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Forward 
The articles in this issue of the Journal of 
Computational Science Education provide two 
approaches to teaching introductory programming.  
In addition, it provides insights in a student article 
summarizing work to identify potential drugs to 
treat tuberculosis.     
 
The article by Viera et. al. discusses the use of 
worked examples as an approach to teaching 
introductory programming.  Student performance 
with and without worked examples was compared 
using three exercises.  The article provides insights 
into the construction of such examples as well as 
their impacts on learning outcomes. 
 
Ballesteros et.al. describe an introductory 
programming language “Picky” that is designed to 
help students learn introductory programming 
concepts more easily. 
 
Finally, the student article by Priest et.al. details 
their experience in using drug docking applications 
to screen potential drugs that target the enzymes 
involved in tuberculosis.  The students were able to 
screen over 4 million potential drug molecules 
against two enzymes critical to the survival of 
Mycobacterium tuberculosis. 
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ABSTRACT 
In this paper we present an iterative research process to integrate 
worked examples for introductory programming learning 
activities.  Learning how to program involves many cognitive 
processes that may result in a high cognitive load. The use of 
worked examples has been described as a relevant approach to 
reduce student cognitive load in complex tasks.  Learning 
materials were designed based on instructional principles of 
worked examples and were used for a freshman programming 
course. Moreover, the learning materials were refined after each 
iteration based on student feedback. The results showed that 
novice students benefited more than experienced students when 
exposed to the worked examples. In addition, encouraging 
students to carry out an elaborated self-explanation of their coded 
solutions may be a relevant learning strategy when implementing 
worked examples pedagogy.  

Categories and Subject Descriptors 
K.3.2 [Computers And Education]: Computer and Information 
Science Education – Computer science  

General Terms 
Algorithms, Human Factors. 

Keywords 
Computational Thinking, Programming Education, Worked 
Examples. 

1. INTRODUCTION 
Computational thinking [24] has emerged as a set of concepts and 
skills that enable people to understand and create tools to solve 
complex problems [20]. Many programming and algorithm design 
processes have been proposed as part of this set of understandings 
and skills [7, 8].  Hence, it is relevant to introduce programming 
and algorithm design as part of undergraduate courses; however, 
learning to program is a complex task [19]. Thus, it is necessary 
to explore scaffolding strategies to introduce these computational 

thinking skills. The use of worked examples has been 
demonstrated to be an effective approach for supporting complex 
learning when it is guided under certain principles [5]. It can 
reduce the extraneous cognitive load, which is not beneficial to 
learning. Therefore, it allows the learner to devote cognitive 
resources to useful loads. 

This study explores how worked examples can be paired with 
programming and algorithm design. The guiding research 
questions are: 

 How can worked examples be effectively designed to 
introduce programming concepts to novice learners? 

 How do students self-explain worked examples when 
approaching a solution to a programming assignment? 

2. BACKGROUND 
Learning how to program is a difficult task [19]. Programming 
courses are considered the most challenging at the undergraduate 
level as they often have the highest dropout rates. In order to learn 
to program, a student has to understand (a) the purpose of a 
program, (b) how the computer executes programs, (c) syntax and 
semantics of the programing language, (d) program structure, and 
(e) how to actually build a program [9]. Since the learning process 
involves many steps, these myriad steps may generate a high 
cognitive load for students who have no previous experience in 
algorithm design or programming languages.   

Researchers have identified differences in the way novices and 
experts experience programming tasks. Experts use specialized 
schemas to understand a problem based on its structural 
characteristics [19]. They use problem solving strategies, such as 
decomposing the program and identifying patterns, in order to 
approach a solution [18]. Language syntax and analyzing line-by-
line details of programs tend to be the focus of novices due to the 
superficiality of these skills in the hierarchy of knowledge. [18]. 
They usually have problems related to language constructs, such 
as variables, loops, arrays, and recursion. 

The use of worked examples (WE) has been recognized as a 
relevant strategy for supporting novices in learning tasks that 
involve a high cognitive load. Worked examples approach is 
guided by principles associated with Cognitive Load Theory 
(CLT). CLT is a recognized theory that focuses on cognitive load 
processes and instructional design [15]. CLT establishes a 
cognitive architecture to understand how learning occurs. The 
cognitive architecture structures memory that comprises a limited 
working memory and a vast long-term memory [10].  CLT states 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. Copyright ©JOCSE, a 
supported publication of the Shodor Education Foundation Inc. 
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that there is a cognitive load generated when learning occurs. This 
load can be affected by the learner, the learning task, or the 
relation between the learner and the learning task [10].  

There are different types of cognitive loads: (1) intrinsic load, 
which is the inherent load to the difficulty of the learning task; (2) 
germane load, which is comprised of required resources in the 
working memory to manage the intrinsic load, which, in turn, 
support learning; and (3) extraneous load, which refers to the load 
that arises from the instructional design and does not directly 
support learning [17]. To improve the learning process, the 
extraneous load should be minimized so that the germane 
resources can be maximized. 
Figure 1 shows a representation of the learning process based on 
the CLT. In Phase 1, a student is working on a task that has 
different forms of representations. In Phase 2, the cognitive 
process that takes place is depicted.  In Phase 2a, different senses 
process the information the student is receiving.  In Phase 2b, the 
limited working memory (three to five chunks of information) is 
assigned to germane or extraneous resources depending on how 
the load arises from the learning experience. In Phase 2c, schemas 
are created and stored in the long-term memory when learning 
takes place.  

Novices usually work backward to solve problems using a means-
ends analysis.  Students need to fill the gap between the initial 
problem state and the final goal, and this search process generates 
a cognitive load. Some of the instructional design techniques that 
have been proposed to reduce the cognitive load are: goal free 
effect, worked examples effect, and completion effect [10]. The 
goal free effect suggests that, by removing a specific goal from the 
problem, the learners will work forward, state by state as experts 
do. Thus, the cognitive load is reduced because the students only 
have to consider the current state and the next state of the 

problem. The worked example effect occurs when students are 
exposed to an expert solution to the problem. These examples 
allow learners to start solving similar problems by analogy, 
thereby reducing the cognitive load. Finally, the completion effect 
refers to problems with a given partial solution that are provided 
to students to complete. Completion effect examples are gradually 
modified to present less information to the student. This approach 
is also called faded worked examples (FWE), and it has shown 
positive results in reducing cognitive loads in the domains of 
mathematics and programming. 

Atkinson et al. [5] proposed instructional principles for the design 
of WE based on several studies. According to these principles, a 
WE should include: (1) A problem statement; (2) A procedure for 
solving the problem; and (3) Auxiliary representations of a given 
problem. Atkinson’s principles and their adaptations for this study 
are summarized in Table 1. 

When WE are used as part of the learning process, the student 
goes through a four-stage process described by the theory of 
Adaptive Control of Thought-Rational (ACT-R) [4]. According to 
this theory, the skill acquisition process is composed of four 
stages in which knowledge transitions from declarative to 
procedural [5]. During the first stage, the students solve problems 
by analogy using worked examples. Then, in the second stage, the 
students use abstract declarative rules gathered from the examples. 
When students get to the third stage, declarative knowledge is 
already acquired and stored in their long-term memory. 
Procedural rules have also started to become clearer to students by 
practice. Therefore, students are able to respond automatically and 
faster to familiar problems. During the last stage, once students 
have been exposed to several examples, they are able to solve 
many different problems on their own.  
  

 
Figure 1. Learning process from a CLT perspective. In (1) the learner is studying the materials.  In (2) the learning process takes 

place: (a) Senses capture information; (b) Different forms of cognitive load make use of working memory; (c) Schemas are created 

and automatized in  long-term memory 
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Table 1. Effective features of worked examples described by Atkinson and collaborators [5]. The right column describes our 

adaptation for these learning tasks 

Feature Description Our Adaptation 

Intra-Example 

 The use of multiple formats and resources is 
important when designing WE; however, different 
formats should be fully integrated to avoid extra 
cognitive load generated by the split attention effect.  

 The example should be divided in sub goals or steps 
to make it easier for the student to understand. Labels 
and visual separation of steps can be used for this 
purpose. 

 The examples contained multiple forms of 
representations including C# code, visual flowchart 
algorithm description, and verbal explanations of 
the approach. 

 Each representation was segmented in steps toward 
the solution. These steps were aligned with the 
representations. 

Inter-example 

 The variability of problems during a lesson can offer 
learning benefits, but it is important to reduce the 
cognitive load when using techniques such as WE.  

 The use of multiple WE (at least two examples) with 
structural differences can improve the learning 
experience. The WE should be presented with similar 
problem statements that encourage the students to 
build schemas based on analogies and the 
identification of declarative and procedural rules. 

 Different problems were approached during each 
lab session.  

 Two examples were provided and students were 
required to complete at least three additional 
programming challenges.  

 All the examples and challenges were focused on a 
specific topic for each lab session (e.g. loops, 
creating arrays, searching in arrays). 

Environmental 

 Students should be encouraged to self-explain the 
WE in order to be actively engaged with them.  

 Some strategies that support this process are: (1) 
Labelling WE and using incomplete WE; (2) 
Training Self-Explanations; and (3) Cooperative 
Learning. 

 One of the examples did not have the verbal 
explanation (i.e. in-line comments of the 
programming code).  

 Before starting to solve the assignment, students 
were asked to comment on the code for the example 
that did not have verbal explanation. This activity 
was intended to encourage self-explanation of the 
examples. 

 Some of the assignments could be built from the 
examples. 

 

2.1 Previous Experiences 
Guzdial [11] has advocated for an approach to programming 
education other than a common approach, which asks students to 
just start building a program. Based on Kirschner, Sweller and 
Clark [12], he argued that, “expecting students to program as a 
way of learning programming is an ineffective way to teach” 
(p.11). As an alternative, he proposed an approach based on the 
work of Pirolli and Recker [16] who used WE and cognitive load 
theory to introduce programming concepts. In one of their 
experiments, Pirolli and Recker explored how transfer occurs in 
learners, starting with examples and moving on to programming 
problems on Lisp. To implement the examples, each lesson started 
by having students read the textbook and analyze WE. The 
students then used this knowledge to find a solution for an 
assigned problem. Authors hypothesized that the problem solving 
process enriched declarative knowledge as well as procedural 
knowledge. 
The declarative knowledge in programming includes code 
structure, programming abstractions, functionality of the 
abstractions, and purposes and operation of the program. All these 
elements are represented as a mental model.  

On the other hand, the procedural knowledge comprises the 
construction, manipulation, and interpretation of this model. In 
their experiments, Pirolli and Recker [16] found that worked 
examples were useful in building these mental models by 
“providing [students with] concrete referents for abstract 
discourse and newly introduced concepts and propositions” 
(p.273). 

In another study, Moura [13] used Portugol, a tool for learning 
algorithms, for students to understand a given example by 
visualizing the execution of the algorithm. She found that, 
although students took some time to get used to the tool, once 
they did get used to it, they performed better on assessment tests 
when learning computing science fundamentals. Regarding the 
implications of the study, Moura suggested that an effective way 
to help students learn how to program requires an easy-to-use tool 
as well as assigning some pre-training time for the students to get 
familiar with it. 

This study focuses on a strategy for providing worked examples to 
an introductory programming course to support student learning 
of process of loops and arrays concepts. The worked examples 
were designed following the principles by Atkinson and 
colleagues [5] as described on Table 1.  

3. METHODS 
This study followed a Concurrent Mixed Methods Research 
process design [23]. This design includes one quantitative strand 
(pretest, posttest, survey, and lab scores) and one qualitative 
strand (open ended questions and comments in the code of the 
examples). Each strand was analyzed independently. At the end, 
the identified commenting styles were related with the 
quantitative measures to evaluate whether there was a trend in the 
way students experienced the use of examples. 

3.1 Participants 
The participants of this study included thirty-five 

undergraduate students majoring in Computer and Information 
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Technology at a large midwest university.  As part of an 
introductory programming course, they were exposed to weekly 
lab sessions where they applied programming concepts learned in 
lecture. Three of these weekly sessions (8th, 9th, and 10th) were 
used to evaluate the WE approach. The sample size as well as the 
participants slightly varied from session to session since not all 
students attended all the sessions or completed pretest and posttest 
assessments.  

These students were divided into two different groups. For lab 
session #8, both groups used worked examples. For lab sessions 
#9 and #10, one group was considered the experimental group 
(using WE) while the other one was the control group. The 
control group continued doing the lab session as they were used 
to; that is, solving the assigned problems based on what was 
learned during the lectures without additional scaffolding but only 
the help provided by the teaching assistant. Table 2 summarizes 
participants’ information and configurations for each of the 
sessions. 

Table 2. Number of participants per session 

Session Group 
Number of 

Participants 

Programming 

Experience 

8th 
Experimental 28 12 

Total 28 12 

9th 

Experimental 19 10 

Control 15 7 

Total 34 17 

10th 

Control 16 9 

Experimental 14 8 

Total 31 17 

3.1 Materials 
Two examples designed by following the instructional principles 
of worked examples [5] were provided to the students in the 
experimental group.  The examples were composed of a Visual 
Studio Solution with the programmed worked examples as well as 
a matched flowchart representing the solution. Figure 2 depicts an 
example of what was provided to the students.  On the left side, 

the C# code adds the even numbers from 0 to a variable n1. The 
code included comments to explain each section. The right side of 
the figure showed a flowchart describing the algorithm design for 
this particular implementation.  This design was coupled with 
textual description. All the elements in the example were 
identified by a code that allowed the students to match the 
different representations (i.e. steps in the flowchart with segments 
of code). 

Two examples were provided to the students per session. Both 
had the distribution depicted on figure 2; however, the comments 
within the code were not included in the second example because 
the students were required to complete that portion as part of the 
assignment.  With this design, we expected that students would 
start using the examples to solve the problems by analogy. Then, 
having acquired some declarative and procedural rules, students 
were expected to be able to solve the different and more 
challenging problems on their own.  

3.2 Procedures 
The research protocol consisted of a series of tasks.  The first task 
was a pretest aligned to the learning objectives of the lab session. 
The students were given 10 minutes to complete the test before 
starting the session.  The next tasks consisted of exploring 
examples and commenting on the code in one of the examples in 
order to self-explain it.  The fourth task was to solve three 
additional assignments using the examples whenever they were 
necessary. Finally, students completed a posttest and survey 
related to their perceptions regarding the use of worked examples.  
The students could take as much time as they needed to complete 
this task within a period of two hours.  The assignments had to be 
turned in before proceeding to the next assignment.  The collected 
data included the pretest, posttest, survey data, commented 
example, and programming projects.  

Following design-based research approaches [21], this study 
includes three iterations, one for each lab session. Right after the 
session, the tests and survey were analyzed. This information was 
used to refine the examples, assignments, and instruments for the 
subsequent iteration. For example, after the first iteration, some 
students mentioned that the comments in the code were very 
detailed decreasing the code’s readability. Therefore, the next 
iteration examples included simpler comments.  

 
Figure 2. Distribution of a worked example including multiple representations of the solution (i.e. computational, textual, and 

graphical) 
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3.3 Data Collection 

3.3.1 Learning 
Pretest and posttest as well as lab assignments were employed to 
assess learning gains during the lab sessions. Table 3 summarizes 

how these instruments were prepared and implemented. The 
exercises for the pretest and posttest were slightly modified (i.e. 
changing values or sizes) to minimize the testing effect.  Written 
comments within the code were also used as an additional source 
of qualitative data. Students were required to do this as a strategy 
to self-explain one of the provided examples. 

 
Table 3. Description of the learning instruments employed in each laboratory session 

Session Description Pretest and Posttest Lab Assignment 

8th 

The student will 
create an algorithm 
that contains for-
loop and while-
loop structures to 
solve summations 
or display a list of 
values 

Four exercises to calculate the output after 
certain loop structure. For example: 
 

 
 

Complete the implementation for the following 
list of functions: 
 
(1) Sum of evens between 0 and a given value 

N 
(2) Sum of a range of numbers  
(3) Calculate the factorial of a given value N 
(4) Calculate 1 + 22 + 32 +… N2 

9th 

The student will 
create an algorithm 
that initializes an 
array, add some 
values, and display 
the stored values 

Four exercises to complete the code or write the 
output of certain algorithm. For example: 
 

 

Write the code to store and display numerical 
and textual values in an array. 

 

10th 

The student will 
create an algorithm 
to perform a 
sequential search 
and switch array 
elements 

Four exercises to write/complete the code to find 
an element within an array, reverse an array or 
switch two values within an array. For example:  
 

 

Write the code to complete the following 
methods for a given array:  
(1) Add 
(2) Find 
(3) Switch 
(4) Merge 
(5) Reverse  

 

3.3.2 Perceptions 
At the end of the lab sessions, students were given a survey where 
their responses were recorded using a seven-level Likert Scale 
with scores ranging from 0 to 6 from strongly disagree to strongly 
agree. The results were normalized from 0% to 100%. Values 
between 0% and 40% were considered negative perceptions. 
Values from 40% to 70% were considered  undecided perceptions 
and values higher than 70% were considered positive perceptions. 
The following questions were asked in the survey: (1) I feel I have 
the ability to accurately evaluate and construct a <concept>; (2)  I 
feel I have the ability to describe a <concept>; (3)  I have the 
ability to create a program that includes a <concept>. The three 
questions were posed to assess perceived ability to complete the 
given tasks.  Two additional open-ended questions were asked to 
students to analyze their perceptions about the examples and the 
laboratory session: (1) What would you improve for the examples; 
and (2) What suggestions do you have for the laboratory sessions? 

3.4 Data Scoring and Analysis 

3.4.1 Learning 
Pretest and posttest assessments were scored by two different 
graders to assure reliability. Whenever the graders got different 

scores, they discussed the scores until they agreed on a certain 
value. The lab assignments were scored by the teaching assistant.  
The comments written by the students were analyzed qualitatively 
to identify different categories in which the comments could fit. 
These categories were assigned a descriptive code that was used 
later to identify students’ commenting styles. 

3.4.2 Perceptions 
Descriptive and inferential statistics were used to analyze the 
learning and perception measures. Whenever the data did not 
satisfy the normality assumption, a logarithmic transformation 
was used to be able to run the inferential tests.  The open-ended 
questions were first analyzed using open-coding by one of the 
researchers. Then, to assure reliability, another researcher re-
analyzed students’ responses using his codes. The percentage of 
agreement was 80%. These codes were then grouped by themes. 

4. RESULTS 
Three iterations of data collection are reported in this section. At 
the end of each iteration, quantitative and qualitative results were 
used to improve the learning materials and the instruments for the 
following iteration. 
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4.1 Session #8: The student will create an 

algorithm that contains for-loop and while-

loop structures to solve summations or display 

a list of values 

4.1.1 Quantitative Data 
Pretest and posttest scores were compared to evaluate learning 
gains. No significant differences were found for the complete 
group of students t (54) = -0.702, p = 0.4857 nor for the 
subgroups (i.e., students with/without programming experience). 
Table 4 depicts the descriptive statistics for the learning measures 
from session #8.  
Differences between groups were assessed by comparing lab score 
and time to complete the assignment. Significant differences were 
only found in the “time to complete” variable, and these 
differences were found when comparing students who had 
programming experience and those who had not F(26,1)=23.86, 
p<0.001. however, although non-significant differences were 
found, students without programming experience increased their 
score from pretest to posttest more than those with some 
experience. They also received a higher lab score as compared to 
students with prior programming experience. 
Overall, perception measures fell in the positive perception 
category for the ability construct (Mean = 79.49%; Standard 
Deviation –SD– = 16.61%). The measure was also compared 
between groups. Significant differences were found for the ability 
construct (t(24)=3.204, p<0.01) when compared by programming 
experience. The results suggest that students with previous 
programming experience (Mean = 89.90%; SD = 15.48%) 

perceived a higher ability to deal with loops than those without 
previous experience (Mean = 71.85%; SD = 13.19%). 
Table 4. Descriptive statistics of student learning scores in Lab 

Session #8 

Test 
Overall 

(N=28) 

Programming 

Experience 
Yes 

(N=12) 
No 

(N=16) 

Pretest (%) 
Mean 50.71 64.58 40.31 

SD 30.81 24.90 31.38 

Posttest (%) 
Mean 56.25 65.42 49.38 

SD 28.14 29.81 25.62 

Lab Score 

(%) 
Mean 95.71 95 96.25 

SD 8.36 9.05 8.06 

Time to 

Complete 

(min) 

Mean 86.32 68.83 99.44 

SD 22.29 17.66 15.42 

 

4.1.2 Qualitative Data 
The two open-ended questions were completed by twenty-five 
students. The questions were: (1) What would you improve for the 
examples?; and (2) What suggestions do you have for the 
laboratory sessions? Table 5 and Table 6 depict the results of the 
qualitative analysis to students’ responses. A group of students 
suggested getting rid of some of the comments (24%) or better 
aligning the examples with the assignments (16%). 

 

Table 5. Categorical analysis for the student responses to the strategies to improve examples in Lab Session #8 

Theme Code Definition % Representative Quote 

Students 
struggled with 

specific 
elements 

within the 
examples 

Nothing to 
Improve 

The student thinks that the examples are 
fine the way they are presented 

5
6 

“nothing to improve” /“Nothing I can think of. 
As long as they are related to the problems and 
the comments are descriptive, they are fine” 

Less Comments The student highlights the need to get rid 
of some of the comments since they have 
an impact on the code readability 

2
4 

“Less comments, too hard to find place among a 
sea of comments”/ “I feel like the comments 
chitter the code and makes it difficult to read” 

Math 
Expression 

The student feels the use of unknown 
mathematical expression constrains 
her/his understanding of the example 

1
6 

“Explain N! - What that means?” / “…the ‘^’ 
syntax issue was confusing for me” 
 

Explicit relation 
example / 
assignment 

The student requests that the examples be 
more detailed so that they guide the 
student through the problem solving 
process of the assignment 

1
6 

"Better descriptions for what we are supposed to 
do" / "Make it so the examples demonstrate most 
of the common types of loops people mess up 
on." 

Students 
suggested 
integrating 

more hands-
on activities 
as part of the 

classroom 
approach 

Better with 
Examples 

The student thinks working with 
examples is a better approach than 
working from scratch 

2
0 

“I wanna spend more time with examples” / “It 
helped a lot but I feel like the book could've 
helped explain writing the math problems more 
in depth” 

In-class 
activities 

The student thinks that the class activities 
should be focused on practical activities 
(design and programming activities) 

1
2 

“Maybe more hands on in class and allow us to 
program it on the computers” / “Make students 
answer questions in algorithmic form” 

Better without 
helped her/him to 

solve the assignment 

4 "Unsure, did not use them" 
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Table 6. Categorical analysis for the student responses to the strategies to improve the laboratory sessions in Lab Session #8 

Theme Code Definition % Representative Quote 

Students’ 
suggestions 

about 
laboratory 
sessions 

No suggestion The student thinks the laboratory sessions 
are fine the way they are carried out 

64 “They are going good” / “Nothing so far” 

Logistic 
Improvements 

The student feels that  the laboratory 
session could be improved by either having 
more time, different levels of difficulty, or 
more teaching assistants 

32 “More TAs for more help" / “More optional 
assignments” / “More TA to speed things 
up.” 

Exploring 
examples 

The student thinks  that exploring examples 
would help them to better understand the 
concepts before starting to build a program 
from scratch 

20 “To continue to experiment with these types 
of ideas on presenting programming in an 
easier to understand format” / “Explore 
and try various examples”. 

Better without 
examples 
 

The student does not consider the examples 
as having helped her/him to solve the 
assignment 

12 “I personally like the old method better” 
and “Keep them from Scratch”. 

Table 7. Categorical analysis for the student comments within the second example in Lab Session #8 

Category Definition % Representative Quote 

1. Detailed 
Comments 

The student wrote 
a detailed 
description in 
every step of the 
code 

21 *radSumOfNumbers is the name of the Radiobutton 
*related to the sum of numbers 
*it allows to identify whether the user wants to perform 
*this operation when checked or when the radio button is not checked. */ 
/*txtN1.Text is what the user enters 
* The text should be converted into a number froms string to do mathematical operations 
*/ 
//txtN2.Text will correspond to n2, because that is what the user enters 
// the parse method converts the string into numbers 
in the for loop here, the variable i is defined as n1,  
* i <= n2, will make sure the loop will continue until the number reaches the  
* the number the user entered for n2 
* i++ will make sure the count will increase 1 in every loop. 
//Add the sum to the total result 
//shows the result in the output textbox 

2. Basic 
Comments 

The student used 
the first example to 
write the 
comments for the 
second one. The 
comments were 
very simple. 

32 “*radSumofNumber is the name of the radio button 
*if this radio button is checked, the loop/calculation are executed 
//declare N1 and parse 
//declare N2 and parse 
//declare the initial value for total 
//create the loop with the variables 
//calculation from the loop 
//display the calculation 

3. No Clear 
Comments 

The student did not 
write any 
comments at all or 
the comments were 
too incomplete to 
be understood. 

18 // adds together all the inputed values 
 

4. Relevant 
Conditions 
 

The student only 
focused on 
relevant sections of 
the code (e.g. loop 
conditions) with 
rich descriptions. 

29 // * the total is initialized to zero 
// * i equals n1 in the beginning of the code then as long as i is smaller than n2 than  
 // the program will operate and it will add 1 to n1 after every time.  
// i is added to the total every time that the program is run. 
// The output is displayed through by using the tostring method. 
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Regarding the laboratory sessions, students’ perceptions were 
divided between those who preferred working with examples 
(20%) and those who preferred solving problems from scratch 
(12%). The other source of qualitative data was students’ 
comments in the code for one of the provided examples. Four 
categories were identified for the commenting styles from 
students. The categories, descriptions, and examples are presented 
in Table 7. Most of the students either used the first example as a 
model to comment the other one with simple comments, or 
focused on describing the most relevant section of the code. 

4.1.3 Quan + Qual  
In addition to the qualitative analysis of the comments, we wanted 
to evaluate if there was a quantitative difference among students 
with different commenting styles. Table 8 shows descriptive 
statistics for the learning and perception measures grouped by 
commenting style. 

Non-significant differences were found from pretest to posttest for 
all of these groups; however, the highest scores in both posttest 
and lab scores were from students with either detailed comments 
or those who highlighted relevant conditions with their comments. 
These students also spent more time completing the assignment 
on average compared to the rest of the students. We speculate that 
these non-significant difference may be due to a large standard 
deviation and the small sample size, which resulted from dividing 
the students into four groups. 
Significant differences were found for the Ability Construct 
between the commenting styles “Basic” and “Unclear.” The 
results suggest that students who did not write comments or who 
wrote unclear comments felt very confident in their abilities. On 
the other hand, those with basic comments may have felt unsure  
of their abilities; therefore, their comments were as simple as 
possible.  

Table 8. Descriptive statistics of learning and perception scores grouped by commenting styles in Lab Session #8 

Commenting 

Style 

Pretest (%) Posttest (%) Lab Score (%) 
Time to Complete 

(min) 
Ability (%) 

Mean SD Mean Mean Mean SD Mean SD Mean SD 

1. Detailed (N=5) 58.33 37.64 75 27.39 96.67 8.16 91.83 26.44 82.22 14.91 

2. Basic  (N=9) 38.33 33.16 45.55 30.46 95.56 8.81 77.33 18.49 67.90 18.59 

3. Unclear (N=5) 55 20.92 49 26.32 92 10.95 77.20 26.37 92.22 10.83 

4. Relevant  (N=7) 56.25 29.12 58.75 23.87 97.5 7.07 98 16.86 83.33 10.14 

4.1.4 Evaluation of the Iteration 
As part of the results, two elements were called to our attention 
from this first iteration: (1) there were no significant differences 
from pretest to posttest; (2) students requested improvement of the 
examples by removing detail in the comments but increasing 
explanations.  
After analyzing the results in the pretest and posttest measures, it 
was identified that some students were able to understand how a 
loop worked, but they failed to calculate the resulting value that 
was asked for in the test. Another identified aspect from the test 
was that students were struggling with mathematical expressions 
that are common in pseudo-code but might not be that common 
for them (e.g., “^” to indicate potentiation). Therefore, the 
following tests were more focused on building/completing code 
and all the potentially confusing terms were removed. Besides, the 
comments in the examples were organized in such a way that only 
the main portion of the code had a rich description of the solution. 

4.2 Session #9: The student will create an 

algorithm that initializes an array, add some 

values, and display the stored values 

4.2.1 Quantitative Data 
During this session, the two groups were exposed to different 
approaches. One of the groups used examples (Experimental, 
N=18), while the other group used their traditional problem 
solving approach (Control, N=14). Table 9 shows descriptive 
statistics for the learning measures of these groups. The 
programming experience values were only calculated for the 
experimental group since that is the only group where these may 
have an impact for assessment.  
 

 
Non-significant differences were found between groups or 
between pretest to posttest. In spite of this, it is interesting to see 
that students without programming experience performed better -
and with a smaller standard deviation- in the lab score than 
students with programming experience. This follows the trend 
from lab session #8. 
Table 9. Descriptive statistics of student learning scores in Lab 

Session #9 

Test 

Group Programming 

Experience 
Control 

(N=14) 
Exper. 

 (N=18) 
Yes 

(N=10) 
Yes 

(N=18) 

Pretest 

(%) 
Mean 63.09 55.56 59.17 51.04 

SD 29.55 36.04 37.98 35.47 

Posttest 

(%) 
Mean 67.86 63.43 70 55.21 

SD 30.29 35.14 33.38 37.78 

Lab 

Score 

(%) 

Mean 79.14 91.67 88.5 95.63 

SD 35.36 23.45 31.27 6.78 

Time 

(min) SD 26.65 10.70 11.69 9.78 

 
For the ability construct, students in both control group (Mean = 
83.33%; SD = 15.71%) and experimental group (Mean = 70.37%; 
SD = 26.61%) showed a positive perception. Non-significant 
differences were found between groups. For the experimental 
group, contrary to lab session #8, differences in ability were not 
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found between experienced (Mean = 76.11%; SD = 24.71%)  and 
non-experienced (Mean = 63.19%; SD = 28.78%)  programmers. 

4.2.2 Qualitative Data 
At the end of the session, students responded to two open-ended 
questions: (1) what would you improve for the examples?; and (2) 
what suggestions do you have for the laboratory sessions? This 
time only one student suggested that the examples would benefit 
from having still less comments while another commented: “This 
was much better without all the comments.” In addition, more 
than sixty-percent of the students thought the examples were 
complete and useful. Table 10 and Table 11 summarize the results 
of the qualitative analysis to students’ responses. 
Regarding the suggestions for the lab session, more than sixty 
percent of students thought the examples were fine the way they 
were implemented. As in lab session #8, results suggest that there 
are differences regarding the preference of using examples. While 
there is a broad acceptance concerning the way the examples are 
presented and some of the students really enjoy using this 
scaffolding, there is another group of students who preferred 
building their code from scratch. 
The self-explanation process of writing comments on the code 
was only required for the experimental group. The same 
categories were found for the commenting styles compared to the 
lab session #8. The distribution of students’ comments was: 
detailed comments (33.33%), basic comments (33.33%), no clear 
comments (16.17%), and relevant conditions (16.17%). 

4.2.3 Quan + Qual  
Table 12 shows the results of the comparison of the learning and 
perception measures grouped by commenting style. The reduced 
sample size due to the separation between experimental group and 
control group makes it difficult to use inferential statistics. As in 
lab session #8, in lab session #9, non-significant differences were 
found for all of the learning measures of these groups; however, 
once again, the highest scores were for students who had detailed 
comments or highlighted relevant conditions. 
Non-significant difference was found between the groups for the 
perception measures. We see, however, that the students without 
comments or with unclear comments are those who feel more 
confident about their ability. This result is similar to lab session 
#8. Students with basic comments present the lowest scores for 
the perception construct. 

4.2.4 Evaluation of the Iteration 
For lab session #9, students’ suggestions about the examples 
changed significantly in terms of the number of comments. Still, a 
couple of students considered the amount of comments could be 
reduced. Therefore, even simpler but explanatory comments were 
included in the following example.  In addition, students 
suggested adding more complexity to the examples and 
programming challenges. Since lab session #9 was the first one 
focused on the array concept, it dealt with creating and listing 
arrays. For the following lab session (#10) the level of difficulty 
was increased by dealing with swap and sequential search array 
operations. 
 

Table 10. Categorical analysis for the student responses to the strategies to improve examples in Lab Session #9 

Theme Code Definition % Representative Quote 

Students 
struggled with 

specific 
elements 

within the 
examples 

Nothing to 
Improve 

The student thinks that the examples are 
fine the way they are presented 

69 “The examples given was perfect. I don't find 
any improvements needed.” / “Nothing, the 
examples were good” 

Less Comments The student highlights the need to get 
rid of some of the comments since they 
have an impact on the code readability 

6 “Less Comments” 

Complexity and 
Quantity 

The student feels that it would be better 
to have more and more complex 
examples  

15 “Maybe harder ones” / “Not much, just detail 
and complex examples would help” 
 

Students 
suggested 
integrating 

more hands-
on activities 
as part of the 

classroom 
approach 

Better with 
Examples 

The student thinks working with 
examples is a better approach than 
working from scratch 

27 “More examples” / “Nothing really, already 
enough material to help a novice like me” 

In-class activities The student thinks that the class 
activities should be focused on practical 
activities (design and programming 
activities) 

6 “More of class time is necessary to fully 
understand this language” / “Know how to 
build array” 

Better without 
Examples 

The student does not consider the 
examples as having helped her/him to 
solve the assignment 

3  “In order to remember how to write the code, I 
feel we should practice writing code (not 
typing), i.e., the methods, etc. until we know 
them.” 
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Table 11. Categorical analysis for the student responses to the strategies to improve the laboratory sessions in Lab Session #9 

Theme Code Definition % Representative Quote 

Students’ 
suggestions to 

laboratory 
sessions 

No suggestion The student thinks that the laboratory 
sessions are fine the way they were 
carried out 

67 “No suggestions” / “I enjoy these labs 
immensely. I have no suggestions” 

Logistic 
Improvements 

The student feels that the laboratory 
session could be improved by having 
more time, different levels of difficulty, or 
more teaching assistants. 

9 “Maybe the instructor could walk us 
through the code that is already provided so 
that we have a better understanding of what 
we are going into. " / “Pretest and posttest 
during a lab adds stress to an inherently 
stressful situation”  

Exploring 
examples 

The student believes that exploring 
examples would help her/him to better 
understand the concepts before starting to 
build a program from scratch 

12% “I like the way it was taught this week and 
last week” / “Perhaps more code 
demonstrations.” 

Better without 
examples 
 

The student does not consider the 
examples as having help

12% “I prefer building programs from scratch, 
as I understand my own code better.”/ 
“Writing code myself is the best way to 
improve my skill, at least for me”. 

 

Table 12. Descriptive statistics of learning and perception scores grouped by commenting styles in lab session #9 

Commenting 

Style 

Pretest (%) Posttest (%) Lab Score (%) 
Time to Complete 

(min) 
Ability (%) 

Mean SD Mean Mean Mean SD Mean SD Mean SD 

1. Detailed (N=6) 61.11 32.35 66.67 36.89 100 0 74 8.07 72.22 30.63 

2. Basic  (N=6) 45.83 42.41 54.16 36.04 93.33 7.53 80.33 10.60 53.70 25.98 

3. Unclear (N=3) 33.33 28.87 61.11 41.94 65 56.34 72 8.66 85.19 16.97 

4. Relevant  (N=3) 86.11 24.06 77.78 38.49 98.33 2.89 89 12.49 85.19 13.98 

 

4.3 Session #10: The student will create an 

algorithm to perform a sequential search and 

switch array elements 

4.3.1 Quantitative Data 
For this last session, the experimental and control groups were 
switched after lab session #9’s configuration. Thus, the 
experimental group became the control group (N=16), while the 
control group became the experimental one (N=14). Table 13 
shows descriptive statistics for the learning measures of these 
groups.  Significant differences were found between pretest and 
posttest measures for the non-experienced students t(12)=-2.14, 
p=0.053 (one tailed t-test). With an average increment of 25%, 
students in the experimental group showed a significant change in 
the posttest learning measure as compared to the pretest. The 
result suggests that students in the experimental condition, with 
no previous programming experience, took advantage of the 
examples to increase their understanding about sequential search 
in arrays. 
Regarding the perception measures, students in the experimental 
condition showed a positive perceived ability (Mean = 80.74%; 
SD = 16.38%) as compared to the neutral perceived ability 
presented by the control group (Mean = 65.93%; SD = 20.67%). 

 

Table 13. Descriptive statistics of student learning scores in 

Lab Session #10 

Test 

Group Programming 

Experience 
Control 

(N=16) 
Exper. 

 (N=14) 
Yes 

(N=8) 
Yes 

(N=7) 

Pretest 

(%) 
Mean 56.64 66.67 75.78 56.25 

SD 25.36 15.25 11.29 12.50 

Posttest 

(%) 
Mean 64.06 77.50 73.21 81.25 

SD 25.87 22.76 16.81 27.55 

Lab 

Score 

(%) 

Mean 78.13 80 86.25 72.86 

SD 40.04 35.25 35.03 36.84 

Time 

(min) 
Mean 110.31 101.40 91.50 112.71 

SD 8.55 22.03 14.91 23.25 

4.3.2 Qualitative Data 
The open-ended questions asked at the end of the lab session #10 
were analyzed following the codes and themes found on the 
previous lab sessions. On this iteration, fewer suggestions 
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concerning changes were made. Students highlighted that “These 
examples were clearer than in the past.” Moreover, none of the 
students suggested that there was a need to reduce the comments 
or to change the quantity/complexity of the examples. Results are 
summarized in Table 14. 
Regarding the lab sessions, the different perspectives about the 
preference of using/not using worked examples continued. Four 
students (13%) mentioned that they wanted to continue with 
examples, while two students (7%) preferred working from 
scratch. Three students (10%) talked about logistics, such as more 
time for the lab sessions or more lab sessions for specific topics. 
Seventeen students (57%) made no suggestions. 
Finally, some students seemed worn out by the research process 
and complained about the time the pretest and posttest took from 
the session: “I don't have a problem with it but these in lab 
quizzes take away time from the overall lab and if they are a little 
sooner, then they might have trouble finishing lab in time.” In 
fact, the complexity of this lab as well as the time taken to solve 
the tests made this lab session the longest in terms of the time to 
be completed. Therefore, only four students wrote the comments 
in the code. The distribution of these students for commenting 
styles was: (1) Detailed (two students); (2) Basic (one student); 
(3) Unclear –no comments- (ten students); (4) Relevant (one 
student). 

4.3.3 Quan + Qual  
Since the sample size became too small in this lab session, 
descriptive or inferential statistics were not calculated; however, 
to identify whether the trend that came from lab sessions #8 and 
#9 continued, the lab score for the three students in the detailed 
and relevant commenting styles were checked. All three students 
got a score of 100% , thereby confirming the trend.  

5. DISCUSSION 
This study explored the use of worked examples to support 
programming activities as part of an introductory course.  
Specifically, this study explored two questions and findings are 
discussed below. 

5.1 How can worked examples be effectively 

designed to introduce programming concepts 

to novice learners? 
Three laboratory sessions were used to introduce programming 
concepts using worked examples. The design and implementation 
of the worked examples were iteratively improved using students’ 
suggestions and validated through learning assessments. The 
structure of the examples followed the principles suggested by 
Atkinson [5] that included: a problem statement, a procedure for 
solving the problem, and auxiliary representations of the problem 
and solution.  
Two examples were used to scaffold the learning process in each 
session. The problem statement consisted of a single programming 
task aligned to the learning objective of the lab session and 
embedded within the problem set. The solution was represented in 
multiple forms including textual, graphical, and computational 
representations. All the representations were aligned with each 
other. A self-explanation task was also included as part of the 
assignment using written comments within the code to engage the 
students in the process. 
The feedback from open-ended questions was useful for  
improving the examples. The main component of these edits was 
the elimination of complex explanations within the code that 
could generate additional cognitive load to students. In fact, the 
examples with the simplest comments (lab session #10) were the 
ones that showed significant differences. Some other changes 
were included such as: (1) avoiding the use of complex 
mathematical symbols; (2) increasing the complexity of the 
examples; and (3) aligning them to the problem assignments. 
Only the last laboratory session (#10) presented significant 
differences in learning gains for students with non-programming 
experience. This result is aligned to what is suggested by 
Atkinson et al. [5] in that the worked examples approach may be 
useful for novices in an initial skill-acquisition stage such as 
analogy or abstract rules of learning [4]. 
 

 
Table 14. Categorical analysis for the student responses to the strategies to improve examples Lab Session #9 

Theme Code Definition % Representative Quote 

Students 
struggled with 

specific 
elements 

within the 
examples 

Nothing to 
Improve 

The student thinks that the examples are 
fine the way they are presented 

61 “They seem fine”/”Examples are fine” 

More Detail 
 

The student suggests increasing the level 
of detail in the examples or exercises. 

6 “More descriptions on how to reverse the 
array” / “Describe in more detail what the 
questions asking” 

Students 
suggested 
integrating 

more hands-
on activities 
as part of the 

classroom 
approach 

Better with 
Examples 

The student thinks working with 
examples is a better approach than 
working from scratch 

27 “More examples” / “Nothing really, already 
enough material to help a novice like me” 

In-class activities The student thinks that the class activities 
should be focused on practical activities 
(design and programming activities) 

6 “More of class time is necessary to fully 
understand this language” / “Know how to 
build array” 

Better without 
Examples 

The student does not consider the 
examples as having helped her/him to 
solve the assignment 

3  “In order to remember how to write the code, 
I feel we should practice writing code (not 
typing), i.e., the methods, etc. until we know 
them.” 

Volume 6, Issue 1 Journal of Computational Science Education

12 ISSN 2153-413 July 2015



On the other hand, expert students with prior programming 
experience did not benefit from the examples, perhaps because 
they may have already developed a mental model [19]. For the 
rest of the sessions (#8 and #9), we speculate that the examples 
were unclear because they had too many comments included 
within the code. After students’ suggestions, the examples were 
refined with simpler comments. Another possible explanation can 
be related to the time students need to get used to this new 
pedagogical approach. The worked examples approach was only 
introduced starting on lab session #8. Hence, the students were 
already used to a different problem solving approach. Moura [13] 
experienced this phenomenon and highlighted that students 
needed some time to get used to the tool she used for the worked 
examples. After that time, students performed better. Finally, the 
small sample size also made it difficult to find significant 
differences. 
Regarding the perception constructs, novice students perceived 
their ability to solve various computing-related tasks to be 
significantly higher than those students with programming 
experience (in lab session #8). This, however, changed over time 
and a non-significant difference was found between experienced 
and non-experienced programmers for the rest of the iterations. 
The result suggests that, as the examples were improved, students 
with no previous experience were better able to take advantage of 
them. This is also suggested by the perceived ability of the 
students from the experimental group in the last session (80.74%), 
which was higher than the control group.  
The worked examples approach generated a separation between 
those students who enjoyed exploring and learning from them and 
those who preferred to build the whole program themselves. From 
the students’ responses  from any of the sessions, of those who 
mentioned that they preferred coding from scratch, 75% identified 
themselves as experienced programmers. This is aligned with the 
rest of the findings and the literature suggesting that worked 
examples are more useful for novice learners than for expert ones 
[4, 5]. 

5.2 How do students self-explain worked 

examples when approaching a solution to a 

programming assignment? 
Commenting on the code was used to encourage students’ self-
explaining process for the examples. These comments were 
grouped as four commenting styles: (1) Detailed; (2) Basic; (3) 
Unclear; and (4) Relevant (see Table 8 for a full description). 
Although non-significant differences were found between the 
groups, valuable insights were identified. First, as suggested by 
Chi et.al. (1989), students with a deeper self-explaining process 
(either (1) Detailed or (4) Relevant) performed better in all the lab 
sessions. Students with an incomplete self-explanation process 
appear to not fully understand the problem solving approach and, 
therefore, are unable to solve similar problems by analogy. Chi 
and collaborators [6] called this effect the self-explanation effect 
and enumerated four differences between students who were able 
to take better advantage of the examples than students who 
passively explored the examples. Trends identified in [6] were (1) 
high performers presented more self-explanations while studying 
examples; (2) “Poor” performers did not perform enough self-
monitoring activities such as “I can see now how they did it”; (3) 
High performers referenced less to the examples when solving 
another problem than “poor” performers; (4) The “poor” 
performers self-explained more during the problem solving than 

the high performers who preferred to do it during the example 
exploration.  
The second insight is that students who did not include any 
comments reported a higher perceived positive ability than those 
students who wrote very simple comments.  We speculate that 
these students felt confident about their abilities and, therefore, 
did not want to spend time understanding another approach; 
however, they did not perform as well as students who wrote 
thorough comments. 
The main limitation of the study is the small sample size 
constrained by the course size. Therefore, the significance of the 
differences found in this study lies in the qualitative data 
regarding students’ recommendations, perceptions, and 
commenting styles. Another limitation is that the worked 
examples approach began in lab session #8. This means that the 
students had been exposed to seven previous sessions with a 
different approach. This may have generated a negative reaction in 
some students who preferred to work in a more familiar way. 

6. IMPLICATIONS 

6.1 Implications for Teaching 
The use of Atkinson’s instructional principles to design worked 
examples has been identified as useful in situations where novice 
learners seem to take more advantage of this technique.  Expert 
learners may have already acquired mental models in the thematic 
area that provided them with the necessary tools for problem 
solving. 
The identification of intra-example, inter-example, and 
interacting-with-the-learning-environment features of worked 
examples can provide a framework for instructors to effectively 
design their worked examples. Specifically, the intra-example 
features used in this study presented several requests by the 
students to keep simple explanations, especially when they are 
integrated into the code. Students often mentioned that many 
comments within the example code decreased readability. Thus, 
the use of at least two different examples with a good alignment 
with the assignments is the main inter-example feature that should 
be considered. 
Finally, for programming activities, requiring students to write 
comments within the code can be useful as a self-explanation 
process; however, to take full advantage of this process, it is 
important to encourage students to write detailed comments or to 
highlight relevant conditions by describing boundaries and the 
consequences of their solutions. 

6.2 Implications for Learning 
Results from this study suggest that students who described 
relevant conditions along the code, as well as details in the way 
the code worked, performed better than those students who 
commented on the code superficially or did not self-explained it at 
all.  Several studies have demonstrated that a passive approach to 
studying worked examples has no impact on learning as compared 
to problem-solving instruction (Chi et. al., 1989; Atkinson et al., 
2000). The reason for this could be a lack of understanding 
resulting from not actively engaging with the examples.  
Chi and colleagues [6] suggested that the examples are not always 
completely clear, so the students have to engage in a self-
explanation process allowing them to identify the relevant aspects 
of the solution. Thus, a self-explanation should contain four 
aspects that depict an understanding:  (1) the conditions of 
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application of the actions; (2) the consequences of actions; (3) the 
relationship of actions to goals; and (4) the relationship of goals 
and actions to natural laws and other principles. In this study, the 
“Detailed” and “Relevant” commenting styles contained all these 
characteristics while “Basic” or “Unclear” commenting styles 
contained only one of these features, (e.g. the conditions of 
application of the actions) if any of them at all. Furthermore, a 
good understanding of the example can lead to more proficient 
problem-solving skills, while poor understanding may lead to a 
continuous reference to the example while trying to solve another 
problem. 

7. CONCLUSION 
The use of worked examples to scaffold programming and 
algorithm design learning has been evaluated. Different 
instructional design elements were assessed in order to identify 
effective design characteristics for worked examples. Multiple 
representations of the solution, including textual, graphical and 
computational representations, were employed. Writing in-code 
explanations as simple sentences enhanced code readability and 
improved students’ perceptions about the examples. Moreover, 
encouraging students’ self-explanation process by asking them to 
comment within the code helped the students to actively engage 
with the examples. Specific suggestions include encouraging 
students to write detailed comments as opposed to superficial ones 
in order to take advantage of the examples. This approach seems 
to be useful for novice students who did not have previous 
experience in programming.  
The contribution of the study is the detailed description of the 
implementation of worked examples in a programming context. It 
includes the use of multiple representations as well as the use of 
comments within the code as a self-explanation process. 

8. LIMITATIONS AND FUTURE WORK 
 
The main limitation of this study is that the learning outcomes for 
each iteration were different. Thus, the changes implemented 
based on the results were not evaluated in exactly the same 
context. Therefore, future work will explore the effect of these 
recommendations for these three lab sessions. 
Next steps also include the design of additional examples using 
instructional principles of worked examples [5] as well as 
students’ suggestions in this process. Future instruction should 
also encourage students to carry out a thorough self-explaining 
process that may lead them to an understanding of the examples. 
This can be accomplished either through incentives or by means 
of extended training. 
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ABSTRACT
In the authors’ experience the languages available for teach-
ing introductory computer programming courses are lacking.
In practice, they violate some of the fundamentals taught in
an introductory course. This is often the case, for example,
with I/O. Picky is a new open source programming language
created specifically for education that enables the students
to program according to the principles laid down in class.
It solves a number of issues the authors had to face while
teaching introductory courses for several years in other lan-
guages. The language is small, simple and very strict regard-
ing what is a legal program. It has a terse syntax and it is
strongly typed and very restrictive. Both the compiler and
the runtime include extra checks to provide safety features.
The compiler generates byte-code for compatibility and the
programming tools are freely available for Linux, MacOSX,
Plan 9 from Bell Labs and Windows. This paper describes
the language and discusses the motivation to implement it
and its main educational features.

Categories and Subject Descriptors
D.3.0 [Programming Languages]: General
; D.3.3 [Programming Languages]: Language Constructs
and Features
; K.3.2 [Computers and Education]: Computer and In-
formation Science Education

General Terms
Programming Languages, CS1

Keywords
Programming Languages, CS1

1. INTRODUCTION
The authors are in charge of teaching an introductory com-
puter science course (CS1 from now on). The curriculum
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is focused on imperative, statically typed procedural pro-
gramming. Nevertheless, it is not the usual imperative pro-
gramming curriculum. It strongly emphasizes the top-down
approach and the definition of subprograms. Proof of this is
that the course starts as a functional programming course.
The students learn how to build expressions and functions
before learning how to declare variables and build sequences
of statements. However, only one (imperative) program-
ming language is used for the whole course. Our approach
is similar in spirit to [8], but with a different implementa-
tion. Where Decker et al focus on object organization, we
focus on the strategy for attacking the problem by breaking
it into subproblems.

The course follows a twofold pedagogy methodology. First,
at every point the student is required to write code to test
her understanding of the matter at hand. Second, every line
of code the student writes must be comprehensible at that
point of the course. Of course, the second part needs to be
relaxed somewhat at the start of the course, but it is an
important principle we adhere to, whenever possible.

After teaching this course several years using Ada as the
main language, the authors decided to look for an alternative
for several reasons. Ada, despite being a Pascal descendant,
is multiparadigm. Moreover, its syntax is too verbose, and
it has other issues that are discussed next.

Selecting a new language for CS1 is a complex and delicate
task. The related bibliography is extensive [18] and there are
many open discussions about the different approaches, for
instance [14, 22, 21, 15, 5]. Although other authors defend
the use of object oriented languages for introductory courses
(see for example [17]), there is no consensus about which
approach is better (objects early vs procedures early) [22,
21, 15, 5]. In the authors’ experience, object oriented lan-
guages are too complex to be used as a first language. As
other authors state [12], the student should be instructed
before delving into an understanding of object oriented pro-
gramming concepts, which are more abstract (inheritance,
delegation, polymorphism, etc.) than other basic prereq-
uisites (variables, parameters). Object oriented languages
may be popular, but they are not simple enough to be un-
derstandable for a primer and look like magic to most novice
students.

After some research, the authors were not satisfied with the
existing alternatives to replace Ada. Although there are
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many programming languages available, and some of them
are specifically created for education, none satisfied all our
needs, described in section 2. In the end, the authors de-
cided to design and implement Picky and write a text book
(in Spanish) for the course [3]. Picky is a new imperative
programming language that meets all these requirements.
This paper presents the main features of the language for
teaching the CS1 course and the experience after using it
for nine CS1 courses with more than six hundred students.

2. REQUIREMENTS
2.1 High level
It is widely accepted [16] that low level languages, such as
C, are not suitable for CS1 courses. Even the defenders of
such languages acknowledge their shortcomings [20].

Thus, the candidate language to replace Ada for this purpose
must completely abstract the details of the machine and the
underlying operating system.

2.2 Single-paradigm
Some prestigious institutions, for example CalTech and MIT,
use multi-paradigm languages in introductory courses [14].
As stated before, some of the issues that the authors found
while teaching CS1 in Ada are related to its multi-paradigm
features.

Although multi-paradigm languages can be suitable for long
courses that start with imperative programming and then
continue with object oriented programming, they are not
suitable for single-paradigm courses (i.e. imperative pro-
gramming). It is confusing for students to consult bibliog-
raphy that mixes the paradigms or references focused on a
paradigm that is out of the scope of the course.

Also, as part of the learning process, the student, by mis-
take, may write programs that wander off the subset taught
in class. When the language has many heterogeneous con-
structions, like Ada, it is highly probable that the student
may come across one of them by mistake. Another issue
is the compiler returning an error related to one of these
off-course constructions. Frustration and confusion ensues.

Using a pure object oriented language (e.g. Java) to teach
imperative programming, like some institutions do, is even
worse. For a significant part of the course, the student gets
used to writing code which is incomprehensible at that point
in time (public, static, class, etc.). This violates one of the
cores of the twofold approach detailed above.

2.3 Restrictive
The candidate language must provide strong typing and
range checking. These features are very convenient when
learning how to program for the first time. With them, the
compiler and the runtime act as a safety net which prevents
the students from wandering off too much. This is another
reason for not using languages such as C, where the plastic-
ity of the language makes it easy to write obscure code. In
addition, it is desirable to use a language that includes extra
restrictions. For example, global variables are very harmful
in an introductory course and it is convenient to use a lan-

guage that forbids them. This forces the student to get into
the habit of structuring the code properly.

Some kinds of syntactic sugar and language features make it
unclear for students what the code actually does. They also
make difficult to consolidate some important concepts, such
as data typing. For example, transparent dereferencing of
pointers in Ada prevents students from understanding the
difference between a record and pointer to a record. Another
example is automatic declaration of variables (i.e. dynamic
typing) in Python. The lack of variable declaration com-
plicates the comprehension and identification of data types
and variables. Furthermore, it also muddles the concept of
static scoping.

While all these features may enhance the expressiveness of a
language later on, the basic concepts need to be established
first in the mind of the student.

2.4 Terse and simple syntax
In the authors’ opinion, the perfect candidate is a language
as simple as Pascal (or even simpler), with terse syntax like
C.

Pascal has been widely recognized as a good language for
CS1 courses. However, its control syntax is too verbose.
Also, the use of brackets and parenthesis in constructions
emphasizes the formal character of the language, one source
of confusion for new programmers.

In addition, Pascal syntax is more complex than needed.
For example, the use of semicolons as separators instead of
terminators for sentences is a problem for students. They
end up guessing when to add a semicolon and when not to
add one.

There is also a practical problem with Pascal. It is difficult
to find an implementation of Pascal which works well in all
the operating systems the students may use at home and
the lab.

Ada is quite verbose and utterly complex. This makes things
hard for students in introductory courses, because there are
many different constructs to master and the possibility of
wandering off by mistake, as explained before. Also, control
structures requiring exit when constructs are easily misused.
At the same time, this construction cannot be forbidden
because it is necessary for do-while (in fact do-until) loops.

Using white space characters and tabs as part of the syntax
is a double-edged sword. On one hand, it is useful to force a
valid indentation (e.g. Python). On the other hand, it leads
to syntax errors that are hard to solve for a first course
student. For example, mixing white space characters and
tabs in the same program causes errors, and it is difficult
to locate them manually. Even worse, the correctness of the
program depends on the text editor. Some editors hide white
space characters or translate tabs to them or vice versa. A
common pitfall when programming in Python is to use two
different editors to write the same program (e.g., the editor
installed in the laboratory and the editor installed in your
personal computer). The authors consider that, in general,
using these characters as part of the syntax is not desirable
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in a introductory programming language.

2.5 Explicit management and debug facilities
One of the aims of a first programming course is to teach
students how to debug programs.

To make memory allocation errors explicit and introduce
the concept of dynamic memory (de)allocation, the language
must support manual memory deallocation instead of auto-
matic garbage collection.

In addition, it must be easy to detect dynamic memory fail-
ures and leaks. It would be also desirable to be able to in-
spect the program stack in a novice-friendly format without
using complex tools (e.g. gdb).

2.6 Text based
The language must be suitable for a first year University
course. There are several visual programming languages
for education at different levels [19, 4, 11, 6, 7]. Neverthe-
less, the authors need a classic text-based language, closer
to real world programming languages, to ease the way into
the other languages taught later in the curriculum (C, Ada,
Java, Python, etc.).

2.7 Editor/IDE independent
Another important requisite is that the language must be
independent of IDEs. Some authors are especially critical of
commercially available IDEs [11]. For the authors of Picky,
it is a must to be able to compile and execute programs in
the command line and from shell scripts.

In some IDEs (like Eclipse), it is very difficult for a novice
to understand when a program is being compiled, when it is
being ran and what version is being used. The authors expe-
rience in more advance courses on Java and Android using
Eclipse is that the facilities provided for managing projects
cause problems even to last year students. For example, it
is quite complex for them to export and import a project,
even on machines running the same operating system.

In addition, it is paramount to allow the expert users (i.e.
the teachers) to select the text editor of their choice so that
the class can be taught fluidly. It is very common for the
authors to program something on demand as part of an ex-
planation. If the environment is cumbersome, the students
will get bored and distracted.

While syntax highlighting (or any other feature that make
plain text look like formatted text) may be useful for more
advanced courses, it is utterly harmful for novices. On one
hand, the students are told that the compiler only accepts
source code in plain text and that plain text does not have
any format, it is just a sequence of character codes. On
the other hand, the IDE or editor magically shows bold and
italic colored fonts. The authors want to avoid this kind of
magical effects to improve the comprehension of the tools.

2.8 Realistic I/O managing preserving refer-
ential transparency

File I/O is important not just to perform I/O, but also to
teach the students how to use control structures to guide

data consumption without violating file I/O rules imposed
by the file abstraction.

File handling in Ada is clumsy, to put it mildly. Calling
End Of File may block a program when reading from the
terminal, and students will not know why. Furthermore,
we teach that functions should be referentially transparent.
Nevertheless, many Ada file I/O subprograms (that is, non-
deterministic subprograms) are functions, not procedures.
This violates the referential transparency.

2.9 Portable
In order to study at home and complete the assignments,
students must be able to use at home the same tools that
they use at the laboratory. The tools must be available for
the systems they use, namely, Windows, Linux and Mac OS
X. Of course, the tools must be easy to install for all these
systems.

In addition, the executable files generated by the students
should also be portable. The first option is to use an inter-
preted language. Nevertheless, interpreted languages make
it difficult to consolidate concepts like compiling, linking,
and executing. For the student, it is hard to distinguish be-
tween source code files and executable files. Another option
is to use a compiled language that generates machine inde-
pendent code to run on a virtual machine. In this case, it is
also difficult to distinguish between the virtual machine and
the compiled program.

The solution we have taken is to follow the latter approach
and keep the illusion that the compiler generates an actual
native binary file that can be executed in the system like
a native executable (i.e. without invoking another program
like the virtual machine).

2.10 Open source
Last, the authors need to be able to modify the tools if nec-
essary. Thus, the language selected for the course must have
open source tools available for all the systems enumerated
in the previous point.

3. PICKY IS REALLY PICKY
Before providing a description of the language, we would
like to summarize its main features regarding safety. As the
name of the languages suggest, Picky is very restrictive. The
aim is to forbid students any practice that can be harmful
if it becomes a habit.

When a kid learns how to ride a bicycle it is convenient to
use side-wheels for a while. Only after such artifact is under
control, a new bicycle (one without side-wheels, and perhaps
with an engine) is more convenient. In the same way, Picky
is highly restrictive regarding what can be done and what
can not in a program. It has side-wheels attached.

Apart from the desired features described before (strong
typing, avoidance of automatic features such as dynamic
declaration or automatic deferences of pointers, no global
variables, and so on), both the compiler and the run time
include extra checks and waste memory and time to provide
additional safety features.
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• If the student forgets to initialize a variable, it will
not be zeroed. Moreover, the variable will not have
the corresponding value left in the stack by a previous
activation register.

In Picky, all variables are implicitly initialized with a
random value. Thus, if there are uninitialized vari-
ables, every execution will be different.

• The compiler does not provide warnings. Any error is
a fatal error and the program does not compile.

• The runtime tracks dynamic memory usage and pro-
vides informative diagnostics regarding accidental use
of dangling pointers.

• A program fails if there are dynamic memory leaks,
i.e. if there is memory allocated and not freed before
the program terminates.

• Functions do not accept parameters passed by refer-
ence.

• It is required that return is the last statement in the
function body.

• Procedures cannot use return.

In addition, some constructions are forbidden. For exam-
ple, the authors have detected that the following erroneous
construction is very common:

if(condition){
dosomething();

}else{
;

}

For the above construction, the Picky compiler gives a com-
pilation error. This code should be rewritten as:

if(condition){
dosomething();

}

4. THE LANGUAGE
The language is very simple. To get a full description of the
language, see [2]. What follows is a discussion of the most
relevant details from a pedagogical point of view, following
the requirements stated in section 2. There are further ped-
agogical omitted here for the sake of brevity.

4.1 Programs
Picky has control structures reminiscent of C and data dec-
larations in the style of Pascal. A source program is made
of a single file. A simple hello world example:

1 /* Hello world */
2

3 program Hello;
4

5 procedure main()
6 {
7 writeln("hello, world");
8 }

Comment syntax is taken from C. A program is introduced
by a program clause (line 3) that assigns an identifier to the
program. A procedure named main must be included, like
in C. The program starts executing its body and terminates
when returning from it.

All declarations and statements are terminated by a semi-
colon, but note that procedure and function definitions are
not terminated by a semicolon. Constants, types, proce-
dures, and functions may not be declared within the scope
of a procedure or function. That is, subprograms may not
be nested and constants and types must be declared in the
global scope.

The language is case-sensitive. An identifier must start with
an alphabetic character followed by zero or more alphanu-
meric characters. Picky only has 26 keywords and a total
of 81 language defined names, including keywords, builtins
and predefined constants.

A program may also include one or more constant declara-
tion blocks, one or more type declaration blocks, one or more
variable declaration blocks, and procedure and function def-
initions. The scope for a declaration goes from the point
where it happens in the source to the end of file. Global
variable declaration sections are forbidden by the compiler
unless a flag is supplied.

Constant, type, and variable declaration blocks start with
the keyword consts, types, and vars (respectively) followed
by declarations. The following program is an small, correct,
albeit useless, example:

1 program Xample;
2

3 consts:
4 Npts = 11;
5 Greet = "hi";
6

7 types:
8 Tmonth = (Jan, Feb, Mar);
9 Tpt = record{

10 x: int;
11 y: int;
12 };
13 Tpts = array[0..Npts-1] of Tpt;
14

15 consts:
16 Zmonth = Jan;
17

18 vars:
19 a: month;
20

21 procedure incptx(ref pt: Tpt)
22 {
23 pt.x = pt.x + 1;
24 }
25

26 function addpty(p1: Tpt, p2: Tpt): Tpt
27 {
28 p1.y = p1.y + p2.y;
29 return p1;
30 }
31

32 procedure main()
33 pts: Tpts;
34 i: int;
35 {



36 for(i = 0, i < Npts){
37 pts[i] = Tpt(2, 4);
38 incptx(pts[i]);
39 pts[i] = addpty(pts[i], pts[0]);
40 }
41 writeln(pts[Npts-1].x);
42 writeln(Greet);
43 }

4.2 Basic data types
Per requirement 2.3, Picky is strongly typed. The basic
types are bool, char, int, float, and file. They correspond
to booleans, characters, integers, real numbers in floating
point, and external (text) files.

Two types are compatible (for assignment and other opera-
tors) only if they have the same name. Predefined types also
obey the same rule. Constants and literals are an exception,
they belong to universal types that are assumed to be com-
patible with any basic data type of the same kind. This is
reasonable, for example, to permit using integer literals in
expressions that belong to a user defined integer type. An-
other exception are subranges. Subranges do not introduce
a new type; they declare a restriction defining a subset of
an existing type.

A type definition defines a new type and declares its name.
For example:

types:
Apples = int;
Oranges = int;

This code defines two new types: Apples and Oranges. It is
not legal to mix apples with oranges, and it is not legal to
mix any of them with int values. However, integer constants
and literals may be mixed with any of them.

In general, the language does not permit type casts. How-
ever, type casts are permitted to convert ordinals to the in-
teger representing their position in the type and vice versa.
Also, integers may be converted to floating point numbers
and vice versa.

To convert a value to a type use the target type name as a
function. For example, these are legal expressions:

char(int(’A’) + 1)
float(3)
int(4.2)

4.3 Explicit dynamic memory and resource man-
agement

Resources in Picky are managed explicitly as stated in sec-
tion 2.5. Memory allocations and deallocations are explicit
and there is no garbage collection.

A pointer data type refers to another type and permits using
new and dispose to handle dynamic variables of the pointed-
to type. Type definition uses the ˆ notation, taken from
Pascal:

types:
Arry = array[1..10] of int;
Iptr = ^int;
Aptr = ^Arry;

The second line declares an array data type used in the last
line, to declare a pointer to Array data type. The third line
declares a pointer to integer. It is legal to declare a pointer
to a type that is not yet defined in the program, but the
target type must de defined later. This permits declaring
circular data types, like linked lists. In no other case may a
type be defined in terms of not yet defined types.

Syntax to dereference a pointer value is also taken from Pas-
cal, and also uses the ˆ sign:

iptr^ = 2;
aptr^[1] = iptr^;

L-values of pointer types may use the following procedures
to allocate and deallocate memory: new(ptr) (set ptr to
point to newly allocated memory) and dispose(ptr) (frees
the memory referenced by ptr). All memory allocated with
new must be released by calling dispose before completion
of the program, or the program will abort and report mem-
ory leaks. The interpreter makes sure that dereferencing a
dangling pointer (i.e. a pointer pointing to freed memory)
will abort the execution, providing the corresponding error
to the user.

File descriptors are also managed explicitly. Files need to be
opened and closed using the appropriate builtins, open(file)
and close(file). Any error related to accessing a file is fatal
for the program.

4.4 Input/Output
Some languages use I/O primitives that are predictable but
too low-level. Others provide high-level, but unpredictable
facilities. Among other things, it is impossible, in general,
to know if there is an end of file before trying to read. On
the other hand, it is not reasonable to read without checking
the end of file condition.

As we explain to our students in the CS1 course, when pro-
gramming, side effects must be contained. Checking for the
end of file should be a function without side effects. The
read operation should be a procedure with side effects.

In Picky the I/O primitives follow the requirements stated
in section 2.8. They are both practical and clean from a
theoretical point of view. A peek procedure scans the input
to check for end of file or end of line conditions. Part of the
peek specification is that it may read internally from the file.
The eof operation is a function and has no side-effects (i.e.
it never reads). Before any attempt to call read or peek, eof
returns false as it should.

The language forbids to read end of line marks, they must
be skipped. The runtime includes checks to trigger errors
if a program tries to read them directly instead of using a
readeol primitive.
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4.5 Debugging facilities
Following the requirement in section 2.5, built-in procedures
are provided for user friendly debugging, and abnormal ter-
mination: fatal(text) (print text and abort execution), stack()
(dump the stack in a friendly format for debugging) and
data() (dump global data in a friendly format for debug-
ging). For example:

stack trace at:
dowork() pid 0 pc 0x000008 xample.p:9
arguments:
x = 3
local variables:
z = 8

called from:
main() pid 1 pc 0x000016 xample.p:16
local variables:
x = 3

In other development environments, students tend to de-
bug by using step-by-step execution on debuggers instead of
thinking. In this language, it is natural for them to dump
the program state and think about the cause of their prob-
lems. Later, when they are less prone to misuse them, they
will learn more advanced debugging techniques such as step-
by-step execution, breakpoints, etc.

4.6 Procedures and functions
There is a clear separation in Picky between procedures and
functions to follow the principle described in 2.8. The princi-
ple is that functions should have no lateral effects and should
preserve referential transparency. This principle is also fol-
lowed by builtin functions and procedures. Procedures are
named actions, so can have lateral effects, and do not return
values. Argument passing is by value (by default) or by ref-
erence (using the keyword ref before an argument name).
See lines 21-24 in the Xample program. Functions are de-
clared similarly, see lines 26-30 in the program.

4.7 Global and local variables
Picky does not permit global variables by default. They
can be enabled with a compiler flag. The flag is in place so
that the concept of global variables can be explained in the
corresponding class.

It is not allowed to declare a type on the fly in the variable
declaration, unlike in Pascal. A type identifier is required
after the colon. This forces the students to define types first
and assign them meaningful names before using them.

Variables are initialized to random values. This feature
makes programs fail when using uninitialized variables in-
stead of making them work intermittently. Therefore, stu-
dents learn quickly that uninitialized variables are danger-
ous.

4.8 Control structures
Picky has the usual control structures. The if, while, do-
while, and switch statements borrow their syntax from C
and semantics from Pascal (there is no break). Statements
used for then and else arms must always be blocks. Students
face no dangling else in Picky.

The for loop (see lines 36-40 in Xample) has a header with
only two expressions, an initialization and a condition. The
initialization must be an assignment for a variable of an or-
dinal type. The condition must use any of these operators:
“<”, “<=”, “>” or “>=”. The first two ones make the vari-
able increase automatically after each iteration. The last
two make the variable decrease automatically after each it-
eration.

After the for loop, the control variable is equal to the value
on the right of the condition. This implies that there is no
out of range condition for the control variable even when
using “<=” or “>=” with the first or last valid value of an
ordinal type. In Xample, i value is Npts when the loop is
done.

The only way to exit a loop is to satisfy the condition of
the loop; there is no break or goto statement. This way
the postconditions are clear and the student is forced to
structure the program.

5. COMPILATION AND EXECUTION
The Picky compiler, pick, is implemented in C. The com-
piler is implemented using yacc [13] and should be easy to
understand.

The compiler does not emit warnings. All diagnostics corre-
spond to compile time errors. In many cases, when an error
is detected, a symbol or node in the syntax tree is still built,
for safety; other parts of the compiler still get a data struc-
ture as expected, and it’s less likely that an invalid value
causes a bug.

Picky compiles to a virtual machine (PAM [2]), invoked
transparently by the compiled output file. Thus, students
are not surprised by “binaries” behaving differently on dif-
ferent platforms. Code generation is straightforward. The
machine is stack based. Most operations take arguments
from the stack and replace them with a result, pushed also
on the stack. There is a single flow of control, guided by a
loop switching on the instruction type.

PAM wastes memory and time to detect mistakes like out
of range conditions, the use of already disposed data struc-
tures, etc. This way, it issues very descriptive diagnostics
and not just “segmentation violation”.

As already stated, variables (from the data, stack or heap)
are initialized with random values, to let the user discover
early that variable initialization is missing. Such random
values are always odd, to recognize uninitialized pointer val-
ues and issue a descriptive diagnostic for that case at run
time, instead of a segmentation violation or producing a
heisenbug.

The abstract machine construction makes it possible to dump
the state at any point in a user friendly format. The stack
and data builtins (explained in section 4.5) rely on this fea-
ture.

Picky “binaries” are just text files that are interpreted by
PAM. They start with the Unix hash bang syntax to call
PAM on their own. In Windows, to the same end, the file



extension pam is associated in the registry to the application
pam as part of the installation. Thus, students have“binary”
files that, at the same time, are portable and can be used
for pedagogical purposes. Students compile and then run
the resulting file:

prompt$ pick hello.p
prompt$ out.pam
hello picky!
prompt$

The “binary” generated includes portions of the source code
in comments, and can be used during lectures to teach how
the code written by students maps to machine instructions:

#!/bin/pam
entry 0
...
# x: int = 3
0000a push 0x00000003 # 3;
0000c lvar 0x00000000 # x;
0000e sto 0x00000002
# dowork(x: int)
00010 lvar 0x00000000 # x;
00012 ind 0x00000004
00014 call 0x00000000 # dowork();

This way students do not perceive the machine as a magical
device.

6. EXPERIENCE
The authors are quite happy with the results of using Picky
in CS1 courses. They have used the language to teach nine
CS1 courses that are part of three different degrees of the
Telecommunications Engineering School of the Rey Juan
Carlos University of Madrid. The number of students that
have actually used the language is greater than six hundred.
The first generation of students that used Picky for CS1 is
currently programming in Java, C, Ada, Python and shell
scripting in 3rd-year courses.

It is difficult to evaluate fairly and accurately the effective-
ness of the language for teaching CS1 courses. Since the au-
thors are in charge of teaching and evaluating the students,
any evidence related to grades of tests and assignments could
be unintentionally biased. In addition, given the continuous
turmoil of secondary education in Spain, which creates a
high heterogeneity of students at different points in time it
is difficult to quantify any approach.

In order to assess some feedback from the students, we passed
a survey in a 3rd-year course class. Of course, this survey
should not be considered an indisputable evidence, but it
points in the right direction. We polled 3rd-year students
because they have learnt other programming languages and
have a wider vision. On the other hand, there is an implicit
bias because many students abandon the degree (for many
reasons, but the common case is the difficulty of the degree,
not necessarily CS1). The results of the survey are shown
in Figure 1. The questions were:

(A) How did you like Picky as your first language program-
ming language?

(B) Did using a simple language in CS1 helped you to learn
more than a complex but powerful language?

(C) Was it difficult to learn the Picky syntax in CS1?

(D) Was it difficult to learn the Ada syntax in CS1?

Questions A to C were given to students that used Picky
as a first language. Question D was given to students that
used Ada instead.

The experience with the language is positive. We do see the
students less engaged in nitpicking with the unimportant de-
tails of the language and more focused on the learning task.
In our opinion, Picky has made teaching simpler and the
students learn more compared to other introductory courses
the authors have taught in Ada and C. Before using Picky,
the authors had to explain to students how things in prac-
tice departed from what was taught in theory. This was an
imposition of the language being used (e.g. the eof function
with side effects in Ada). In addition, the students had prob-
lems regarding dynamic memory, uninitialized memory, and
all the other issues enumerated early in this paper. Picky
has alleviated most of these problems.

One disadvantage of creating a custom language for the
course, is the absence of ready-made materials for teaching
the subject and for student consultation. In order to cover
this gap, we wrote an introductory programming book (in
Spanish) using Picky [3] for the course. This book covers
the course following the same approach and in the same or-
der we cover it in class. It serves two purposes. On the one
hand, it is a reference material for the students, with some
extra content for the more advanced students. On the other
hand it serves as a guide for the teachers, helping to provide
a detailed guideline of what should be taught in class and
in what order.

The absence of ready-made code snippets to copy from the
network helps make the students work more in their assign-
ments and spend less time forcing code copied from a ran-
dom web page into them.

Another unanticipated benefit of using a language built by
ourselves, is, of course, that we understand it thoroughly.
With more complicated languages, it is always possible to
have a dark corner of the language appear in code written
by students which puzzles the teacher, sometimes momen-
tarily, sometimes longer. While the response to the student
is simple: “rewrite that mess”, more advanced students may
want to understand what exactly is going on. For instance,
one of the authors remembers fondly trying to understand
an accidental and obscure variation on the Duff device [9]
to be able to explain to a good student why his code worked.
With Picky, these days are over.

As every teacher knows, plagiarism detection is an important
issue whenever students are given assignments. While we
were concerned when we started that we would have to write
our own tools for this purpose, we found that the already
existing tool Moss [1] works very well with Picky and we use
it routinely on the assignments.
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ABSTRACT 
Antibiotic-resistant strains of Mycobacterium tuberculosis have 
rendered some of the current treatments for tuberculosis 
ineffective, creating a need for new treatments.  Today, the most 
efficient way to find new drugs to treat tuberculosis and other 
diseases is to use virtual screening to quickly consider millions of 
potential drug candidates and filter out all but the ones most likely 
to inhibit the disease.  These top hits can then be tested in a 
traditional wet lab to determine their potential effectiveness.  
Using supercomputers, we screened over 4 million potential drug 
molecules against each of two enzymes that are critical to the 
survival of Mycobacterium tuberculosis.  During this process, we 
determined the top candidate molecules to test in the wet lab. 

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Biology and genetics. 

General Terms 
Experimentation. 

Keywords 
Computational science education, drug discovery, virtual 
screening, parallel computing education. 

1. INTRODUCTION 
Since their discovery in the early 20th century, antibiotics have 
seen exponential growth in usage due to their unparalleled 
efficacy for the treatment of bacterial diseases [1]. Unfortunately, 
because this method of treatment is relatively new, we are only 
just now observing the ramifications of their ubiquity; widespread 
use and misuse of antibiotics has become a force of natural 
selection for bacteria, and as a result, these pathogens are evolving 
to resist them [2]. Antibiotic-resistant strains of many disease-
causing bacteria have been observed, and among these is the 
causative agent of tuberculosis, Mycobacterium tuberculosis [2, 
3]. Tuberculosis affects millions of people worldwide to this day, 
and a variety of reasons that have contributed to resistant strains 
of the disease have resulted in a critical need to search for novel 
drug treatments [3, 4]. In the past, this has been accomplished by 
taking soil samples and plating them to look for naturally 
occurring antibiotic producers, but as this research has gone on, it 
is more difficult to find novel antibiotic producers [5]. With this in 
mind, it is easy to see a need for new methodologies to come into 

play. In the age of technology, there has been an increase in the 
use of computers to ease research processes like this.  For 
example, there are several molecular docking programs which 
exist now that are designed to simulate the binding interactions of 
molecules with protein targets, including AutoDock Vina, DOCK, 
GOLD, and Glide [6, 7, 8, 9].  Screening molecules with a 
molecular docking program is much faster and more convenient 
than testing for inhibitors with in vitro methods.  We can use this 
technology to investigate novel mechanisms for antibacterial 
compounds. Rather than waiting a week or more for a panel of 
bacterial plates to respond to exposure to potential drug 
candidates, these programs can give us an idea of how strong the 
interaction would be in a matter of minutes of compute time per 
compound. In this study, we used an in silico virtual drug 
screening process to comb through approximately 4.2 million 
ligands as potential drugs to target a critical enzyme in M. 
tuberculosis. To deal with the logistical issues of the sheer 
compute time this required, we decided to run the virtual screen 
on a supercomputer capable of running thousands of simulations 
at the same time, achieving a throughput unmatched by any in 
vitro assay method.  However, while the results of a virtual screen 
indicate which molecules are likely to bind to a target protein, it 
does not necessarily mean the molecules will actually bind to the 
protein and even more importantly, inhibit the protein [10].  
Because of this shortcoming, the virtual screening process is used 
as a first phase in the drug discovery process, filtering out the vast 
majority of molecules which likely will not bind to the protein 
[11].  After the virtual screening is completed, the top hits are 
screened with biological assays to test which molecules will 
actually work as treatments [11]. 

2. RELATED WORK 
Using virtual screening to narrow down the list of compounds to 
test in a wet lab with biological assays has become accepted over 
the last number of years, and people from various research 
groups1 are using this method [12]. The corresponding author has 
worked with teams using virtual screening on several projects 
[13]. In one such study, the target was an essential enzyme found 
in Plasmodium sp., the causative agent of malaria [14]. The open-
source docking simulation program AutoDock Vina, designed at 
the Scripps Research Institute, was used to screen the 
full_nci_ALL_TAUTOMERS_2011 library of about 320,000 
chemical compounds from the ZINC database against the enzyme 
PfUCHL3 [6, 15]. The top scoring compounds were then re-
screened against the human analog for this enzyme to determine 
which would be safest for human use; these were then screened in 
vitro in the lab to confirm their efficacy against Plasmodium. As a 
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result, the authors determined two compounds with very high 
promise as novel malaria treatments which would be effective 
without causing side effects due to binding with the human 
orthologous protein. Franco et al. also screened DrpE1 in an 
attempt to find a novel cure for tuberculosis [16]. 

3. METHODS 
The first step in our drug discovery process was to pick a target. 
We first decided on targeting M. tuberculosis because of its recent 
trend in antibacterial resistance; novel drugs for tuberculosis 
would be especially sought after as a result [3]. We chose two 
enzymes (called Target 1 and Target 2 in this paper) that are 
critical to the survival of Mycobacterium tuberculosis, and we 
understand the mechanisms of their action. Next, we found the 
structures for these proteins from the Protein Data Bank (PDB) 
and prepared them for docking using AutoDock Tools [17, 18]. 
The structures were derived from X-ray diffraction, and were 
specific to Mycobacterium tuberculosis [17].  Of the different 
structures available, we selected the wild-type structures including 
a ligand in the binding pocket.  We also used AutoDock Tools to 
locate the coordinates of the binding site and noted these down. 
We then uploaded the prepared molecules and coordinates to the 
Blue Waters and Stampede supercomputers, along with the 
molecular docking program AutoDock Vina. We obtained about 
4.2 million ligand files from the ZINC database and downloaded 
these as well, and created shell scripts to break the work into 
pieces. We created another shell script to run the program for each 
compound, and another to collect and package the results for 
download and analysis. Once we downloaded the data, we 
uploaded it to an SQL database and searched for the top hits.  

4. RESULTS 
The results of the virtual screens were grouped into bins based on 
the binding affinities of the compounds.  These bins allow us to 
separate the most promising compounds from the rest and 
determine which compounds should be tested with assays.  Table 
1 and Table 2 show the number of compounds in each binding 
affinity range. For Target 1, 4,182,163 compounds were screened 
and for Target 2, 4,182,137 compounds were screened.  Figure 1 
and Figure 2 show the binding affinities for the compounds 
screened against Target 1 and Target 2, respectively.  Figure 3 and 
Figure 4 break down the top hits for Target 1 and Target 2 into 
bins of narrower width.  It is important to note that the best 
binding energies are the ones with the most negative values, so a 
compound with a binding energy of -13 is more likely to bind to 
the target than a compound with a binding energy of -12.  The top 
hits for Targets 1 and 2 are given in Table 3 and Table 4.     

5. CONCLUSIONS 
Using the Blue Waters and Stampede supercomputers, we have 
screened over 4.1 million compounds against two enzymes that 
are critical to Mycobacterium tuberculosis surviving.  The virtual 
screens have indicated 12 compounds with a binding affinity of   
< -13 that are likely to bind to Mycobacterium tuberculosis.  If 
those compounds can indeed bind to the target enzymes in 
tuberculosis and inhibit the functioning of those enzymes, then the 
compounds may be useful in treating tuberculosis. 

6. FUTURE WORK 
For future work, we will test as many of the top hits as we can in 
the wet lab.  The compounds that scored in the -13.0 to -13.9 
range will be prioritized.  High scoring compounds with different 
structures will also be prioritized to give a wide range of coverage 
of different types of compounds.  We note that an entity with 

Table 1 - Summary of Binding Affinities of Virtual Screen 
against Target 1 

Binding Affinity 
Range (kcal/mol) 

Number of 
Compounds in Range 

-13 ≥x > -14 8 

-12 ≥x > -13 139 

-11 ≥x > -12 3,576 

-10 ≥x > -11 55,866 

-9 ≥x > -10 413,115 

-8 ≥x > -9 1,377,570 

-7 ≥x > -8 1,607,582 

-6 ≥x > -7 606,245 

-5 ≥x > -6 94,722 

-4 ≥x > -5 20,151 

-3 ≥x > -4 3,082 

-2 ≥x > -3 94 

-1 ≥x > -2 6 

0 ≥x > -1 2 

x > 0 5 

 

 

Table 2 - Summary of Binding Affinities of Virtual Screen 
against Target 2 

Binding Affinity 
Range (kcal/mol) 

Number of 
Compounds in Range 

-13 ≥x > -14 4 

-12 ≥x > -13 91 

-11 ≥x > -12 3,756 

-10 ≥x > -11 71,393 

-9 ≥x > -10 571,938 

-8 ≥x > -9 1,453,342 

-7 ≥x > -8 1,101,984 

-6 ≥x > -7 443,499 

-5 ≥x > -6 192,355 

-4 ≥x > -5 108,482 

-3 ≥x > -4 68,534 

-2 ≥x > -3 47,881 

-1 ≥x > -2 33,959 

0 ≥x > -1 25,098 

x > 0 59,821 
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Table 3 - Top Hits for Target 1 from the ZINC Database Libraries Screened 

Score Library Folder Compound 

-13.5 full_nci_ALL_TAUTOMERS_2011 SetOf10k_0004 ZINC01588230.pdbqt 

-13.3 ChemBridge_FullLibrary2011 SetOf10k_0037 ZINC02880067.pdbqt 

-13.2 asinex_newMay2011_fixedForVinaInDec SetOf10k_0000 ZINC06281466.pdbqt 

-13.2 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13564997.pdbqt 

-13.1 asinex_newMay2011_fixedForVinaInDec SetOf10k_0019 ZINC13565797.pdbqt 

-13.1 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13564995.pdbqt 

-13.0 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13564992.pdbqt 

-13.0 asinex_newMay2011_fixedForVinaInDec SetOf10k_0018 ZINC13084337.pdbqt 

-12.9 ChemBridge_FullLibrary2011 SetOf10k_0000 ZINC02833848.pdbqt 

-12.9 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13565000.pdbqt 

-12.9 asinex_newMay2011_fixedForVinaInDec SetOf10k_0042 ZINC13564941.pdbqt 

 

 

 

 

 

 

 

Table 4 - Top Hits for Target 2 from the ZINC Database Libraries Screened 

Score Library Folder Compound 

-13.9 full_nci_ALL_TAUTOMERS_2011 SetOf10k_0016 ZINC04824645.pdbqt 

-13.1 asinex_newMay2011_fixedForVinaInDec SetOf10k_0008 ZINC04838539.pdbqt 

-13.1 ChemBridge_FullLibrary2011 SetOf10k_0069 ZINC19634897.pdbqt 

-13.0 asinex_newMay2011_fixedForVinaInDec SetOf10k_0025 ZINC06475337.pdbqt 

-12.9 ChemBridge_FullLibrary2011 SetOf10k_0007 ZINC04980431.pdbqt 

-12.8 full_nci_ALL_TAUTOMERS_2011 SetOf10k_0015 ZINC04428442.pdbqt 

-12.7 ChemBridge_FullLibrary2011 SetOf10k_0087 ZINC16662786.pdbqt 

-12.7 ChemBridge_FullLibrary2011 SetOf10k_0029 ZINC02893797.pdbqt 

-12.6 ChemBridge_FullLibrary2011 SetOf10k_0074 ZINC19634255.pdbqt 

-12.6 ChemBridge_FullLibrary2011 SetOf10k_0049 ZINC19632616.pdbqt 

-12.6 ChemBridge_FullLibrary2011 SetOf10k_0074 ZINC23281397.pdbqt 
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Figure 1 - Results of Virtual Screen of Compounds against Target 1 with Binding Affinities Grouped in Ranges 

 

 

 

Figure 2 - Results of Virtual Screen of Compounds against Target 2 with Binding Affinities Grouped in Ranges 
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Figure 3 - The Top Binding Affinities for Virtual Screen of Compounds against Target 1 Grouped in Ranges 

 

 

 

 

Figure 4 - The Top Binding Affinities for Virtual Screen of Compounds against Target 2 Grouped in Ranges 
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significant financial resources might test all the compounds 
scoring -12 or better. 

We will apply the top scoring compounds to cultures of a model 
organism, Mycobacterium bovis, and determine if any of these 
compounds has an inhibitory effect on the growth of the bacteria 
[19]. We will use Mycobacterium bovis because unlike 
Mycobacterium tuberculosis, Mycobacterium bovis is not 
pathogenic [19].  Should one or more compounds prove effective 
at inhibiting the bacterial growth, the next step requires the 
resources of a larger organization.  Further testing of the 
successful compounds would be necessary to confirm their action 
on the cells.  Following this, research would be done to determine 
whether the targeted proteins have any human orthologs, or 
similar proteins which occur in the human body which may also 
be affected by the compound, resulting in unwanted side effects.  
In vivo testing with a model host would be the next step, as the 
compound would need to be proven safe for the consumption of 
the host organism. 

7. REFLECTIONS 
The project described in this paper was the first author’s Blue 
Waters Student Internship project where he learned to incorporate 
computation and high-performance computing into his research.  
This section details the first author’s reflections about his 
internship and the impact that it has had on his current and future 
academic endeavors:  When I took my first course in computer 
science, I did not anticipate that it would give me the power to 
make a difference like this.  At the time of beginning this project, 
I was a Biology major, with minors in Chemistry and 
Neuroscience.  I could tell you a lot about how diseases like 
tuberculosis can ravage the human body.  I could tell you how the 
increase in the prevalence of antibacterial soaps may have actually 
led to the rise of hyper-resistant superbugs.  However, I could 
never have explained to you any way in which I could make a 
difference as an undergraduate student in any of these areas.  
Before I got involved with computer science, university was 
simply a place for learning, not for doing.  I started with a single 
course on modeling and simulation which required no formal 
coding skill (we used drag-and-drop programming environments 
like Scratch), and grew into learning the basics of C++ in a week 
before attending the 2-week intensive high performance 
computing workshop for Blue Waters interns.  At the workshop, I 
learned parts of the C and FORTRAN programming languages in 
order to learn the basics of the parallel computing libraries 
OpenMP, CUDA, MPI, and OpenACC.  Having only taken a 
single introductory course in computer science before attending 
the workshop, I am proud of how much I was able to learn.  Now, 
I am confident using a Linux command prompt and I can write 
some basic shell scripts.  Having learned these skills, I am capable 
of using supercomputers for my research, which spans biology 
and chemistry.  One of the most lasting impacts that this 
incredible experience has left me with, however, is my recent 
decision to stay an extra year at UMW in order to pursue a double 
major in Computer Science alongside my Biology major, and to 
add a Data Science minor.  I am planning on finding a graduate 
school that will have the same zeal for interdisciplinary projects 
that I have now, and I believe that these experiences will make me 
very competitive in the application process.  Having this Blue 
Waters Internship was genuinely a turning point in my college 
career and my life in general, and having this opportunity to do 
real research with real-world implications is a once-in-a-lifetime 
experience.  This project represents the mixing of the disciplines 
that needs to happen if science as a whole is going to make new 

discoveries this century to rival the marvels of the past.  Computer 
modeling for scientific applications is certainly the way research 
will be conducted in the future, and the future is not so far away 
after all. 
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