
Exploring Design Characteristics of Worked Examples to

Support Programming and Algorithm Design

Camilo Vieira

Purdue University
401 N Grant St Office 372,
West Lafayette, IN 47907

+1(765)250-1271

cvieira@purdue.edu

Junchao Yan
Purdue University

401 N Grant St Office 372,
West Lafayette, IN 47907

+1(765)337-8867

yan114@purdue.edu

Alejandra J. Magana
Purdue University

401 N Grant St Office 256,
West Lafayette, IN 47907

+1(765)494-3994

admagana@purdue.edu

ABSTRACT

In this paper we present an iterative research process to integrate

worked examples for introductory programming learning

activities. Learning how to program involves many cognitive

processes that may result in a high cognitive load. The use of

worked examples has been described as a relevant approach to

reduce student cognitive load in complex tasks. Learning

materials were designed based on instructional principles of

worked examples and were used for a freshman programming

course. Moreover, the learning materials were refined after each

iteration based on student feedback. The results showed that

novice students benefited more than experienced students when

exposed to the worked examples. In addition, encouraging

students to carry out an elaborated self-explanation of their coded

solutions may be a relevant learning strategy when implementing

worked examples pedagogy.

Categories and Subject Descriptors

K.3.2 [Computers And Education]: Computer and Information

Science Education – Computer science

General Terms

Algorithms, Human Factors.

Keywords

Computational Thinking, Programming Education, Worked

Examples.

1. INTRODUCTION
Computational thinking [24] has emerged as a set of concepts and

skills that enable people to understand and create tools to solve

complex problems [20]. Many programming and algorithm design

processes have been proposed as part of this set of understandings

and skills [7, 8]. Hence, it is relevant to introduce programming

and algorithm design as part of undergraduate courses; however,

learning to program is a complex task [19]. Thus, it is necessary

to explore scaffolding strategies to introduce these computational

thinking skills. The use of worked examples has been

demonstrated to be an effective approach for supporting complex

learning when it is guided under certain principles [5]. It can

reduce the extraneous cognitive load, which is not beneficial to

learning. Therefore, it allows the learner to devote cognitive

resources to useful loads.

This study explores how worked examples can be paired with

programming and algorithm design. The guiding research

questions are:

 How can worked examples be effectively designed to

introduce programming concepts to novice learners?

 How do students self-explain worked examples when

approaching a solution to a programming assignment?

2. BACKGROUND
Learning how to program is a difficult task [19]. Programming

courses are considered the most challenging at the undergraduate

level as they often have the highest dropout rates. In order to learn

to program, a student has to understand (a) the purpose of a

program, (b) how the computer executes programs, (c) syntax and

semantics of the programing language, (d) program structure, and

(e) how to actually build a program [9]. Since the learning process

involves many steps, these myriad steps may generate a high

cognitive load for students who have no previous experience in

algorithm design or programming languages.

Researchers have identified differences in the way novices and

experts experience programming tasks. Experts use specialized

schemas to understand a problem based on its structural

characteristics [19]. They use problem solving strategies, such as

decomposing the program and identifying patterns, in order to

approach a solution [18]. Language syntax and analyzing line-by-

line details of programs tend to be the focus of novices due to the

superficiality of these skills in the hierarchy of knowledge. [18].

They usually have problems related to language constructs, such

as variables, loops, arrays, and recursion.

The use of worked examples (WE) has been recognized as a

relevant strategy for supporting novices in learning tasks that

involve a high cognitive load. Worked examples approach is

guided by principles associated with Cognitive Load Theory

(CLT). CLT is a recognized theory that focuses on cognitive load

processes and instructional design [15]. CLT establishes a

cognitive architecture to understand how learning occurs. The

cognitive architecture structures memory that comprises a limited

working memory and a vast long-term memory [10]. CLT states

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Copyright ©JOCSE, a

supported publication of the Shodor Education Foundation Inc.

that there is a cognitive load generated when learning occurs. This

load can be affected by the learner, the learning task, or the

relation between the learner and the learning task [10].

There are different types of cognitive loads: (1) intrinsic load,

which is the inherent load to the difficulty of the learning task; (2)

germane load, which is comprised of required resources in the

working memory to manage the intrinsic load, which, in turn,

support learning; and (3) extraneous load, which refers to the load

that arises from the instructional design and does not directly

support learning [17]. To improve the learning process, the

extraneous load should be minimized so that the germane

resources can be maximized.

Figure 1 shows a representation of the learning process based on

the CLT. In Phase 1, a student is working on a task that has

different forms of representations. In Phase 2, the cognitive

process that takes place is depicted. In Phase 2a, different senses

process the information the student is receiving. In Phase 2b, the

limited working memory (three to five chunks of information) is

assigned to germane or extraneous resources depending on how

the load arises from the learning experience. In Phase 2c, schemas

are created and stored in the long-term memory when learning

takes place.

Novices usually work backward to solve problems using a means-

ends analysis. Students need to fill the gap between the initial

problem state and the final goal, and this search process generates

a cognitive load. Some of the instructional design techniques that

have been proposed to reduce the cognitive load are: goal free

effect, worked examples effect, and completion effect [10]. The

goal free effect suggests that, by removing a specific goal from the

problem, the learners will work forward, state by state as experts

do. Thus, the cognitive load is reduced because the students only

have to consider the current state and the next state of the

problem. The worked example effect occurs when students are

exposed to an expert solution to the problem. These examples

allow learners to start solving similar problems by analogy,

thereby reducing the cognitive load. Finally, the completion effect

refers to problems with a given partial solution that are provided

to students to complete. Completion effect examples are gradually

modified to present less information to the student. This approach

is also called faded worked examples (FWE), and it has shown

positive results in reducing cognitive loads in the domains of

mathematics and programming.

Atkinson et al. [5] proposed instructional principles for the design

of WE based on several studies. According to these principles, a

WE should include: (1) A problem statement; (2) A procedure for

solving the problem; and (3) Auxiliary representations of a given

problem. Atkinson’s principles and their adaptations for this study

are summarized in Table 1.

When WE are used as part of the learning process, the student

goes through a four-stage process described by the theory of

Adaptive Control of Thought-Rational (ACT-R) [4]. According to

this theory, the skill acquisition process is composed of four

stages in which knowledge transitions from declarative to

procedural [5]. During the first stage, the students solve problems

by analogy using worked examples. Then, in the second stage, the

students use abstract declarative rules gathered from the examples.

When students get to the third stage, declarative knowledge is

already acquired and stored in their long-term memory.

Procedural rules have also started to become clearer to students by

practice. Therefore, students are able to respond automatically and

faster to familiar problems. During the last stage, once students

have been exposed to several examples, they are able to solve

many different problems on their own.

Figure 1. Learning process from a CLT perspective. In (1) the learner is studying the materials. In (2) the learning process takes

place: (a) Senses capture information; (b) Different forms of cognitive load make use of working memory; (c) Schemas are created

and automatized in long-term memory

Table 1. Effective features of worked examples described by Atkinson and collaborators [5]. The right column describes our

adaptation for these learning tasks

Feature Description Our Adaptation

Intra-Example

 The use of multiple formats and resources is

important when designing WE; however, different

formats should be fully integrated to avoid extra

cognitive load generated by the split attention effect.

 The example should be divided in sub goals or steps

to make it easier for the student to understand. Labels

and visual separation of steps can be used for this

purpose.

 The examples contained multiple forms of

representations including C# code, visual flowchart

algorithm description, and verbal explanations of

the approach.

 Each representation was segmented in steps toward

the solution. These steps were aligned with the

representations.

Inter-example

 The variability of problems during a lesson can offer

learning benefits, but it is important to reduce the

cognitive load when using techniques such as WE.

 The use of multiple WE (at least two examples) with

structural differences can improve the learning

experience. The WE should be presented with similar

problem statements that encourage the students to

build schemas based on analogies and the

identification of declarative and procedural rules.

 Different problems were approached during each

lab session.

 Two examples were provided and students were

required to complete at least three additional

programming challenges.

 All the examples and challenges were focused on a

specific topic for each lab session (e.g. loops,

creating arrays, searching in arrays).

Environmental

 Students should be encouraged to self-explain the

WE in order to be actively engaged with them.

 Some strategies that support this process are: (1)

Labelling WE and using incomplete WE; (2)

Training Self-Explanations; and (3) Cooperative

Learning.

 One of the examples did not have the verbal

explanation (i.e. in-line comments of the

programming code).

 Before starting to solve the assignment, students

were asked to comment on the code for the example

that did not have verbal explanation. This activity

was intended to encourage self-explanation of the

examples.

 Some of the assignments could be built from the

examples.

2.1 Previous Experiences
Guzdial [11] has advocated for an approach to programming

education other than a common approach, which asks students to

just start building a program. Based on Kirschner, Sweller and

Clark [12], he argued that, “expecting students to program as a

way of learning programming is an ineffective way to teach”

(p.11). As an alternative, he proposed an approach based on the

work of Pirolli and Recker [16] who used WE and cognitive load

theory to introduce programming concepts. In one of their

experiments, Pirolli and Recker explored how transfer occurs in

learners, starting with examples and moving on to programming

problems on Lisp. To implement the examples, each lesson started

by having students read the textbook and analyze WE. The

students then used this knowledge to find a solution for an

assigned problem. Authors hypothesized that the problem solving

process enriched declarative knowledge as well as procedural

knowledge.

The declarative knowledge in programming includes code

structure, programming abstractions, functionality of the

abstractions, and purposes and operation of the program. All these

elements are represented as a mental model.

On the other hand, the procedural knowledge comprises the

construction, manipulation, and interpretation of this model. In

their experiments, Pirolli and Recker [16] found that worked

examples were useful in building these mental models by

“providing [students with] concrete referents for abstract

discourse and newly introduced concepts and propositions”

(p.273).

In another study, Moura [13] used Portugol, a tool for learning

algorithms, for students to understand a given example by

visualizing the execution of the algorithm. She found that,

although students took some time to get used to the tool, once

they did get used to it, they performed better on assessment tests

when learning computing science fundamentals. Regarding the

implications of the study, Moura suggested that an effective way

to help students learn how to program requires an easy-to-use tool

as well as assigning some pre-training time for the students to get

familiar with it.

This study focuses on a strategy for providing worked examples to

an introductory programming course to support student learning

of process of loops and arrays concepts. The worked examples

were designed following the principles by Atkinson and

colleagues [5] as described on Table 1.

3. METHODS
This study followed a Concurrent Mixed Methods Research

process design [23]. This design includes one quantitative strand

(pretest, posttest, survey, and lab scores) and one qualitative

strand (open ended questions and comments in the code of the

examples). Each strand was analyzed independently. At the end,

the identified commenting styles were related with the

quantitative measures to evaluate whether there was a trend in the

way students experienced the use of examples.

3.1 Participants
The participants of this study included thirty-five

undergraduate students majoring in Computer and Information

Technology at a large midwest university. As part of an

introductory programming course, they were exposed to weekly

lab sessions where they applied programming concepts learned in

lecture. Three of these weekly sessions (8th, 9th, and 10th) were

used to evaluate the WE approach. The sample size as well as the

participants slightly varied from session to session since not all

students attended all the sessions or completed pretest and posttest

assessments.

These students were divided into two different groups. For lab

session #8, both groups used worked examples. For lab sessions

#9 and #10, one group was considered the experimental group

(using WE) while the other one was the control group. The

control group continued doing the lab session as they were used

to; that is, solving the assigned problems based on what was

learned during the lectures without additional scaffolding but only

the help provided by the teaching assistant. Table 2 summarizes

participants’ information and configurations for each of the

sessions.

Table 2. Number of participants per session

Session Group
Number of

Participants

Programming

Experience

8th
Experimental 28 12

Total 28 12

9th

Experimental 19 10

Control 15 7

Total 34 17

10th

Control 16 9

Experimental 14 8

Total 31 17

3.1 Materials
Two examples designed by following the instructional principles

of worked examples [5] were provided to the students in the

experimental group. The examples were composed of a Visual

Studio Solution with the programmed worked examples as well as

a matched flowchart representing the solution. Figure 2 depicts an

example of what was provided to the students. On the left side,

the C# code adds the even numbers from 0 to a variable n1. The

code included comments to explain each section. The right side of

the figure showed a flowchart describing the algorithm design for

this particular implementation. This design was coupled with

textual description. All the elements in the example were

identified by a code that allowed the students to match the

different representations (i.e. steps in the flowchart with segments

of code).

Two examples were provided to the students per session. Both

had the distribution depicted on figure 2; however, the comments

within the code were not included in the second example because

the students were required to complete that portion as part of the

assignment. With this design, we expected that students would

start using the examples to solve the problems by analogy. Then,

having acquired some declarative and procedural rules, students

were expected to be able to solve the different and more

challenging problems on their own.

3.2 Procedures
The research protocol consisted of a series of tasks. The first task

was a pretest aligned to the learning objectives of the lab session.

The students were given 10 minutes to complete the test before

starting the session. The next tasks consisted of exploring

examples and commenting on the code in one of the examples in

order to self-explain it. The fourth task was to solve three

additional assignments using the examples whenever they were

necessary. Finally, students completed a posttest and survey

related to their perceptions regarding the use of worked examples.

The students could take as much time as they needed to complete

this task within a period of two hours. The assignments had to be

turned in before proceeding to the next assignment. The collected

data included the pretest, posttest, survey data, commented

example, and programming projects.

Following design-based research approaches [21], this study

includes three iterations, one for each lab session. Right after the

session, the tests and survey were analyzed. This information was

used to refine the examples, assignments, and instruments for the

subsequent iteration. For example, after the first iteration, some

students mentioned that the comments in the code were very

detailed decreasing the code’s readability. Therefore, the next

iteration examples included simpler comments.

Figure 2. Distribution of a worked example including multiple representations of the solution (i.e. computational, textual, and

graphical)

3.3 Data Collection

3.3.1 Learning
Pretest and posttest as well as lab assignments were employed to

assess learning gains during the lab sessions. Table 3 summarizes

how these instruments were prepared and implemented. The

exercises for the pretest and posttest were slightly modified (i.e.

changing values or sizes) to minimize the testing effect. Written

comments within the code were also used as an additional source

of qualitative data. Students were required to do this as a strategy

to self-explain one of the provided examples.

Table 3. Description of the learning instruments employed in each laboratory session

Session Description Pretest and Posttest Lab Assignment

8th

The student will

create an algorithm

that contains for-

loop and while-

loop structures to

solve summations

or display a list of

values

Four exercises to calculate the output after

certain loop structure. For example:

Complete the implementation for the following

list of functions:

(1) Sum of evens between 0 and a given value

N

(2) Sum of a range of numbers

(3) Calculate the factorial of a given value N

(4) Calculate 1 + 22 + 32 +… N2

9th

The student will

create an algorithm

that initializes an

array, add some

values, and display

the stored values

Four exercises to complete the code or write the

output of certain algorithm. For example:

Write the code to store and display numerical

and textual values in an array.

10th

The student will

create an algorithm

to perform a

sequential search

and switch array

elements

Four exercises to write/complete the code to find

an element within an array, reverse an array or

switch two values within an array. For example:

Write the code to complete the following

methods for a given array:

(1) Add

(2) Find

(3) Switch

(4) Merge

(5) Reverse

3.3.2 Perceptions
At the end of the lab sessions, students were given a survey where

their responses were recorded using a seven-level Likert Scale

with scores ranging from 0 to 6 from strongly disagree to strongly

agree. The results were normalized from 0% to 100%. Values

between 0% and 40% were considered negative perceptions.

Values from 40% to 70% were considered undecided perceptions

and values higher than 70% were considered positive perceptions.

The following questions were asked in the survey: (1) I feel I have

the ability to accurately evaluate and construct a <concept>; (2) I

feel I have the ability to describe a <concept>; (3) I have the

ability to create a program that includes a <concept>. The three

questions were posed to assess perceived ability to complete the

given tasks. Two additional open-ended questions were asked to

students to analyze their perceptions about the examples and the

laboratory session: (1) What would you improve for the examples;

and (2) What suggestions do you have for the laboratory sessions?

3.4 Data Scoring and Analysis

3.4.1 Learning
Pretest and posttest assessments were scored by two different

graders to assure reliability. Whenever the graders got different

scores, they discussed the scores until they agreed on a certain

value. The lab assignments were scored by the teaching assistant.

The comments written by the students were analyzed qualitatively

to identify different categories in which the comments could fit.

These categories were assigned a descriptive code that was used

later to identify students’ commenting styles.

3.4.2 Perceptions
Descriptive and inferential statistics were used to analyze the

learning and perception measures. Whenever the data did not

satisfy the normality assumption, a logarithmic transformation

was used to be able to run the inferential tests. The open-ended

questions were first analyzed using open-coding by one of the

researchers. Then, to assure reliability, another researcher re-

analyzed students’ responses using his codes. The percentage of

agreement was 80%. These codes were then grouped by themes.

4. RESULTS
Three iterations of data collection are reported in this section. At

the end of each iteration, quantitative and qualitative results were

used to improve the learning materials and the instruments for the

following iteration.

4.1 Session #8: The student will create an

algorithm that contains for-loop and while-

loop structures to solve summations or display

a list of values

4.1.1 Quantitative Data
Pretest and posttest scores were compared to evaluate learning

gains. No significant differences were found for the complete

group of students t (54) = -0.702, p = 0.4857 nor for the

subgroups (i.e., students with/without programming experience).

Table 4 depicts the descriptive statistics for the learning measures

from session #8.

Differences between groups were assessed by comparing lab score

and time to complete the assignment. Significant differences were

only found in the “time to complete” variable, and these

differences were found when comparing students who had

programming experience and those who had not F(26,1)=23.86,

p<0.001. however, although non-significant differences were

found, students without programming experience increased their

score from pretest to posttest more than those with some

experience. They also received a higher lab score as compared to

students with prior programming experience.

Overall, perception measures fell in the positive perception

category for the ability construct (Mean = 79.49%; Standard

Deviation –SD– = 16.61%). The measure was also compared

between groups. Significant differences were found for the ability

construct (t(24)=3.204, p<0.01) when compared by programming

experience. The results suggest that students with previous

programming experience (Mean = 89.90%; SD = 15.48%)

perceived a higher ability to deal with loops than those without

previous experience (Mean = 71.85%; SD = 13.19%).

Table 4. Descriptive statistics of student learning scores in Lab

Session #8

Test
Overall

(N=28)

Programming

Experience

Yes

(N=12)

No

(N=16)

Pretest (%)
Mean 50.71 64.58 40.31

SD 30.81 24.90 31.38

Posttest (%)
Mean 56.25 65.42 49.38

SD 28.14 29.81 25.62

Lab Score

(%)

Mean 95.71 95 96.25

SD 8.36 9.05 8.06

Time to

Complete

(min)

Mean 86.32 68.83 99.44

SD 22.29 17.66 15.42

4.1.2 Qualitative Data
The two open-ended questions were completed by twenty-five

students. The questions were: (1) What would you improve for the

examples?; and (2) What suggestions do you have for the

laboratory sessions? Table 5 and Table 6 depict the results of the

qualitative analysis to students’ responses. A group of students

suggested getting rid of some of the comments (24%) or better

aligning the examples with the assignments (16%).

Table 5. Categorical analysis for the student responses to the strategies to improve examples in Lab Session #8

Theme Code Definition % Representative Quote

Students

struggled with

specific

elements

within the

examples

Nothing to

Improve

The student thinks that the examples are

fine the way they are presented

5

6

“nothing to improve” /“Nothing I can think of.

As long as they are related to the problems and

the comments are descriptive, they are fine”

Less Comments The student highlights the need to get rid

of some of the comments since they have

an impact on the code readability

2

4

“Less comments, too hard to find place among a

sea of comments”/ “I feel like the comments

chitter the code and makes it difficult to read”

Math

Expression

The student feels the use of unknown

mathematical expression constrains

her/his understanding of the example

1

6

“Explain N! - What that means?” / “…the ‘^’

syntax issue was confusing for me”

Explicit relation

example /

assignment

The student requests that the examples be

more detailed so that they guide the

student through the problem solving

process of the assignment

1

6

"Better descriptions for what we are supposed to

do" / "Make it so the examples demonstrate most

of the common types of loops people mess up

on."

Students

suggested

integrating

more hands-

on activities

as part of the

classroom

approach

Better with

Examples

The student thinks working with

examples is a better approach than

working from scratch

2

0

“I wanna spend more time with examples” / “It

helped a lot but I feel like the book could've

helped explain writing the math problems more

in depth”

In-class

activities

The student thinks that the class activities

should be focused on practical activities

(design and programming activities)

1

2

“Maybe more hands on in class and allow us to

program it on the computers” / “Make students

answer questions in algorithmic form”

Better without

Examples

The student does not consider the

examples as having helped her/him to

solve the assignment

4 "Unsure, did not use them"

Table 6. Categorical analysis for the student responses to the strategies to improve the laboratory sessions in Lab Session #8

Theme Code Definition % Representative Quote

Students’

suggestions

about

laboratory

sessions

No suggestion The student thinks the laboratory sessions

are fine the way they are carried out

64 “They are going good” / “Nothing so far”

Logistic

Improvements

The student feels that the laboratory

session could be improved by either having

more time, different levels of difficulty, or

more teaching assistants

32 “More TAs for more help" / “More optional

assignments” / “More TA to speed things

up.”

Exploring

examples

The student thinks that exploring examples

would help them to better understand the

concepts before starting to build a program

from scratch

20 “To continue to experiment with these types

of ideas on presenting programming in an

easier to understand format” / “Explore

and try various examples”.

Better without

examples

The student does not consider the examples

as having helped her/him to solve the

assignment

12 “I personally like the old method better”

and “Keep them from Scratch”.

Table 7. Categorical analysis for the student comments within the second example in Lab Session #8

Category Definition % Representative Quote

1. Detailed

Comments

The student wrote

a detailed

description in

every step of the

code

21 *radSumOfNumbers is the name of the Radiobutton

*related to the sum of numbers

*it allows to identify whether the user wants to perform

*this operation when checked or when the radio button is not checked. */

/*txtN1.Text is what the user enters

* The text should be converted into a number froms string to do mathematical operations

*/

//txtN2.Text will correspond to n2, because that is what the user enters

// the parse method converts the string into numbers

in the for loop here, the variable i is defined as n1,

* i <= n2, will make sure the loop will continue until the number reaches the

* the number the user entered for n2

* i++ will make sure the count will increase 1 in every loop.

//Add the sum to the total result

//shows the result in the output textbox

2. Basic

Comments

The student used

the first example to

write the

comments for the

second one. The

comments were

very simple.

32 “*radSumofNumber is the name of the radio button

*if this radio button is checked, the loop/calculation are executed

//declare N1 and parse

//declare N2 and parse

//declare the initial value for total

//create the loop with the variables

//calculation from the loop

//display the calculation

3. No Clear

Comments

The student did not

write any

comments at all or

the comments were

too incomplete to

be understood.

18 // adds together all the inputed values

4. Relevant

Conditions

The student only

focused on

relevant sections of

the code (e.g. loop

conditions) with

rich descriptions.

29 // * the total is initialized to zero

// * i equals n1 in the beginning of the code then as long as i is smaller than n2 than

 // the program will operate and it will add 1 to n1 after every time.

// i is added to the total every time that the program is run.

// The output is displayed through by using the tostring method.

Regarding the laboratory sessions, students’ perceptions were

divided between those who preferred working with examples

(20%) and those who preferred solving problems from scratch

(12%). The other source of qualitative data was students’

comments in the code for one of the provided examples. Four

categories were identified for the commenting styles from

students. The categories, descriptions, and examples are presented

in Table 7. Most of the students either used the first example as a

model to comment the other one with simple comments, or

focused on describing the most relevant section of the code.

4.1.3 Quan + Qual
In addition to the qualitative analysis of the comments, we wanted

to evaluate if there was a quantitative difference among students

with different commenting styles. Table 8 shows descriptive

statistics for the learning and perception measures grouped by

commenting style.

Non-significant differences were found from pretest to posttest for

all of these groups; however, the highest scores in both posttest

and lab scores were from students with either detailed comments

or those who highlighted relevant conditions with their comments.

These students also spent more time completing the assignment

on average compared to the rest of the students. We speculate that

these non-significant difference may be due to a large standard

deviation and the small sample size, which resulted from dividing

the students into four groups.

Significant differences were found for the Ability Construct

between the commenting styles “Basic” and “Unclear.” The

results suggest that students who did not write comments or who

wrote unclear comments felt very confident in their abilities. On

the other hand, those with basic comments may have felt unsure

of their abilities; therefore, their comments were as simple as

possible.

Table 8. Descriptive statistics of learning and perception scores grouped by commenting styles in Lab Session #8

Commenting

Style

Pretest (%) Posttest (%) Lab Score (%)
Time to Complete

(min)
Ability (%)

Mean SD Mean Mean Mean SD Mean SD Mean SD

1. Detailed (N=5) 58.33 37.64 75 27.39 96.67 8.16 91.83 26.44 82.22 14.91

2. Basic (N=9) 38.33 33.16 45.55 30.46 95.56 8.81 77.33 18.49 67.90 18.59

3. Unclear (N=5) 55 20.92 49 26.32 92 10.95 77.20 26.37 92.22 10.83

4. Relevant (N=7) 56.25 29.12 58.75 23.87 97.5 7.07 98 16.86 83.33 10.14

4.1.4 Evaluation of the Iteration
As part of the results, two elements were called to our attention

from this first iteration: (1) there were no significant differences

from pretest to posttest; (2) students requested improvement of the

examples by removing detail in the comments but increasing

explanations.

After analyzing the results in the pretest and posttest measures, it

was identified that some students were able to understand how a

loop worked, but they failed to calculate the resulting value that

was asked for in the test. Another identified aspect from the test

was that students were struggling with mathematical expressions

that are common in pseudo-code but might not be that common

for them (e.g., “^” to indicate potentiation). Therefore, the

following tests were more focused on building/completing code

and all the potentially confusing terms were removed. Besides, the

comments in the examples were organized in such a way that only

the main portion of the code had a rich description of the solution.

4.2 Session #9: The student will create an

algorithm that initializes an array, add some

values, and display the stored values

4.2.1 Quantitative Data
During this session, the two groups were exposed to different

approaches. One of the groups used examples (Experimental,

N=18), while the other group used their traditional problem

solving approach (Control, N=14). Table 9 shows descriptive

statistics for the learning measures of these groups. The

programming experience values were only calculated for the

experimental group since that is the only group where these may

have an impact for assessment.

Non-significant differences were found between groups or

between pretest to posttest. In spite of this, it is interesting to see

that students without programming experience performed better -

and with a smaller standard deviation- in the lab score than

students with programming experience. This follows the trend

from lab session #8.

Table 9. Descriptive statistics of student learning scores in Lab

Session #9

Test

Group Programming

Experience

Control

(N=14)

Exper.

 (N=18)

Yes

(N=10)

Yes

(N=18)

Pretest

(%)

Mean 63.09 55.56 59.17 51.04

SD 29.55 36.04 37.98 35.47

Posttest

(%)

Mean 67.86 63.43 70 55.21

SD 30.29 35.14 33.38 37.78

Lab

Score

(%)

Mean 79.14 91.67 88.5 95.63

SD 35.36 23.45 31.27 6.78

Time

(min)

Mean 81.57 78.28 76.80 80.13

SD 26.65 10.70 11.69 9.78

For the ability construct, students in both control group (Mean =

83.33%; SD = 15.71%) and experimental group (Mean = 70.37%;

SD = 26.61%) showed a positive perception. Non-significant

differences were found between groups. For the experimental

group, contrary to lab session #8, differences in ability were not

found between experienced (Mean = 76.11%; SD = 24.71%) and

non-experienced (Mean = 63.19%; SD = 28.78%) programmers.

4.2.2 Qualitative Data
At the end of the session, students responded to two open-ended

questions: (1) what would you improve for the examples?; and (2)

what suggestions do you have for the laboratory sessions? This

time only one student suggested that the examples would benefit

from having still less comments while another commented: “This

was much better without all the comments.” In addition, more

than sixty-percent of the students thought the examples were

complete and useful. Table 10 and Table 11 summarize the results

of the qualitative analysis to students’ responses.

Regarding the suggestions for the lab session, more than sixty

percent of students thought the examples were fine the way they

were implemented. As in lab session #8, results suggest that there

are differences regarding the preference of using examples. While

there is a broad acceptance concerning the way the examples are

presented and some of the students really enjoy using this

scaffolding, there is another group of students who preferred

building their code from scratch.

The self-explanation process of writing comments on the code

was only required for the experimental group. The same

categories were found for the commenting styles compared to the

lab session #8. The distribution of students’ comments was:

detailed comments (33.33%), basic comments (33.33%), no clear

comments (16.17%), and relevant conditions (16.17%).

4.2.3 Quan + Qual
Table 12 shows the results of the comparison of the learning and

perception measures grouped by commenting style. The reduced

sample size due to the separation between experimental group and

control group makes it difficult to use inferential statistics. As in

lab session #8, in lab session #9, non-significant differences were

found for all of the learning measures of these groups; however,

once again, the highest scores were for students who had detailed

comments or highlighted relevant conditions.

Non-significant difference was found between the groups for the

perception measures. We see, however, that the students without

comments or with unclear comments are those who feel more

confident about their ability. This result is similar to lab session

#8. Students with basic comments present the lowest scores for

the perception construct.

4.2.4 Evaluation of the Iteration
For lab session #9, students’ suggestions about the examples

changed significantly in terms of the number of comments. Still, a

couple of students considered the amount of comments could be

reduced. Therefore, even simpler but explanatory comments were

included in the following example. In addition, students

suggested adding more complexity to the examples and

programming challenges. Since lab session #9 was the first one

focused on the array concept, it dealt with creating and listing

arrays. For the following lab session (#10) the level of difficulty

was increased by dealing with swap and sequential search array

operations.

Table 10. Categorical analysis for the student responses to the strategies to improve examples in Lab Session #9

Theme Code Definition % Representative Quote

Students

struggled with

specific

elements

within the

examples

Nothing to

Improve

The student thinks that the examples are

fine the way they are presented

69 “The examples given was perfect. I don't find

any improvements needed.” / “Nothing, the

examples were good”

Less Comments The student highlights the need to get

rid of some of the comments since they

have an impact on the code readability

6 “Less Comments”

Complexity and

Quantity

The student feels that it would be better

to have more and more complex

examples

15 “Maybe harder ones” / “Not much, just detail

and complex examples would help”

Students

suggested

integrating

more hands-

on activities

as part of the

classroom

approach

Better with

Examples

The student thinks working with

examples is a better approach than

working from scratch

27 “More examples” / “Nothing really, already

enough material to help a novice like me”

In-class activities The student thinks that the class

activities should be focused on practical

activities (design and programming

activities)

6 “More of class time is necessary to fully

understand this language” / “Know how to

build array”

Better without

Examples

The student does not consider the

examples as having helped her/him to

solve the assignment

3 “In order to remember how to write the code, I

feel we should practice writing code (not

typing), i.e., the methods, etc. until we know

them.”

Table 11. Categorical analysis for the student responses to the strategies to improve the laboratory sessions in Lab Session #9

Theme Code Definition % Representative Quote

Students’

suggestions to

laboratory

sessions

No suggestion The student thinks that the laboratory

sessions are fine the way they were

carried out

67 “No suggestions” / “I enjoy these labs

immensely. I have no suggestions”

Logistic

Improvements

The student feels that the laboratory

session could be improved by having

more time, different levels of difficulty, or

more teaching assistants.

9 “Maybe the instructor could walk us

through the code that is already provided so

that we have a better understanding of what

we are going into. " / “Pretest and posttest

during a lab adds stress to an inherently

stressful situation”

Exploring

examples

The student believes that exploring

examples would help her/him to better

understand the concepts before starting to

build a program from scratch

12% “I like the way it was taught this week and

last week” / “Perhaps more code

demonstrations.”

Better without

examples

The student does not consider the

examples as having helped her/him to

solve the assignment.

12% “I prefer building programs from scratch,

as I understand my own code better.”/

“Writing code myself is the best way to

improve my skill, at least for me”.

Table 12. Descriptive statistics of learning and perception scores grouped by commenting styles in lab session #9

Commenting

Style

Pretest (%) Posttest (%) Lab Score (%)
Time to Complete

(min)
Ability (%)

Mean SD Mean Mean Mean SD Mean SD Mean SD

1. Detailed (N=6) 61.11 32.35 66.67 36.89 100 0 74 8.07 72.22 30.63

2. Basic (N=6) 45.83 42.41 54.16 36.04 93.33 7.53 80.33 10.60 53.70 25.98

3. Unclear (N=3) 33.33 28.87 61.11 41.94 65 56.34 72 8.66 85.19 16.97

4. Relevant (N=3) 86.11 24.06 77.78 38.49 98.33 2.89 89 12.49 85.19 13.98

4.3 Session #10: The student will create an

algorithm to perform a sequential search and

switch array elements

4.3.1 Quantitative Data
For this last session, the experimental and control groups were

switched after lab session #9’s configuration. Thus, the

experimental group became the control group (N=16), while the

control group became the experimental one (N=14). Table 13

shows descriptive statistics for the learning measures of these

groups. Significant differences were found between pretest and

posttest measures for the non-experienced students t(12)=-2.14,

p=0.053 (one tailed t-test). With an average increment of 25%,

students in the experimental group showed a significant change in

the posttest learning measure as compared to the pretest. The

result suggests that students in the experimental condition, with

no previous programming experience, took advantage of the

examples to increase their understanding about sequential search

in arrays.

Regarding the perception measures, students in the experimental

condition showed a positive perceived ability (Mean = 80.74%;

SD = 16.38%) as compared to the neutral perceived ability

presented by the control group (Mean = 65.93%; SD = 20.67%).

Table 13. Descriptive statistics of student learning scores in

Lab Session #10

Test

Group Programming

Experience

Control

(N=16)

Exper.

 (N=14)

Yes

(N=8)

Yes

(N=7)

Pretest

(%)

Mean 56.64 66.67 75.78 56.25

SD 25.36 15.25 11.29 12.50

Posttest

(%)

Mean 64.06 77.50 73.21 81.25

SD 25.87 22.76 16.81 27.55

Lab

Score

(%)

Mean 78.13 80 86.25 72.86

SD 40.04 35.25 35.03 36.84

Time

(min)

Mean 110.31 101.40 91.50 112.71

SD 8.55 22.03 14.91 23.25

4.3.2 Qualitative Data
The open-ended questions asked at the end of the lab session #10

were analyzed following the codes and themes found on the

previous lab sessions. On this iteration, fewer suggestions

concerning changes were made. Students highlighted that “These

examples were clearer than in the past.” Moreover, none of the

students suggested that there was a need to reduce the comments

or to change the quantity/complexity of the examples. Results are

summarized in Table 14.

Regarding the lab sessions, the different perspectives about the

preference of using/not using worked examples continued. Four

students (13%) mentioned that they wanted to continue with

examples, while two students (7%) preferred working from

scratch. Three students (10%) talked about logistics, such as more

time for the lab sessions or more lab sessions for specific topics.

Seventeen students (57%) made no suggestions.

Finally, some students seemed worn out by the research process

and complained about the time the pretest and posttest took from

the session: “I don't have a problem with it but these in lab

quizzes take away time from the overall lab and if they are a little

sooner, then they might have trouble finishing lab in time.” In

fact, the complexity of this lab as well as the time taken to solve

the tests made this lab session the longest in terms of the time to

be completed. Therefore, only four students wrote the comments

in the code. The distribution of these students for commenting

styles was: (1) Detailed (two students); (2) Basic (one student);

(3) Unclear –no comments- (ten students); (4) Relevant (one

student).

4.3.3 Quan + Qual
Since the sample size became too small in this lab session,

descriptive or inferential statistics were not calculated; however,

to identify whether the trend that came from lab sessions #8 and

#9 continued, the lab score for the three students in the detailed

and relevant commenting styles were checked. All three students

got a score of 100% , thereby confirming the trend.

5. DISCUSSION
This study explored the use of worked examples to support

programming activities as part of an introductory course.

Specifically, this study explored two questions and findings are

discussed below.

5.1 How can worked examples be effectively

designed to introduce programming concepts

to novice learners?
Three laboratory sessions were used to introduce programming

concepts using worked examples. The design and implementation

of the worked examples were iteratively improved using students’

suggestions and validated through learning assessments. The

structure of the examples followed the principles suggested by

Atkinson [5] that included: a problem statement, a procedure for

solving the problem, and auxiliary representations of the problem

and solution.

Two examples were used to scaffold the learning process in each

session. The problem statement consisted of a single programming

task aligned to the learning objective of the lab session and

embedded within the problem set. The solution was represented in

multiple forms including textual, graphical, and computational

representations. All the representations were aligned with each

other. A self-explanation task was also included as part of the

assignment using written comments within the code to engage the

students in the process.

The feedback from open-ended questions was useful for

improving the examples. The main component of these edits was

the elimination of complex explanations within the code that

could generate additional cognitive load to students. In fact, the

examples with the simplest comments (lab session #10) were the

ones that showed significant differences. Some other changes

were included such as: (1) avoiding the use of complex

mathematical symbols; (2) increasing the complexity of the

examples; and (3) aligning them to the problem assignments.

Only the last laboratory session (#10) presented significant

differences in learning gains for students with non-programming

experience. This result is aligned to what is suggested by

Atkinson et al. [5] in that the worked examples approach may be

useful for novices in an initial skill-acquisition stage such as

analogy or abstract rules of learning [4].

Table 14. Categorical analysis for the student responses to the strategies to improve examples Lab Session #9

Theme Code Definition % Representative Quote

Students

struggled with

specific

elements

within the

examples

Nothing to

Improve

The student thinks that the examples are

fine the way they are presented

61 “They seem fine”/”Examples are fine”

More Detail

The student suggests increasing the level

of detail in the examples or exercises.

6 “More descriptions on how to reverse the

array” / “Describe in more detail what the

questions asking”

Students

suggested

integrating

more hands-

on activities

as part of the

classroom

approach

Better with

Examples

The student thinks working with

examples is a better approach than

working from scratch

27 “More examples” / “Nothing really, already

enough material to help a novice like me”

In-class activities The student thinks that the class activities

should be focused on practical activities

(design and programming activities)

6 “More of class time is necessary to fully

understand this language” / “Know how to

build array”

Better without

Examples

The student does not consider the

examples as having helped her/him to

solve the assignment

3 “In order to remember how to write the code,

I feel we should practice writing code (not

typing), i.e., the methods, etc. until we know

them.”

On the other hand, expert students with prior programming

experience did not benefit from the examples, perhaps because

they may have already developed a mental model [19]. For the

rest of the sessions (#8 and #9), we speculate that the examples

were unclear because they had too many comments included

within the code. After students’ suggestions, the examples were

refined with simpler comments. Another possible explanation can

be related to the time students need to get used to this new

pedagogical approach. The worked examples approach was only

introduced starting on lab session #8. Hence, the students were

already used to a different problem solving approach. Moura [13]

experienced this phenomenon and highlighted that students

needed some time to get used to the tool she used for the worked

examples. After that time, students performed better. Finally, the

small sample size also made it difficult to find significant

differences.

Regarding the perception constructs, novice students perceived

their ability to solve various computing-related tasks to be

significantly higher than those students with programming

experience (in lab session #8). This, however, changed over time

and a non-significant difference was found between experienced

and non-experienced programmers for the rest of the iterations.

The result suggests that, as the examples were improved, students

with no previous experience were better able to take advantage of

them. This is also suggested by the perceived ability of the

students from the experimental group in the last session (80.74%),

which was higher than the control group.

The worked examples approach generated a separation between

those students who enjoyed exploring and learning from them and

those who preferred to build the whole program themselves. From

the students’ responses from any of the sessions, of those who

mentioned that they preferred coding from scratch, 75% identified

themselves as experienced programmers. This is aligned with the

rest of the findings and the literature suggesting that worked

examples are more useful for novice learners than for expert ones

[4, 5].

5.2 How do students self-explain worked

examples when approaching a solution to a

programming assignment?
Commenting on the code was used to encourage students’ self-

explaining process for the examples. These comments were

grouped as four commenting styles: (1) Detailed; (2) Basic; (3)

Unclear; and (4) Relevant (see Table 8 for a full description).

Although non-significant differences were found between the

groups, valuable insights were identified. First, as suggested by

Chi et.al. (1989), students with a deeper self-explaining process

(either (1) Detailed or (4) Relevant) performed better in all the lab

sessions. Students with an incomplete self-explanation process

appear to not fully understand the problem solving approach and,

therefore, are unable to solve similar problems by analogy. Chi

and collaborators [6] called this effect the self-explanation effect

and enumerated four differences between students who were able

to take better advantage of the examples than students who

passively explored the examples. Trends identified in [6] were (1)

high performers presented more self-explanations while studying

examples; (2) “Poor” performers did not perform enough self-

monitoring activities such as “I can see now how they did it”; (3)

High performers referenced less to the examples when solving

another problem than “poor” performers; (4) The “poor”

performers self-explained more during the problem solving than

the high performers who preferred to do it during the example

exploration.

The second insight is that students who did not include any

comments reported a higher perceived positive ability than those

students who wrote very simple comments. We speculate that

these students felt confident about their abilities and, therefore,

did not want to spend time understanding another approach;

however, they did not perform as well as students who wrote

thorough comments.

The main limitation of the study is the small sample size

constrained by the course size. Therefore, the significance of the

differences found in this study lies in the qualitative data

regarding students’ recommendations, perceptions, and

commenting styles. Another limitation is that the worked

examples approach began in lab session #8. This means that the

students had been exposed to seven previous sessions with a

different approach. This may have generated a negative reaction in

some students who preferred to work in a more familiar way.

6. IMPLICATIONS

6.1 Implications for Teaching
The use of Atkinson’s instructional principles to design worked

examples has been identified as useful in situations where novice

learners seem to take more advantage of this technique. Expert

learners may have already acquired mental models in the thematic

area that provided them with the necessary tools for problem

solving.

The identification of intra-example, inter-example, and

interacting-with-the-learning-environment features of worked

examples can provide a framework for instructors to effectively

design their worked examples. Specifically, the intra-example

features used in this study presented several requests by the

students to keep simple explanations, especially when they are

integrated into the code. Students often mentioned that many

comments within the example code decreased readability. Thus,

the use of at least two different examples with a good alignment

with the assignments is the main inter-example feature that should

be considered.

Finally, for programming activities, requiring students to write

comments within the code can be useful as a self-explanation

process; however, to take full advantage of this process, it is

important to encourage students to write detailed comments or to

highlight relevant conditions by describing boundaries and the

consequences of their solutions.

6.2 Implications for Learning
Results from this study suggest that students who described

relevant conditions along the code, as well as details in the way

the code worked, performed better than those students who

commented on the code superficially or did not self-explained it at

all. Several studies have demonstrated that a passive approach to

studying worked examples has no impact on learning as compared

to problem-solving instruction (Chi et. al., 1989; Atkinson et al.,

2000). The reason for this could be a lack of understanding

resulting from not actively engaging with the examples.

Chi and colleagues [6] suggested that the examples are not always

completely clear, so the students have to engage in a self-

explanation process allowing them to identify the relevant aspects

of the solution. Thus, a self-explanation should contain four

aspects that depict an understanding: (1) the conditions of

application of the actions; (2) the consequences of actions; (3) the

relationship of actions to goals; and (4) the relationship of goals

and actions to natural laws and other principles. In this study, the

“Detailed” and “Relevant” commenting styles contained all these

characteristics while “Basic” or “Unclear” commenting styles

contained only one of these features, (e.g. the conditions of

application of the actions) if any of them at all. Furthermore, a

good understanding of the example can lead to more proficient

problem-solving skills, while poor understanding may lead to a

continuous reference to the example while trying to solve another

problem.

7. CONCLUSION
The use of worked examples to scaffold programming and

algorithm design learning has been evaluated. Different

instructional design elements were assessed in order to identify

effective design characteristics for worked examples. Multiple

representations of the solution, including textual, graphical and

computational representations, were employed. Writing in-code

explanations as simple sentences enhanced code readability and

improved students’ perceptions about the examples. Moreover,

encouraging students’ self-explanation process by asking them to

comment within the code helped the students to actively engage

with the examples. Specific suggestions include encouraging

students to write detailed comments as opposed to superficial ones

in order to take advantage of the examples. This approach seems

to be useful for novice students who did not have previous

experience in programming.

The contribution of the study is the detailed description of the

implementation of worked examples in a programming context. It

includes the use of multiple representations as well as the use of

comments within the code as a self-explanation process.

8. LIMITATIONS AND FUTURE WORK

The main limitation of this study is that the learning outcomes for

each iteration were different. Thus, the changes implemented

based on the results were not evaluated in exactly the same

context. Therefore, future work will explore the effect of these

recommendations for these three lab sessions.

Next steps also include the design of additional examples using

instructional principles of worked examples [5] as well as

students’ suggestions in this process. Future instruction should

also encourage students to carry out a thorough self-explaining

process that may lead them to an understanding of the examples.

This can be accomplished either through incentives or by means

of extended training.

9. ACKNOWLEDGMENTS
This research was supported in part by the U.S. National Science

Foundation under the award #EEC1329262.

Authors would also like to thank Guity Ravai for her assistance in

reviewing the assessment instruments and facilitating the

implementation of the learning materials.

10. REFERENCES
[1] [NRC]. 1999. Being fluent with Information Technology:

National Academy Press.

[2] [PITAC]. 2005. "Computational science: ensuring

America’s competitiveness," President's Information

Technology Advisory Committee (PITAC), vol. 27

[3] [WTEC]. 2009. "International assessment of research and

development in simulation-based engineering and science"

World Technology Evaluation Center, Inc., Baltimore,

Maryland.

[4] Anderson, J. R., Fincham, J. M., and Douglass, S. 1997. The

role of examples and rules in the acquisition of a cognitive

skill. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 23, 932-945.

[5] Atkinson, R.K. Derry, S. J., Renkl, A., and Wortham, D.

2000. Learning from Examples: Instructional Principles from

the Worked Examples Research/ Review of Educational

Research. Summer 2000, Vol. 70, No. 2, pp. 181-214.

[6] Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and

Glaser, R. 1989. Self- explanations: How students study and

use examples in learning to solve problems. Cognitive

Science, 13, 145-182.

[7] Cuny, J., Snyder, L., and Wing, J. M. 2010. Demystifying

Computational Thinking for Non-Computer Scientists. Work

in progress.

[8] College Board. 2011. CS Principles.

http://www.collegeboard.com/prod_downloads/computerscie

nce/Learning_CSPrinciples.pdf

[9] du Boulay, B. 1989. Some difficulties of learning to program.

In E. Soloway & J.C. Spohrer (Eds.), (pp. 283–299).

Hillsdale, NJ: Lawrence Erlbaum.

[10] Gray, S., St. Clair, C., James, R., and Mead, J. 2007.

Suggestions for graduated exposure to programming

concepts using fading worked examples. Proceedings of the

third international workshop on Computing education

research - ICER ’07, 99.

[11] Guzdial, M. and Robertson, J. 2010. Too much

programming too soon? . Communications of the ACM,

Volume 53 Issue 3, March, 2010.

[12] Kirschner, P. A., Sweller, J., and Clark, R.E. 2006. Why

Minimal Guidance During Instruction Does Not Work: An

Analysis of the Failure of Constructivist, Discovery,

Problem-Based, Experiential, and Inquiry-Based Teaching,

Educational Psychologist, Vol. 41, Iss. 2.

[13] Moura, I. C. 2013. Visualizing the Execution of

Programming Worked-out Examples with Portugol.

Proceedings of the World Congress on Engineering 2013

Vol I, WCE 2013, July 3 - 5, 2013, London, U.K.

[14] Paas, F., Renkl, A., and Sweller, J. 2004. Cognitive load

theory: Instructional implications of the interaction between

information structures and cognitive architecture.

Instructional science 32, 1-8.

[15] Paas, F., Renkl, A., and Sweller, J. 2003. Cognitive Load

Theory and Instructional Design: Recent Developments.

Educational Psychologist, 38(1), 1–4.

[16] Pirolli, P. and Recker, M. 1994. Learning strategies and

transfer in the domain of programming. Cognition and

Instruction, 12, 235–275.

[17] Renkl, A., Atkinson, R. K., and Große, C. S. 2004. How

Fading Worked Solution Steps Works – A Cognitive Load

Perspective. Instructional Science, 59–82.

[18] Rist, R.S. 1995. Program structure and design. Cognitive

Science, 19, 507–562.

[19] Robins, A., Rountree, J., and Rountree, N. 2003. Learning

and Teaching Programming: A Review and Discussion,

Computer Science Education, Vol. 13, No. 2, pp. 137–172.

[20] Rogalski, J. and Samurc¸ay, R. 1990. Acquisition of

programming knowledge and skills. In J.M. Hoc, T.R.G.

Green, R. Samurc¸ay, & D.J. Gillmore (Eds.), Psychology of

programming (pp. 157–174). London: Academic Press.

[21] Barab, S. and Squire, K. 2004. Design-based research:

Putting a stake in the ground. Journal of the Learning

Sciences, 13(1), 1–14.

[22] Sweller, J. 1988. Cognitive load during problem solving:

effects on learning. Cognitive Science 12, 257-285.

[23] Teddlie, C., and Tashakkori, A. 2006. A general typology of

research designs featuring mixed methods. Research in the

Schools, 13(1), 12-28.

[24] Wing, J. 2006. Computational Thinking. Communications of

the ACM, 49, 3, 33-35

