
Volume 6 Issue 1

July 2015

Volume 6, Issue 1 July 2015

Editor: Steven Gordon
Associate Editors: Thomas Hacker, Holly Hirst, David Joiner,

Ashok Krishnamurthy, Robert Panoff,
Helen Piontkivska, Susan Ragan, Shawn Sendlinger,
D.E. Stevenson, Mayya Tokman, Theresa Windus

CSERD Project Manager: Patricia Jacobs. Managing Editor: Levi Di-
ala. Web Development: Phil List. Graphics: Stephen Behun, Heather
Marvin.

The Journal Of Computational Science Education (JOCSE), ISSN 2153-4136,
is published quarterly in online form, with more frequent releases if submission
quantity warrants, and is a supported publication of the Shodor Education
Foundation Incorporated. Materials accepted by JOCSE will be hosted on the
JOCSE website, and will be catalogued by the Computational Science Education
Reference Desk (CSERD) for inclusion in the National Science Digital Library
(NSDL).

Subscription: JOCSE is a freely available online peer-reviewed publication
which can be accessed at http://jocse.org.

Copyright c©JOCSE 2015 by the Journal Of Computational Science Education,
a supported publication of the Shodor Education Foundation Incorporated.

Contents

Introduction to Volume 6 Issue 1
Steven I. Gordon, Editor

1

Exploring Design Characteristics of Worked Examples to Support Programming
and Algorithm Design
Camilo Vieira, Junchao Yan, and Alejandra J. Magana 2

Picky: A New Introductory Programming Language
Francisco J. Ballesteros, Gorka Guardiola Múzquiz, and Enrique Soriano
Salvador 16

Identification of Inhibitors of Fatty Acid Synthesis Enzymes in Mycobacterium
Tuberculosis
Alexander Priest, E. Davis Oldham, Lynn Lewis, and David Toth 25

Introduction to Volume 6 Issue 1

Steven I. Gordon
Editor

Ohio Supercomputer Center
Columbus, OH

sgordon@osc.edu

Forward
The articles in this issue of the Journal of
Computational Science Education provide two
approaches to teaching introductory programming.
In addition, it provides insights in a student article
summarizing work to identify potential drugs to
treat tuberculosis.

The article by Viera et. al. discusses the use of
worked examples as an approach to teaching
introductory programming. Student performance
with and without worked examples was compared
using three exercises. The article provides insights
into the construction of such examples as well as
their impacts on learning outcomes.

Ballesteros et.al. describe an introductory
programming language “Picky” that is designed to
help students learn introductory programming
concepts more easily.

Finally, the student article by Priest et.al. details
their experience in using drug docking applications
to screen potential drugs that target the enzymes
involved in tuberculosis. The students were able to
screen over 4 million potential drug molecules
against two enzymes critical to the survival of
Mycobacterium tuberculosis.

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413 1

Exploring Design Characteristics of Worked Examples to

Support Programming and Algorithm Design

Camilo Vieira

Purdue University
401 N Grant St Office 372,
West Lafayette, IN 47907

+1(765)250-1271

cvieira@purdue.edu

Junchao Yan
Purdue University

401 N Grant St Office 372,
West Lafayette, IN 47907

+1(765)337-8867

yan114@purdue.edu

Alejandra J. Magana
Purdue University

401 N Grant St Office 256,
West Lafayette, IN 47907

+1(765)494-3994

admagana@purdue.edu

ABSTRACT
In this paper we present an iterative research process to integrate
worked examples for introductory programming learning
activities. Learning how to program involves many cognitive
processes that may result in a high cognitive load. The use of
worked examples has been described as a relevant approach to
reduce student cognitive load in complex tasks. Learning
materials were designed based on instructional principles of
worked examples and were used for a freshman programming
course. Moreover, the learning materials were refined after each
iteration based on student feedback. The results showed that
novice students benefited more than experienced students when
exposed to the worked examples. In addition, encouraging
students to carry out an elaborated self-explanation of their coded
solutions may be a relevant learning strategy when implementing
worked examples pedagogy.

Categories and Subject Descriptors
K.3.2 [Computers And Education]: Computer and Information
Science Education – Computer science

General Terms
Algorithms, Human Factors.

Keywords
Computational Thinking, Programming Education, Worked
Examples.

1. INTRODUCTION
Computational thinking [24] has emerged as a set of concepts and
skills that enable people to understand and create tools to solve
complex problems [20]. Many programming and algorithm design
processes have been proposed as part of this set of understandings
and skills [7, 8]. Hence, it is relevant to introduce programming
and algorithm design as part of undergraduate courses; however,
learning to program is a complex task [19]. Thus, it is necessary
to explore scaffolding strategies to introduce these computational

thinking skills. The use of worked examples has been
demonstrated to be an effective approach for supporting complex
learning when it is guided under certain principles [5]. It can
reduce the extraneous cognitive load, which is not beneficial to
learning. Therefore, it allows the learner to devote cognitive
resources to useful loads.

This study explores how worked examples can be paired with
programming and algorithm design. The guiding research
questions are:

 How can worked examples be effectively designed to
introduce programming concepts to novice learners?

 How do students self-explain worked examples when
approaching a solution to a programming assignment?

2. BACKGROUND
Learning how to program is a difficult task [19]. Programming
courses are considered the most challenging at the undergraduate
level as they often have the highest dropout rates. In order to learn
to program, a student has to understand (a) the purpose of a
program, (b) how the computer executes programs, (c) syntax and
semantics of the programing language, (d) program structure, and
(e) how to actually build a program [9]. Since the learning process
involves many steps, these myriad steps may generate a high
cognitive load for students who have no previous experience in
algorithm design or programming languages.

Researchers have identified differences in the way novices and
experts experience programming tasks. Experts use specialized
schemas to understand a problem based on its structural
characteristics [19]. They use problem solving strategies, such as
decomposing the program and identifying patterns, in order to
approach a solution [18]. Language syntax and analyzing line-by-
line details of programs tend to be the focus of novices due to the
superficiality of these skills in the hierarchy of knowledge. [18].
They usually have problems related to language constructs, such
as variables, loops, arrays, and recursion.

The use of worked examples (WE) has been recognized as a
relevant strategy for supporting novices in learning tasks that
involve a high cognitive load. Worked examples approach is
guided by principles associated with Cognitive Load Theory
(CLT). CLT is a recognized theory that focuses on cognitive load
processes and instructional design [15]. CLT establishes a
cognitive architecture to understand how learning occurs. The
cognitive architecture structures memory that comprises a limited
working memory and a vast long-term memory [10]. CLT states

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Copyright ©JOCSE, a
supported publication of the Shodor Education Foundation Inc.

Volume 6, Issue 1 Journal of Computational Science Education

2 ISSN 2153-413 July 2015

that there is a cognitive load generated when learning occurs. This
load can be affected by the learner, the learning task, or the
relation between the learner and the learning task [10].

There are different types of cognitive loads: (1) intrinsic load,
which is the inherent load to the difficulty of the learning task; (2)
germane load, which is comprised of required resources in the
working memory to manage the intrinsic load, which, in turn,
support learning; and (3) extraneous load, which refers to the load
that arises from the instructional design and does not directly
support learning [17]. To improve the learning process, the
extraneous load should be minimized so that the germane
resources can be maximized.
Figure 1 shows a representation of the learning process based on
the CLT. In Phase 1, a student is working on a task that has
different forms of representations. In Phase 2, the cognitive
process that takes place is depicted. In Phase 2a, different senses
process the information the student is receiving. In Phase 2b, the
limited working memory (three to five chunks of information) is
assigned to germane or extraneous resources depending on how
the load arises from the learning experience. In Phase 2c, schemas
are created and stored in the long-term memory when learning
takes place.

Novices usually work backward to solve problems using a means-
ends analysis. Students need to fill the gap between the initial
problem state and the final goal, and this search process generates
a cognitive load. Some of the instructional design techniques that
have been proposed to reduce the cognitive load are: goal free
effect, worked examples effect, and completion effect [10]. The
goal free effect suggests that, by removing a specific goal from the
problem, the learners will work forward, state by state as experts
do. Thus, the cognitive load is reduced because the students only
have to consider the current state and the next state of the

problem. The worked example effect occurs when students are
exposed to an expert solution to the problem. These examples
allow learners to start solving similar problems by analogy,
thereby reducing the cognitive load. Finally, the completion effect
refers to problems with a given partial solution that are provided
to students to complete. Completion effect examples are gradually
modified to present less information to the student. This approach
is also called faded worked examples (FWE), and it has shown
positive results in reducing cognitive loads in the domains of
mathematics and programming.

Atkinson et al. [5] proposed instructional principles for the design
of WE based on several studies. According to these principles, a
WE should include: (1) A problem statement; (2) A procedure for
solving the problem; and (3) Auxiliary representations of a given
problem. Atkinson’s principles and their adaptations for this study
are summarized in Table 1.

When WE are used as part of the learning process, the student
goes through a four-stage process described by the theory of
Adaptive Control of Thought-Rational (ACT-R) [4]. According to
this theory, the skill acquisition process is composed of four
stages in which knowledge transitions from declarative to
procedural [5]. During the first stage, the students solve problems
by analogy using worked examples. Then, in the second stage, the
students use abstract declarative rules gathered from the examples.
When students get to the third stage, declarative knowledge is
already acquired and stored in their long-term memory.
Procedural rules have also started to become clearer to students by
practice. Therefore, students are able to respond automatically and
faster to familiar problems. During the last stage, once students
have been exposed to several examples, they are able to solve
many different problems on their own.

Figure 1. Learning process from a CLT perspective. In (1) the learner is studying the materials. In (2) the learning process takes

place: (a) Senses capture information; (b) Different forms of cognitive load make use of working memory; (c) Schemas are created

and automatized in long-term memory

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413 3

Table 1. Effective features of worked examples described by Atkinson and collaborators [5]. The right column describes our

adaptation for these learning tasks

Feature Description Our Adaptation

Intra-Example

 The use of multiple formats and resources is
important when designing WE; however, different
formats should be fully integrated to avoid extra
cognitive load generated by the split attention effect.

 The example should be divided in sub goals or steps
to make it easier for the student to understand. Labels
and visual separation of steps can be used for this
purpose.

 The examples contained multiple forms of
representations including C# code, visual flowchart
algorithm description, and verbal explanations of
the approach.

 Each representation was segmented in steps toward
the solution. These steps were aligned with the
representations.

Inter-example

 The variability of problems during a lesson can offer
learning benefits, but it is important to reduce the
cognitive load when using techniques such as WE.

 The use of multiple WE (at least two examples) with
structural differences can improve the learning
experience. The WE should be presented with similar
problem statements that encourage the students to
build schemas based on analogies and the
identification of declarative and procedural rules.

 Different problems were approached during each
lab session.

 Two examples were provided and students were
required to complete at least three additional
programming challenges.

 All the examples and challenges were focused on a
specific topic for each lab session (e.g. loops,
creating arrays, searching in arrays).

Environmental

 Students should be encouraged to self-explain the
WE in order to be actively engaged with them.

 Some strategies that support this process are: (1)
Labelling WE and using incomplete WE; (2)
Training Self-Explanations; and (3) Cooperative
Learning.

 One of the examples did not have the verbal
explanation (i.e. in-line comments of the
programming code).

 Before starting to solve the assignment, students
were asked to comment on the code for the example
that did not have verbal explanation. This activity
was intended to encourage self-explanation of the
examples.

 Some of the assignments could be built from the
examples.

2.1 Previous Experiences
Guzdial [11] has advocated for an approach to programming
education other than a common approach, which asks students to
just start building a program. Based on Kirschner, Sweller and
Clark [12], he argued that, “expecting students to program as a
way of learning programming is an ineffective way to teach”
(p.11). As an alternative, he proposed an approach based on the
work of Pirolli and Recker [16] who used WE and cognitive load
theory to introduce programming concepts. In one of their
experiments, Pirolli and Recker explored how transfer occurs in
learners, starting with examples and moving on to programming
problems on Lisp. To implement the examples, each lesson started
by having students read the textbook and analyze WE. The
students then used this knowledge to find a solution for an
assigned problem. Authors hypothesized that the problem solving
process enriched declarative knowledge as well as procedural
knowledge.
The declarative knowledge in programming includes code
structure, programming abstractions, functionality of the
abstractions, and purposes and operation of the program. All these
elements are represented as a mental model.

On the other hand, the procedural knowledge comprises the
construction, manipulation, and interpretation of this model. In
their experiments, Pirolli and Recker [16] found that worked
examples were useful in building these mental models by
“providing [students with] concrete referents for abstract
discourse and newly introduced concepts and propositions”
(p.273).

In another study, Moura [13] used Portugol, a tool for learning
algorithms, for students to understand a given example by
visualizing the execution of the algorithm. She found that,
although students took some time to get used to the tool, once
they did get used to it, they performed better on assessment tests
when learning computing science fundamentals. Regarding the
implications of the study, Moura suggested that an effective way
to help students learn how to program requires an easy-to-use tool
as well as assigning some pre-training time for the students to get
familiar with it.

This study focuses on a strategy for providing worked examples to
an introductory programming course to support student learning
of process of loops and arrays concepts. The worked examples
were designed following the principles by Atkinson and
colleagues [5] as described on Table 1.

3. METHODS
This study followed a Concurrent Mixed Methods Research
process design [23]. This design includes one quantitative strand
(pretest, posttest, survey, and lab scores) and one qualitative
strand (open ended questions and comments in the code of the
examples). Each strand was analyzed independently. At the end,
the identified commenting styles were related with the
quantitative measures to evaluate whether there was a trend in the
way students experienced the use of examples.

3.1 Participants
The participants of this study included thirty-five

undergraduate students majoring in Computer and Information

Volume 6, Issue 1 Journal of Computational Science Education

4 ISSN 2153-413 July 2015

Technology at a large midwest university. As part of an
introductory programming course, they were exposed to weekly
lab sessions where they applied programming concepts learned in
lecture. Three of these weekly sessions (8th, 9th, and 10th) were
used to evaluate the WE approach. The sample size as well as the
participants slightly varied from session to session since not all
students attended all the sessions or completed pretest and posttest
assessments.

These students were divided into two different groups. For lab
session #8, both groups used worked examples. For lab sessions
#9 and #10, one group was considered the experimental group
(using WE) while the other one was the control group. The
control group continued doing the lab session as they were used
to; that is, solving the assigned problems based on what was
learned during the lectures without additional scaffolding but only
the help provided by the teaching assistant. Table 2 summarizes
participants’ information and configurations for each of the
sessions.

Table 2. Number of participants per session

Session Group
Number of

Participants

Programming

Experience

8th
Experimental 28 12

Total 28 12

9th

Experimental 19 10

Control 15 7

Total 34 17

10th

Control 16 9

Experimental 14 8

Total 31 17

3.1 Materials
Two examples designed by following the instructional principles
of worked examples [5] were provided to the students in the
experimental group. The examples were composed of a Visual
Studio Solution with the programmed worked examples as well as
a matched flowchart representing the solution. Figure 2 depicts an
example of what was provided to the students. On the left side,

the C# code adds the even numbers from 0 to a variable n1. The
code included comments to explain each section. The right side of
the figure showed a flowchart describing the algorithm design for
this particular implementation. This design was coupled with
textual description. All the elements in the example were
identified by a code that allowed the students to match the
different representations (i.e. steps in the flowchart with segments
of code).

Two examples were provided to the students per session. Both
had the distribution depicted on figure 2; however, the comments
within the code were not included in the second example because
the students were required to complete that portion as part of the
assignment. With this design, we expected that students would
start using the examples to solve the problems by analogy. Then,
having acquired some declarative and procedural rules, students
were expected to be able to solve the different and more
challenging problems on their own.

3.2 Procedures
The research protocol consisted of a series of tasks. The first task
was a pretest aligned to the learning objectives of the lab session.
The students were given 10 minutes to complete the test before
starting the session. The next tasks consisted of exploring
examples and commenting on the code in one of the examples in
order to self-explain it. The fourth task was to solve three
additional assignments using the examples whenever they were
necessary. Finally, students completed a posttest and survey
related to their perceptions regarding the use of worked examples.
The students could take as much time as they needed to complete
this task within a period of two hours. The assignments had to be
turned in before proceeding to the next assignment. The collected
data included the pretest, posttest, survey data, commented
example, and programming projects.

Following design-based research approaches [21], this study
includes three iterations, one for each lab session. Right after the
session, the tests and survey were analyzed. This information was
used to refine the examples, assignments, and instruments for the
subsequent iteration. For example, after the first iteration, some
students mentioned that the comments in the code were very
detailed decreasing the code’s readability. Therefore, the next
iteration examples included simpler comments.

Figure 2. Distribution of a worked example including multiple representations of the solution (i.e. computational, textual, and

graphical)

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413

3.3 Data Collection

3.3.1 Learning
Pretest and posttest as well as lab assignments were employed to
assess learning gains during the lab sessions. Table 3 summarizes

how these instruments were prepared and implemented. The
exercises for the pretest and posttest were slightly modified (i.e.
changing values or sizes) to minimize the testing effect. Written
comments within the code were also used as an additional source
of qualitative data. Students were required to do this as a strategy
to self-explain one of the provided examples.

Table 3. Description of the learning instruments employed in each laboratory session

Session Description Pretest and Posttest Lab Assignment

8th

The student will
create an algorithm
that contains for-
loop and while-
loop structures to
solve summations
or display a list of
values

Four exercises to calculate the output after
certain loop structure. For example:

Complete the implementation for the following
list of functions:

(1) Sum of evens between 0 and a given value

N
(2) Sum of a range of numbers
(3) Calculate the factorial of a given value N
(4) Calculate 1 + 22 + 32 +… N2

9th

The student will
create an algorithm
that initializes an
array, add some
values, and display
the stored values

Four exercises to complete the code or write the
output of certain algorithm. For example:

Write the code to store and display numerical
and textual values in an array.

10th

The student will
create an algorithm
to perform a
sequential search
and switch array
elements

Four exercises to write/complete the code to find
an element within an array, reverse an array or
switch two values within an array. For example:

Write the code to complete the following
methods for a given array:
(1) Add
(2) Find
(3) Switch
(4) Merge
(5) Reverse

3.3.2 Perceptions
At the end of the lab sessions, students were given a survey where
their responses were recorded using a seven-level Likert Scale
with scores ranging from 0 to 6 from strongly disagree to strongly
agree. The results were normalized from 0% to 100%. Values
between 0% and 40% were considered negative perceptions.
Values from 40% to 70% were considered undecided perceptions
and values higher than 70% were considered positive perceptions.
The following questions were asked in the survey: (1) I feel I have
the ability to accurately evaluate and construct a <concept>; (2) I
feel I have the ability to describe a <concept>; (3) I have the
ability to create a program that includes a <concept>. The three
questions were posed to assess perceived ability to complete the
given tasks. Two additional open-ended questions were asked to
students to analyze their perceptions about the examples and the
laboratory session: (1) What would you improve for the examples;
and (2) What suggestions do you have for the laboratory sessions?

3.4 Data Scoring and Analysis

3.4.1 Learning
Pretest and posttest assessments were scored by two different
graders to assure reliability. Whenever the graders got different

scores, they discussed the scores until they agreed on a certain
value. The lab assignments were scored by the teaching assistant.
The comments written by the students were analyzed qualitatively
to identify different categories in which the comments could fit.
These categories were assigned a descriptive code that was used
later to identify students’ commenting styles.

3.4.2 Perceptions
Descriptive and inferential statistics were used to analyze the
learning and perception measures. Whenever the data did not
satisfy the normality assumption, a logarithmic transformation
was used to be able to run the inferential tests. The open-ended
questions were first analyzed using open-coding by one of the
researchers. Then, to assure reliability, another researcher re-
analyzed students’ responses using his codes. The percentage of
agreement was 80%. These codes were then grouped by themes.

4. RESULTS
Three iterations of data collection are reported in this section. At
the end of each iteration, quantitative and qualitative results were
used to improve the learning materials and the instruments for the
following iteration.

Volume 6, Issue 1 Journal of Computational Science Education

6 ISSN 2153-413 July 2015

4.1 Session #8: The student will create an

algorithm that contains for-loop and while-

loop structures to solve summations or display

a list of values

4.1.1 Quantitative Data
Pretest and posttest scores were compared to evaluate learning
gains. No significant differences were found for the complete
group of students t (54) = -0.702, p = 0.4857 nor for the
subgroups (i.e., students with/without programming experience).
Table 4 depicts the descriptive statistics for the learning measures
from session #8.
Differences between groups were assessed by comparing lab score
and time to complete the assignment. Significant differences were
only found in the “time to complete” variable, and these
differences were found when comparing students who had
programming experience and those who had not F(26,1)=23.86,
p<0.001. however, although non-significant differences were
found, students without programming experience increased their
score from pretest to posttest more than those with some
experience. They also received a higher lab score as compared to
students with prior programming experience.
Overall, perception measures fell in the positive perception
category for the ability construct (Mean = 79.49%; Standard
Deviation –SD– = 16.61%). The measure was also compared
between groups. Significant differences were found for the ability
construct (t(24)=3.204, p<0.01) when compared by programming
experience. The results suggest that students with previous
programming experience (Mean = 89.90%; SD = 15.48%)

perceived a higher ability to deal with loops than those without
previous experience (Mean = 71.85%; SD = 13.19%).
Table 4. Descriptive statistics of student learning scores in Lab

Session #8

Test
Overall

(N=28)

Programming

Experience
Yes

(N=12)
No

(N=16)

Pretest (%)
Mean 50.71 64.58 40.31

SD 30.81 24.90 31.38

Posttest (%)
Mean 56.25 65.42 49.38

SD 28.14 29.81 25.62

Lab Score

(%)
Mean 95.71 95 96.25

SD 8.36 9.05 8.06

Time to

Complete

(min)

Mean 86.32 68.83 99.44

SD 22.29 17.66 15.42

4.1.2 Qualitative Data
The two open-ended questions were completed by twenty-five
students. The questions were: (1) What would you improve for the
examples?; and (2) What suggestions do you have for the
laboratory sessions? Table 5 and Table 6 depict the results of the
qualitative analysis to students’ responses. A group of students
suggested getting rid of some of the comments (24%) or better
aligning the examples with the assignments (16%).

Table 5. Categorical analysis for the student responses to the strategies to improve examples in Lab Session #8

Theme Code Definition % Representative Quote

Students
struggled with

specific
elements

within the
examples

Nothing to
Improve

The student thinks that the examples are
fine the way they are presented

5
6

“nothing to improve” /“Nothing I can think of.
As long as they are related to the problems and
the comments are descriptive, they are fine”

Less Comments The student highlights the need to get rid
of some of the comments since they have
an impact on the code readability

2
4

“Less comments, too hard to find place among a
sea of comments”/ “I feel like the comments
chitter the code and makes it difficult to read”

Math
Expression

The student feels the use of unknown
mathematical expression constrains
her/his understanding of the example

1
6

“Explain N! - What that means?” / “…the ‘^’
syntax issue was confusing for me”

Explicit relation
example /
assignment

The student requests that the examples be
more detailed so that they guide the
student through the problem solving
process of the assignment

1
6

"Better descriptions for what we are supposed to
do" / "Make it so the examples demonstrate most
of the common types of loops people mess up
on."

Students
suggested
integrating

more hands-
on activities
as part of the

classroom
approach

Better with
Examples

The student thinks working with
examples is a better approach than
working from scratch

2
0

“I wanna spend more time with examples” / “It
helped a lot but I feel like the book could've
helped explain writing the math problems more
in depth”

In-class
activities

The student thinks that the class activities
should be focused on practical activities
(design and programming activities)

1
2

“Maybe more hands on in class and allow us to
program it on the computers” / “Make students
answer questions in algorithmic form”

Better without
helped her/him to

solve the assignment

4 "Unsure, did not use them"

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413 7

Table 6. Categorical analysis for the student responses to the strategies to improve the laboratory sessions in Lab Session #8

Theme Code Definition % Representative Quote

Students’
suggestions

about
laboratory
sessions

No suggestion The student thinks the laboratory sessions
are fine the way they are carried out

64 “They are going good” / “Nothing so far”

Logistic
Improvements

The student feels that the laboratory
session could be improved by either having
more time, different levels of difficulty, or
more teaching assistants

32 “More TAs for more help" / “More optional
assignments” / “More TA to speed things
up.”

Exploring
examples

The student thinks that exploring examples
would help them to better understand the
concepts before starting to build a program
from scratch

20 “To continue to experiment with these types
of ideas on presenting programming in an
easier to understand format” / “Explore
and try various examples”.

Better without
examples

The student does not consider the examples
as having helped her/him to solve the
assignment

12 “I personally like the old method better”
and “Keep them from Scratch”.

Table 7. Categorical analysis for the student comments within the second example in Lab Session #8

Category Definition % Representative Quote

1. Detailed
Comments

The student wrote
a detailed
description in
every step of the
code

21 *radSumOfNumbers is the name of the Radiobutton
*related to the sum of numbers
*it allows to identify whether the user wants to perform
*this operation when checked or when the radio button is not checked. */
/*txtN1.Text is what the user enters
* The text should be converted into a number froms string to do mathematical operations
*/
//txtN2.Text will correspond to n2, because that is what the user enters
// the parse method converts the string into numbers
in the for loop here, the variable i is defined as n1,
* i <= n2, will make sure the loop will continue until the number reaches the
* the number the user entered for n2
* i++ will make sure the count will increase 1 in every loop.
//Add the sum to the total result
//shows the result in the output textbox

2. Basic
Comments

The student used
the first example to
write the
comments for the
second one. The
comments were
very simple.

32 “*radSumofNumber is the name of the radio button
*if this radio button is checked, the loop/calculation are executed
//declare N1 and parse
//declare N2 and parse
//declare the initial value for total
//create the loop with the variables
//calculation from the loop
//display the calculation

3. No Clear
Comments

The student did not
write any
comments at all or
the comments were
too incomplete to
be understood.

18 // adds together all the inputed values

4. Relevant
Conditions

The student only
focused on
relevant sections of
the code (e.g. loop
conditions) with
rich descriptions.

29 // * the total is initialized to zero
// * i equals n1 in the beginning of the code then as long as i is smaller than n2 than
 // the program will operate and it will add 1 to n1 after every time.
// i is added to the total every time that the program is run.
// The output is displayed through by using the tostring method.

Volume 6, Issue 1 Journal of Computational Science Education

8 ISSN 2153-413 July 2015

Regarding the laboratory sessions, students’ perceptions were
divided between those who preferred working with examples
(20%) and those who preferred solving problems from scratch
(12%). The other source of qualitative data was students’
comments in the code for one of the provided examples. Four
categories were identified for the commenting styles from
students. The categories, descriptions, and examples are presented
in Table 7. Most of the students either used the first example as a
model to comment the other one with simple comments, or
focused on describing the most relevant section of the code.

4.1.3 Quan + Qual
In addition to the qualitative analysis of the comments, we wanted
to evaluate if there was a quantitative difference among students
with different commenting styles. Table 8 shows descriptive
statistics for the learning and perception measures grouped by
commenting style.

Non-significant differences were found from pretest to posttest for
all of these groups; however, the highest scores in both posttest
and lab scores were from students with either detailed comments
or those who highlighted relevant conditions with their comments.
These students also spent more time completing the assignment
on average compared to the rest of the students. We speculate that
these non-significant difference may be due to a large standard
deviation and the small sample size, which resulted from dividing
the students into four groups.
Significant differences were found for the Ability Construct
between the commenting styles “Basic” and “Unclear.” The
results suggest that students who did not write comments or who
wrote unclear comments felt very confident in their abilities. On
the other hand, those with basic comments may have felt unsure
of their abilities; therefore, their comments were as simple as
possible.

Table 8. Descriptive statistics of learning and perception scores grouped by commenting styles in Lab Session #8

Commenting

Style

Pretest (%) Posttest (%) Lab Score (%)
Time to Complete

(min)
Ability (%)

Mean SD Mean Mean Mean SD Mean SD Mean SD

1. Detailed (N=5) 58.33 37.64 75 27.39 96.67 8.16 91.83 26.44 82.22 14.91

2. Basic (N=9) 38.33 33.16 45.55 30.46 95.56 8.81 77.33 18.49 67.90 18.59

3. Unclear (N=5) 55 20.92 49 26.32 92 10.95 77.20 26.37 92.22 10.83

4. Relevant (N=7) 56.25 29.12 58.75 23.87 97.5 7.07 98 16.86 83.33 10.14

4.1.4 Evaluation of the Iteration
As part of the results, two elements were called to our attention
from this first iteration: (1) there were no significant differences
from pretest to posttest; (2) students requested improvement of the
examples by removing detail in the comments but increasing
explanations.
After analyzing the results in the pretest and posttest measures, it
was identified that some students were able to understand how a
loop worked, but they failed to calculate the resulting value that
was asked for in the test. Another identified aspect from the test
was that students were struggling with mathematical expressions
that are common in pseudo-code but might not be that common
for them (e.g., “^” to indicate potentiation). Therefore, the
following tests were more focused on building/completing code
and all the potentially confusing terms were removed. Besides, the
comments in the examples were organized in such a way that only
the main portion of the code had a rich description of the solution.

4.2 Session #9: The student will create an

algorithm that initializes an array, add some

values, and display the stored values

4.2.1 Quantitative Data
During this session, the two groups were exposed to different
approaches. One of the groups used examples (Experimental,
N=18), while the other group used their traditional problem
solving approach (Control, N=14). Table 9 shows descriptive
statistics for the learning measures of these groups. The
programming experience values were only calculated for the
experimental group since that is the only group where these may
have an impact for assessment.

Non-significant differences were found between groups or
between pretest to posttest. In spite of this, it is interesting to see
that students without programming experience performed better -
and with a smaller standard deviation- in the lab score than
students with programming experience. This follows the trend
from lab session #8.
Table 9. Descriptive statistics of student learning scores in Lab

Session #9

Test

Group Programming

Experience
Control

(N=14)
Exper.

 (N=18)
Yes

(N=10)
Yes

(N=18)

Pretest

(%)
Mean 63.09 55.56 59.17 51.04

SD 29.55 36.04 37.98 35.47

Posttest

(%)
Mean 67.86 63.43 70 55.21

SD 30.29 35.14 33.38 37.78

Lab

Score

(%)

Mean 79.14 91.67 88.5 95.63

SD 35.36 23.45 31.27 6.78

Time

(min) SD 26.65 10.70 11.69 9.78

For the ability construct, students in both control group (Mean =
83.33%; SD = 15.71%) and experimental group (Mean = 70.37%;
SD = 26.61%) showed a positive perception. Non-significant
differences were found between groups. For the experimental
group, contrary to lab session #8, differences in ability were not

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413 9

found between experienced (Mean = 76.11%; SD = 24.71%) and
non-experienced (Mean = 63.19%; SD = 28.78%) programmers.

4.2.2 Qualitative Data
At the end of the session, students responded to two open-ended
questions: (1) what would you improve for the examples?; and (2)
what suggestions do you have for the laboratory sessions? This
time only one student suggested that the examples would benefit
from having still less comments while another commented: “This
was much better without all the comments.” In addition, more
than sixty-percent of the students thought the examples were
complete and useful. Table 10 and Table 11 summarize the results
of the qualitative analysis to students’ responses.
Regarding the suggestions for the lab session, more than sixty
percent of students thought the examples were fine the way they
were implemented. As in lab session #8, results suggest that there
are differences regarding the preference of using examples. While
there is a broad acceptance concerning the way the examples are
presented and some of the students really enjoy using this
scaffolding, there is another group of students who preferred
building their code from scratch.
The self-explanation process of writing comments on the code
was only required for the experimental group. The same
categories were found for the commenting styles compared to the
lab session #8. The distribution of students’ comments was:
detailed comments (33.33%), basic comments (33.33%), no clear
comments (16.17%), and relevant conditions (16.17%).

4.2.3 Quan + Qual
Table 12 shows the results of the comparison of the learning and
perception measures grouped by commenting style. The reduced
sample size due to the separation between experimental group and
control group makes it difficult to use inferential statistics. As in
lab session #8, in lab session #9, non-significant differences were
found for all of the learning measures of these groups; however,
once again, the highest scores were for students who had detailed
comments or highlighted relevant conditions.
Non-significant difference was found between the groups for the
perception measures. We see, however, that the students without
comments or with unclear comments are those who feel more
confident about their ability. This result is similar to lab session
#8. Students with basic comments present the lowest scores for
the perception construct.

4.2.4 Evaluation of the Iteration
For lab session #9, students’ suggestions about the examples
changed significantly in terms of the number of comments. Still, a
couple of students considered the amount of comments could be
reduced. Therefore, even simpler but explanatory comments were
included in the following example. In addition, students
suggested adding more complexity to the examples and
programming challenges. Since lab session #9 was the first one
focused on the array concept, it dealt with creating and listing
arrays. For the following lab session (#10) the level of difficulty
was increased by dealing with swap and sequential search array
operations.

Table 10. Categorical analysis for the student responses to the strategies to improve examples in Lab Session #9

Theme Code Definition % Representative Quote

Students
struggled with

specific
elements

within the
examples

Nothing to
Improve

The student thinks that the examples are
fine the way they are presented

69 “The examples given was perfect. I don't find
any improvements needed.” / “Nothing, the
examples were good”

Less Comments The student highlights the need to get
rid of some of the comments since they
have an impact on the code readability

6 “Less Comments”

Complexity and
Quantity

The student feels that it would be better
to have more and more complex
examples

15 “Maybe harder ones” / “Not much, just detail
and complex examples would help”

Students
suggested
integrating

more hands-
on activities
as part of the

classroom
approach

Better with
Examples

The student thinks working with
examples is a better approach than
working from scratch

27 “More examples” / “Nothing really, already
enough material to help a novice like me”

In-class activities The student thinks that the class
activities should be focused on practical
activities (design and programming
activities)

6 “More of class time is necessary to fully
understand this language” / “Know how to
build array”

Better without
Examples

The student does not consider the
examples as having helped her/him to
solve the assignment

3 “In order to remember how to write the code, I
feel we should practice writing code (not
typing), i.e., the methods, etc. until we know
them.”

Volume 6, Issue 1 Journal of Computational Science Education

10 ISSN 2153-413 July 2015

Table 11. Categorical analysis for the student responses to the strategies to improve the laboratory sessions in Lab Session #9

Theme Code Definition % Representative Quote

Students’
suggestions to

laboratory
sessions

No suggestion The student thinks that the laboratory
sessions are fine the way they were
carried out

67 “No suggestions” / “I enjoy these labs
immensely. I have no suggestions”

Logistic
Improvements

The student feels that the laboratory
session could be improved by having
more time, different levels of difficulty, or
more teaching assistants.

9 “Maybe the instructor could walk us
through the code that is already provided so
that we have a better understanding of what
we are going into. " / “Pretest and posttest
during a lab adds stress to an inherently
stressful situation”

Exploring
examples

The student believes that exploring
examples would help her/him to better
understand the concepts before starting to
build a program from scratch

12% “I like the way it was taught this week and
last week” / “Perhaps more code
demonstrations.”

Better without
examples

The student does not consider the
examples as having help

12% “I prefer building programs from scratch,
as I understand my own code better.”/
“Writing code myself is the best way to
improve my skill, at least for me”.

Table 12. Descriptive statistics of learning and perception scores grouped by commenting styles in lab session #9

Commenting

Style

Pretest (%) Posttest (%) Lab Score (%)
Time to Complete

(min)
Ability (%)

Mean SD Mean Mean Mean SD Mean SD Mean SD

1. Detailed (N=6) 61.11 32.35 66.67 36.89 100 0 74 8.07 72.22 30.63

2. Basic (N=6) 45.83 42.41 54.16 36.04 93.33 7.53 80.33 10.60 53.70 25.98

3. Unclear (N=3) 33.33 28.87 61.11 41.94 65 56.34 72 8.66 85.19 16.97

4. Relevant (N=3) 86.11 24.06 77.78 38.49 98.33 2.89 89 12.49 85.19 13.98

4.3 Session #10: The student will create an

algorithm to perform a sequential search and

switch array elements

4.3.1 Quantitative Data
For this last session, the experimental and control groups were
switched after lab session #9’s configuration. Thus, the
experimental group became the control group (N=16), while the
control group became the experimental one (N=14). Table 13
shows descriptive statistics for the learning measures of these
groups. Significant differences were found between pretest and
posttest measures for the non-experienced students t(12)=-2.14,
p=0.053 (one tailed t-test). With an average increment of 25%,
students in the experimental group showed a significant change in
the posttest learning measure as compared to the pretest. The
result suggests that students in the experimental condition, with
no previous programming experience, took advantage of the
examples to increase their understanding about sequential search
in arrays.
Regarding the perception measures, students in the experimental
condition showed a positive perceived ability (Mean = 80.74%;
SD = 16.38%) as compared to the neutral perceived ability
presented by the control group (Mean = 65.93%; SD = 20.67%).

Table 13. Descriptive statistics of student learning scores in

Lab Session #10

Test

Group Programming

Experience
Control

(N=16)
Exper.

 (N=14)
Yes

(N=8)
Yes

(N=7)

Pretest

(%)
Mean 56.64 66.67 75.78 56.25

SD 25.36 15.25 11.29 12.50

Posttest

(%)
Mean 64.06 77.50 73.21 81.25

SD 25.87 22.76 16.81 27.55

Lab

Score

(%)

Mean 78.13 80 86.25 72.86

SD 40.04 35.25 35.03 36.84

Time

(min)
Mean 110.31 101.40 91.50 112.71

SD 8.55 22.03 14.91 23.25

4.3.2 Qualitative Data
The open-ended questions asked at the end of the lab session #10
were analyzed following the codes and themes found on the
previous lab sessions. On this iteration, fewer suggestions

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413 11

concerning changes were made. Students highlighted that “These
examples were clearer than in the past.” Moreover, none of the
students suggested that there was a need to reduce the comments
or to change the quantity/complexity of the examples. Results are
summarized in Table 14.
Regarding the lab sessions, the different perspectives about the
preference of using/not using worked examples continued. Four
students (13%) mentioned that they wanted to continue with
examples, while two students (7%) preferred working from
scratch. Three students (10%) talked about logistics, such as more
time for the lab sessions or more lab sessions for specific topics.
Seventeen students (57%) made no suggestions.
Finally, some students seemed worn out by the research process
and complained about the time the pretest and posttest took from
the session: “I don't have a problem with it but these in lab
quizzes take away time from the overall lab and if they are a little
sooner, then they might have trouble finishing lab in time.” In
fact, the complexity of this lab as well as the time taken to solve
the tests made this lab session the longest in terms of the time to
be completed. Therefore, only four students wrote the comments
in the code. The distribution of these students for commenting
styles was: (1) Detailed (two students); (2) Basic (one student);
(3) Unclear –no comments- (ten students); (4) Relevant (one
student).

4.3.3 Quan + Qual
Since the sample size became too small in this lab session,
descriptive or inferential statistics were not calculated; however,
to identify whether the trend that came from lab sessions #8 and
#9 continued, the lab score for the three students in the detailed
and relevant commenting styles were checked. All three students
got a score of 100% , thereby confirming the trend.

5. DISCUSSION
This study explored the use of worked examples to support
programming activities as part of an introductory course.
Specifically, this study explored two questions and findings are
discussed below.

5.1 How can worked examples be effectively

designed to introduce programming concepts

to novice learners?
Three laboratory sessions were used to introduce programming
concepts using worked examples. The design and implementation
of the worked examples were iteratively improved using students’
suggestions and validated through learning assessments. The
structure of the examples followed the principles suggested by
Atkinson [5] that included: a problem statement, a procedure for
solving the problem, and auxiliary representations of the problem
and solution.
Two examples were used to scaffold the learning process in each
session. The problem statement consisted of a single programming
task aligned to the learning objective of the lab session and
embedded within the problem set. The solution was represented in
multiple forms including textual, graphical, and computational
representations. All the representations were aligned with each
other. A self-explanation task was also included as part of the
assignment using written comments within the code to engage the
students in the process.
The feedback from open-ended questions was useful for
improving the examples. The main component of these edits was
the elimination of complex explanations within the code that
could generate additional cognitive load to students. In fact, the
examples with the simplest comments (lab session #10) were the
ones that showed significant differences. Some other changes
were included such as: (1) avoiding the use of complex
mathematical symbols; (2) increasing the complexity of the
examples; and (3) aligning them to the problem assignments.
Only the last laboratory session (#10) presented significant
differences in learning gains for students with non-programming
experience. This result is aligned to what is suggested by
Atkinson et al. [5] in that the worked examples approach may be
useful for novices in an initial skill-acquisition stage such as
analogy or abstract rules of learning [4].

Table 14. Categorical analysis for the student responses to the strategies to improve examples Lab Session #9

Theme Code Definition % Representative Quote

Students
struggled with

specific
elements

within the
examples

Nothing to
Improve

The student thinks that the examples are
fine the way they are presented

61 “They seem fine”/”Examples are fine”

More Detail

The student suggests increasing the level
of detail in the examples or exercises.

6 “More descriptions on how to reverse the
array” / “Describe in more detail what the
questions asking”

Students
suggested
integrating

more hands-
on activities
as part of the

classroom
approach

Better with
Examples

The student thinks working with
examples is a better approach than
working from scratch

27 “More examples” / “Nothing really, already
enough material to help a novice like me”

In-class activities The student thinks that the class activities
should be focused on practical activities
(design and programming activities)

6 “More of class time is necessary to fully
understand this language” / “Know how to
build array”

Better without
Examples

The student does not consider the
examples as having helped her/him to
solve the assignment

3 “In order to remember how to write the code,
I feel we should practice writing code (not
typing), i.e., the methods, etc. until we know
them.”

Volume 6, Issue 1 Journal of Computational Science Education

12 ISSN 2153-413 July 2015

On the other hand, expert students with prior programming
experience did not benefit from the examples, perhaps because
they may have already developed a mental model [19]. For the
rest of the sessions (#8 and #9), we speculate that the examples
were unclear because they had too many comments included
within the code. After students’ suggestions, the examples were
refined with simpler comments. Another possible explanation can
be related to the time students need to get used to this new
pedagogical approach. The worked examples approach was only
introduced starting on lab session #8. Hence, the students were
already used to a different problem solving approach. Moura [13]
experienced this phenomenon and highlighted that students
needed some time to get used to the tool she used for the worked
examples. After that time, students performed better. Finally, the
small sample size also made it difficult to find significant
differences.
Regarding the perception constructs, novice students perceived
their ability to solve various computing-related tasks to be
significantly higher than those students with programming
experience (in lab session #8). This, however, changed over time
and a non-significant difference was found between experienced
and non-experienced programmers for the rest of the iterations.
The result suggests that, as the examples were improved, students
with no previous experience were better able to take advantage of
them. This is also suggested by the perceived ability of the
students from the experimental group in the last session (80.74%),
which was higher than the control group.
The worked examples approach generated a separation between
those students who enjoyed exploring and learning from them and
those who preferred to build the whole program themselves. From
the students’ responses from any of the sessions, of those who
mentioned that they preferred coding from scratch, 75% identified
themselves as experienced programmers. This is aligned with the
rest of the findings and the literature suggesting that worked
examples are more useful for novice learners than for expert ones
[4, 5].

5.2 How do students self-explain worked

examples when approaching a solution to a

programming assignment?
Commenting on the code was used to encourage students’ self-
explaining process for the examples. These comments were
grouped as four commenting styles: (1) Detailed; (2) Basic; (3)
Unclear; and (4) Relevant (see Table 8 for a full description).
Although non-significant differences were found between the
groups, valuable insights were identified. First, as suggested by
Chi et.al. (1989), students with a deeper self-explaining process
(either (1) Detailed or (4) Relevant) performed better in all the lab
sessions. Students with an incomplete self-explanation process
appear to not fully understand the problem solving approach and,
therefore, are unable to solve similar problems by analogy. Chi
and collaborators [6] called this effect the self-explanation effect
and enumerated four differences between students who were able
to take better advantage of the examples than students who
passively explored the examples. Trends identified in [6] were (1)
high performers presented more self-explanations while studying
examples; (2) “Poor” performers did not perform enough self-
monitoring activities such as “I can see now how they did it”; (3)
High performers referenced less to the examples when solving
another problem than “poor” performers; (4) The “poor”
performers self-explained more during the problem solving than

the high performers who preferred to do it during the example
exploration.
The second insight is that students who did not include any
comments reported a higher perceived positive ability than those
students who wrote very simple comments. We speculate that
these students felt confident about their abilities and, therefore,
did not want to spend time understanding another approach;
however, they did not perform as well as students who wrote
thorough comments.
The main limitation of the study is the small sample size
constrained by the course size. Therefore, the significance of the
differences found in this study lies in the qualitative data
regarding students’ recommendations, perceptions, and
commenting styles. Another limitation is that the worked
examples approach began in lab session #8. This means that the
students had been exposed to seven previous sessions with a
different approach. This may have generated a negative reaction in
some students who preferred to work in a more familiar way.

6. IMPLICATIONS

6.1 Implications for Teaching
The use of Atkinson’s instructional principles to design worked
examples has been identified as useful in situations where novice
learners seem to take more advantage of this technique. Expert
learners may have already acquired mental models in the thematic
area that provided them with the necessary tools for problem
solving.
The identification of intra-example, inter-example, and
interacting-with-the-learning-environment features of worked
examples can provide a framework for instructors to effectively
design their worked examples. Specifically, the intra-example
features used in this study presented several requests by the
students to keep simple explanations, especially when they are
integrated into the code. Students often mentioned that many
comments within the example code decreased readability. Thus,
the use of at least two different examples with a good alignment
with the assignments is the main inter-example feature that should
be considered.
Finally, for programming activities, requiring students to write
comments within the code can be useful as a self-explanation
process; however, to take full advantage of this process, it is
important to encourage students to write detailed comments or to
highlight relevant conditions by describing boundaries and the
consequences of their solutions.

6.2 Implications for Learning
Results from this study suggest that students who described
relevant conditions along the code, as well as details in the way
the code worked, performed better than those students who
commented on the code superficially or did not self-explained it at
all. Several studies have demonstrated that a passive approach to
studying worked examples has no impact on learning as compared
to problem-solving instruction (Chi et. al., 1989; Atkinson et al.,
2000). The reason for this could be a lack of understanding
resulting from not actively engaging with the examples.
Chi and colleagues [6] suggested that the examples are not always
completely clear, so the students have to engage in a self-
explanation process allowing them to identify the relevant aspects
of the solution. Thus, a self-explanation should contain four
aspects that depict an understanding: (1) the conditions of

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413 13

application of the actions; (2) the consequences of actions; (3) the
relationship of actions to goals; and (4) the relationship of goals
and actions to natural laws and other principles. In this study, the
“Detailed” and “Relevant” commenting styles contained all these
characteristics while “Basic” or “Unclear” commenting styles
contained only one of these features, (e.g. the conditions of
application of the actions) if any of them at all. Furthermore, a
good understanding of the example can lead to more proficient
problem-solving skills, while poor understanding may lead to a
continuous reference to the example while trying to solve another
problem.

7. CONCLUSION
The use of worked examples to scaffold programming and
algorithm design learning has been evaluated. Different
instructional design elements were assessed in order to identify
effective design characteristics for worked examples. Multiple
representations of the solution, including textual, graphical and
computational representations, were employed. Writing in-code
explanations as simple sentences enhanced code readability and
improved students’ perceptions about the examples. Moreover,
encouraging students’ self-explanation process by asking them to
comment within the code helped the students to actively engage
with the examples. Specific suggestions include encouraging
students to write detailed comments as opposed to superficial ones
in order to take advantage of the examples. This approach seems
to be useful for novice students who did not have previous
experience in programming.
The contribution of the study is the detailed description of the
implementation of worked examples in a programming context. It
includes the use of multiple representations as well as the use of
comments within the code as a self-explanation process.

8. LIMITATIONS AND FUTURE WORK

The main limitation of this study is that the learning outcomes for
each iteration were different. Thus, the changes implemented
based on the results were not evaluated in exactly the same
context. Therefore, future work will explore the effect of these
recommendations for these three lab sessions.
Next steps also include the design of additional examples using
instructional principles of worked examples [5] as well as
students’ suggestions in this process. Future instruction should
also encourage students to carry out a thorough self-explaining
process that may lead them to an understanding of the examples.
This can be accomplished either through incentives or by means
of extended training.

9. ACKNOWLEDGMENTS
This research was supported in part by the U.S. National Science
Foundation under the award #EEC1329262.

Authors would also like to thank Guity Ravai for her assistance in
reviewing the assessment instruments and facilitating the
implementation of the learning materials.

10. REFERENCES
[1] [NRC]. 1999. Being fluent with Information Technology:

National Academy Press.

[2] [PITAC]. 2005. "Computational science: ensuring
America’s competitiveness," President's Information
Technology Advisory Committee (PITAC), vol. 27

[3] [WTEC]. 2009. "International assessment of research and
development in simulation-based engineering and science"
World Technology Evaluation Center, Inc., Baltimore,
Maryland.

[4] Anderson, J. R., Fincham, J. M., and Douglass, S. 1997. The
role of examples and rules in the acquisition of a cognitive
skill. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 23, 932-945.

[5] Atkinson, R.K. Derry, S. J., Renkl, A., and Wortham, D.
2000. Learning from Examples: Instructional Principles from
the Worked Examples Research/ Review of Educational
Research. Summer 2000, Vol. 70, No. 2, pp. 181-214.

[6] Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and
Glaser, R. 1989. Self- explanations: How students study and
use examples in learning to solve problems. Cognitive
Science, 13, 145-182.

[7] Cuny, J., Snyder, L., and Wing, J. M. 2010. Demystifying
Computational Thinking for Non-Computer Scientists. Work
in progress.

[8] College Board. 2011. CS Principles.
http://www.collegeboard.com/prod_downloads/computerscie
nce/Learning_CSPrinciples.pdf

[9] du Boulay, B. 1989. Some difficulties of learning to program.
In E. Soloway & J.C. Spohrer (Eds.), (pp. 283–299).
Hillsdale, NJ: Lawrence Erlbaum.

[10] Gray, S., St. Clair, C., James, R., and Mead, J. 2007.
Suggestions for graduated exposure to programming
concepts using fading worked examples. Proceedings of the
third international workshop on Computing education
research - ICER ’07, 99.

[11] Guzdial, M. and Robertson, J. 2010. Too much
programming too soon? . Communications of the ACM,
Volume 53 Issue 3, March, 2010.

[12] Kirschner, P. A., Sweller, J., and Clark, R.E. 2006. Why
Minimal Guidance During Instruction Does Not Work: An
Analysis of the Failure of Constructivist, Discovery,
Problem-Based, Experiential, and Inquiry-Based Teaching,
Educational Psychologist, Vol. 41, Iss. 2.

[13] Moura, I. C. 2013. Visualizing the Execution of
Programming Worked-out Examples with Portugol.
Proceedings of the World Congress on Engineering 2013
Vol I, WCE 2013, July 3 - 5, 2013, London, U.K.

[14] Paas, F., Renkl, A., and Sweller, J. 2004. Cognitive load
theory: Instructional implications of the interaction between
information structures and cognitive architecture.
Instructional science 32, 1-8.

[15] Paas, F., Renkl, A., and Sweller, J. 2003. Cognitive Load
Theory and Instructional Design: Recent Developments.
Educational Psychologist, 38(1), 1–4.

[16] Pirolli, P. and Recker, M. 1994. Learning strategies and
transfer in the domain of programming. Cognition and
Instruction, 12, 235–275.

Volume 6, Issue 1 Journal of Computational Science Education

14 ISSN 2153-413 July 2015

[17] Renkl, A., Atkinson, R. K., and Große, C. S. 2004. How
Fading Worked Solution Steps Works – A Cognitive Load
Perspective. Instructional Science, 59–82.

[23] Teddlie, C., and Tashakkori, A. 2006. A general typology of
research designs featuring mixed methods. Research in the
Schools, 13(1), 12-28.

[24] Wing, J. 2006. Computational Thinking. Communications of
the ACM, 49, 3, 33-35

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413 15

Picky: A New Introductory Programming Language

Francisco J. Ballesteros

Universidad Rey Juan Carlos
C/ Camino del Molino SN

E29843, Fuenlabrada, Madrid,
Spain

nemo@lsub.org

Gorka Guardiola
Múzquiz

Universidad Rey Juan Carlos
C/ Camino del Molino SN

E29843, Fuenlabrada, Madrid,
Spain

paurea@lsub.org

Enrique Soriano
Salvador

Universidad Rey Juan Carlos
C/ Camino del Molino SN

E29843, Fuenlabrada, Madrid,
Spain

esoriano@lsub.org

ABSTRACT
In the authors’ experience the languages available for teach-
ing introductory computer programming courses are lacking.
In practice, they violate some of the fundamentals taught in
an introductory course. This is often the case, for example,
with I/O. Picky is a new open source programming language
created specifically for education that enables the students
to program according to the principles laid down in class.
It solves a number of issues the authors had to face while
teaching introductory courses for several years in other lan-
guages. The language is small, simple and very strict regard-
ing what is a legal program. It has a terse syntax and it is
strongly typed and very restrictive. Both the compiler and
the runtime include extra checks to provide safety features.
The compiler generates byte-code for compatibility and the
programming tools are freely available for Linux, MacOSX,
Plan 9 from Bell Labs and Windows. This paper describes
the language and discusses the motivation to implement it
and its main educational features.

Categories and Subject Descriptors
D.3.0 [Programming Languages]: General
; D.3.3 [Programming Languages]: Language Constructs
and Features
; K.3.2 [Computers and Education]: Computer and In-
formation Science Education

General Terms
Programming Languages, CS1

Keywords
Programming Languages, CS1

1. INTRODUCTION
The authors are in charge of teaching an introductory com-
puter science course (CS1 from now on). The curriculum

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright c©JOCSE, a supported publication of
the Shodor Education Foundation Inc.

is focused on imperative, statically typed procedural pro-
gramming. Nevertheless, it is not the usual imperative pro-
gramming curriculum. It strongly emphasizes the top-down
approach and the definition of subprograms. Proof of this is
that the course starts as a functional programming course.
The students learn how to build expressions and functions
before learning how to declare variables and build sequences
of statements. However, only one (imperative) program-
ming language is used for the whole course. Our approach
is similar in spirit to [8], but with a different implementa-
tion. Where Decker et al focus on object organization, we
focus on the strategy for attacking the problem by breaking
it into subproblems.

The course follows a twofold pedagogy methodology. First,
at every point the student is required to write code to test
her understanding of the matter at hand. Second, every line
of code the student writes must be comprehensible at that
point of the course. Of course, the second part needs to be
relaxed somewhat at the start of the course, but it is an
important principle we adhere to, whenever possible.

After teaching this course several years using Ada as the
main language, the authors decided to look for an alternative
for several reasons. Ada, despite being a Pascal descendant,
is multiparadigm. Moreover, its syntax is too verbose, and
it has other issues that are discussed next.

Selecting a new language for CS1 is a complex and delicate
task. The related bibliography is extensive [18] and there are
many open discussions about the different approaches, for
instance [14, 22, 21, 15, 5]. Although other authors defend
the use of object oriented languages for introductory courses
(see for example [17]), there is no consensus about which
approach is better (objects early vs procedures early) [22,
21, 15, 5]. In the authors’ experience, object oriented lan-
guages are too complex to be used as a first language. As
other authors state [12], the student should be instructed
before delving into an understanding of object oriented pro-
gramming concepts, which are more abstract (inheritance,
delegation, polymorphism, etc.) than other basic prereq-
uisites (variables, parameters). Object oriented languages
may be popular, but they are not simple enough to be un-
derstandable for a primer and look like magic to most novice
students.

After some research, the authors were not satisfied with the
existing alternatives to replace Ada. Although there are

Volume 6, Issue 1 Journal of Computational Science Education

16 ISSN 2153-413 July 2015

many programming languages available, and some of them
are specifically created for education, none satisfied all our
needs, described in section 2. In the end, the authors de-
cided to design and implement Picky and write a text book
(in Spanish) for the course [3]. Picky is a new imperative
programming language that meets all these requirements.
This paper presents the main features of the language for
teaching the CS1 course and the experience after using it
for nine CS1 courses with more than six hundred students.

2. REQUIREMENTS
2.1 High level
It is widely accepted [16] that low level languages, such as
C, are not suitable for CS1 courses. Even the defenders of
such languages acknowledge their shortcomings [20].

Thus, the candidate language to replace Ada for this purpose
must completely abstract the details of the machine and the
underlying operating system.

2.2 Single-paradigm
Some prestigious institutions, for example CalTech and MIT,
use multi-paradigm languages in introductory courses [14].
As stated before, some of the issues that the authors found
while teaching CS1 in Ada are related to its multi-paradigm
features.

Although multi-paradigm languages can be suitable for long
courses that start with imperative programming and then
continue with object oriented programming, they are not
suitable for single-paradigm courses (i.e. imperative pro-
gramming). It is confusing for students to consult bibliog-
raphy that mixes the paradigms or references focused on a
paradigm that is out of the scope of the course.

Also, as part of the learning process, the student, by mis-
take, may write programs that wander off the subset taught
in class. When the language has many heterogeneous con-
structions, like Ada, it is highly probable that the student
may come across one of them by mistake. Another issue
is the compiler returning an error related to one of these
off-course constructions. Frustration and confusion ensues.

Using a pure object oriented language (e.g. Java) to teach
imperative programming, like some institutions do, is even
worse. For a significant part of the course, the student gets
used to writing code which is incomprehensible at that point
in time (public, static, class, etc.). This violates one of the
cores of the twofold approach detailed above.

2.3 Restrictive
The candidate language must provide strong typing and
range checking. These features are very convenient when
learning how to program for the first time. With them, the
compiler and the runtime act as a safety net which prevents
the students from wandering off too much. This is another
reason for not using languages such as C, where the plastic-
ity of the language makes it easy to write obscure code. In
addition, it is desirable to use a language that includes extra
restrictions. For example, global variables are very harmful
in an introductory course and it is convenient to use a lan-

guage that forbids them. This forces the student to get into
the habit of structuring the code properly.

Some kinds of syntactic sugar and language features make it
unclear for students what the code actually does. They also
make difficult to consolidate some important concepts, such
as data typing. For example, transparent dereferencing of
pointers in Ada prevents students from understanding the
difference between a record and pointer to a record. Another
example is automatic declaration of variables (i.e. dynamic
typing) in Python. The lack of variable declaration com-
plicates the comprehension and identification of data types
and variables. Furthermore, it also muddles the concept of
static scoping.

While all these features may enhance the expressiveness of a
language later on, the basic concepts need to be established
first in the mind of the student.

2.4 Terse and simple syntax
In the authors’ opinion, the perfect candidate is a language
as simple as Pascal (or even simpler), with terse syntax like
C.

Pascal has been widely recognized as a good language for
CS1 courses. However, its control syntax is too verbose.
Also, the use of brackets and parenthesis in constructions
emphasizes the formal character of the language, one source
of confusion for new programmers.

In addition, Pascal syntax is more complex than needed.
For example, the use of semicolons as separators instead of
terminators for sentences is a problem for students. They
end up guessing when to add a semicolon and when not to
add one.

There is also a practical problem with Pascal. It is difficult
to find an implementation of Pascal which works well in all
the operating systems the students may use at home and
the lab.

Ada is quite verbose and utterly complex. This makes things
hard for students in introductory courses, because there are
many different constructs to master and the possibility of
wandering off by mistake, as explained before. Also, control
structures requiring exit when constructs are easily misused.
At the same time, this construction cannot be forbidden
because it is necessary for do-while (in fact do-until) loops.

Using white space characters and tabs as part of the syntax
is a double-edged sword. On one hand, it is useful to force a
valid indentation (e.g. Python). On the other hand, it leads
to syntax errors that are hard to solve for a first course
student. For example, mixing white space characters and
tabs in the same program causes errors, and it is difficult
to locate them manually. Even worse, the correctness of the
program depends on the text editor. Some editors hide white
space characters or translate tabs to them or vice versa. A
common pitfall when programming in Python is to use two
different editors to write the same program (e.g., the editor
installed in the laboratory and the editor installed in your
personal computer). The authors consider that, in general,
using these characters as part of the syntax is not desirable

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413

in a introductory programming language.

2.5 Explicit management and debug facilities
One of the aims of a first programming course is to teach
students how to debug programs.

To make memory allocation errors explicit and introduce
the concept of dynamic memory (de)allocation, the language
must support manual memory deallocation instead of auto-
matic garbage collection.

In addition, it must be easy to detect dynamic memory fail-
ures and leaks. It would be also desirable to be able to in-
spect the program stack in a novice-friendly format without
using complex tools (e.g. gdb).

2.6 Text based
The language must be suitable for a first year University
course. There are several visual programming languages
for education at different levels [19, 4, 11, 6, 7]. Neverthe-
less, the authors need a classic text-based language, closer
to real world programming languages, to ease the way into
the other languages taught later in the curriculum (C, Ada,
Java, Python, etc.).

2.7 Editor/IDE independent
Another important requisite is that the language must be
independent of IDEs. Some authors are especially critical of
commercially available IDEs [11]. For the authors of Picky,
it is a must to be able to compile and execute programs in
the command line and from shell scripts.

In some IDEs (like Eclipse), it is very difficult for a novice
to understand when a program is being compiled, when it is
being ran and what version is being used. The authors expe-
rience in more advance courses on Java and Android using
Eclipse is that the facilities provided for managing projects
cause problems even to last year students. For example, it
is quite complex for them to export and import a project,
even on machines running the same operating system.

In addition, it is paramount to allow the expert users (i.e.
the teachers) to select the text editor of their choice so that
the class can be taught fluidly. It is very common for the
authors to program something on demand as part of an ex-
planation. If the environment is cumbersome, the students
will get bored and distracted.

While syntax highlighting (or any other feature that make
plain text look like formatted text) may be useful for more
advanced courses, it is utterly harmful for novices. On one
hand, the students are told that the compiler only accepts
source code in plain text and that plain text does not have
any format, it is just a sequence of character codes. On
the other hand, the IDE or editor magically shows bold and
italic colored fonts. The authors want to avoid this kind of
magical effects to improve the comprehension of the tools.

2.8 Realistic I/O managing preserving refer-
ential transparency

File I/O is important not just to perform I/O, but also to
teach the students how to use control structures to guide

data consumption without violating file I/O rules imposed
by the file abstraction.

File handling in Ada is clumsy, to put it mildly. Calling
End Of File may block a program when reading from the
terminal, and students will not know why. Furthermore,
we teach that functions should be referentially transparent.
Nevertheless, many Ada file I/O subprograms (that is, non-
deterministic subprograms) are functions, not procedures.
This violates the referential transparency.

2.9 Portable
In order to study at home and complete the assignments,
students must be able to use at home the same tools that
they use at the laboratory. The tools must be available for
the systems they use, namely, Windows, Linux and Mac OS
X. Of course, the tools must be easy to install for all these
systems.

In addition, the executable files generated by the students
should also be portable. The first option is to use an inter-
preted language. Nevertheless, interpreted languages make
it difficult to consolidate concepts like compiling, linking,
and executing. For the student, it is hard to distinguish be-
tween source code files and executable files. Another option
is to use a compiled language that generates machine inde-
pendent code to run on a virtual machine. In this case, it is
also difficult to distinguish between the virtual machine and
the compiled program.

The solution we have taken is to follow the latter approach
and keep the illusion that the compiler generates an actual
native binary file that can be executed in the system like
a native executable (i.e. without invoking another program
like the virtual machine).

2.10 Open source
Last, the authors need to be able to modify the tools if nec-
essary. Thus, the language selected for the course must have
open source tools available for all the systems enumerated
in the previous point.

3. PICKY IS REALLY PICKY
Before providing a description of the language, we would
like to summarize its main features regarding safety. As the
name of the languages suggest, Picky is very restrictive. The
aim is to forbid students any practice that can be harmful
if it becomes a habit.

When a kid learns how to ride a bicycle it is convenient to
use side-wheels for a while. Only after such artifact is under
control, a new bicycle (one without side-wheels, and perhaps
with an engine) is more convenient. In the same way, Picky
is highly restrictive regarding what can be done and what
can not in a program. It has side-wheels attached.

Apart from the desired features described before (strong
typing, avoidance of automatic features such as dynamic
declaration or automatic deferences of pointers, no global
variables, and so on), both the compiler and the run time
include extra checks and waste memory and time to provide
additional safety features.

Volume 6, Issue 1 Journal of Computational Science Education

18 ISSN 2153-413 July 2015

• If the student forgets to initialize a variable, it will
not be zeroed. Moreover, the variable will not have
the corresponding value left in the stack by a previous
activation register.

In Picky, all variables are implicitly initialized with a
random value. Thus, if there are uninitialized vari-
ables, every execution will be different.

• The compiler does not provide warnings. Any error is
a fatal error and the program does not compile.

• The runtime tracks dynamic memory usage and pro-
vides informative diagnostics regarding accidental use
of dangling pointers.

• A program fails if there are dynamic memory leaks,
i.e. if there is memory allocated and not freed before
the program terminates.

• Functions do not accept parameters passed by refer-
ence.

• It is required that return is the last statement in the
function body.

• Procedures cannot use return.

In addition, some constructions are forbidden. For exam-
ple, the authors have detected that the following erroneous
construction is very common:

if(condition){
dosomething();

}else{
;

}

For the above construction, the Picky compiler gives a com-
pilation error. This code should be rewritten as:

if(condition){
dosomething();

}

4. THE LANGUAGE
The language is very simple. To get a full description of the
language, see [2]. What follows is a discussion of the most
relevant details from a pedagogical point of view, following
the requirements stated in section 2. There are further ped-
agogical omitted here for the sake of brevity.

4.1 Programs
Picky has control structures reminiscent of C and data dec-
larations in the style of Pascal. A source program is made
of a single file. A simple hello world example:

1 /* Hello world */
2

3 program Hello;
4

5 procedure main()
6 {
7 writeln("hello, world");
8 }

Comment syntax is taken from C. A program is introduced
by a program clause (line 3) that assigns an identifier to the
program. A procedure named main must be included, like
in C. The program starts executing its body and terminates
when returning from it.

All declarations and statements are terminated by a semi-
colon, but note that procedure and function definitions are
not terminated by a semicolon. Constants, types, proce-
dures, and functions may not be declared within the scope
of a procedure or function. That is, subprograms may not
be nested and constants and types must be declared in the
global scope.

The language is case-sensitive. An identifier must start with
an alphabetic character followed by zero or more alphanu-
meric characters. Picky only has 26 keywords and a total
of 81 language defined names, including keywords, builtins
and predefined constants.

A program may also include one or more constant declara-
tion blocks, one or more type declaration blocks, one or more
variable declaration blocks, and procedure and function def-
initions. The scope for a declaration goes from the point
where it happens in the source to the end of file. Global
variable declaration sections are forbidden by the compiler
unless a flag is supplied.

Constant, type, and variable declaration blocks start with
the keyword consts, types, and vars (respectively) followed
by declarations. The following program is an small, correct,
albeit useless, example:

1 program Xample;
2

3 consts:
4 Npts = 11;
5 Greet = "hi";
6

7 types:
8 Tmonth = (Jan, Feb, Mar);
9 Tpt = record{

10 x: int;
11 y: int;
12 };
13 Tpts = array[0..Npts-1] of Tpt;
14

15 consts:
16 Zmonth = Jan;
17

18 vars:
19 a: month;
20

21 procedure incptx(ref pt: Tpt)
22 {
23 pt.x = pt.x + 1;
24 }
25

26 function addpty(p1: Tpt, p2: Tpt): Tpt
27 {
28 p1.y = p1.y + p2.y;
29 return p1;
30 }
31

32 procedure main()
33 pts: Tpts;
34 i: int;
35 {

36 for(i = 0, i < Npts){
37 pts[i] = Tpt(2, 4);
38 incptx(pts[i]);
39 pts[i] = addpty(pts[i], pts[0]);
40 }
41 writeln(pts[Npts-1].x);
42 writeln(Greet);
43 }

4.2 Basic data types
Per requirement 2.3, Picky is strongly typed. The basic
types are bool, char, int, float, and file. They correspond
to booleans, characters, integers, real numbers in floating
point, and external (text) files.

Two types are compatible (for assignment and other opera-
tors) only if they have the same name. Predefined types also
obey the same rule. Constants and literals are an exception,
they belong to universal types that are assumed to be com-
patible with any basic data type of the same kind. This is
reasonable, for example, to permit using integer literals in
expressions that belong to a user defined integer type. An-
other exception are subranges. Subranges do not introduce
a new type; they declare a restriction defining a subset of
an existing type.

A type definition defines a new type and declares its name.
For example:

types:
Apples = int;
Oranges = int;

This code defines two new types: Apples and Oranges. It is
not legal to mix apples with oranges, and it is not legal to
mix any of them with int values. However, integer constants
and literals may be mixed with any of them.

In general, the language does not permit type casts. How-
ever, type casts are permitted to convert ordinals to the in-
teger representing their position in the type and vice versa.
Also, integers may be converted to floating point numbers
and vice versa.

To convert a value to a type use the target type name as a
function. For example, these are legal expressions:

char(int(’A’) + 1)
float(3)
int(4.2)

4.3 Explicit dynamic memory and resource man-
agement

Resources in Picky are managed explicitly as stated in sec-
tion 2.5. Memory allocations and deallocations are explicit
and there is no garbage collection.

A pointer data type refers to another type and permits using
new and dispose to handle dynamic variables of the pointed-
to type. Type definition uses the ˆ notation, taken from
Pascal:

types:
Arry = array[1..10] of int;
Iptr = ^int;
Aptr = ^Arry;

The second line declares an array data type used in the last
line, to declare a pointer to Array data type. The third line
declares a pointer to integer. It is legal to declare a pointer
to a type that is not yet defined in the program, but the
target type must de defined later. This permits declaring
circular data types, like linked lists. In no other case may a
type be defined in terms of not yet defined types.

Syntax to dereference a pointer value is also taken from Pas-
cal, and also uses the ˆ sign:

iptr^ = 2;
aptr^[1] = iptr^;

L-values of pointer types may use the following procedures
to allocate and deallocate memory: new(ptr) (set ptr to
point to newly allocated memory) and dispose(ptr) (frees
the memory referenced by ptr). All memory allocated with
new must be released by calling dispose before completion
of the program, or the program will abort and report mem-
ory leaks. The interpreter makes sure that dereferencing a
dangling pointer (i.e. a pointer pointing to freed memory)
will abort the execution, providing the corresponding error
to the user.

File descriptors are also managed explicitly. Files need to be
opened and closed using the appropriate builtins, open(file)
and close(file). Any error related to accessing a file is fatal
for the program.

4.4 Input/Output
Some languages use I/O primitives that are predictable but
too low-level. Others provide high-level, but unpredictable
facilities. Among other things, it is impossible, in general,
to know if there is an end of file before trying to read. On
the other hand, it is not reasonable to read without checking
the end of file condition.

As we explain to our students in the CS1 course, when pro-
gramming, side effects must be contained. Checking for the
end of file should be a function without side effects. The
read operation should be a procedure with side effects.

In Picky the I/O primitives follow the requirements stated
in section 2.8. They are both practical and clean from a
theoretical point of view. A peek procedure scans the input
to check for end of file or end of line conditions. Part of the
peek specification is that it may read internally from the file.
The eof operation is a function and has no side-effects (i.e.
it never reads). Before any attempt to call read or peek, eof
returns false as it should.

The language forbids to read end of line marks, they must
be skipped. The runtime includes checks to trigger errors
if a program tries to read them directly instead of using a
readeol primitive.

Volume 6, Issue 1 Journal of Computational Science Education

20 ISSN 2153-413 July 2015

4.5 Debugging facilities
Following the requirement in section 2.5, built-in procedures
are provided for user friendly debugging, and abnormal ter-
mination: fatal(text) (print text and abort execution), stack()
(dump the stack in a friendly format for debugging) and
data() (dump global data in a friendly format for debug-
ging). For example:

stack trace at:
dowork() pid 0 pc 0x000008 xample.p:9
arguments:
x = 3
local variables:
z = 8

called from:
main() pid 1 pc 0x000016 xample.p:16
local variables:
x = 3

In other development environments, students tend to de-
bug by using step-by-step execution on debuggers instead of
thinking. In this language, it is natural for them to dump
the program state and think about the cause of their prob-
lems. Later, when they are less prone to misuse them, they
will learn more advanced debugging techniques such as step-
by-step execution, breakpoints, etc.

4.6 Procedures and functions
There is a clear separation in Picky between procedures and
functions to follow the principle described in 2.8. The princi-
ple is that functions should have no lateral effects and should
preserve referential transparency. This principle is also fol-
lowed by builtin functions and procedures. Procedures are
named actions, so can have lateral effects, and do not return
values. Argument passing is by value (by default) or by ref-
erence (using the keyword ref before an argument name).
See lines 21-24 in the Xample program. Functions are de-
clared similarly, see lines 26-30 in the program.

4.7 Global and local variables
Picky does not permit global variables by default. They
can be enabled with a compiler flag. The flag is in place so
that the concept of global variables can be explained in the
corresponding class.

It is not allowed to declare a type on the fly in the variable
declaration, unlike in Pascal. A type identifier is required
after the colon. This forces the students to define types first
and assign them meaningful names before using them.

Variables are initialized to random values. This feature
makes programs fail when using uninitialized variables in-
stead of making them work intermittently. Therefore, stu-
dents learn quickly that uninitialized variables are danger-
ous.

4.8 Control structures
Picky has the usual control structures. The if, while, do-
while, and switch statements borrow their syntax from C
and semantics from Pascal (there is no break). Statements
used for then and else arms must always be blocks. Students
face no dangling else in Picky.

The for loop (see lines 36-40 in Xample) has a header with
only two expressions, an initialization and a condition. The
initialization must be an assignment for a variable of an or-
dinal type. The condition must use any of these operators:
“<”, “<=”, “>” or “>=”. The first two ones make the vari-
able increase automatically after each iteration. The last
two make the variable decrease automatically after each it-
eration.

After the for loop, the control variable is equal to the value
on the right of the condition. This implies that there is no
out of range condition for the control variable even when
using “<=” or “>=” with the first or last valid value of an
ordinal type. In Xample, i value is Npts when the loop is
done.

The only way to exit a loop is to satisfy the condition of
the loop; there is no break or goto statement. This way
the postconditions are clear and the student is forced to
structure the program.

5. COMPILATION AND EXECUTION
The Picky compiler, pick, is implemented in C. The com-
piler is implemented using yacc [13] and should be easy to
understand.

The compiler does not emit warnings. All diagnostics corre-
spond to compile time errors. In many cases, when an error
is detected, a symbol or node in the syntax tree is still built,
for safety; other parts of the compiler still get a data struc-
ture as expected, and it’s less likely that an invalid value
causes a bug.

Picky compiles to a virtual machine (PAM [2]), invoked
transparently by the compiled output file. Thus, students
are not surprised by “binaries” behaving differently on dif-
ferent platforms. Code generation is straightforward. The
machine is stack based. Most operations take arguments
from the stack and replace them with a result, pushed also
on the stack. There is a single flow of control, guided by a
loop switching on the instruction type.

PAM wastes memory and time to detect mistakes like out
of range conditions, the use of already disposed data struc-
tures, etc. This way, it issues very descriptive diagnostics
and not just “segmentation violation”.

As already stated, variables (from the data, stack or heap)
are initialized with random values, to let the user discover
early that variable initialization is missing. Such random
values are always odd, to recognize uninitialized pointer val-
ues and issue a descriptive diagnostic for that case at run
time, instead of a segmentation violation or producing a
heisenbug.

The abstract machine construction makes it possible to dump
the state at any point in a user friendly format. The stack
and data builtins (explained in section 4.5) rely on this fea-
ture.

Picky “binaries” are just text files that are interpreted by
PAM. They start with the Unix hash bang syntax to call
PAM on their own. In Windows, to the same end, the file

extension pam is associated in the registry to the application
pam as part of the installation. Thus, students have“binary”
files that, at the same time, are portable and can be used
for pedagogical purposes. Students compile and then run
the resulting file:

prompt$ pick hello.p
prompt$ out.pam
hello picky!
prompt$

The “binary” generated includes portions of the source code
in comments, and can be used during lectures to teach how
the code written by students maps to machine instructions:

#!/bin/pam
entry 0
...
x: int = 3
0000a push 0x00000003 # 3;
0000c lvar 0x00000000 # x;
0000e sto 0x00000002
dowork(x: int)
00010 lvar 0x00000000 # x;
00012 ind 0x00000004
00014 call 0x00000000 # dowork();

This way students do not perceive the machine as a magical
device.

6. EXPERIENCE
The authors are quite happy with the results of using Picky
in CS1 courses. They have used the language to teach nine
CS1 courses that are part of three different degrees of the
Telecommunications Engineering School of the Rey Juan
Carlos University of Madrid. The number of students that
have actually used the language is greater than six hundred.
The first generation of students that used Picky for CS1 is
currently programming in Java, C, Ada, Python and shell
scripting in 3rd-year courses.

It is difficult to evaluate fairly and accurately the effective-
ness of the language for teaching CS1 courses. Since the au-
thors are in charge of teaching and evaluating the students,
any evidence related to grades of tests and assignments could
be unintentionally biased. In addition, given the continuous
turmoil of secondary education in Spain, which creates a
high heterogeneity of students at different points in time it
is difficult to quantify any approach.

In order to assess some feedback from the students, we passed
a survey in a 3rd-year course class. Of course, this survey
should not be considered an indisputable evidence, but it
points in the right direction. We polled 3rd-year students
because they have learnt other programming languages and
have a wider vision. On the other hand, there is an implicit
bias because many students abandon the degree (for many
reasons, but the common case is the difficulty of the degree,
not necessarily CS1). The results of the survey are shown
in Figure 1. The questions were:

(A) How did you like Picky as your first language program-
ming language?

(B) Did using a simple language in CS1 helped you to learn
more than a complex but powerful language?

(C) Was it difficult to learn the Picky syntax in CS1?

(D) Was it difficult to learn the Ada syntax in CS1?

Questions A to C were given to students that used Picky
as a first language. Question D was given to students that
used Ada instead.

The experience with the language is positive. We do see the
students less engaged in nitpicking with the unimportant de-
tails of the language and more focused on the learning task.
In our opinion, Picky has made teaching simpler and the
students learn more compared to other introductory courses
the authors have taught in Ada and C. Before using Picky,
the authors had to explain to students how things in prac-
tice departed from what was taught in theory. This was an
imposition of the language being used (e.g. the eof function
with side effects in Ada). In addition, the students had prob-
lems regarding dynamic memory, uninitialized memory, and
all the other issues enumerated early in this paper. Picky
has alleviated most of these problems.

One disadvantage of creating a custom language for the
course, is the absence of ready-made materials for teaching
the subject and for student consultation. In order to cover
this gap, we wrote an introductory programming book (in
Spanish) using Picky [3] for the course. This book covers
the course following the same approach and in the same or-
der we cover it in class. It serves two purposes. On the one
hand, it is a reference material for the students, with some
extra content for the more advanced students. On the other
hand it serves as a guide for the teachers, helping to provide
a detailed guideline of what should be taught in class and
in what order.

The absence of ready-made code snippets to copy from the
network helps make the students work more in their assign-
ments and spend less time forcing code copied from a ran-
dom web page into them.

Another unanticipated benefit of using a language built by
ourselves, is, of course, that we understand it thoroughly.
With more complicated languages, it is always possible to
have a dark corner of the language appear in code written
by students which puzzles the teacher, sometimes momen-
tarily, sometimes longer. While the response to the student
is simple: “rewrite that mess”, more advanced students may
want to understand what exactly is going on. For instance,
one of the authors remembers fondly trying to understand
an accidental and obscure variation on the Duff device [9]
to be able to explain to a good student why his code worked.
With Picky, these days are over.

As every teacher knows, plagiarism detection is an important
issue whenever students are given assignments. While we
were concerned when we started that we would have to write
our own tools for this purpose, we found that the already
existing tool Moss [1] works very well with Picky and we use
it routinely on the assignments.

Volume 6, Issue 1 Journal of Computational Science Education

22 ISSN 2153-413 July 2015

Good
40.91%

NA
9.09%

Neutral
31.82%

Bad
18.18%

Good
50.00%

Neutral
18.18%

Bad
22.73%

Yes
63.64%

Neutral
4.55%

No
18.18%

NA
13.64%

NA
9.90%

Good
22.22%

Neutral
44.44%

Bad
27.78%

NA
5.56%

Survey A Survey B Survey C Survey D

23

International Conference, pages 317–322, 1996.

[18] A. Pears, S. Seidman, L. Malmi, L. Mannila,
E. Adams, J. Bennedsen, M. Devlin, and J. Paterson.
A survey of literature on the teaching of introductory
programming. SIGCSE Bull., 39(4):204–223, Dec.
2007.

[19] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch:
programming for all. Communications of the ACM,
52(11):60–67, 2009.

[20] E. S. Roberts. Using c in cs1: evaluating the stanford
experience. In ACM SIGCSE Bulletin, volume 25,
pages 117–121. ACM, 1993.

[21] R. M. Siegfried, D. Chays, and K. Herbert. Will there
ever be consensus on cs1? In H. R. Arabnia, V. A.
Clincy, and N. Tadayon, editors, Proceedings of the
2008 International Conference on Frontiers in
Education, FECS 2008, July 14-17, 2008, Las Vegas,
Nevada, USA, pages 18–23. CSREA Press, 2008.

[22] M. Vujoševic-Janicic and D. Tošic. The role of
programming paradigms in the first programming
courses. The Teaching of Mathematics, 11(2):63–83,
2008.

Volume 6, Issue 1 Journal of Computational Science Education

24 ISSN 2153-413 July 2015

Identification of Inhibitors of Fatty Acid Synthesis
Enzymes in Mycobacterium Tuberculosis

Alexander Priest1, E. Davis Oldham, Lynn Lewis
University of Mary Washington

1301 College Avenue
Fredericksburg, VA 22401

apriest,eoldham,llewis@umw.edu

David Toth2
Centre College

600 West Walnut Street
Danville, KY 40422

david.toth@centre.edu

ABSTRACT
Antibiotic-resistant strains of Mycobacterium tuberculosis have
rendered some of the current treatments for tuberculosis
ineffective, creating a need for new treatments. Today, the most
efficient way to find new drugs to treat tuberculosis and other
diseases is to use virtual screening to quickly consider millions of
potential drug candidates and filter out all but the ones most likely
to inhibit the disease. These top hits can then be tested in a
traditional wet lab to determine their potential effectiveness.
Using supercomputers, we screened over 4 million potential drug
molecules against each of two enzymes that are critical to the
survival of Mycobacterium tuberculosis. During this process, we
determined the top candidate molecules to test in the wet lab.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics.

General Terms
Experimentation.

Keywords
Computational science education, drug discovery, virtual
screening, parallel computing education.

1. INTRODUCTION
Since their discovery in the early 20th century, antibiotics have
seen exponential growth in usage due to their unparalleled
efficacy for the treatment of bacterial diseases [1]. Unfortunately,
because this method of treatment is relatively new, we are only
just now observing the ramifications of their ubiquity; widespread
use and misuse of antibiotics has become a force of natural
selection for bacteria, and as a result, these pathogens are evolving
to resist them [2]. Antibiotic-resistant strains of many disease-
causing bacteria have been observed, and among these is the
causative agent of tuberculosis, Mycobacterium tuberculosis [2,
3]. Tuberculosis affects millions of people worldwide to this day,
and a variety of reasons that have contributed to resistant strains
of the disease have resulted in a critical need to search for novel
drug treatments [3, 4]. In the past, this has been accomplished by
taking soil samples and plating them to look for naturally
occurring antibiotic producers, but as this research has gone on, it
is more difficult to find novel antibiotic producers [5]. With this in
mind, it is easy to see a need for new methodologies to come into

play. In the age of technology, there has been an increase in the
use of computers to ease research processes like this. For
example, there are several molecular docking programs which
exist now that are designed to simulate the binding interactions of
molecules with protein targets, including AutoDock Vina, DOCK,
GOLD, and Glide [6, 7, 8, 9]. Screening molecules with a
molecular docking program is much faster and more convenient
than testing for inhibitors with in vitro methods. We can use this
technology to investigate novel mechanisms for antibacterial
compounds. Rather than waiting a week or more for a panel of
bacterial plates to respond to exposure to potential drug
candidates, these programs can give us an idea of how strong the
interaction would be in a matter of minutes of compute time per
compound. In this study, we used an in silico virtual drug
screening process to comb through approximately 4.2 million
ligands as potential drugs to target a critical enzyme in M.
tuberculosis. To deal with the logistical issues of the sheer
compute time this required, we decided to run the virtual screen
on a supercomputer capable of running thousands of simulations
at the same time, achieving a throughput unmatched by any in
vitro assay method. However, while the results of a virtual screen
indicate which molecules are likely to bind to a target protein, it
does not necessarily mean the molecules will actually bind to the
protein and even more importantly, inhibit the protein [10].
Because of this shortcoming, the virtual screening process is used
as a first phase in the drug discovery process, filtering out the vast
majority of molecules which likely will not bind to the protein
[11]. After the virtual screening is completed, the top hits are
screened with biological assays to test which molecules will
actually work as treatments [11].

2. RELATED WORK
Using virtual screening to narrow down the list of compounds to
test in a wet lab with biological assays has become accepted over
the last number of years, and people from various research
groups1 are using this method [12]. The corresponding author has
worked with teams using virtual screening on several projects
[13]. In one such study, the target was an essential enzyme found
in Plasmodium sp., the causative agent of malaria [14]. The open-
source docking simulation program AutoDock Vina, designed at
the Scripps Research Institute, was used to screen the
full_nci_ALL_TAUTOMERS_2011 library of about 320,000
chemical compounds from the ZINC database against the enzyme
PfUCHL3 [6, 15]. The top scoring compounds were then re-
screened against the human analog for this enzyme to determine
which would be safest for human use; these were then screened in
vitro in the lab to confirm their efficacy against Plasmodium. As a

1 Undergraduate Student
2 Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413 25

result, the authors determined two compounds with very high
promise as novel malaria treatments which would be effective
without causing side effects due to binding with the human
orthologous protein. Franco et al. also screened DrpE1 in an
attempt to find a novel cure for tuberculosis [16].

3. METHODS
The first step in our drug discovery process was to pick a target.
We first decided on targeting M. tuberculosis because of its recent
trend in antibacterial resistance; novel drugs for tuberculosis
would be especially sought after as a result [3]. We chose two
enzymes (called Target 1 and Target 2 in this paper) that are
critical to the survival of Mycobacterium tuberculosis, and we
understand the mechanisms of their action. Next, we found the
structures for these proteins from the Protein Data Bank (PDB)
and prepared them for docking using AutoDock Tools [17, 18].
The structures were derived from X-ray diffraction, and were
specific to Mycobacterium tuberculosis [17]. Of the different
structures available, we selected the wild-type structures including
a ligand in the binding pocket. We also used AutoDock Tools to
locate the coordinates of the binding site and noted these down.
We then uploaded the prepared molecules and coordinates to the
Blue Waters and Stampede supercomputers, along with the
molecular docking program AutoDock Vina. We obtained about
4.2 million ligand files from the ZINC database and downloaded
these as well, and created shell scripts to break the work into
pieces. We created another shell script to run the program for each
compound, and another to collect and package the results for
download and analysis. Once we downloaded the data, we
uploaded it to an SQL database and searched for the top hits.

4. RESULTS
The results of the virtual screens were grouped into bins based on
the binding affinities of the compounds. These bins allow us to
separate the most promising compounds from the rest and
determine which compounds should be tested with assays. Table
1 and Table 2 show the number of compounds in each binding
affinity range. For Target 1, 4,182,163 compounds were screened
and for Target 2, 4,182,137 compounds were screened. Figure 1
and Figure 2 show the binding affinities for the compounds
screened against Target 1 and Target 2, respectively. Figure 3 and
Figure 4 break down the top hits for Target 1 and Target 2 into
bins of narrower width. It is important to note that the best
binding energies are the ones with the most negative values, so a
compound with a binding energy of -13 is more likely to bind to
the target than a compound with a binding energy of -12. The top
hits for Targets 1 and 2 are given in Table 3 and Table 4.

5. CONCLUSIONS
Using the Blue Waters and Stampede supercomputers, we have
screened over 4.1 million compounds against two enzymes that
are critical to Mycobacterium tuberculosis surviving. The virtual
screens have indicated 12 compounds with a binding affinity of
< -13 that are likely to bind to Mycobacterium tuberculosis. If
those compounds can indeed bind to the target enzymes in
tuberculosis and inhibit the functioning of those enzymes, then the
compounds may be useful in treating tuberculosis.

6. FUTURE WORK
For future work, we will test as many of the top hits as we can in
the wet lab. The compounds that scored in the -13.0 to -13.9
range will be prioritized. High scoring compounds with different
structures will also be prioritized to give a wide range of coverage
of different types of compounds. We note that an entity with

Table 1 - Summary of Binding Affinities of Virtual Screen
against Target 1

Binding Affinity
Range (kcal/mol)

Number of
Compounds in Range

-13 ≥x > -14 8

-12 ≥x > -13 139

-11 ≥x > -12 3,576

-10 ≥x > -11 55,866

-9 ≥x > -10 413,115

-8 ≥x > -9 1,377,570

-7 ≥x > -8 1,607,582

-6 ≥x > -7 606,245

-5 ≥x > -6 94,722

-4 ≥x > -5 20,151

-3 ≥x > -4 3,082

-2 ≥x > -3 94

-1 ≥x > -2 6

0 ≥x > -1 2

x > 0 5

Table 2 - Summary of Binding Affinities of Virtual Screen
against Target 2

Binding Affinity
Range (kcal/mol)

Number of
Compounds in Range

-13 ≥x > -14 4

-12 ≥x > -13 91

-11 ≥x > -12 3,756

-10 ≥x > -11 71,393

-9 ≥x > -10 571,938

-8 ≥x > -9 1,453,342

-7 ≥x > -8 1,101,984

-6 ≥x > -7 443,499

-5 ≥x > -6 192,355

-4 ≥x > -5 108,482

-3 ≥x > -4 68,534

-2 ≥x > -3 47,881

-1 ≥x > -2 33,959

0 ≥x > -1 25,098

x > 0 59,821

Volume 6, Issue 1 Journal of Computational Science Education

26 ISSN 2153-413 July 2015

Table 3 - Top Hits for Target 1 from the ZINC Database Libraries Screened

Score Library Folder Compound

-13.5 full_nci_ALL_TAUTOMERS_2011 SetOf10k_0004 ZINC01588230.pdbqt

-13.3 ChemBridge_FullLibrary2011 SetOf10k_0037 ZINC02880067.pdbqt

-13.2 asinex_newMay2011_fixedForVinaInDec SetOf10k_0000 ZINC06281466.pdbqt

-13.2 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13564997.pdbqt

-13.1 asinex_newMay2011_fixedForVinaInDec SetOf10k_0019 ZINC13565797.pdbqt

-13.1 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13564995.pdbqt

-13.0 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13564992.pdbqt

-13.0 asinex_newMay2011_fixedForVinaInDec SetOf10k_0018 ZINC13084337.pdbqt

-12.9 ChemBridge_FullLibrary2011 SetOf10k_0000 ZINC02833848.pdbqt

-12.9 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13565000.pdbqt

-12.9 asinex_newMay2011_fixedForVinaInDec SetOf10k_0042 ZINC13564941.pdbqt

Table 4 - Top Hits for Target 2 from the ZINC Database Libraries Screened

Score Library Folder Compound

-13.9 full_nci_ALL_TAUTOMERS_2011 SetOf10k_0016 ZINC04824645.pdbqt

-13.1 asinex_newMay2011_fixedForVinaInDec SetOf10k_0008 ZINC04838539.pdbqt

-13.1 ChemBridge_FullLibrary2011 SetOf10k_0069 ZINC19634897.pdbqt

-13.0 asinex_newMay2011_fixedForVinaInDec SetOf10k_0025 ZINC06475337.pdbqt

-12.9 ChemBridge_FullLibrary2011 SetOf10k_0007 ZINC04980431.pdbqt

-12.8 full_nci_ALL_TAUTOMERS_2011 SetOf10k_0015 ZINC04428442.pdbqt

-12.7 ChemBridge_FullLibrary2011 SetOf10k_0087 ZINC16662786.pdbqt

-12.7 ChemBridge_FullLibrary2011 SetOf10k_0029 ZINC02893797.pdbqt

-12.6 ChemBridge_FullLibrary2011 SetOf10k_0074 ZINC19634255.pdbqt

-12.6 ChemBridge_FullLibrary2011 SetOf10k_0049 ZINC19632616.pdbqt

-12.6 ChemBridge_FullLibrary2011 SetOf10k_0074 ZINC23281397.pdbqt

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413 27

Figure 1 - Results of Virtual Screen of Compounds against Target 1 with Binding Affinities Grouped in Ranges

Figure 2 - Results of Virtual Screen of Compounds against Target 2 with Binding Affinities Grouped in Ranges

Volume 6, Issue 1 Journal of Computational Science Education

28 ISSN 2153-413 July 2015

Figure 3 - The Top Binding Affinities for Virtual Screen of Compounds against Target 1 Grouped in Ranges

Figure 4 - The Top Binding Affinities for Virtual Screen of Compounds against Target 2 Grouped in Ranges

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413

significant financial resources might test all the compounds
scoring -12 or better.

We will apply the top scoring compounds to cultures of a model
organism, Mycobacterium bovis, and determine if any of these
compounds has an inhibitory effect on the growth of the bacteria
[19]. We will use Mycobacterium bovis because unlike
Mycobacterium tuberculosis, Mycobacterium bovis is not
pathogenic [19]. Should one or more compounds prove effective
at inhibiting the bacterial growth, the next step requires the
resources of a larger organization. Further testing of the
successful compounds would be necessary to confirm their action
on the cells. Following this, research would be done to determine
whether the targeted proteins have any human orthologs, or
similar proteins which occur in the human body which may also
be affected by the compound, resulting in unwanted side effects.
In vivo testing with a model host would be the next step, as the
compound would need to be proven safe for the consumption of
the host organism.

7. REFLECTIONS
The project described in this paper was the first author’s Blue
Waters Student Internship project where he learned to incorporate
computation and high-performance computing into his research.
This section details the first author’s reflections about his
internship and the impact that it has had on his current and future
academic endeavors: When I took my first course in computer
science, I did not anticipate that it would give me the power to
make a difference like this. At the time of beginning this project,
I was a Biology major, with minors in Chemistry and
Neuroscience. I could tell you a lot about how diseases like
tuberculosis can ravage the human body. I could tell you how the
increase in the prevalence of antibacterial soaps may have actually
led to the rise of hyper-resistant superbugs. However, I could
never have explained to you any way in which I could make a
difference as an undergraduate student in any of these areas.
Before I got involved with computer science, university was
simply a place for learning, not for doing. I started with a single
course on modeling and simulation which required no formal
coding skill (we used drag-and-drop programming environments
like Scratch), and grew into learning the basics of C++ in a week
before attending the 2-week intensive high performance
computing workshop for Blue Waters interns. At the workshop, I
learned parts of the C and FORTRAN programming languages in
order to learn the basics of the parallel computing libraries
OpenMP, CUDA, MPI, and OpenACC. Having only taken a
single introductory course in computer science before attending
the workshop, I am proud of how much I was able to learn. Now,
I am confident using a Linux command prompt and I can write
some basic shell scripts. Having learned these skills, I am capable
of using supercomputers for my research, which spans biology
and chemistry. One of the most lasting impacts that this
incredible experience has left me with, however, is my recent
decision to stay an extra year at UMW in order to pursue a double
major in Computer Science alongside my Biology major, and to
add a Data Science minor. I am planning on finding a graduate
school that will have the same zeal for interdisciplinary projects
that I have now, and I believe that these experiences will make me
very competitive in the application process. Having this Blue
Waters Internship was genuinely a turning point in my college
career and my life in general, and having this opportunity to do
real research with real-world implications is a once-in-a-lifetime
experience. This project represents the mixing of the disciplines
that needs to happen if science as a whole is going to make new

discoveries this century to rival the marvels of the past. Computer
modeling for scientific applications is certainly the way research
will be conducted in the future, and the future is not so far away
after all.

8. ACKNOWLEDGMENTS
This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science
Foundation (awards OCI-0725070 and ACI-1238993) and the
state of Illinois. Blue Waters is a joint effort of the University of
Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications. We thank the Blue Waters Student
Internship Program for providing Alexander with this opportunity.
We also wish to thank XSEDE for providing the vast majority of
the compute time for Alexander to conduct the research through
grants MCB140189 and MCB140209 and we thank the Texas
Advanced Computing Center (TACC), where Stampede resides.
Finally, we thank the University of Mary Washington, which
provided Alexander with room and board for the summer through
their Summer Science Institute and funding for the wet-lab
studies.

9. REFERENCES

[1] Davies, Julian, and Davies, Dorothy. Origins and Evolution
of Antibiotic Resistance. Microbiol. Mol. Biol. Rev.
September 2010 vol. 74 no. 3 417-433. doi:
10.1128/MMBR.00016-10.

[2] Alanis, Alfonso. Resistance to Antibiotics: Are We in the
Post-Antibiotic Era?, Archives of Medical Research, 36,
(Nov.-Dec., 2005), 697-705,
doi:10.1016/j.arcmed.2005.06.009.

[3] Rivers, Emma C. and Mancera, Ricardo L. New anti-
tuberculosis drugs in clinical trials with novel mechanisms of
action, Drug Discovery Today, 13, (Dec. 2008), 1090-1098,
doi:10.1016/j.drudis.2008.09.004.

[4] World Health Organization,
http://www.who.int/mediacentre/factsheets/fs104/en/.

[5] Ling et al. A new antibiotic kills pathogens without
detectable resistance, Nature 517, 455–459 (Jan. 2015)
doi:10.1038/nature14098.

[6] Trott, O. and Olson, A.J. AutoDock Vina: improving the
speed and accuracy of docking with a new scoring function,
efficient optimization and multithreading. Computational
Chemistry, 31, (Jan. 2010), 455-461,
DOI: 10.1002/jcc.21334.

[7] P. T. Lang, S. R. Brozell, S. Mukherjee, E. F. Petterson, E.
C. Meng, V. Thomas, R. C. Rizzo, D. A. Case, T. L. James,
and I. D. Kuntz, DOCK 6: Combining techniques to model
RNA–small molecule complexes. RNA 2009, 15, 1219-1230.

[8] Verdonk ML, Cole JC, Hartshorn MJ, Murray CW. et al.
Improved protein-ligand docking using GOLD. Proteins.
2003;52:609–623. doi: 10.1002/prot.10465.

[9] Friesner RA, Banks JL, Murphy RB, Halgren TA. et al.
Glide: A new approach for rapid, accurate docking and
scoring. 1. Method and assessment of docking accuracy. J
Med Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430.

[10] Shoichet, Brian. Virtual screening of chemical libraries.
Nature. 2004 Dec 16; 432(7019): 862–865.

doi: 10.1038/nature03197

Volume 6, Issue 1 Journal of Computational Science Education

30 ISSN 2153-413 July 2015

[11] Cheng, Tiejung, Li, Qingliang, Zhou, Zhigang, Wang, Yanli,
and Bryant, Stephen H. Structure-Based Virtual Screening
for Drug Discovery: a Problem-Centric Review. AAPS J.
2012 Mar; 14(1): 133–141. doi: 10.1208/s12248-012-9322-
0

[12] Ellingson, Sally R., Smith, Jeremy C., and Baudry, Jerome.
2014. Polypharmacology and supercomputer-based docking:
opportunities and challenges, Molecular Simulation, DOI:
http://dx.doi.org/10.1080/08927022.2014.899699.

[13] Toth, David, Franco, Jimmy, and Berkes, Charlotte.
Attacking HIV, Tuberculosis and Histoplasmosis with
XSEDE Resources. In Proceedings of the Conference on
Extreme Science and Engineering Discovery Environment:
Gateway to Discovery (San Diego, CA, USA), July 22-25,
2013). ACM, New York, NY. DOI:
http://dx.doi.org/10.1145/2484762.2484766.

[14] Franco, Jimmy, Blackie, Margaret A.L., Toth, David, Smith,
Peter J., Capuano, Joseph, Fastnacht, Kurt, Berkes, Charlotte.
A structural comparative approach to identifying novel
antimalarial inhibitors. Computational Biology and
Chemistry, 45, (Aug. 2013), 42-47. DOI:
http://dx.doi.org/10.1016/j.compbiolchem.2013.04.002.

[15] Irwin, Sterling, Mysinger, Bolstad and Coleman, ZINC – A
Free Database of Commercially Available Compounds for
Virtual Screening. Chem. Inf. Model. 2012 DOI:
10.1021/ci3001277

[16] Wilsey, Claire, Gurka, Jessica, Toth, David, and Franco,
Jimmy. A large scale virtual screen of DprE1. Computational
Biology and Chemistry, 47, (Dec. 2013), 121-125, DOI:
http://dx.doi.org/10.1016/j.compbiolchem.2013.08.006.

[17] RCSB Protein Data Bank. http://pdb.org/pdb/home/home.do.

[18] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F.,
Belew, R. K., Goodsell, D. S. and Olson, A. J. Autodock4
and AutoDockTools4: automated docking with selective
receptor flexiblity. Computational Chemistry 16 (2009),
2785-91.

[19] Altaf, Mudassar, Miller, Christopher H., Bellows, David S.,
and O’Toole, Ronan. Evaluation of the Mycobacterium
smegmatis and BCG models for the discovery of
Mycobacterium tuberculosis inhibitors. Tuberculosis, 90,
(Nov. 2010), 333-337.
http://dx.doi.org/10.1016/j.tube.2010.09.002

Journal of Computational Science Education Volume 6, Issue 1

July 2015 ISSN 2153-413 31

Volume 6 Issue 1

July 2015

1

2

16

25

	Blank Page
	Blank Page
	Blank Page
	Blank Page

