
learning, learning context, and problem representation strategies.
Transfer can be improved by treating it as an active, dynamic
process wherein metacognitive strategies are taught to learners
within the abstraction/transfer process.

3.3 Representational Fluency
Generally, fluency is the ability to express oneself readily and
effortlessly, as well as the ability to move effortlessly between the
spoken word and the written word, which are two different
representations. A representation in the abstract refers to instances
that are equivalent in meaning, but different in mode of expression.
While the idea of fluency is often associated with the written and
spoken word, researchers have extended work fluency and
representations to other disciplines, (e.g. physics, biochemistry, and
mathematics). The idea of fluency in these other fields includes the
ability to comprehend the equivalence of different modes of
representation [31], a phenomenon that has been called
“representational fluency.” In science, technology, engineering,
and mathematics, commonly used modes of representation include
verbal vs. mathematical, graphical vs. equational, macroscopic vs.
microscopic, physical vs. virtual, etc. Representational fluency is
the ability to comprehend equivalence in different modes of
expression, to read out information presented in different
representations, to transform information from one representation
to another, and to learn in one representation and apply that learning

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 23

to another. Therefore, representational fluency is an important
aspect of deep conceptual understanding that has been shown to
promote transfer and expertise.

3.4 Computational Thinking as a Practice of
Representation
One of the main goals of computational thinking involves
individuals’ ability to define models in the form of algorithms, data
analysis, or visualization techniques [8, 32]. A model can be
referred to as a tool that (a) serves as an approximate representation
of the real item that is being built and (b) helps individuals to work
at a higher level of abstraction by bringing out the big picture and
by focusing on different aspects of a model [33]. Thus, abstraction
is at the core of algorithmic thinking, which at the same time is one
of the principles that is right at the heart of computational thinking;
however, abstraction is as hard to teach as it is important [34].

We argue that, for accomplishing a working level of abstraction,
techniques such as problem decomposition, pattern recognition,
and pattern generalization can be fostered by having students
familiarize themselves with diverse forms of representations, create
these representations, and translate meaning from one
representation to another. Hence, we propose the use of
representational fluency as a conceptual framework that can help
us to identify and describe different forms of computational
representations and their application in the manipulation,
construction, interpretation, application, revision, and refinement
of models through the process of solving real life problems.

4. Methods
The methods of this study describe how we used the framework of
representational fluency to design a robotics learning experience
and to explore if students benefited from it. We expected that
students would develop representational abilities by using the
designed robotics lab experience embedding the as use-modify-
create strategy. To this end, we developed a test case study
exploring the following guiding research questions:

(i) What are individuals’ representational abilities for
problem solving in the context of robotics challenges?

(ii) What is the effect of computational robotics challenges
for improving individuals’ computing representational
fluency?

(iii) Do individuals’ background (computing or non-
computing), academic level (freshmen or sophomore),
and/or gender have an effect in their computing
representational abilities for problem solving in the
context of a robotics problem solving task?

(iv) What are individuals’ perceptions about the usefulness of
computational robotics challenges to learn algorithmic
design and robotics?

4.1 Learning materials to scaffold
representational fluency
To guide student learning, a lab experience was created guided by
the notion of representational fluency. This lab experience
consisted of a multiple step process in which students were
provided with a framework so they could familiarize themselves
with representational techniques for algorithm design and the robot
programming language. This strategy has been described as use-
modify-create [35]. This scaffolding strategy consists of a three-
stage progression of deeper interactions [36]. The main objective
of the lab module was to make the robot travel through predefined

paths forming simple shapes. This lab module had the following
steps:

Introduction. This section provided the overview of the activity. A
scenario was presented in the introduction of the lab module in
which a fictional company is assumed to supply unmanned robots
to the US military services. This fictional company is looking to
hire a software developer to program the robot to travel through
different predefined routes. The participant had been assumed as a
software developer and will work on the entire lab module.

[Use] In this part of the lab module, participants were provided
with the process required to make the robot travel through the
square path and the programming basics. Participants were
provided with a sample of a program. To program the robot,
participants need to understand the basic functionalities. For
instance, students should know that all the four wheels need to be
programmed accordingly. Also, students were presented with the
variables and the functions to be used. Specifically, the robot is
programmed on two variables (time and speed) and it had four basic
functions available to students (i.e. stop, forward, turn right, and
turn left). A flowchart and a table were also provided to the
participants with explanations concerning the procedure used in
programming a robot to make a square path (see Figure 1).

This part of the lab module also provided a manual to assemble a
robot. This part of the lab was optional to the user. Setting up
RoboPlus software [37] and how to connect Robot to the computer
were also explained. RoboPlus is a computer program that consists
of instructions to control the robot's actions. After writing the
program, the file is saved in .tsk format, which was uploaded into
CM 510 (Servo Controller) using RoboPlus software. Figure 2
shows a screenshot of the program’s interface.

[Modify] Participants modified the above program to create a
program where the robot travels through a rectangle-shaped path.
The steps participants followed were: (1) create the pseudo code
and flowchart of the path, (2) program the robot, (3) test the robot,
(4) assess the accuracy of the program versus the design, and (5)
modify your code as necessary.

Fig.1 Path of robot making a squared shape.

Volume 7, Issue 1 Journal of Computational Science Education

24 ISSN 2153-4136 April 2016

Fig.2 Screenshot of the RoboPlus interface

 [Create] After participants became familiarized with the basic
concepts of flowchart and programming, they started designing,
implementing and testing the robot to accomplish the task assigned
and to make the robot travel through pre-defined paths. To this end,
participants were guided through a step-by-step scaffolded
procedure in which they created diverse forms of representations
by building form one to another. The step-by-step procedure was:

Analysis Task. Drawing a flowchart and writing a pseudo code are
two forms of representation that participants were asked to perform
as part of this task. Each participant was exposed to a natural
scenario where he or she was treated as a software developer. The
participant was responsible for drawing a flowchart based on the
scenario provided (i.e. converting natural language to flowchart).

Design Task. The flowchart produced as part of the Analysis Task
was intended to serve as a starting point to then construct the
corresponding pseudo code. To create the pseudo code, participants
were required to use short English phrases to explain specific
instructions needed for the robot to travel the predefined path.

Implementation Task. After creating a flowchart from natural
language and then the pseudo code based on the flowchart,
participants used those artifacts to program the robot.

Testing Task. The reason for testing was to see if the path traveled
by the robot matched the predefined figure. The path traveled by
the robot was supposed to be directly related to the program and the
deviations from the pre-defined path would indicate the mistakes
made in the flowchart, pseudo code, or computer program.

4.2 Participants
Participants of this test case consisted of 44 college students from
a Midwestern university with computing (n=16) and non-
computing (n=28) backgrounds. The participants in this study were
either in their freshmen (n=11) or sophomore (n=33) years. Student
majors or disciplines were: Mechanical Engineering (7), Chemistry
or Chemical Engineering (5), Computer Engineering or Computer
Science (4), Behavioral Neuroscience or Psychology (4), Medical
Laboratory Science, Nursing, Health or Applied Exercise (3),
Electrical Engineering (2), Biology (2), Biomedical Engineering
(2), Business Management (2), Communication (2),

Interdisciplinary Engineering (2), Animal/Soil and Crop Science
(2), Speech and Language (1), Acting (1), Materials Science and
Engineering(1), Aviation Engineering Technology (1), Fine Arts
(1), Physics (1), and History (1).

Recruitment of participants was conducted by posting flyers
throughout campus. After the participants made initial contact with
us, we used a purposeful sampling method. We gave preference to
freshmen students. We also gave preference to students from
diverse backgrounds (i.e. from a variety of disciplines) in an effort
to have a balance between students from computing and non-
computing oriented disciplines. Students were then invited to
participate in a two hour lab session. This study was approved by
the institutional review board.

4.3 Data Collection Method and Procedures
A process assessment rubric (PAR) was employed to evaluate
student performance in the planning of the task, implementation of
the task, and the program produced. For each step in the process,
students were evaluated on the representations they produced and
how they translated from one representation to another one;
therefore, alignment between representations was considered as
part of the rubric to identify how students built from one
representation to the following one.

Students’ perceptions were collected using three Likert-scale
questions scored from strongly disagree (1) to strongly agree (5).
The statements to be rated were: (1) The activities presented were
very engaging; (2) The activities increased my interest in algorithm
design; and (3) The activities increased my interest in robotics.

During the two-hour lab session, students were exposed to three
main activities. First, they responded the pretest assessment, then
they were exposed to the learning experience, and, finally, they
responded the posttest. The perception questions were responded to
by the participants at the same time as the posttest.

4.4 Data Analysis Method
All the participants responded to the same pretest and posttest
instrument to determine the effects of the treatment on Analysis,
Design (flowchart and pseudo-code), and the representational
fluency of students among the several artifacts required on the tests
(i.e. how they built and aligned the flowchart, pseudo-code, and
implementation code). The Implementation score assessed the
actual program that manipulated the robot. This category was only
scored as part of the posttest assessment. All data from the two
rubrics were rated on a scale from 1 to 4, and it was treated as
interval data. The responses to the perception questions were
normalized so the results ranged from 0% (strongly disagree) to
100% (strongly agree).

All pre and posttest results were tested for normality, none of which
were normally distributed. After scoring each rubric individually
for the pretest and posttest measures, a non-parametric t-test was
used to identify significant differences between the two groups.

A correlational analysis was carried out among the rubric criteria
for the pretest and for the posttest. The Pearson coefficient for a
weak correlation was considered to be less than 0.1, for a moderate
correlation to be between 0.25 and 0.45, and for a strong correlation
to be higher than 0.5 [46].

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 25

Table 1. Process assessment rubric (PrT=pretest scores, PoT=posttest scores)

Category 4 3 2 1 PrT PoT

Flowchart
Independent to

Robotics

All the components are
clearly defined, shaped,

and labeled. The
flowchart describes the
process in an accurate

manner

The flow chart
describes the process,

but its components
are not correctly

labeled, shaped, or
defined

Most of the shapes in
the flowchart are

incorrectly labeled or
shaped

The flowchart
is incomplete

or non-
understandable

Analysis Flowchart

The flowchart design is
accurate. Also, it has all
the components labeled
and shaped. The initial

and end steps are
clearly represented

The flowchart design
is accurate but there

are some components
that are not correctly
labeled, shaped, or

defined

The flowchart design
lacks of precision to
the chosen route and
some of the shapes in

the flowchart are
incorrectly labeled or

shaped

The flowchart
is incomplete

or non-
understandable

Design Pseudo-code

The flowchart and
pseudo-code are

correctly aligned, and
they lead the robot to an

accurate result

The pseudo-code is
accurate, but it is not

aligned to the
flowchart design

The pseudo-code is
not precise, and it is

not aligned to the
design

The pseudo-
code is

incomplete or
non-

understandable

Implementation
The implemented

program is accurate and
is aligned to the design

The implemented
program is accurate

but not aligned to the
design

The implemented
program has some

deviation of the
chosen route and is
not aligned to the

design

The
implemented

program is not
complete or it

has syntax
errors

N/A

4.5 Validity and Reliability of the Instrument
A pilot was conducted with two students with a computer and
information technology background. The pilot lasted 15 minutes
for the pretest and 47 minutes for the posttest. Participants’
impressions of the lab module were overall positive. Participants
found some difficulties in attaining the exact pre-specified path.
Participants found it enjoyable to work with the robot. These
observations were used to refine the instructions and the learning
materials.

5. Results
5.1 What are individuals’ representational
abilities for problem solving in the context of
robotics challenges?
Table 2 depicts descriptive statistics for the individual rubric
criterion as well as the total score. The results suggests a good
performance by the students to move between different
representations to solve a problem in robotics challenges. During
the pretest, all participants (n = 44) were able to get a high average
score (mean = 67.24%; SD = 15.81%) even though some of them
(n = 28) did not have previous experience in programming courses.
As mentioned earlier, the pretest assessment did not include the
scores associated with the implementation task. The posttest score
depicts even higher average scores both including the
implementation score (mean = 82.39%; SD = 11.54%) and without
the implementation score (mean = 78.60%; SD = 12.76%). The
implementation score was 93.75%, with a moderate standard
deviation of 12.21%. The results suggest that students with and
without computing backgrounds were able to implement the
robotics challenge.

Table 2. Pre and post –test performance to solve a robotics
challenge problem

Test
(N=44) Mean Mean

(%) SD SD
(%)

Pretest

Flowchart 2.64 65.91 0.97 24.17

Analysis 2.64 65.91 0.75 18.75

Design 2.80 69.89 0.73 18.35

Total 2.69 67.23 0.63 15.81

Posttest

Flowchart 3.20 80.11 0.85 21.28

Analysis 3.05 76.14 0.57 14.22

Design 3.18 79.55 0.58 14.54

Implementation 3.75 93.75 0.49 12.21

Total w/o
Implementation 3.14 78.60 0.51 12.76

Total with
Implementation 3.30 82.39 0.46 11.54

5.2 What is the effect of computational
robotics challenges for improving individuals’
computing representational fluency?
Figure 3 presents the comparison between the means of the pretest
and posttest results. There are two different values related to
posttest because it included an implementation question that was
not part of the pretest. Therefore, both analysis with and without
implementation scores are presented. Significant differences were
found from pretest to posttest, both without implementation t(43)=-

Volume 7, Issue 1 Journal of Computational Science Education

26 ISSN 2153-4136 April 2016

5.7, p-value<0.001 and with implementation t(43)=-7.91, p-
value<0.001. The test results suggest that the robotics activity
increased students’ computing representational fluency.

Fig.3 Comparison Pre and Post –Test performance to solve a

robotics challenge problem

A correlational analysis was also performed to identify student
representational fluency. Table 3 and Table 4 depict the
correlations for the rubric criteria on the pretest and on the posttest
correspondingly.

Table 3. Correlation among the rubric criteria on the pretest

 Flowchart Design Pseudo

Flowchart 1.00

Design 0.26 1.00

Pseudo 0.22 0.79 1.00

Table 4. Correlation among the rubric criteria on the posttest

 Flowchart Design Pseudo Implemen
t

Flowchart 1.00

Design 0.32 1.00

Pseudo 0.25 0.61 1.00

Implement 0.35 0.46 0.49 1.00

The flowchart that was independent from the assignment moved
from a weak-to-moderate correlation on the pretest to a moderate
one on the posttest. The design, which consisted of a flowchart for
the assignment, was strongly correlated to the pseudo-code written
by the students both on the pretest and the posttest. Finally, the
implementation showed a moderate-to-strong correlation to the
design and to the pseudo-code criteria. The results suggest that
students were able to build different representations for the
phenomenon, both on the pretest and on the posttest.

5.3 Do individuals’ background, academic
level, and/or gender have an effect in their
computing representational abilities for
problem solving in the context of a robotics
problem solving task?
Test results were also analyzed based on the independent variables
Student Gender, Student Level, and Previous Experience in
Programming Courses. Results suggest that there is no evidence of
significant differences between genders F(43,1)=1.11, p-value=0.3,
students’ level F(43,1)=0.01, p-value=0.87, or previous
experiences F(43,1)=0.15, p-value=0.7.

5.4 What are the individuals’ perceptions
about the usefulness of computational robotics
challenges to learn algorithmic design and
robotics?
Students’ perceptions about usefulness related to the activity are
described in Table 5. Engagement is highlighted as an important
factor in this kind of activity (mean=84.09%; SD = 13.20). Also,
although more than 60% of the participants did not have previous
experience in programming courses (n=28), a large portion of the
sample (74.09%) reported that the activity increased their interest
in algorithms. Likewise, 78.18% of the participants felt that the
activity increased their interest in robotics.
Table 5. Posttest students’ perceptions related to the activity

Test Mean
Norm
Mean
(%)

Std.
Dev

Norm.
Std. Dev

(%)
Activities are
engaging(N=44) 4.21 84.09 0.66 13.20

Activities increase
interest in
algorithms (N=44)

3.71 74.09 0.73 14.51

Activities increase
interest in robotics
(N=44)

3.91 78.18 0.73 14.66

6. Discussion and implications
From the analysis of student performance before and after being
exposed to the learning experience, we can suggest that the design
of learning activities guided by the use-modify-create pedagogy
scaffolded the development of student computational
representational abilities. This learning strategy might have
supported learners in breaking down the activities in multiple steps
so that they could make explicit connections between
representations [35]. Since learning programming is a complex
task[38], using multiple representations organized as Analysis,
Design, and Implementation seemed to have helped students break
down the problem in a step-by-step process. That is, by means of
the scaffolding provided, students were able to decompose the
posed problem into a flowchart to propose an initial solution [39].
Then, students transformed this representation into a pseudo-code
and finally into a programming language. The scores for different
representations, both on the pretest and on the posttest, showed a
moderate-to-strong correlation, suggesting that high performer
students in, for example, the flowchart design, also were high
performers in the creation of the pseudo-code.

The artifacts the students produced and the progression they
followed using one artifact and leveraging it to the creation of the

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 27

next one is what we believe was particularly useful for them.
Moving from natural language to flowchart, from flowchart to
pseudo-code, from the actual code to testing, and the mappings
between them, supported students in accomplishing their design
task [30].

Findings also indicated no significant differences between pre- and
posttest scores based on student academic level, gender, or
disciplinary background. Based on these results, we speculate that
the pedagogical strategy of use-modify-create coupled with
robotics, can be used to integrate computational thinking concepts
and skills with a diverse population of learners in terms of gender,
interests, and expertise. On the other hand, since the interaction
with multiple representations improves transfer [30], providing
scaffolding for the students to go through these representations
might also have had a positive impact.

In terms of motivation, several of the participants reported that the
robotics-based activities were engaging. For instance, these
students reported increased interest in both algorithm design and
robotics. Furthermore, 60% of the students who had a non-
computing background also reported positive perceptions of the
usefulness of robotics challenges for their learning. These results
are aligned with findings from other studies reporting that robotics
activities are also useful for students with non-computing
backgrounds [i.e., 19, 21]. Therefore, we speculate that the use of
robotics can lower the barriers of entry into computing related
fields.

6.1 Implications for Teaching and Learning
The implications for teaching and learning relate to the design of
computational thinking learning experiences that are grounded in
effective pedagogical methods and learning strategies. Firstly, this
study provides a learning activity and learning assessments that can
be easily adapted for learning purposes. Secondly, this study
provides key insights into how literature from the learning sciences
can be used to design learning experiences and their corresponding
assessments. The emphasis on representational fluency, within the
broader context of computational and algorithmic thinking, can
guide the design of additional learning experiences following the
process presented in this study.

This study also collected and analyzed evidence to weigh in on
what kinds of learning resources we should bring to bear and the
conceptual trade-offs they entail. The evaluation of learning
materials suggests that, in a way, humans can build representational
fluency effectively by exercising their physical intuitions.
Specifically, robotics-based challenges can provide a tangible or
sensory medium that, according to theories of embodied cognition,
can foster development of conceptual understanding [40].
Therefore, we suggest that robotics can have a strong potential to
serve as an effective and engaging vehicle to integrate principles
and practices of computational thinking, such as algorithm design
and principles of programming. Moreover, exposing students to an
explicit representation and transformation processes scaffolded
through the use-modify-create strategy can enhance their
computational representational abilities.

6.2 Implications for Computing Educational
Research
From a computing educational research perspective, this study
portrays computational thinking as a practice of representation.
Considering computational thinking in such way can allow
researchers to investigate how students can manage complexity
through a series of abstractions. Specifically, through the lens of

representational fluency, the assessment of the learning process for
this study was not only focused on the final product, but on the
transitions from one representation to the next one. That is, the unit
of analysis focused on (a) the process students followed in creating
those artifacts and the mappings they produced between one
representation to the other one (e.g. from a flowchart to a
programming language) as well as (b) the outcome or final solution
of the challenge presented to students (e.g. how the robot moved).

Computer science educators have called for the need to identify
bridges between education research and computer science research
with the goal to facilitate student learning of computing knowledge
and practices [41]. This study provides a possible example of such
process by integrating representational fluency to the design of a
learning experience, and, then, to the investigation of its
effectiveness.

The scholarship of teaching and learning implicates “engagement
with research into teaching and learning, critical reflection of
practice, and communication and dissemination about the practice
of one’s subject” [42]. This study, in a way, went through a similar
process by first designing the learning experience, then conducting
the research and assessment components, disseminating the results,
and then moving into iteration and revision to improve the learning
materials and the research design. This process represents an initial
stage toward a design-based research program that will investigate
the role of representations in computing education. Design-based
research approaches will allow us to understand learning in real-
world practice [43]. It considers education as an applied field where
researchers have transformative agendas [43]. As such, they
develop contexts, frameworks, tools, and pedagogical models with
the intent to produce new theories, artifacts, and practices that can
impact teaching, learning, and engagement in naturalistic settings
[43]. Therefore, design-based research will provide us with a series
of approaches that allow us to “engineer” and at the same time
study particular forms of learning that will be subject to test,
revision, and iteration [44].

6.3 Limitations of the Study
Methodologically, this study had some limitations. One of the
limitations in the research design was the lack of a control group.
Another limitation included the sample size and the fact that
participants were voluntarily recruited. This heterogeneous group
led to small demographic subgroups that constrained the possible
significant differences between them. Also, the study did not take
place in a naturalistic classroom environment, where students are
usually part of a longer learning process involving more variables.
Therefore, the implementation of these practices should be further
explored by means of more rigorous experimental designs to
validate the learning experiences and the use of ethnographic
methods to identify how students progress from one representation
to another one; however, the results of this study empower us to
implement, as future work, the robotics-based learning activities in
classroom settings with a bigger and more homogenous sample of
students and include a control group. It also provides us with a
proof-of-concept that can allow us to explore computational
thinking as a practice of representation.

7. Conclusion
This study proposed representational fluency as a research and
learning framework that can allow the investigation of how people
develop computational thinking. Under this perspective, this study
presented the development of a learning module that integrated and
validated pedagogical methods and scaffolding techniques to

Volume 7, Issue 1 Journal of Computational Science Education

28 ISSN 2153-4136 April 2016

introduce computing principles and procedures by means of
robotics-based challenges.

Findings from the implementation of these challenges suggest a
positive impact on computational thinking in general and
computational representational fluency specifically. Students with
computing and non-computing backgrounds benefited from the use
of robotics, and they performed equally in the posttest. These
findings suggest that robotics can be used to learn computational
thinking related concepts for designing, programming, and testing
with a detailed level of abstraction. Results from this study also
suggest that robotics may serve as a common theme to integrate
STEM related concepts and computing and engineering skills. For
instance, robotics can be used as viable source to teach students
from both computing and non-computing backgrounds. Similarly,
the robotics-based challenge can be adopted and adapted by
educators for classroom use. It can also be used as a guide to
develop new and more complex robotics-based challenges. The
pedagogy presented here can also be used for other kinds of
learning experiences not involving robotics.

The broader educational research community has made major calls
to pursue discipline-based educational research [45], where we
believe computer science education needs to be more strongly
represented. The computer science community has also identified
the need of more rigorous methodological approaches to pursue
computer science education research [2, 3]. One of the key
components toward a more rigorous path to discipline-based
educational research in computer science is the consideration of
theoretical foundations that can provide a perspective into how
research has been grounded in literature and the scope and
generalizability of the results [41]. Another key component would
be the use of educational research findings to design computer
science learning experiences [1]. A natural way to couple these two
worlds could be by means of design-based research approaches that
will allow educational practitioners and researchers to develop
learning materials and pedagogical models with the intent of
producing new theories, artifacts, and practices that can impact
teaching, learning, and engagement in naturalistic settings [43].

8. References
[1] J. M. Clement, "A Call for Action (Research): Applying

Science Education Research to Computer Science
Instruction," Computer Science Education, vol. 14, pp.
343-364, 2004/12/01 2004.

[2] A. Pears and L. Malmi, "Values and objectives in
computing education research," ACM Transactions on
Computing Education (TOCE), vol. 9, p. 15, 2009.

[3] J. Randolph, et al., "A methodological review of
computer science education research," Journal of
Information Technology Education: Research, vol. 7, pp.
135-162, 2008.

[4] J. M. Wing, "Computational thinking," Communications
of the ACM, vol. 49, pp. 33-35, 2006.

[5] L. K. Soh, et al., "Renaissance computing: an initiative
for promoting student participation in computing," ed,
2009.

[6] [NRC], "Report of a workshop on the pedagogical
aspects of computational thinking," National Research
Council of the National Academies, Washington,
D.C.2011.

[7] J. Cuny, et al., "Demystifying Computational Thinking
for Non-Computer Scientists," Work in progress, 2010.

[8] [CSTA]. (2012, March 15). Operational definition of
computational thinking. Available:

http://www.iste.org/Libraries/CT_Documents/Computat
ional_Thinking_Operational_Definition_flyer.sflb.

[9] V. Barr and C. Stephenson, "Bringing computational
thinking to K-12: what is Involved and what is the role of
the computer science education community?," ACM
Inroads, vol. 2, pp. 48-54, 2011.

[10] [NRC], Being fluent with Information Technology:
National Academy Press, 1999.

[11] J. Kramer, "Is abstraction the key to computing?,"
Communications of the ACM, vol. 50, pp. 36-42, 2007.

[12] R. Lesh, "Modeling students modeling abilities: The
teaching and learning of complex systems in education,"
Journal of the Learning Sciences, vol. 15, pp. 45--52,
2006.

[13] M. Alhadeff-Jones, "Three Generations of Complexity
Theories: Nuances and ambiguities," Educational
Philosophy and Theory, vol. 40, pp. 66-81, 2008.

[14] E. Soloway and J. C. Spohrer, Studying the novice
programmer: Lawrence Erlbaum Hillsdale, NJ, 1989.

[15] R. Lister, et al., "A multi-national study of reading and
tracing skills in novice programmers," ACM SIGCSE
Bulletin, vol. 36, pp. 119-150, 2004.

[16] W. M. McCracken, et al., "A multi-national, multi-
institutional study of assessment of programming skills
of first-year CS students," ACM SIGCSE Bulletin, vol.
33, pp. 125-180, 2001.

[17] B. D. du Boulay, "Some difficulties of learning to
program," in Studying the novice programmer, E.
Soloway and J. C. Spohrer, Eds., ed: Lawrence Erlbaum,
1986, pp. 283-299.

[18] R. D. Pea and D. M. Kurland, "On the cognitive
prerequisites of learning computer programming," 1983.

[19] D. C. Cliburn, "Experiences with the LEGO Mindstorms
throughout the undergraduate computer science
curriculum," in Frontiers in Education Conference, 36th
Annual, San Diego, CA, 2006, pp. 1-6.

[20] F. Klassner and S. D. Anderson, "Lego MindStorms: Not
just for K-12 anymore," Robotics & Automation
Magazine, IEEE, vol. 10, pp. 12-18, 2003.

[21] B. S. Fagin, et al., "Teaching computer science with
robotics using Ada/Mindstorms 2.0," in ACM SIGAda
Ada Letters, Bloomington, MN, 2001, pp. 73-78.

[22] D. Kumar and L. Meeden, "A robot laboratory for
teaching artificial intelligence," ACM SIGCSE Bulletin,
vol. 30, pp. 341-344, 1998.

[23] D. J. Barnes, "Teaching introductory Java through LEGO
MINDSTORMS models," in ACM SIGCSE Bulletin,
Cincinnati, Northern Kentucky, 2002, pp. 147-151.

[24] E. Bonakdarian and L. White, "Robocode throughout the
curriculum," Journal of Computing Sciences in Colleges,
vol. 19, pp. 311-313, 2004.

[25] J. O’Kelly and J. P. Gibson, "RoboCode & Problem-
Based Learning: A non-prescriptive approach to teaching
programming.," in ITICSE '06 Proceedings of the 11th
annual SIGCSE conference on Innovation and
technology in computer science education, Houston, TX,
2006.

[26] I. Angulo, et al., "Competencias y Habilidades Con El
Robot “Moway”. ," in VIII Congreso de Tecnologías
Aplicadas a la Enseñanza de la Electrónica - TAEE 2008,
Zaragoza, Espana, 2008.

[27] D. N. Perkins and G. Salomon, "Are cognitive skills
context-bound?," Educational researcher, vol. 18, pp.
16-25, 1989.

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 29

http://www.iste.org/Libraries/CT_Documents/Computational_Thinking_Operational_Definition_flyer.sflb
http://www.iste.org/Libraries/CT_Documents/Computational_Thinking_Operational_Definition_flyer.sflb

[28] J. Bransford, How people learn: Brain, mind, experience,
and school: National Academies Press, 2000.

[29] J. S. Brown, et al., "Situated cognition and the culture of
learning," Educational researcher, vol. 18, pp. 32-42,
1989.

[30] R. J. Spiro, et al., "Cognitive flexibility, constructivism,
and hypertext: Random access instruction for advanced
knowledge acquisition in ill-structured domains,"
Constructivism and the technology of instruction: A
conversation, pp. 57-75, 1992.

[31] I. E. Sigel, Development of mental representation:
Theories and applications: Lawrence Erlbaum, 1999.

[32] Google. (2013, November 29). What is CT? Exploring
Computational Thinking. Available:
http://www.google.com/edu/computational-
thinking/what-is-ct.html

[33] G. Cernosek and E. Naiburg, "The value of modeling,"
IBM developerWorks 2004.

[34] J. Kramer, "Abstraction-is it teachable? 'the devil is in the
detail'," in Proceedings. 16th Conference on Software
Engineering Education and Training, 2003.(CSEE&T
2003). , 2003, pp. 32-32.

[35] I. Lee, et al., "Computational thinking for youth in
practice," ACM Inroads, vol. 2, pp. 32-37, 2011.

[36] J. Malyn-Smith and I. Lee, "Application of the
Occupational Analysis of Computational Thinking-
Enabled STEM Professionals as a Program Assessment
Tool," Journal of Computational Science Education, vol.
3, pp. 2-10, 2012.

[37] Robotis. (2013, July 22). Robotis Inc. Available:
http://www.robotis.com/xe/

[38] J. Rogalski and R. Samurçay, "Acquisition of
programming knowledge and skills.," in Psychology of
programming J. M. Hoc, et al., Eds., ed London:
Academic Press, 1990, pp. 157–174.

[39] S. P. Lajoie, "Extending the scaffolding metaphor,"
Instructional Science, vol. 33, pp. 541-557, 2005.

[40] Z. C. Zacharia, et al., "Is physicality an important aspect
of learning through science experimentation among
kindergarten students?," Early Childhood Research
Quarterly, vol. 27, pp. 447-457, 2012.

[41] M. Daniels and A. Pears, "Models and Method for
Computing Education Research," in Proceedings of the
14th Australasian Computing Education Conference
(ACE2012), Melbourne, Australia, 2012.

[42] M. Healey, "Developing the scholarship of teaching in
higher education: a discipline-based approach," Higher
Education Research and Development, vol. 19, pp. 169-
189, 2000.

[43] S. Barab and K. Squire, "Introduction: Design-Based
Research: Putting a Stake in the Ground," The Journal of
the learning sciences, vol. 13, pp. 1-14, 2004.

[44] P. Cobb, et al., "Design experiments in educational
research," Educational researcher, vol. 32, pp. 9-13,
2003.

[45] [NRC], Discipline-Based Education Research.
Understanding and Improving Learning in
Undergraduate Science and Engineering. Washington,
D.C.: National Academies Press, 2012.

[46] A. Rubin, “Statistics for Evidence-Based Practice and
Evaluation”; Cengage Learning: Belmont, CA. 2009.

Volume 7, Issue 1 Journal of Computational Science Education

30 ISSN 2153-4136 April 2016

http://www.google.com/edu/computational-thinking/what-is-ct.html
http://www.google.com/edu/computational-thinking/what-is-ct.html
http://www.robotis.com/xe/

STUDENT PAPER: Revising and Expanding a Blue Waters
Curriculum Module as a Parallel Computing Learning

Experience
Ruth Catlett1

University of Mary Washington
1301 College Avenue

Fredericksburg, VA 22401

rcatlett@umw.edu

David Toth2
Centre College

600 West Walnut Street
Danville, KY 40422

David.toth@centre.edu

ABSTRACT
The party problem is a mathematical problem in the discipline of
Ramsey Theory. Because of the problem’s embarrassingly
parallel nature, its extreme computational requirements, and its
relative ease of understanding implementation with a naïve
algorithm, it is well suited to serve as an example problem for
teaching parallel computing. Years ago, a curriculum module for
Blue Waters was developed using this problem. However, delays
in the delivery of Blue Waters resulted in the module being
released before Blue Waters was accessible. Therefore,
performance data and compilation instructions for Blue Waters
were not available. We have revised the module to provide source
code for new versions of the programs to demonstrate more
parallel computing libraries. We have also added performance
data and compilation instructions for the code in the old version of
the module and for the new implementations, which take
advantage of the capabilities of the Blue Waters supercomputer
now that it is available.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
parallel programming.

General Terms
Experimentation.

Keywords
Parallel computing education, Ramsey theory.

1. INTRODUCTION
The party problem is a problem in Ramsey Theory, an area of
mathematics that focuses on "the mathematical study of
combinatorial objects in which a certain degree of order must
occur as the scale of the objects becomes large" [1]. The general
form of the party problem, R(m, n) seeks to determine the number
of people that must attend a party such that there is guaranteed to
be a group of m people who all know each other, a group of n
people who are all complete strangers, or both [2]. The R(5, 5)
instance of the party problem is still unsolved, requiring immense
computational power to solve [3]. We refer the reader to [4] for
more information on the party problem and an algorithm used by

some programs that attempt to solve it. In 2012, a curriculum
module for teaching parallel computing using the party problem
as an example was released [4]. While this module was designed
for the Blue Waters supercomputer, Blue Waters was delayed and
the module was released before the hardware, so it could not
include compilation instructions and performance data for Blue
Waters. While the module could still be used for teaching parallel
computing, we have updated it significantly with the information
specific to the Blue Waters supercomputer, including instructions
to compile the all the code and performance data from Blue
Waters. We have also added two additional versions of the
programs, one using MPI and the other one which is an
MPI/CUDA hybrid.

2. RELATED WORK
Toth and Bryant developed code to test 335,544,320,000 graphs
for the party problem, producing sequential, OpenMP, and CUDA
versions of the code [4]. While the code would not solve the party
problem for the R(5, 5) instance due to the need to test more
graphs than could be tested by a dedicated supercomputer in a
lifetime, its three implementations that all use the same algorithm
and the embarrassingly parallel nature of the problem made it a
nice way to introduce students to parallel computing. Thus, the
code formed the foundation for the curriculum module [5].
However, the lack of performance data from Blue Waters, a
system that could be used by multiple people, and the lack of
instructions to compile and run the code on Blue Waters made the
module less useful than it would be with those features. We note
that there are a number of other such modules available at
http://www.shodor.org/petascale/materials/modules/ from a wide
range of disciplines, but few have implementations in all of MPI,
OpenMP, and CUDA [6]. 1

3. MODULE UPDATES
For this update we looked at the existing module which included a
sequential version, a two-file Compute Unified Device
Architecture (CUDA) version, and an Open Multi-Processing
(OpenMP) version. In addition, there were some instructions and
many comments in the code. The institute held in Illinois at the
beginning of this project taught how to use the CUDA, OpenMP,
and Message Passing Interface (MPI) libraries as well as how to
make hybrids with the libraries. The first steps of the code
writing portion of the project were to write an MPI version and an
MPI and CUDA hybrid. In writing the MPI and CUDA hybrid
we found it was easier to use if the CUDA was in one file so we
edited the CUDA version to be one file and added command line

1 Undergraduate Student
2 Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 31

http://www.shodor.org/petascale/materials/modules/

arguments so the user can specify the number of blocks and
threads in the kernel call. We also made sure that every version
was testing the same number of graphs and was creating the same
output, printing out either a graph that did not have a K5 or, a
statement saying that no such graph was found.

With all of these added versions we also had to add compilation
and execution instructions for each version. We also tested
different numbers of nodes and cores so that we could provide
users accurate performance information. This also showed us how
efficient each version was in with different numbers of nodes.

The different versions allowed us to highlight the different ways
we can use the parallel hardware of Blue Waters. The MPI library
allowed us to use multiple nodes on Blue Waters. MPI allowed us
to start processes on multiple nodes and enabled them to
coordinate their graph testing to divide the graphs to be tested and
reduce the wall clock time to run the program. The CUDA library
allowed us to divide the graphs among the GPU cores on a single
node, and the MPI and CUDA hybrid allowed us to use multiple
GPUs, enabling us to test the graphs in a very short amount of
time.

4. METHODS
We conducted performance tests on Blue Waters for each of the
programs. For the sequential, OpenMP, and MPI versions of the
program, ten runs were done for each version and the average of
the ten trials was taken. The performance of the CUDA version is
dependent upon the number of threads and blocks that the
program uses and there is no particular set of values that work for
every program. Some people have stated that there should be at
least 64 threads per block and that number should be a multiple of
64 [7]. Threads per block between 128 and 256 gave others the
best performance for their applications [8]. Therefore, for the
CUDA version of the program, we tested the program with
different numbers of threads and blocks to determine the best

values for those parameters. For the number of threads per block,
we tested 4096, 8192, and 16384. For the number of blocks, we
tested 64, 128, 256, 512, and 1024. Once we determined the best
values for blocks and threads per block, we did the performance
testing for the MPI and CUDA hybrid program using those
values.

5. RESULTS
The times each of the ten runs took for the sequential version, the
OpenMP version, and the MPI version are shown in Table 1 and
Table 2. The times from the tests of the CUDA version that we
used to determine which numbers of blocks and threads per block
are shown in Tables 3-5. For the CUDA version, we found that
64 threads per block resulted in a runtime of over 1.5 times the
runtimes using 128, 256, 512, and 1024 threads per block.
Although the runtimes using the other numbers of threads per
block and all of the numbers of blocks that we tried were close,
128 threads per block and 16,384 blocks produced the fastest
average times. The results of the MPI/CUDA hybrid version of
the program are shown in Table 6.

While the runtime of the OpenMP version of the program
decreased as the number of CPU cores it used was increased as
shown in Figure 1, the speedup achieved shown in Table 7 was
not linear with the number of cores. This could be because
different graphs take different times to examine. If the graphs that
take a longer time are concentrated in a single or a couple sections
of the graphs, then that could result in the speedup being less than
linear. The speedups for the MPI program and the MIP and
CUDA hybrid programs are shown in Table 8 and Table 9. Thos
speedups show similar results to the OpenMP speedups, but are
not quite as good. We expect that this is because in addition to
the distribution of the graphs that take longer to examine, these
programs also need to send information between nodes, which
should result in a performance loss.

Table 1 - Runtime for Sequential and OpenMP Versions

Trial Sequential
OpenMP
Using 1

Core

OpenMP
Using 2
Cores

OpenMP
Using 4
Cores

OpenMP
Using 8
Cores

OpenMP
Using 16

Cores

OpenMP
Using 32

Cores

1 17839 17794 12977 6425 3616 1801 917

2 17838 17720 12811 6416 3601 1815 912

3 17740 17684 12816 6438 3599 1808 906

4 17792 17666 12829 6426 3600 1804 908

5 17899 17631 12819 6410 3581 1800 910

6 17911 17679 12825 6487 3595 1802 914

7 17928 17813 12918 6417 3565 1806 912

8 17835 17641 12831 6526 3556 1811 905

9 18053 17743 12819 6413 3591 1810 911

10 17882 17778 12833 6415 3597 1819 907

Average 17871.7 17714.9 12847.8 6437.3 3590.1 1807.6 910.2

Volume 7, Issue 1 Journal of Computational Science Education

32 ISSN 2153-4136 April 2016

Table 2 - Runtimes for MPI Version

Trial
MPI

Using 1
Node

MPI
Using 2
Nodes

MPI
Using 4
Nodes

MPI
Using 8
Nodes

MPI
Using 16

Nodes

MPI
Using 32

Nodes

1 927 469 238 127 66 37

2 921 478 239 124 67 37

3 925 472 240 124 67 37

4 914 473 238 123 67 36

5 917 476 239 124 65 39

6 926 471 238 124 65 37

7 927 471 238 124 66 38

8 918 479 240 124 66 38

9 918 475 239 124 66 36

10 912 469 239 123 67 37

Average 920.5 473.3 238.8 124.1 66.2 37.2

Table 3 - Runtimes for CUDA Version with 4096 Blocks

Trial
64

Threads
Per Block

128
Threads

Per Block

256
Threads

Per Block

512
Threads

Per Block

1024
Threads Per

Block

1 142 86 84 86 87

2 142 85 84 86 87

3 142 85 84 85 87

4 143 85 85 85 87

5 143 85 84 86 87

6 143 85 85 85 86

7 143 85 85 85 86

8 143 85 85 85 86

9 143 85 85 86 87

10 142 85 84 86 87

Average 142.6 85.1 84.5 85.5 86.7

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 33

Table 4 - Runtimes for CUDA Version with 8192 Blocks

Trial
64

Threads
Per Block

128
Threads

Per Block

256
Threads

Per Block

512
Threads

Per Block

1024
Threads Per

Block

1 140 85 84 86 88

2 140 84 84 86 88

3 140 84 85 86 87

4 140 84 84 86 87

5 140 85 84 86 87

6 140 84 85 86 88

7 141 84 85 86 88

8 140 84 85 86 87

9 140 84 84 86 88

10 140 85 84 86 88

Average 140.1 84.3 84.4 86 87.6

Table 5 - Runtimes for CUDA Version with 16384 Blocks

Trial
64

Threads
Per Block

128
Threads

Per Block

256
Threads

Per Block

512
Threads

Per Block

1024
Threads Per

Block

1 140 84 85 86 90

2 139 85 86 86 90

3 139 84 85 87 89

4 140 84 85 86 89

5 140 84 85 86 89

6 140 85 85 87 90

7 139 84 85 87 89

8 140 84 85 87 90

9 139 84 85 87 89

10 140 84 85 87 89

Average 139.6 84.2 85.1 86.6 89.4

Volume 7, Issue 1 Journal of Computational Science Education

34 ISSN 2153-4136 April 2016

Table 6 - Runtimes for MPI-CUDA Hybrid Version

Trial 2 Compute
Nodes

4 Compute
Nodes

8 Compute
Nodes

16 Compute
Nodes

32 Compute
Nodes

64 Compute
Nodes

1 43 22 12 7 4 3

2 43 22 12 7 3 3

3 43 22 12 6 4 3

4 43 22 12 7 4 2

5 43 22 11 6 4 2

6 44 22 12 6 4 3

7 43 22 12 7 4 3

8 43 22 12 6 5 3

9 43 22 11 7 4 3

10 43 22 11 7 4 2

Average 43.1 22 11.7 6.6 4 2.7

Table 7 - OpenMP Speedups and Efficiencies vs. Sequential Program

Cores Speedup Maximum Possible Speedup

1 1.0 1

2 1.4 2

4 2.8 4

8 5.0 8

16 9.9 16

32 19.6 32

Table 8 - MPI Speedups and Efficiencies vs. Sequential Program

Nodes Speedup Maximum Possible Speedup

1 19.4 32

2 37.8 64

4 74.8 128

8 144.0 256

16 270.0 512

32 480.4 1024

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 35

Table 9 - MPI/CUDA Hybrid Speedups vs. 1 Node CUDA Program

Nodes Speedup Maximum Possible Speedup

2 1.95 2

4 3.83 4

8 7.20 8

16 12.73 16

32 20.87 32

64 30.90 64

Figure 1 - Average Runtimes vs. Cores Used with OpenMP

Volume 7, Issue 1 Journal of Computational Science Education

36 ISSN 2153-4136 April 2016

Figure 2 - Average Runtimes vs. Nodes Used with MPI

Figure 3 - Average Runtimes vs. Nodes Used with MPI/CUDA Hybrid

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 37

6. CONCLUSIONS
During the internship, we developed additional versions of a
program to test graphs for the party problem. We were able to
develop instructions to compile and the run the programs on Blue
Waters and conduct performance testing. These things all have
made the existing curriculum module more useful.

7. REFLECTIONS
This experience has been special to me in many ways. I think it is
a wonderful opportunity to allow undergraduates a chance to work
one-on-one with a mentor doing some research project, especially
this project which allowed me the unique opportunity to work on
the Blue Waters supercomputer. I loved being able to not only
work on Blue Waters but also getting to see it in person and learn
how to use it. The Petascale Institute was amazing, meeting other
students and having the ability to dedicate two weeks to learning
about the system and parallel computing. Learning about the
different libraries was extremely useful to me since I wrote and
used code in almost every library and hybrid we discussed.

The Petascale Institute allowed me, as a computer science major,
to expand my knowledge base beyond what I had learned in the
classroom. I am now more confident with using remote systems,
Linux command and shell scripts. Even without any previous
knowledge about parallel languages or programming I left the
institute with a general understanding and the internship itself has
allowed me to help others learning parallel too. The internship this
year encouraged me to take a class in parallel at my school and I
felt that I gained even more knowledge from that class and was
also able to help those who struggled because of my experience
with Blue Waters.

In the field of computer science there are a lot of options for
career paths. I came into this internship no knowing what really
interested me specifically in computer science. But the work I did
this year made me realize why I love computer science so much, I
love solving puzzles and figuring out how the pieces work
together. All the Party Problem code in different libraries each
required a different understanding of parallelism, and getting them
to work together was an even bigger challenge, but with lots of
guidance from my mentor we figured them out and got some
interesting results. I also discovered how interesting parallel
computing is to me. I still have another year of college left, so I
am not ready to decide where I go from here; but, I know now I
would enjoy working on parallel in the future. I feel like it is a
growing field and now I have a unique experience thanks to this
internship.

8. ACKNOWLEDGMENTS
This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science
Foundation (awards OCI-0725070 and ACI-1238993) and the
state of Illinois. Blue Waters is a joint effort of the University of
Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications. We thank the Blue Waters Student
Internship Program for providing Ruth with this opportunity.
Finally, we thank the University of Mary Washington, which
provided Ruth with room and board for the summer through their
Summer Science Institute and funding for the wet-lab studies.

9. REFERENCES

[1] ramsey theory - Wolfram|Alpha. (2012).
http://www.wolframalpha.com/input/?i=ramsey+theory.

[2] Weisstein, Eric W. "Ramsey Number." From MathWorld--A
Wolfram Web Resource.
http://mathworld.wolfram.com/RamseyNumber.html.

[3] S. P. Radziszowski, Small Ramsey Numbers, The Electronic
Journal of Combinatorics. DS1.10. (originally published July
3, 1994, last updated August 4, 2009),
http://www.combinatorics.org/ojs/index.php/eljc/article/view
/DS1/pdf.

[4] D. Toth and M. Bryant, A Performance Comparison of a
Naïve Algorithm to Solve the Party Problem using GPUs,
Journal of Computational Science Education, v. 3, issue 2,
December 2012.

[5] http://www.shodor.org/petascale/materials/UPModules/how
ManyPeople/

[6] http://www.shodor.org/petascale/materials/modules/
[7] S. Walkowiak, K. Wawruch, M. Nowotka, L. Ligowski, W.

Rudnicki, Exploring utilization of GPU for database
applications, Procedia Computer Science 1(2010) 505-513.

[8] V. W. Lee, C. Kim, J. Chhugani, M. Desiher, D. Kim, A. D.
Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P.
Hammarlund, R. Singhal, P. Dubey, Debunking the 100X
GPU vs. CPU Myth: An Evaluation of Throughput
Computing on CPU and GPU, Proceedings of the 37th
annual international symposium on Computer architecture
(2010) 451-454.

Volume 7, Issue 1 Journal of Computational Science Education

38 ISSN 2153-4136 April 2016

http://mathworld.wolfram.com/RamseyNumber.html
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1/pdf
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1/pdf
http://www.shodor.org/petascale/materials/UPModules/howManyPeople/
http://www.shodor.org/petascale/materials/UPModules/howManyPeople/
http://www.shodor.org/petascale/materials/modules/

Abatement of Computational Issues Associated

with Dark Modes in Optical Metamaterials

Matthew LePain
Georgia Southern University

Physics Department

ml03213@georgiasouthern.edu

Maxim Durach
Georgia Southern University

Physics Department

mdurach@georgiasouthern.edu

ABSTRACT
Optical fields in metamaterial nanostructures can be separated
into bright modes, whose dispersion is typically described by
effective medium parameters, and dark fluctuating fields. Such
combination of propagating and evanescent modes poses a serious
numerical complication due to poorly conditioned systems of
equations for the amplitudes of the modes. We propose a
numerical scheme based on a transfer matrix approach, which
resolves this issue for a parallel plate metal-dielectric
metamaterial, and demonstrate its effectiveness.

Categories and Subject Descriptors
J.2 [Physical Sciences And Engineering]: Physics.

General Terms
Nanotechnology.

Keywords
Photonics, Plasmonics, Metasurfaces.

1. INTRODUCTION
Modern nanotechnology poses a plethora of cutting-edge research
problems in the fields of nano-optics and electronics, which are
ideal for reinforcement of the knowledge gained in the upper
division physics courses, such as Classical Electromagnetics and
Quantum Mechanics, as well as for training in numerical methods
and computational techniques. Due to exquisite spatial profile of
nanostructures, the solutions to these problems feature
combinations of propagating and evanescent waves. This is
known to pose considerable numerical complications if care is not
taken. In particular, applying the straightforward routine of setting
boundary conditions at nanostructure boundaries results in poorly
conditioned systems of equations and unacceptable errors due to
evanescent waves. This has been discussed for a number of
optical structures, including stratified media [1], and sine-wave
grating [2].

Plasmonic metamaterials and metasurfaces is a rapidly developing

field, which encompasses such phenomena as negative refraction
[3], superlensing [4], optical cloaking [5], wavefront control [6]
and much more. Plasmons are evanescent waves bound to the
interfaces between metal and dielectric materials. The new
functionalities are achieved when metal-dielectric structures
feature subwavelength design forming metamaterials. The bright
modes of these structures behave according to the effective
metamaterial medium approximation, whereas the dark plasmonic
modes are strongly localized. This leads to the numerical issues
related to presence of both propagating and evanescent fields to
be strongly expressed in metamaterial structures.

2. PROBLEM FORMULATION
In this paper, we present a comparison of two techniques to
calculate electromagnetic fields in a nanostructure, which contains
an array of nanoscale metal plates separated by layers of high-
index dielectric placed above a transparent substrate. This
problem is very important for the fields of photonics and
metamaterials and its solution will allow the modeling of ultra-
thin polarization rotators and nanoscale light emitters with
controlled polarization [7].

Figure 1: Structure Schematics. The three-layer structure
considered in this paper contains a one-dimensional
metamaterial in layer 2. Note that the selection of coordinates
that are shown here are explained in the text.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Copyright
©JOCSE, a supported publication of the Shodor Education
Foundation Inc.

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 39

From the computational perspective this structure requires
simultaneous consideration of propagating and evanescent waves,
therefore the boundary condition equations are numerically
unstable [1, 2]. We devise a transfer matrix computational
technique specific to this structure to resolve this issue by
dynamically removing the evanescent waves from the
computation as they decay in the structure.

3. METHODS
Consider a three-layered structure composed of layers 1 and 3,
which are homogeneous and isotropic and layer 2, which is a one
dimensionally periodic array of two different homogeneous and
isotropic materials (Fig. 1). Because of the periodicity of layer 2
diffraction waves will be produced in layers 1 and 3 with
diffraction wave vectors

𝑘𝑥

(𝑛)
= 𝑘𝑥 +

2𝜋𝑛

𝑑
 (1)

Here d is the period of the structure. The fields in layer 1 will be
represented as:

𝑭 = 𝑅𝑒 [𝑒𝑖𝜔𝑡 (𝐼 𝑒𝑖𝒌𝟎∙𝒓 + ∑ 𝑅𝑛 𝑒−𝑖𝒌𝒏∙𝒓

∞

𝑛=−∞

)] 𝒇̂ (2)

where F is either the magnetic field H (for TM polarization) or the
electric field E (TE polarization) and 𝒇̂ is in the transverse
direction. The 𝑅𝑛s are amplitudes of the reflected waves, and 𝐼 =

𝑃 for TM fields and 𝐼 = 𝑆 for TE fields is the incident wave
amplitude. Also ω is the angular frequency, 𝒌𝟎 = 𝑘𝑥𝒙̂ + 𝑘𝑦𝒚̂ +

𝑘𝑧𝒛̂, r is the position vector, and 𝒌𝒏 = 𝑘𝑥
(𝑛)

𝒙̂ + 𝑘𝑦𝒚̂ +

√𝑘0
2𝜀𝐼 − 𝑘𝑥

(𝑛)2
− 𝑘𝑦

2𝒛̂. In layer 3 the fields are represented as:

𝑭 = 𝑅𝑒 [𝑒𝑖𝜔𝑡 ∑ 𝑇𝑛 𝑒𝑖𝒌𝒏∙𝒓

∞

𝑛=−∞

] 𝒇̂ (3)

Where the 𝑇𝑛s are amplitudes of transmitted waves.

The fields in layer 2 are more complicated. Because of the
reflections on the layers’ boundaries, waves that propagate in the
positive and negative x directions are present in each material. In
the case that the incidence plane is at an angle to the stratification
of layer 2 (x direction), the convenient directions in which to
define polarization are different within each layer. This leads to
the fields being excessively complicated to solve in the x-y-z
coordinate system. Thus, we simply consider a wave propagating
in the 𝑧′ direction and rotate the coordinates back when
convenient (see Fig. 1). The un-rotated field equations look like
this:

 𝐹
𝑦′
(𝑚)

= 𝑅𝑒 [𝑒𝑖𝜔𝑡 (𝐴𝑚𝑒
𝑖𝑘

𝑧′
(𝑚)

𝑧′

+ 𝐵𝑚𝑒
−𝑖𝑘

𝑧′
(𝑚)

𝑧′

) ×

{
𝐶𝑚𝑒𝑖𝛼1𝑥 + 𝐷𝑚𝑒−𝑖𝛼1𝑥 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 1

𝐺𝑚𝑒𝑖𝛼2𝑥 + 𝐽𝑚𝑒−𝑖𝛼2𝑥 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 2
]

(4)

𝐴𝑚, 𝐵𝑚, 𝐶𝑚, 𝐷𝑚, 𝐺𝑚, and 𝐽𝑚 are unknown amplitudes, and

𝛼𝑛 = √𝑘0
2𝜀𝑛 − 𝑘

𝑧′

(𝑚)2
.

This equation alone has in it 7 unknowns. Fortunately 𝐴𝑚 and 𝐵𝑚
can be found via the upper and lower boundary conditions, but

𝐶𝑚, 𝐷𝑚, 𝐺𝑚, 𝐽𝑚, and 𝑘
𝑧′
(𝑚) must be solved for. To do this we must

use Maxwell’s equations and the boundary conditions for E and H
fields at metal/dielectric boundaries. For p polarization (𝑭 → 𝑯):

𝐸𝑥 =

𝑘
𝑧′
(𝑚)

𝑘0𝜀
𝐻𝑦′ (5)

𝐸𝑧′ =
𝑖

𝑘0𝜀

𝜕𝐻𝑦′

𝜕𝑥
 (6)

The field components 𝐻𝑦′ and 𝐸𝑧′ are continuous across the
boundary therefore:

 𝐶𝑚𝑒𝑖𝛼1𝑑1 + 𝐷𝑚𝑒−𝑖𝛼1𝑑1 = 𝐺𝑚 + 𝐽𝑚 (7)

 𝛼1

𝑘0𝜀1

(𝐶𝑚𝑒𝑖𝛼1𝑑1 − 𝐷𝑚𝑒−𝑖𝛼1𝑑1) =
𝛼2

𝑘0𝜀2

(𝐺𝑚 − 𝐽𝑚) (8)

Here 𝑑1 is the width of the first layer. In matching the period
boundary we must take into account the phase factor 𝑒𝑖𝑘𝑥𝑑 in
order to be able to match the phase in layers 1 and 3 to this one.
This leads to the equations

 (𝐶𝑚 + 𝐷𝑚)𝑒𝑖𝑘𝑥𝑑 = 𝐺𝑚𝑒𝑖𝛼2𝑑2 + 𝐽𝑚𝑒−𝑖𝛼2𝑑2 (9)

 𝛼1

𝑘0𝜀1

(𝐶𝑚 − 𝐷𝑚)𝑒𝑖𝑘𝑥𝑑 =
𝛼2

𝑘0𝜀2

(𝐺𝑚𝑒𝑖𝛼2𝑑2 − 𝐽𝑚𝑒−𝑖𝛼2𝑑2) (10)

Where 𝑑2 is the width of the second layer.

These four boundary conditions result in the Kronig-Penny (KP)
equation:

cos 𝛼1𝑑1 cos 𝛼2𝑑2 −

1

2
(

𝑝1

𝑝2
+

𝑝2

𝑝1
) sin 𝛼1𝑑1 sin 𝛼2𝑑2

= cos 𝑘𝑥𝑑
(11)

with 𝑝𝑖 =
𝛼𝑖

𝑘0𝜀𝑖
. For s polarization (𝑭 → 𝑬) the characteristic

equation is similar, except that 𝑝𝑖 = −
𝛼𝑖

𝑘0
.

The KP equation provides the means to find 𝑘
𝑧′
(𝑚) and the

corresponding 𝐶𝑚, 𝐷𝑚, 𝐺𝑚, and 𝐽𝑚 coefficients. Unfortunately,
the KP equation is transcendental and has an infinite number of
roots. It is however quite possible to find a finite set of roots for
an individual set of parameters [8, 9]. But to get any directly
relatable data we need to be able to look at a wide swath of the
parameter space with good resolution simultaneously.

The process to find roots for a single set of parameters is to first
choose a maximum value for |𝑘

𝑧′
(𝑚)

|, this gives a minimum decay
length and wavelength to be considered. Then we create a graph
overlaying the zero contours of the real and imaginary parts of the
KP equation as a function of the real and imaginary parts of

𝑘
𝑧′
(𝑚)2

(see Fig. 2). The desired roots are at the intersections of
these contours.

Volume 7, Issue 1 Journal of Computational Science Education

40 ISSN 2153-4136 April 2016

Figure 2: A graph of the zero contour curves of the real (blue)
and imaginary (orange) parts of the left side of KP equation
[Eq. (11)] using 8.5 nm GaAs and 1.5 nm Ag at 𝝎 = 𝟐. 𝟒𝟕 𝐞𝐕
and normal incidence (𝒌𝒙 = 𝟎).

To find the 𝑘
𝑧′
(𝑚) in the desired range of parameters we use an

iterative method in which we first do the above process for one set
of parameters. Then we use those roots as the starting point for
very slightly different parameters iterating until the whole
parameter space is covered.

This process leads to roots jumping from one branch to another
even as we reached the upper limit of a reasonable number of
iterations. To avoid this we use a pair of equations that split the
KP equation into even and odd roots as long as the angle of
incidence is zero, in other words 𝑘𝑥 = 0. [9]

𝑝1 tan (

𝑝2𝑑2

2
) + 𝑝2 tan (

𝑝1𝑑1

2
) = 0 (12)

𝑝2 tan (
𝑝2𝑑2

2
) + 𝑝1 tan (

𝑝1𝑑1

2
) = 0 (13)

These equations split all the troublesome roots apart into the two
separate equations as visible in Fig. 3. However, there are still two
roots of Eqn. (13) in p polarization that continue to have this
issue. We have gotten around this issue by simultaneously
changing multiple parameters in a single step such that the roots
change much slower throughout the sections where the roots
would nor mally need much higher resolution.

Figure 3: A graph of the zero contour curves of the real
(green) and imaginary (red) parts of the left sides of Eqs. (12)
(top) and (13) (bottom) using the same parameters as Fig. 2
and overlaid on top of Fig. 2.

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 41

Figure 4: Roots of the KP equation [Eq. (11)-(13)] as a
function of frequency for 7.5 nm GaAs & 2.5 nm Ag, at
normal incidence.

After the modes in layer 2 are found (see Fig. 4) the fields need to
be matched at the upper and lower boundaries. First we need to
identify all the independent waves that are present.

Table 1: The waves and their amplitudes within each layer
Layer 1

TM Incident P
TE Incident S

TM Diffraction 𝑅𝑀𝑛
TE Diffraction 𝑅𝐸𝑛

Layer 2
p Waveguide 𝐴𝑝𝑚 & 𝐵𝑝𝑚
s Waveguide 𝐴𝑠𝑚 & 𝐵𝑠𝑚

Layer 3
TM Diffraction 𝑇𝑀𝑛
TE Diffraction 𝑇𝐸𝑛

Amplitudes P and S can be set as desired but all the rest must be
found. We follow a usual method for matching infinite sets of
plane and waveguide waves [10]. First we set the fields we intend
to match equal to each other and multiply through by 𝑒−𝑖𝑘𝑥

(𝑙)
𝑥.

Then we integrate both sides over a single period of the structure.
This gives

∫ 𝑒𝑖𝑘𝑥

(𝑛)
𝑥𝑒−𝑖𝑘𝑥

(𝑙)
𝑥𝑑𝑥

𝑑

0

= 𝛿𝑛𝑙𝑑 (14)

on the side of layers 1 or 3. As for layer 2 there are terms of the
form:

∫ 𝑒−𝑖𝑘𝑥

(𝑙)
𝑥 {

𝐶𝑚𝑒𝑖𝛼1𝑥 + 𝐷𝑚𝑒−𝑖𝛼1𝑥 𝑥 < 𝑑1

𝐺𝑚𝑒𝑖𝛼2𝑥 + 𝐽𝑚𝑒−𝑖𝛼2𝑥 𝑥 > 𝑑1

𝑑𝑥
𝑑

0

 (15)

At this point we reduced the system to a set of eight matrix
equations, one for each x and y component of the E and H fields
on the upper and lower boundaries. Then using block matrices we
reduce those eight equations to these four:

 Χ̂𝐴𝑥𝑨 + Χ̂𝐵𝑥𝑩 + 𝐾𝑅𝑥𝑹 = 𝑫𝒙 (16)

 Χ̂𝑦(𝑨 + 𝑩) + 𝐾𝑅𝑦𝑹 = 𝑫𝒚 (17)

 𝑊̂𝐴𝑥𝑨 + 𝑊̂𝐵𝑥𝑩 + 𝐾𝑇𝑥𝑻 = 𝟎 (18)

 𝑊̂𝐴𝑦𝑨 + 𝑊̂𝐵𝑦𝑩 + 𝐾𝑇𝑦𝑻 = 𝟎 (19)

Where the Χ̂s and 𝑊̂s contain matrices with entries similar to Eqn.
(14) while the 𝐾s are 2x2 block matrices of diagonal matrices
containing coefficients due to angles, derivatives, and the like.

These four equations can be reduced further to a single equation:

 𝑀̂𝑽 = 𝑫 (20)

𝑀̂ = (

Χ̂𝐴𝑥 Χ̂𝐵𝑥 𝐾𝑅𝑥 0̂
Χ̂𝑦 Χ̂𝑦 𝐾𝑅𝑦 0̂

𝑊̂𝐴𝑥 𝑊̂𝐵𝑥 0̂ 𝐾𝑇𝑥

𝑊̂𝐴𝑦 𝑊̂𝐵𝑦 0̂ 𝐾𝑇𝑦

) (20a)

𝑽 = (

𝑨
𝑩
𝑹
𝑻

) & 𝑫 = (

𝑫𝒙

𝑫𝒚

𝟎
𝟎

) (20c/d)

At this point it seems to be a simple task to invert 𝑀̂ to solve for
V, however when using any roots that decay significantly in layer
2, 𝑀̂ quickly becomes so poorly conditioned that even double
precision isn’t enough to produce anything but zeros (see Fig. 5
and discussion after Eqn. (35)). The major issue is the matrix 𝐻
and its inverse contained within the 𝑊̂s, where 𝐻𝑚𝑙 = 𝑒𝑖𝑘𝑧

(𝑚)
ℎ𝛿𝑚𝑙

and h is the height of layer 2. This issue can be resolved by using
the transfer matrix method we developed.

In this method, we consider each boundary independently to find
how an incident wave is converted into outgoing waves. Then we
propagate and feed the outgoing waves as incident onto the other
boundary and so on, which forms an iterative process.

The full set of waves coming off the upper and lower boundaries
can be found by constructing the formulas:

 𝑹 = 𝑹𝑰 + 𝑅̂𝑃̂𝑩 (21)

 𝑨 = 𝑨𝑰 + 𝐴̂𝑃̂𝑩 (22)

 𝑩 = 𝐵̂𝑃̂𝑨 (23)

 𝑻 = 𝑇̂𝑃̂𝑨 (24)

Here RI (AI) is a vector containing the amplitudes of diffraction
(waveguide) waves created as a direct result of the incident waves
coming from the top medium. 𝐴̂ and 𝐵̂ are matrices that convert a
waveguide wave amplitude vector into a counter-propagating
waveguide wave amplitude vector on the upper and lower
boundaries respectively. 𝑅̂ and 𝑇̂ convert waveguide wave
amplitude vectors into reflected and transmitted wave amplitude
vectors respectively. 𝐻 is used to propagate the waveguide vectors
down or up the structure.

Substituting B into the formula for A we find:

 𝑨 = 𝑨𝑰 + 𝐴̂𝑃̂𝐵̂𝑃̂𝑨 = 𝑨𝑰 + 𝑅𝑇̂𝑨 (25)

Solving for A:

Volume 7, Issue 1 Journal of Computational Science Education

42 ISSN 2153-4136 April 2016

 𝑨 = (1̂ − 𝑅𝑇̂)
−1

𝑨𝑰 (26)

Then to avoid taking the inverse we expand Eq. (26) to finally get
to the equation:

 𝑨 = (1̂ + 𝑅𝑇̂ + 𝑅𝑇̂2 + 𝑅𝑇̂3 + ⋯)𝑨𝑰 (27)

Here 𝑅𝑇̂ is a matrix, which we call a round-trip matrix. It
propagates a set of modes at the top boundary to the bottom of
layer 2, reflects them, propagates them back and reflects them
once more. The expansion (27) can be understood as a sum of a
series of roundtrips and eliminates the evanescent modes as they
decay. This is the root of the effectiveness of the method.

To use this method we must start by finding RI and AI. Consider
a two-layer system consisting of layers 1 and 2 only. In this case,
we deal with P, S, R, and A coefficients. We again matched the x
and y components of the E and H fields on the boundary by
multiplying by 𝑒−𝑖𝑘𝑥

(𝑙)
𝑥 and integrating. This time having just the

four boundary conditions we only get two equations on the first
block matrix system:

 χ̂𝑥𝑨𝑰 + 𝐾𝑅𝑥𝑹𝑰 = 𝑫𝑥 (28)

 χ̂𝑦𝑨𝑰 + 𝐾𝑅𝑦𝑹𝑰 = 𝑫𝑦 (29)

Thus we recreate Eqn. (20) as a 2x2 system making the inversion
even simpler, and without a 𝑊̂ there is no 𝐻 and thus 𝑀̂ is not
poorly conditioned.

The next step is to find 𝐵̂ and 𝑇̂. Consider the boundary between
layers 2 and 3. In this case we have a set of incident waveguide
waves, A, reflected waveguide waves, B, and transmitted
diffraction waves, T. Using these waves the system only changes
slightly to become:

 χ̂𝑥𝑩 + 𝐾𝑇𝑥𝑻 = 𝐷̂𝐴𝑥𝑨 (30)

 𝑀̂−1 = (
(𝜒̂𝑥 − 𝐾𝑥𝐾̂𝑦−1

𝜒̂𝑦)
−1

−𝜒̂𝑥 −1
𝐾̂𝑥(𝐾̂𝑦 − 𝜒̂𝑦𝜒̂𝑥 −1

𝐾𝑥)
−1

−𝐾𝑦−1
𝜒𝑦 (𝜒̂𝑥 − 𝐾𝑥𝐾̂𝑦−1

𝜒̂𝑦)
−1

(𝐾𝑦 − 𝜒̂𝑦𝜒̂𝑥 −1
𝐾̂𝑥)

−1
) (32)

Figure 5: a comparison of the results of the two different methods for a structure composed of a 100 nm thick
Ag (100 nm)/vacuum (100 nm) array on top of a Ag substrate. Blue: transfer matrix method using double precision.
Purple: characteristic matrix approach using double precision. Red: characteristic matrix with 32 digit precision.

Green: characteristic matrix with 64 digit precision. Orange: characteristic matrix with 128 digit precision.
(Non-standard precision done using Mathematica’s variable precision)

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 43

 χ̂𝑦𝑩 + 𝐾𝑇𝑦𝑻 = 𝐷̂𝐴𝑦𝑨 (31)

The As will be defined later, the 𝐷̂s are constructed in the same
way as the 𝜒̂s, and the 𝐾s are the same sans slight differences due
to material choice on the upper and lower boundaries.

Next, we returned to the boundary between layers 1 and 2. This
time the incident waves being waveguide waves. The resultant
equations are the same as Eqns. (30)-(31) except 𝐵 → 𝐴, 𝐴 → 𝐵,
and 𝑇 → 𝑅.

Now we need to use Eqns. (28)-(31) to create matrices that
directly convert a set of incident waves to reflected and
transmitted waves.

 𝑀̂−1𝑫 = 𝑽 = (
𝑨𝑰
𝑹𝑰

) (33)

𝑀̂ (
𝑩
𝑻

) = (𝐷̂𝐴𝑥

𝐷̂𝐴𝑦
) 𝑨 (34)

 ∴

𝑀̂−1 (𝐷̂𝐴𝑥

𝐷̂𝐴𝑦
) = (𝐵̂

𝑇̂
) (35)

To do this we need the 𝑀̂−1 associated with each set of equations,
the general form being Eqn. (32). Doing Eqns. (34) and (35) again
for the other side, mutatis mutandis, yields the 𝐴̂ and 𝑅̂
conversion matrices.

4. RESULTS AND CONCLUSIONS
To compare the boundary condition approach and the transfer
matrix method we devised, we plot the magnitudes of amplitudes
of 0th order waves in the structure in Fig. 5. In each panel the blue
dots represent the results of the transfer matrix method in double
precision. For convergence one seems to needs to truncate the
infinite system of equations at about |𝑘𝑧|2 ≈ (1 Å)

−2
 which

occurs at 𝑁𝑡𝑟 ≈ 200 waveguide modes in Fig. 5’s structure. This
means that taking just one propagating waveguide mode [8] is not
enough for determining the optical properties of such structures.
The evanescent modes may not contribute to the determination of
the spectral positions of the resonances in subwavelength
structures, but they determine the power distribution at interfaces
between layers. Additionally the possibility of including multiple
modes in our method allows for consideration of large period
structures and the establishing of the exact conditions under which
the metamaterial approximations fail.

The results of the calculation using the boundary condition
method are shown for double precision (purple), 32-digit
precision (red), 64-digit precision (green) and 128-digit precision
(orange). Even when using 128-digit precision, which requires
significantly more time to calculate, the boundary condition
method is not capable of reaching the convergence requirement
for the system due to poorly conditioned matrices.

Currently, there is a strong interest in applicability of effective
medium approximation for describing fields in metamaterials. To
evaluate the correctness of the results of this approximation, one
has to compare it to an exact calculation. In Fig. 6 we provide a
calculation of the total reflectivity of a metal-dielectric array with
period of 10 nm, different metal fractions 𝑓 and suspended in
vacuum.

The graph shows a set of alternating Fabri-Perot resonances with
special properties, which allow for the polarization rotation effect
to be explained more fully in our upcoming paper [11].

To conclude, we have developed a new transfer matrix method for
calculating the fields in metal-dielectric parallel-plate arrays. This
method allows reaching convergence and obtaining reliable
results. We apply this method to model metasurface polarization
rotators.

Figure 6: The reflectivity of a 10nm period, 150nm height
structure suspended in air, made of Ag and GaAs smoothly
varying from all GaAs (left), to all Ag (right) over varied
frequency.

5. REFLECTIONS
The subject matter of this paper was produced as part of an
internship program with Shodor and Blue Waters. Here are some
of M. L.’s thoughts and reflections on this internship:

This all started my junior year; I was going for a physics degree
and wanted to go to graduate school in physics, but I had yet to
find a subject that really got me excited. I figured some
undergraduate research would look good when applying to
graduate programs so I joined Dr. Durach. He quickly convinced
me to sign up for the internship and began teaching me about
plasmons.

A couple months later, I was headed to a two-week crash course
in parallel computing with just barely enough programing
knowledge to make a two-body numerical integration program in
C. While there, I learned about MPI; Open MP; CUDA;
OpenACC; and computer structure, from clusters all the way to
CPU memory, and how to efficiently use it. What I learned there
was absolutely invaluable in the process of creating the code used
to complete this project.

The CPU memory structure, and array structure, has to have been
one of the most valuable. At one point I had a program running at
about 10% the speed it should have been and all I had to do was
flip which index was being parallelized so that the CPU would
call consecutive array entries into its cache and use all of them
before calling more. I would never have come to that conclusion
otherwise.

Volume 7, Issue 1 Journal of Computational Science Education

44 ISSN 2153-4136 April 2016

Without the internship, I likely would have had to spend at least
an extra half a year on this project just learning the computational
side of things and/or floundering through the creation of the
programs. That extra half a year could have made it much more
difficult to publish considering the number of groups looking into
similar structures.

This internship has also indirectly given me the chance to present
at the 2015 APS March meeting through funding from the Physics
Department at Georgia Southern.

6. ACKNOWLEDGEMENTS
M. L. was supported through the Blue Waters Internship program,
which included the two-week workshop at University of Illinois at
Urbana-Champaign. M. D. acknowledges the support from the
Office of the Vice President for Research & Economic
Development and the Jack N. Averitt College of Graduate Studies
at Georgia Southern University.

7. REFERENCES
[1] D. Y. K. Ko and J. R. Sambles. Scattering Matrix Method for

Propagation of Radiation in Stratified Media: Attenuated
Total Reflection Studies of Liquid Crystals. JOSA A,
5(11):1863-1866, 1988.

[2] N. P. K. Cotter, T. W. Preist, and J. R. Sambles. Scattering-
Matrix Approach to Multilayer Diffraction. JOSA A,
12(5):1097-1103, 1995.

[3] V. G. Veselago. The electrodynamics of substances with
simultaneously negative values of ε and μ. Sov. Phys. Usp.,
10(4):509–14, 1968.

[4] J. B. Pendry. Negative Refraction Makes a Perfect Lens. Phys.
Rev. Lett., 85(18):3966–9, 2000.

[5] D. Schurig, et al. Metamaterial Electromagnetic Cloak at
Microwave Frequencies. Science, 314(5801):977–980, 2006.

[6] Nanfang Yu, Patrice Genevet, Mikhail A. Kats, Francesco
Aieta, Jean-Philippe Tetienne, Federico Capasso, and Zeno
Gaburro. Light Propagation with Phase Discontinuities:
Generalized Laws of Reflection and Refraction. Science,
334(6054):333-337, 2011.

[7] D. Keene and M. Durach. Hyperbolic resonances of
metasurface cavities. Opt. Express, 23(14):18577-88, 2015.

[8] Alexey Orlov, Ivan Iorsh, Pavel Belov, and Yuri Kivshar.
Complex band structure of nanostructured metal-dielectric
metamaterials. Opt. Express, 21(2): 1593-8, 2013

[9] B. Sturman, E. Podivilov, and M. Gorkunov. Theory of
Extraordinary Light Transmission through Arrays of
Subwavelength Slits. Phys. Rev. B, 77(7):075106, 2008.

[10] Ping Sheng, R. S. Stepleman, and P. N. Sanda. Exact
eigenfunctions for square-wave gratings: Application to
diffraction and surface-plasmon calculations. Phys. Rev. B,
26(6):2907, 1982.

[11] M. LePain, D. Keene, and M. Durach. Ultrathin Metasurface-
based Polarization Rotators. In preparation

Journal of Computational Science Education Volume 7, Issue 1

April 2016 ISSN 2153-4136 45

Volume 7 Issue 1

April 2016

1

2

15

21

31

39

	Yasar_2016.pdf
	1. INTRODUCTION
	2. THEORETICAL FOUNDATION
	2.1 Interdisciplinary Education
	2.2 Mind as a Computational Device
	2.3 Electronic & Biological Computation
	2.4 Learning Processes Supported by CMST
	2.5 Deductive & Inductive Approach to Instruction

	3. IMPLEMENTATION & KEY FINDINGS
	4. CONCLUSION
	5. ACKNOWLEDGEMENT
	6. REFERENCES

	Vieira_2015.pdf
	Computational Thinking as a Practice of Representation: A Proposed Learning and Assessment Framework
	Computer and Information Technology, Purdue University,
	401 N. Grant Street, West Lafayette, IN. 47906
	1. INTRODUCTION
	2. Background
	2.1 Computational Thinking
	2.2 Challenges in Computer Science Education
	2.3 Robotics in Computer Science Education

	3. Theoretical Foundations
	3.1 Expertise
	3.2 Transfer
	3.3 Representational Fluency
	3.4 Computational Thinking as a Practice of Representation

	4. Methods
	4.1 Learning materials to scaffold representational fluency
	4.2 Participants
	4.3 Data Collection Method and Procedures
	4.4 Data Analysis Method
	4.5 Validity and Reliability of the Instrument

	5. Results
	5.1 What are individuals’ representational abilities for problem solving in the context of robotics challenges?
	5.2 What is the effect of computational robotics challenges for improving individuals’ computing representational fluency?
	5.3 Do individuals’ background, academic level, and/or gender have an effect in their computing representational abilities for problem solving in the context of a robotics problem solving task?
	5.4 What are the individuals’ perceptions about the usefulness of computational robotics challenges to learn algorithmic design and robotics?

	6. Discussion and implications
	6.1 Implications for Teaching and Learning
	6.2 Implications for Computing Educational Research
	6.3 Limitations of the Study

	7. Conclusion
	8. References

	Blank Page
	Blank Page
	Blank Page
	Blank Page

