
STUDENT PAPER: Revising and Expanding a Blue Waters
Curriculum Module as a Parallel Computing Learning

Experience
Ruth Catlett1

University of Mary Washington
1301 College Avenue

Fredericksburg, VA 22401

rcatlett@umw.edu

David Toth2
Centre College

600 West Walnut Street
Danville, KY 40422

David.toth@centre.edu

ABSTRACT
The party problem is a mathematical problem in the discipline of

Ramsey Theory. Because of the problem’s embarrassingly

parallel nature, its extreme computational requirements, and its

relative ease of understanding implementation with a naïve

algorithm, it is well suited to serve as an example problem for

teaching parallel computing. Years ago, a curriculum module for

Blue Waters was developed using this problem. However, delays

in the delivery of Blue Waters resulted in the module being

released before Blue Waters was accessible. Therefore,

performance data and compilation instructions for Blue Waters

were not available. We have revised the module to provide source

code for new versions of the programs to demonstrate more

parallel computing libraries. We have also added performance

data and compilation instructions for the code in the old version of

the module and for the new implementations, which take

advantage of the capabilities of the Blue Waters supercomputer

now that it is available.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming –

parallel programming.

General Terms

Experimentation.

Keywords

Parallel computing education, Ramsey theory.

1. INTRODUCTION
The party problem is a problem in Ramsey Theory, an area of

mathematics that focuses on "the mathematical study of

combinatorial objects in which a certain degree of order must

occur as the scale of the objects becomes large" [1]. The general

form of the party problem, R(m, n) seeks to determine the number

of people that must attend a party such that there is guaranteed to

be a group of m people who all know each other, a group of n

people who are all complete strangers, or both [2]. The R(5, 5)

instance of the party problem is still unsolved, requiring immense

computational power to solve [3]. We refer the reader to [4] for

more information on the party problem and an algorithm used by

some programs that attempt to solve it. In 2012, a curriculum

module for teaching parallel computing using the party problem

as an example was released [4]. While this module was designed

for the Blue Waters supercomputer, Blue Waters was delayed and

the module was released before the hardware, so it could not

include compilation instructions and performance data for Blue

Waters. While the module could still be used for teaching parallel

computing, we have updated it significantly with the information

specific to the Blue Waters supercomputer, including instructions

to compile the all the code and performance data from Blue

Waters. We have also added two additional versions of the

programs, one using MPI and the other one which is an

MPI/CUDA hybrid.

2. RELATED WORK
Toth and Bryant developed code to test 335,544,320,000 graphs

for the party problem, producing sequential, OpenMP, and CUDA

versions of the code [4]. While the code would not solve the party

problem for the R(5, 5) instance due to the need to test more

graphs than could be tested by a dedicated supercomputer in a

lifetime, its three implementations that all use the same algorithm

and the embarrassingly parallel nature of the problem made it a

nice way to introduce students to parallel computing. Thus, the

code formed the foundation for the curriculum module [5].

However, the lack of performance data from Blue Waters, a

system that could be used by multiple people, and the lack of

instructions to compile and run the code on Blue Waters made the

module less useful than it would be with those features. We note

that there are a number of other such modules available at

http://www.shodor.org/petascale/materials/modules/ from a wide

range of disciplines, but few have implementations in all of MPI,

OpenMP, and CUDA [6]. 1

3. MODULE UPDATES
For this update we looked at the existing module which included a

sequential version, a two-file Compute Unified Device

Architecture (CUDA) version, and an Open Multi-Processing

(OpenMP) version. In addition, there were some instructions and

many comments in the code. The institute held in Illinois at the

beginning of this project taught how to use the CUDA, OpenMP,

and Message Passing Interface (MPI) libraries as well as how to

make hybrids with the libraries. The first steps of the code

writing portion of the project were to write an MPI version and an

MPI and CUDA hybrid. In writing the MPI and CUDA hybrid

we found it was easier to use if the CUDA was in one file so we

edited the CUDA version to be one file and added command line

1 Undergraduate Student

2 Corresponding Author

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

http://www.shodor.org/petascale/materials/modules/

arguments so the user can specify the number of blocks and

threads in the kernel call. We also made sure that every version

was testing the same number of graphs and was creating the same

output, printing out either a graph that did not have a K5 or, a

statement saying that no such graph was found.

With all of these added versions we also had to add compilation

and execution instructions for each version. We also tested

different numbers of nodes and cores so that we could provide

users accurate performance information. This also showed us how

efficient each version was in with different numbers of nodes.

The different versions allowed us to highlight the different ways

we can use the parallel hardware of Blue Waters. The MPI library

allowed us to use multiple nodes on Blue Waters. MPI allowed us

to start processes on multiple nodes and enabled them to

coordinate their graph testing to divide the graphs to be tested and

reduce the wall clock time to run the program. The CUDA library

allowed us to divide the graphs among the GPU cores on a single

node, and the MPI and CUDA hybrid allowed us to use multiple

GPUs, enabling us to test the graphs in a very short amount of

time.

4. METHODS
We conducted performance tests on Blue Waters for each of the

programs. For the sequential, OpenMP, and MPI versions of the

program, ten runs were done for each version and the average of

the ten trials was taken. The performance of the CUDA version is

dependent upon the number of threads and blocks that the

program uses and there is no particular set of values that work for

every program. Some people have stated that there should be at

least 64 threads per block and that number should be a multiple of

64 [7]. Threads per block between 128 and 256 gave others the

best performance for their applications [8]. Therefore, for the

CUDA version of the program, we tested the program with

different numbers of threads and blocks to determine the best

values for those parameters. For the number of threads per block,

we tested 4096, 8192, and 16384. For the number of blocks, we

tested 64, 128, 256, 512, and 1024. Once we determined the best

values for blocks and threads per block, we did the performance

testing for the MPI and CUDA hybrid program using those

values.

5. RESULTS
The times each of the ten runs took for the sequential version, the

OpenMP version, and the MPI version are shown in Table 1 and

Table 2. The times from the tests of the CUDA version that we

used to determine which numbers of blocks and threads per block

are shown in Tables 3-5. For the CUDA version, we found that

64 threads per block resulted in a runtime of over 1.5 times the

runtimes using 128, 256, 512, and 1024 threads per block.

Although the runtimes using the other numbers of threads per

block and all of the numbers of blocks that we tried were close,

128 threads per block and 16,384 blocks produced the fastest

average times. The results of the MPI/CUDA hybrid version of

the program are shown in Table 6.

While the runtime of the OpenMP version of the program

decreased as the number of CPU cores it used was increased as

shown in Figure 1, the speedup achieved shown in Table 7 was

not linear with the number of cores. This could be because

different graphs take different times to examine. If the graphs that

take a longer time are concentrated in a single or a couple sections

of the graphs, then that could result in the speedup being less than

linear. The speedups for the MPI program and the MIP and

CUDA hybrid programs are shown in Table 8 and Table 9. Thos

speedups show similar results to the OpenMP speedups, but are

not quite as good. We expect that this is because in addition to

the distribution of the graphs that take longer to examine, these

programs also need to send information between nodes, which

should result in a performance loss.

Table 1 - Runtime for Sequential and OpenMP Versions

Trial Sequential

OpenMP

Using 1

Core

OpenMP

Using 2

Cores

OpenMP

Using 4

Cores

OpenMP

Using 8

Cores

OpenMP

Using 16

Cores

OpenMP

Using 32

Cores

1 17839 17794 12977 6425 3616 1801 917

2 17838 17720 12811 6416 3601 1815 912

3 17740 17684 12816 6438 3599 1808 906

4 17792 17666 12829 6426 3600 1804 908

5 17899 17631 12819 6410 3581 1800 910

6 17911 17679 12825 6487 3595 1802 914

7 17928 17813 12918 6417 3565 1806 912

8 17835 17641 12831 6526 3556 1811 905

9 18053 17743 12819 6413 3591 1810 911

10 17882 17778 12833 6415 3597 1819 907

Average 17871.7 17714.9 12847.8 6437.3 3590.1 1807.6 910.2

Table 2 - Runtimes for MPI Version

Trial

MPI

Using 1

Node

MPI

Using 2

Nodes

MPI

Using 4

Nodes

MPI

Using 8

Nodes

MPI

Using 16

Nodes

MPI

Using 32

Nodes

1 927 469 238 127 66 37

2 921 478 239 124 67 37

3 925 472 240 124 67 37

4 914 473 238 123 67 36

5 917 476 239 124 65 39

6 926 471 238 124 65 37

7 927 471 238 124 66 38

8 918 479 240 124 66 38

9 918 475 239 124 66 36

10 912 469 239 123 67 37

Average 920.5 473.3 238.8 124.1 66.2 37.2

Table 3 - Runtimes for CUDA Version with 4096 Blocks

Trial

64

Threads

Per Block

128

Threads

Per Block

256

Threads

Per Block

512

Threads

Per Block

1024

Threads Per

Block

1 142 86 84 86 87

2 142 85 84 86 87

3 142 85 84 85 87

4 143 85 85 85 87

5 143 85 84 86 87

6 143 85 85 85 86

7 143 85 85 85 86

8 143 85 85 85 86

9 143 85 85 86 87

10 142 85 84 86 87

Average 142.6 85.1 84.5 85.5 86.7

Table 4 - Runtimes for CUDA Version with 8192 Blocks

Trial

64

Threads

Per Block

128

Threads

Per Block

256

Threads

Per Block

512

Threads

Per Block

1024

Threads Per

Block

1 140 85 84 86 88

2 140 84 84 86 88

3 140 84 85 86 87

4 140 84 84 86 87

5 140 85 84 86 87

6 140 84 85 86 88

7 141 84 85 86 88

8 140 84 85 86 87

9 140 84 84 86 88

10 140 85 84 86 88

Average 140.1 84.3 84.4 86 87.6

Table 5 - Runtimes for CUDA Version with 16384 Blocks

Trial

64

Threads

Per Block

128

Threads

Per Block

256

Threads

Per Block

512

Threads

Per Block

1024

Threads Per

Block

1 140 84 85 86 90

2 139 85 86 86 90

3 139 84 85 87 89

4 140 84 85 86 89

5 140 84 85 86 89

6 140 85 85 87 90

7 139 84 85 87 89

8 140 84 85 87 90

9 139 84 85 87 89

10 140 84 85 87 89

Average 139.6 84.2 85.1 86.6 89.4

Table 6 - Runtimes for MPI-CUDA Hybrid Version

Trial
2 Compute

Nodes

4 Compute

Nodes

8 Compute

Nodes

16 Compute

Nodes

32 Compute

Nodes

64 Compute

Nodes

1 43 22 12 7 4 3

2 43 22 12 7 3 3

3 43 22 12 6 4 3

4 43 22 12 7 4 2

5 43 22 11 6 4 2

6 44 22 12 6 4 3

7 43 22 12 7 4 3

8 43 22 12 6 5 3

9 43 22 11 7 4 3

10 43 22 11 7 4 2

Average 43.1 22 11.7 6.6 4 2.7

Table 7 - OpenMP Speedups and Efficiencies vs. Sequential Program

Cores Speedup Maximum Possible Speedup

1 1.0 1

2 1.4 2

4 2.8 4

8 5.0 8

16 9.9 16

32 19.6 32

Table 8 - MPI Speedups and Efficiencies vs. Sequential Program

Nodes Speedup Maximum Possible Speedup

1 19.4 32

2 37.8 64

4 74.8 128

8 144.0 256

16 270.0 512

32 480.4 1024

Table 9 - MPI/CUDA Hybrid Speedups vs. 1 Node CUDA Program

Nodes Speedup Maximum Possible Speedup

2 1.95 2

4 3.83 4

8 7.20 8

16 12.73 16

32 20.87 32

64 30.90 64

Figure 1 - Average Runtimes vs. Cores Used with OpenMP

Figure 2 - Average Runtimes vs. Nodes Used with MPI

Figure 3 - Average Runtimes vs. Nodes Used with MPI/CUDA Hybrid

6. CONCLUSIONS
During the internship, we developed additional versions of a

program to test graphs for the party problem. We were able to

develop instructions to compile and the run the programs on Blue

Waters and conduct performance testing. These things all have

made the existing curriculum module more useful.

7. REFLECTIONS
This experience has been special to me in many ways. I think it is

a wonderful opportunity to allow undergraduates a chance to work

one-on-one with a mentor doing some research project, especially

this project which allowed me the unique opportunity to work on

the Blue Waters supercomputer. I loved being able to not only

work on Blue Waters but also getting to see it in person and learn

how to use it. The Petascale Institute was amazing, meeting other

students and having the ability to dedicate two weeks to learning

about the system and parallel computing. Learning about the

different libraries was extremely useful to me since I wrote and

used code in almost every library and hybrid we discussed.

The Petascale Institute allowed me, as a computer science major,

to expand my knowledge base beyond what I had learned in the

classroom. I am now more confident with using remote systems,

Linux command and shell scripts. Even without any previous

knowledge about parallel languages or programming I left the

institute with a general understanding and the internship itself has

allowed me to help others learning parallel too. The internship this

year encouraged me to take a class in parallel at my school and I

felt that I gained even more knowledge from that class and was

also able to help those who struggled because of my experience

with Blue Waters.

In the field of computer science there are a lot of options for

career paths. I came into this internship no knowing what really

interested me specifically in computer science. But the work I did

this year made me realize why I love computer science so much, I

love solving puzzles and figuring out how the pieces work

together. All the Party Problem code in different libraries each

required a different understanding of parallelism, and getting them

to work together was an even bigger challenge, but with lots of

guidance from my mentor we figured them out and got some

interesting results. I also discovered how interesting parallel

computing is to me. I still have another year of college left, so I

am not ready to decide where I go from here; but, I know now I

would enjoy working on parallel in the future. I feel like it is a

growing field and now I have a unique experience thanks to this

internship.

8. ACKNOWLEDGMENTS
This research is part of the Blue Waters sustained-petascale

computing project, which is supported by the National Science

Foundation (awards OCI-0725070 and ACI-1238993) and the

state of Illinois. Blue Waters is a joint effort of the University of

Illinois at Urbana-Champaign and its National Center for

Supercomputing Applications. We thank the Blue Waters Student

Internship Program for providing Ruth with this opportunity.

Finally, we thank the University of Mary Washington, which

provided Ruth with room and board for the summer through their

Summer Science Institute and funding for the wet-lab studies.

9. REFERENCES

[1] ramsey theory - Wolfram|Alpha. (2012).

http://www.wolframalpha.com/input/?i=ramsey+theory.

[2] Weisstein, Eric W. "Ramsey Number." From MathWorld--A

Wolfram Web Resource.

http://mathworld.wolfram.com/RamseyNumber.html.

[3] S. P. Radziszowski, Small Ramsey Numbers, The Electronic

Journal of Combinatorics. DS1.10. (originally published July

3, 1994, last updated August 4, 2009),

http://www.combinatorics.org/ojs/index.php/eljc/article/view

/DS1/pdf.

[4] D. Toth and M. Bryant, A Performance Comparison of a

Naïve Algorithm to Solve the Party Problem using GPUs,

Journal of Computational Science Education, v. 3, issue 2,

December 2012.

[5] http://www.shodor.org/petascale/materials/UPModules/how

ManyPeople/

[6] http://www.shodor.org/petascale/materials/modules/

[7] S. Walkowiak, K. Wawruch, M. Nowotka, L. Ligowski, W.

Rudnicki, Exploring utilization of GPU for database

applications, Procedia Computer Science 1(2010) 505-513.

[8] V. W. Lee, C. Kim, J. Chhugani, M. Desiher, D. Kim, A. D.

Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P.

Hammarlund, R. Singhal, P. Dubey, Debunking the 100X

GPU vs. CPU Myth: An Evaluation of Throughput

Computing on CPU and GPU, Proceedings of the 37th

annual international symposium on Computer architecture

(2010) 451-454.

http://mathworld.wolfram.com/RamseyNumber.html
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1/pdf
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1/pdf
http://www.shodor.org/petascale/materials/UPModules/howManyPeople/
http://www.shodor.org/petascale/materials/UPModules/howManyPeople/
http://www.shodor.org/petascale/materials/modules/

