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The articles in this issue of the Journal of Computational 
Science Education touch on an array of approaches to 
learning both computational techniques and science 
concepts.   They present examples that teach concepts using 
workstation environments and using parallel computing 
architectures.   

TheThe article by Winfield et. al. discusses the use of several 
tools associated with computer aided drug design and how 
they were integrated into the undergraduate curriculum.  
They describe the software they used and the case study 
assignment.  They then provide data on the learning 
outcomes associated with the course.

JoinerJoiner and Walters provide a description of a new version of 
GalaxSeeHPC that can be used for large scale galactic 
dynamics simulations.  After reviewing the technical changes 
in the software, they outline results of several example 
simulations and scenarios for students to investigate the 
structure of galaxies.

AkmanAkman provides a framework for introducing the use of 
genetic algorithms for teaching concepts in regression 
analysis and optimization of regression models.  He presents 
an Excel macro that can be used as a teaching tool to 
demonstrate the how the genetic algorithm can be used to 
arrive at an approximation of the best solution to a multiple 
linear regression problem.

Finally,Finally, Dillon, Anderson-Herzog, and Brown discuss the 
pros and cons of using visual programming environments for 
teaching introductory programming skills.  They compare the 
trade-off between the easier learning curve in such an 
environment with the possibility of misconceptions about the 
steps required to program, compile, and execute a program in 
a command line environment.
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ABSTRACT 
A computational module has been developed in which students 
examine the binding interactions between indinavir and HIV-1 
protease.  The project is a component of the Medicinal Chemistry 
course offered to upper level chemistry, biochemistry, and biology 
majors.  Students work with modeling and informatics tools uti-
lized in drug development research while evaluating wild-type 
and mutated forms of the HIV-1 protease in complex with the 
inhibitor indinavir.  By quantifying the molecular interactions 
within protease-inhibitor complexes, students can characterize the 
structural basis for reduced efficacy of indinavir.  

Categories and Subject Descriptors 
K.3.1 [Computer Uses in Education -Computer-assisted in-
struction (CAI)] 

General Terms Measurement 
Human Factors, Measurement 

Keywords 
HIV, molecular modeling, indinavir, computational lab, drug 
resistance, mutations, protease, ligand interactions, cheminformat-
ics 

1. INTRODUCTION 

1.1 Computer Aided Drug Design in the Un-
dergraduate Curriculum 

Computers have been utilized throughout chemistry and biology 
curricula to visualize molecular information and simulate funda-
mental concepts.  To this end, visualization and simulation exer-
cises have been useful for introducing undergraduates to bio-
molecular interactions associated with drug activity.  Early exam-
ples of such activities involved the use of Microsoft Excel to 
conduct quantitative structure activity relationship (QSAR) analy-
sis [1].  Recent efforts have focused on the use of supercompu-
ting, molecular modeling software, and informatics tools to allow 
students to see the benefit of such technologies in explaining 
biological processes such as protein function as well as the mo-
lecular rationale for drug action [2-6].     Two specific examples 
allow undergraduate students to visualize the conserved regions of 
selected kinases and observe the impact of site-directed mutagen-
esis [7, 8].  In addition, computational modules have been devel-
oped for the graduate and K12 curriculums as well.  In the gradu-
ate curriculum, computational tools have been used to assist 
pharmacy students understand drug-receptor interactions using 
Pymol and the Keele Active Virtual Environment (KAVE) [9, 
10].  However, students primarily observed the three-dimensional 
molecules assigned by the instructor and were provided with little 
opportunity to explore the function of the software. In the K-12 
classroom, learning strategies involving molecular visualizations 
have been used to address the relevance of biomolecules to every-
day life [11]. 

The preceding examples focus primarily on visualizing biological 
target.  An activity more directly related to what is considered 
rational drug design and development involves assessing the 
efficacy of  inhibitors for various diseases using Autodock and 
Pymol [12].  The pharmacological aspects of drug action (i.e. drug 
absorption, metabolism, and excretion-ADME) where exploited 
by Kim et. al. who implemented a computational experiment in 
which the physiochemical parameters of known drugs were uti-
lized to predict the ability of the drugs to cross the blood-brain 
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barrier [13].  Similar to this, undergraduates completing a medici-
nal chemistry course in Australia created mathematical models 
that demonstrate the relationship of the known activities of adre-
noceptor ligands to their calculated physicochemical properties 
[14].     

The HIV-1 module presented here represents an option for intro-
ducing multiple aspects of computer-aided drug design and related 
software tools.  The module goes beyond the visualization of 
biomolecular structures and simulation of their function, the pri-
mary focus of many of the published computational activities.  
The module allows students to calculate physiochemical parame-
ters of indinavir, Figure 1, to gain insight into its binding interac-
tions with the wild-type and mutated forms of HIV-1 protease.  
Basic drug design terminology was assessed via a quiz and rubric 
graded reports.  A survey was administered to assess the success 
of the module.   

	
  
Figure 1: Indinavir 

1.2 HIV-1 Protease 
The HIV-1 protease is a key modulator of the HIV lifecycle [15, 
16].  The proteolytic enzyme, comprised of 99 amino acid resi-
dues, functions to cleave the mature virus leading to its activation. 
Its activity is characterized by a base mediated amide hydrolysis 
that is catalyzed by two aspartate residues, ASP 25 and ASP 25’.  
The anionic form of the aspartate residue is required for the reac-
tion to occur.  Based on the mechanism shown in Figure 2, the 
active conformation of the enzyme is stabilized by a tetrahedral-
like transition state [17].  Note that Brik and Wong provide a 
more acceptable mechanism that is concerted.  However, the 
electron pushing scheme is not clearly delineated and doesn’t 
coincide with what is understood at the undergraduate level. 
Protease inhibitors contain polar groups that facilitate van der 
Waals interactions within the active site of the enzyme, allowing 
the inhibitor to mimic the binding of the natural substrate and 
stabilize the transition state [18]. Such interactions prevent the 
enzyme from hydrolyzing the precursor polypeptides. Therefore, 
inhibiting the protease prevents the activation of the retrovirus and 
subsequent spread of HIV. Like other protease inhibitors, indina-
vir acts as a peptidomimetic.  The molecule binds to the protease 
by forming a water mediated interaction to Ile50 and Ile50’, in-
ducing the active conformation of the enzyme and preventing the 
protease from interacting with its natural substrate. 

1.3 Indinavir 
Indinavir is one of nine drugs, not counting fosamprenavir which 
is hydrolyzed in the stomach to form amprenavir, licensed for the 
treatment of HIV-1 [19].  Despite the success of treatments with 
drugs like indinavir, HIV is a disease that quickly adapts to ensure 
its survival resulting in therapeutic resistance to many drugs.  In 
the case of indinavir, its effectiveness against HIV-1 can be re-
duced due to mutations of only one amino acid residue.  The 
mutation alters the conformation of the protease and its interac-

tions with indinavir [20].    This module allows students to ex-
plore the three-dimensional structure of indinavir in complex with 
various mutated forms of the HIV-1 protease.   Students utilize 
available X-ray data to observe the conformational differences 
between three indinavir-HIV-1 protease complexes (wild-type and 
two mutant complexes), gaining insight into the molecular charac-
teristics of drug resistance.  In addition, students are introduced to 
molecular modeling tools commonly used in the field of medici-
nal chemistry.   

2. SYSTEM REQUIRMENTS 
2.1 Hardware Requirements and Software 

Installation 
Tools found in the Molecular Operating Environment (MOE, 
Chemical Computing Group, http://www.chemcomp.com/) soft-
ware, were utilized to accomplish modeling and computational 
tasks.  The software is available free of charge for institutions that 
have an academic research license which costs approximately 
$2,500 annually.  However, the exercise can be adapted for use 
with other software including Sybyl (http://tripos.com/index.php) 
and Maestro/MacroModel (http://www.schrodinger.com/) which 
range in price.  Some aspects can also be completed using Pymol 
(http://pymol.org/educational/) and MarvinSpace with appropriate 
calculator plugins (http://www.chemaxon.com/products/).  The 
latter two are limited in their ability to manipulate the three-
dimensional structure of the protease and measure binding ener-
gies as describe herein, but are free for academic use.  Instructions 
for completing the module using MOE, Maestro/MacroModel, 
and Pymol are included in the appendix.  However, the results 
reported here were generated using MOE.  The software, distrib-
uted to the students on USB flash drives along with license keys, 
runs on both Windows (XP, Vista, or Windows 7) and Mac OS X 
(10.5 or higher) operating systems. A three-button mouse is 
strongly suggested for manipulating the controls in the software; 
laptop users should use an external mouse as the mouse pad will 
not provide the needed functionality.  MOE operates using a 
server-based license and is only functional on systems with access 
to the server. Despite the limit of mobile use, the automated func-
tions (structure rendering, sequence alignments, energy minimiza-
tion, protonation, etc.) make the software ideal for introducing 
informatics and computational methodologies to students.     

2.2 Molecular Structure Files 
The known three-dimensional structures of wild-type and mutant 
proteins and their ligands can be obtained from the Research 
Collaboratory for Structural Bioinformatics (RCSB) Protein Data 
Bank (PDB, http://www.rcsb.org/pdb/home/home.do).  The X-ray 
data of the co-crystallized protease-ligand complexes used in this 
module were PDB codes 1SDT (wild-type), 1SDU (L90M mu-
tant), and 1SDV (V82A mutant). The binding energies and inhibi-
tory activity of indinavir in each complex were obtained from the 
RCSB Protein Data Bank as well. With the exception of adding 
protons, all computational analyses are based on the confor-
mations of the complex imported from the RCSB Protein Data 
Bank.  

3. DESCRIPTION OF COMPUTATION-
AL MODULE 

3.1 Course Description 
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To date, the HIV module has been completed by three cohorts of 
students (average cohort size = 7).  The module is a component of 
the Medicinal Chemistry course, a one semester advanced elective 
offered to junior and senior chemistry, biochemistry, and biology 
majors. The course introduces students to computer-aided drug 
design (CADD) and cheminformatics tools utilized to characterize 
the molecular aspects of the disease. The course follows a blended 
format in which student led discussions and computational mod-
ules are the primary modes of instruction.  The discussions are 
moderated by the instructor to ensure the correct information is 
being shared and to interject additional information as needed.  
The discussions are used to share information on the history of 
compounds with medicinal properties; the political, economic, 
environmental, and scientific frameworks for defining diseases; 
and the key concepts associated with drug design. Students are 
required to review information from the New York Times, scien-
tific journals, and the Howard Hughes Medical Institute (HHMI) 
website in preparation for the discussions.  For the computational 
components of the course, the instructor provides a brief overview 
on the purpose of the project and mini tutorials on the use of 
relevant software and databases.  

3.2 Module Structure 
The HIV module is completed over three weeks, each week con-
taining two 2-hour class periods. The time was used for data 
collection and discussion of background information and results.  
Before beginning the computational component, students com-
pleted a literature search to identify background information and 
define key terms related to HIV/AIDS.  Students were also re-
quired to watch the “HIV Lifecycle” and “Protease Inhibitors” 
found on the HHMI website [15, 16].  In addition, students were 
provided with information on the mechanism which leads to the 
photolytic activity of the molecule, described in the introduction.  
Students were asked to analyze indinavir in complex with the 
wild-type HIV-1 protease and the two mutated proteases.  The 
L90M (non-binding site mutation) and the V82A (binding site 
mutation) complexes were utilized. For the purpose of this as-
signment, it is sufficient for students to explore one mutated com-
plex, but both should be examined if time permits.  The mutated 

complexes are compared to the wild-type complex to understand 
how conformational changes reduce drug affinity and potentially 
reduce drug efficacy. 

3.2.1 Examining Binding Site Interactions 
Using the LigX function, protons were added to the three-
dimensional structure of each inhibitor-protease complex and the 
overall conformation was optimized (root mean square deviation, 
RMSD, of the final conformations were < 0.2 Å from the original 
ligand in each case). The software assigns ionization states and 
adds hydrogens to structures based on the steric environment and 
protonation state of the chemical groups [21].  Standard force 
field parameters defined by Merck Molecular Force Field 
(MMFF94) were used to calculate the potential energy of the 
inhibitor and its affinity for the protease. The method is typically 
applied to calculations involving small molecules and provides 
suitable values for the type of comparative analysis conducted in 
this assignment. Key interactions between the ligand and the wild-
type protease were identified and characterized as hydrogen bond-
ing interactions (based on interaction distances and angles) or 
non-hydrogen bonding interactions. The cut-off for potential 
ligand-receptor interactions was set at 4.5 Å for non-hydrogen 
bonding interactions with hydrogen bonding being defined at 1.4 
– 2.2 Å. The in vitro binding energy (ΔG°) for the indinavir-
protease complex was provided to the students to define the rela-
tive ability of the ligand to bind to each complex in an energetical-
ly favorable conformation.   Students also received data on the in 
vitro inhibitory activity of indinavir (Ki).   

3.2.2 Comparing the Conformations of Indinavir 
The two protease files were opened in the MOE window. Each 
ligand structure was rendered in tube formula and given a distinct 
color. The conformations of the ligand-receptor complexes were 
then superposed. To accomplish this, the software treats the struc-
tures as rigid bodies and aligns the structures based on the three-
dimensional trace of the alpha helices [22].  The receptor was 
hidden to show the structural overlay of the two inhibitor confor-
mations. Students measured the distance between the indane and 
benzene rings and the dihedral angle as defined by the pyridine 

Figure 2: Proposed mechanism and tetrahedral-like transition state for the proteolytic activity of the HIV-1 protease.   
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and piperazine rings to quantify the differences between the two 
conformations. Students also examined the conformational differ-
ences between the wild-type and the mutated receptors by measur-
ing intramolecular receptor interactions and the change in the 
water-mediated interaction between Ile50 and Ile50’.  Finally, 
students identified the mutation present in their assigned complex 
and determined if the mutation occurred in the binding site of the 
protease. 

3.3 Evaluation 
Quiz questions, student reports, and survey responses were uti-
lized as a preliminary gauge of the success of the module.  All 
assessment materials were developed by the authors.  The quiz 
contained a mixture of multiple choice and short answer questions 
created to determine students’ basic concepts of drug design and 
HIV-1.  The maximum score on each question was scaled to 1 
point. Reports submitted by students were assessed using a rubric 
to determine their level of comprehension and ability to analyze 
the data collected in the completion of the module.  The survey 
was administered through Survey Monkey at the completion of 
the course in years two and three of the module being offered. 
Part 1 of the survey contained fifteen questions that were posed to 
assess students’ previous knowledge of drug design, attitudes 
towards course resources and technology, and future interest in 
research and drug design.  Part 2 of the survey contained nine 
questions developed to measure students’ confidence with the 
concepts and technology associated with the module. Anecdotal 
observations, gathered informally through class discussions and 
student reports, were documented to complement the survey 
results.  The assessment of this module will be ongoing for future 
cohorts.   

4. RESULTS AND DISCUSSION 
4.1 Computational Module 
Students submitted a report containing a summary of their results 
and selected images. The measurements obtained for the HIV-1 
protease-indinavir complex along with the in vitro binding ener-
gies (ΔG°) of indinavir in complex with the protease and the 
concentration of indinavir needed to inhibit protease activity 
(inhibition constant, Ki) are given in Table 1 [20, 23].   The ener-
gy of the interactions of indinavir with the protease, calculated 
binding energy (Table 1), was measured using standard force field 
parameters defined by Merck Molecular Force Field (MMFF94).  
The values were used by the students to characterize interactions 
that reduce the affinity of the drug for the protease.  The calculat-
ed binding energies of indinavir in each complex correlate well 
with the experimental data (ΔG° and Ki).  There were cases in 
which students did not calculate the energies appropriately and 
did not see the expected trend.  Students reporting this discrepan-
cy were able to communicate it as an unexpected outcome.  The 
number of students that did not correctly calculate the energies is 
accounted for in section 4.2.2. 

Table 1.  Sample of Student Data  

HIV-1 PR 

 
Ki 

(nM) 

 
ΔG°  

(kJ/mole) 

 Calculated Binding 
Energy 

(kcal/mole) 
Wild type  0.60 -54.75  -12.14 

mutant L90M 0.80 -54.01 -11.78 

mutant V82A  1.34 -52.68 -11.55 

Students characterized the conformational changes of both the 
protease and the inhibitor that account for varied affinity towards 
binding to each protease.  It should be noted for students that 
MOE classifies the B chain of the protease different from the 
notation commonly used (i.e. Ile50’ is annotated in the software as 
Ile150).  The water mediated interaction between Ile50, Ile50’, 
and indinavir (Figure 3) is believed to stabilize the active transi-
tion state of the protease. To calculate the angle of the interaction, 
hydrogen atoms were ignored.  The angle, designated by the green 
dashed-lines in Figure 4, was defined using a nitrogen atom (of 
Ile50 or Ile50’), the oxygen of the water molecule, and a carbonyl 
oxygen of indinavir.  This produced two water mediated interac-
tion between indinavir and the protease.  In the transition state 
described in Figure 2, the protease engages in a water catalyzed 
reaction with its natural substrate resulting in the cleavage of acyl 
bond.  Inhibitors have been designed to bind to the protease in a 
similar fashion without a subsequent cleavage of the acyl bond.  
The interactions hold the protease in its active conformation and 
prevents the binding of the natural substrate.  Therefore, the wa-
ter-mediated interactions define an ideal orientation of Ile50 and 
Ile50’ in the conformation of the protease when an inhibitor is 
present.   The angles formed with Ile50’ in the mutated proteases 
are wider than those formed in the wild-type protease, indicating 
the mutation causes a conformational change that prevents the 
inhibitor for occupying an optimal binding orientation when 
interacting with the protease. The change in the degree of the 
angle correlates well with the calculated affinities and the in vitro 
binding energies.  Students identified the location of the mutation 
and noted that when the mutation occurred in the binding site 
(mutant V82A), the loss of affinity was more significant than 
when the mutation was at another point on the protease (mutant 
L90M). Based on the additional data collected (see supplemental 
documentation), students were able to elaborate on these observa-
tions in the context of drug resistance; in particular, how varia-
tions in the angles of these interactions could explain the differing 
activities of indinavir in the wild-type and mutated forms of the 
HIV-1 protease.  

 

	
    

Figure 3:  Relative Position of the Indinavir Binding Site 
in the HIV-1 Protease.  Chain A in pink ribbon, Chain B 
in purple ribbon, indinavir grey tube formula, and 
protease residues in stick formula. 
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4.2 Assessment and Evaluation 
4.2.1 Evaluation of Student Learning  
To formally assess students’ knowledge and comprehension of 
basic terminology, a quiz was administered.  The assessment 
contained a mix of multiple choice and short answer questions 
(Table 1).  In general, students’ performed well on the quiz.  The 
lowest performance was on the question of hydrogen bonding in 
drug action.  Nevertheless, most students were able to elaborate 
on the need for electrostatic interactions to facilitate binding to the 
biological target. Assessment of student lab reports provided 
additional insight into students’ conceptual understanding of the 
terminology.  The reports were evaluated using a rubric which 
addressed the four questions given in Table 2.  Students utilized 
information from assignments completed outside of class (litera-
ture search, assigned readings, and videos) and the group discus-
sions to develop the background section of the reports.  Most 
students were able to identify the appropriate literature and write 
an introduction that was relevant to the purpose of the assignment 
(Question 1).  Although the transition state formed by the protease 
and its natural ligand was discussed and was the focus of the 
assignment, some students were unable to accurately describe its 
formation in their report (Question 2).  Nevertheless, most stu-
dents were able to collect accurate data and describe the correla-

tion between the calculated binding energies and the actual bind-
ing energies or inhibitory activity (Question 3).  In addition, stu-
dents were able to correctly identify at least 80% of the ligand 
atoms and their corresponding binding interactions with the prote-
ase residues.  Further, they were able to classify the interactions as 
water mediated or non-water mediated and identify the ligand 
atom as an H-bond donor or acceptor.  This is especially im-
portant as hydrogen bonding is key to indinavir’s ability to bind to 
the protease, as is the case for many protein-drug interactions.   

4.2.2 Evaluation of Course Structure 
A survey was used as a preliminary gauge of the benefits and 
success of implementing the module.  Seven of the seventeen 
students from cohorts two and three responded to the survey. Part 
1 of the survey (Table 3) addressed students’ prior knowledge of 
course content, attitude towards the course, and future career 
goals and professional development activities.  Most students 
indicated having little knowledge of drug design concepts or 
experience with computational modeling prior to the course. The 
module was designed to be a self-guided assignment, but the 
students received a tutorial from the instructor on how to work 
within the software.  In addition, students could receive assistance 
from the instructor as needed, and were encouraged to work 

 

HIV-1 PR 

 Interactions with 
Ile50 

(°) 
 

Interactions with 
Ile50’ 

(°) 

 

Change 
(°) 

 

Binding site 
mutation? 

 O1  O3  O1  O3     

Wild-type  106.6  130.4  103.8  92.8  ̶  ̶ 

Mutant L90M  101.5  135.0  110.8  102.6  6.6  no 

Mutant V82A  100.1  116.3  123.3  108.8  9.7  yes 

             

Figure 4.  Ile50’ (purple stick formula) and Ile50 (pink stick formula) interact with indinavir via a single water molecule, green 
dashed lines.  The interaction is defined by an atom on the protease residues (the nitrogen of Ile50 or Ile50’),  an atom from 
indinavir (one of the carbonyl oxygen atoms), and the oxygen of the water molecule (represented as a red ball).  O1 and O2 
represent oxygen atoms 1 and 2, respectively, of indinavir in each complex.  The average change is calculated as the difference is 
the angle between the atom of the wild-type protease for a given residue and that of the mutated proteases.   

Table 1.  Post-Assessment of Student’s Knowledge of Basic Terminology.  Score (mean) represents the average score earned by 
students on a given question where 1 = 100%. 

Question  
Score 

(mean)  
Standard 
Deviation 

     1. Excluding solubility as a reason, name two ways that H-bonding impacts drug activity   0.50  0.47 
2. List the characteristics that describe the structure of a molecule.  0.60  0.44 
3. Explain why we need new drugs  0.80  0.42 
4. Define syndrome and explain why HIV/AIDS was initially identified as a syndrome and not a 

disease.  1.00  0.00 

5. What type of intermolecular force is illustrated in the bonding interaction shown?  1.00  0.00 
6. Which molecule has the best therapeutic index?  1.00  0.00 
7. Define CADD.  0.80  0.42 
8. Why is it important to evaluate mutation in drug targets?  0.75  0.35 
9. Which molecule is most potent?  0.90  0.32 
10. Which molecule is most efficacious?  0.90  0.32 
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Table 2.  Assessment of Student Reports.  Score (mean) represents the average score earned by students on a given question. 
Scores were assigned based on excellent = 4, good = 3, fair = 2, and poor = 1.   

Question  
Score 

(mean)  
Score 

(median)  
Standard 
Deviation 

       

1. Summary of background information related to the assignment including the 
significance of the drug indinavir and the purpose/objective of the module. 

 3.42  4.00  0.86 

2. Summary of the mechanism of action for the HIV-1 protease and description 
of related transition state.  

 2.50  2.50  1.26 

3. Explanation of the correlation of the calculated energies to the known values.  2.58  3.00  1.38 

4. Identification of ligand- protease interactions (identify the interacting ligand 
atoms as H-bond donors or acceptors and protease residues) and the classifica-
tion of the interactions as water mediate or non-water mediate. 

 
2.67  3.00  1.31 

	
  
Table 3.  Survey Part 1.  Score (mean) represents students’ self-reported level of agreement with each question, weighed on a 
scale of 0 to 4 (disagree = 0, somewhat disagree = 1, neither agree nor disagree = 2, somewhat agree = 3, and agree = 4). 

Questions  
Score 

(mean)  
Standard 
Deviation 

     1. I knew about drug design before taking this course.  2.14  1.77 
2. I had taken a computational chemistry course or had conduct research in the area prior to taking 

the course. 
 1.86  2.04 

3. This course allowed me to analyze and interpret data; think critically.  3.71  0.49 
4. This course challenged me to think and work “outside of the box.”  3.29  0.76 
5. It was useful to work with other students in a laboratory group.  3.14  1.07 
6. The group discussions with the professor were useful.  3.14  1.46 
7. The topics of this course were engaging.  3.71  0.49 
8. I enjoyed the computational aspects of the course.  2.57  1.81 
9. The course material provided sufficient detail to support self-guided and project-based learning.  2.57  1.62 
10. The handouts were easy to follow.  2.71  1.38 
11. The software was difficult to use.  2.57  1.51 
12. I am now interested in research in the area of drug design and medicinal chemistry.  3.14  1.46 
13. I may consider graduate school now.  2.57  1.90 
14. This course is useful to students going to health professional or graduate school in STEM.  3.86  0.38 
15. This course made me consider pursuing a summer research experience.  3.43  1.51 
	
  

Table 4.  Survey Part 2.  Score (mean) represents students’ self-reported level of confidence with concepts and technology relat-
ed to the module, weighed on a scale of 4 to 1 (I am familiar with and understand the concept = 4, I am familiar with and some-
what understand the concept = 3, I am familiar with, but do not understand the concept = 2, I am not familiar with the concept 
= 1). 

Question  
Score 

(mean)  
Standard 
Deviation 

     1. List the source of drugs  3.00  1.15 
2. Explain the need for new drugs  3.29  0.49 
3. Define CADD  2.43  1.13 
4. Utilize the MOE software to draw 3D molecules  2.86  1.21 
5. Utilize the MOE software to create a structural overlay  2.43  1.27 
6. Utilize the MOE software to change the rendering of a protein and label residues  2.57  1.13 
7. Utilize the MOE software to evaluate binding sites and ligand binding interactions  2.57  1.40 
8. Describe the mechanism of action of protease inhibitors  2.71  1.60 
9. Understand structurally what occurs when indinavir binds to the HIV-1 protease  2.71  1.11 
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collaboratively in completion of the work.  Based on responses 
and informal conversations with students, key dynamics associat-
ed with access to and ease of use of the software must be consid-
ered.  In informal conversations, students expressed resistance to 
only having access to the software while on campus.  There were 
also difficulties with executing certain commands when students 
attempted to use the software on a Mac.  There was also difficulty 
using the software without a three-button mouse.  Therefore, 
convenience played a role in the students’ level of intimidation 
and comfort with this project-based assignment. Nevertheless, 
most students found the module to be straight-forward and engag-
ing once overcoming the initial difficulties of learning to use the 
software.  One student stated, “This was an overall successful lab. 
The MOE software was difficult to understand at first. After the 
initial confusion, the data gathered from MOE was very interest-
ing.”  Students had some difficulty with depth perception when 
looking at the three-dimensional structure, a difficulty that pre-
vented them from being able to select the appropriate atoms when 
measuring distances and angles.  Students also expressed difficul-
ties manipulating the three-dimensional structure utilizing the 
various mouse functions to move and rotate the complex, which is 
not unusual for most individuals when first learning to work in a 
three-dimensional environment.  Nevertheless, it initially caused 
students to have trepidation about completing the assignment.      

In Part 2 of the survey, Table 4, students reported their level of 
understanding of the concepts.  Across all questions, the majority 
of students reported a basic understanding of the concepts.  Due to 
the small number of respondents, a formal statistical analysis was 
not performed.  Since this is a preliminary assessment, interpreta-
tions of the outcomes should be cautious and cannot be general-
ized as a final measure of the success of this module. It is believed 
that exploring teaching strategies aimed at enhancing students’ 
level of comfort with the software and decreasing intimidation 
with project-based learning will lead to the sustainability of this 
and other computational modules.     

5. Final Thoughts 
A major objective of the exercise was to introduce tools used in 
the design and virtual screening of medicinal molecules.  The 
module illustrates for students how computational studies enhance 
the understanding of a drug’s mechanism of biological systems. It 
is important to point out to students that computational models 
cannot stand alone in describing drug interactions, but should be 
used in context with experimental data. In a follow-up project, 
students might substitute the structural units of indinavir with an 
appropriate bioisostere/isostere and compare the interaction and 
energies of the modified structure to that of indinavir.  Based on 
the theoretical results of such structural modifications, students 
can predict if the change would improve or reduces the affinity of 
the inhibitor for either of the HIV-1 proteases with respect to 
indinavir.  Alternatively, students could mutate the protease fur-
ther and determine the stability of the resulting indinavir-receptor 
complex in comparison to that of the wild-type protease. The 
procedure could be utilized to explore mutations and decreased 
drug effectiveness in Mycobacterium tuberculosis Protein Kinase 
B (MTB pknB), a Ser/Thr kinase which impacts cell growth and 
division in the disease. Doing so would expand the discussion of 
infectious diseases.  Available PDB codes for this purpose are 
1MRU, 3ORK, and 3ORK.   
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ABSTRACT 
In this paper, we present GalaxSeeHPC, a new cluster-enabled 
gravitational N-Body program designed for educational use, along 
with two potential student experiences that illustrate what students 
might be able to investigate at larger N than available with earlier 
versions of GalaxSee. GalaxSeeHPC adds additional force 
calculation algorithms and input options to the previous cluster-
enabled version. GalaxSeeHPC lessons have been developed 
focusing on two key studies, the structure of rotating galaxies and 
the large scale structure of the universe. At large N, visualizing 
the results becomes a significant challenge, and tools for 
visualization are presented. The canonical lesson in the original 
version of GalaxSee is the rotation and flattening of a cluster with 
angular momentum. Model discrepancies that are not obvious at 
the range of N available in previous versions become quite 
obvious at large N, and changes to the initial mass and velocity 
distribution can be seen more readily. For the large scale structure 
models, while basic clearing and clustering can be seen at around 
N=5,000, N=50,000 allows for a much clearer visualization of the 
filamentary structure at large scale, and N=500,000 allows for a 
more detailed geometry of the knots formed as the filaments 
combine to form superclusters.  For the galactic dynamics 
simulations, we found that while a flattening due to overall 
angular momentum can be explored with N=1,000 or smaller, 
formation of spiral structure requires not only a larger number of 
objects, typically on the order of 10,000, but also modifications to 
the default initial mass and velocity distributions used in older 
versions of GalaxSee.   

Keywords 
N-Body simulations. Gravitational dynamics. Scaling, 
Visualization. 

1. INTRODUCTION 
1.1 Motivation 
GalaxSee is a gravitational dynamics program initially developed 
by Mike South and the Shodor Education Foundation, Inc.[5]. The 

original version was designed for the Macintosh, and focused on 
allowing users to create small N-Body simulations using a point 
and click interface, to solve the problem of gravitational 
dynamics, where the force on any object i due to any other object j 
is given by: 
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A wide variety of approaches have been developed to solve the 
gravitational N-body problem[1], including many state of the art 
computational tools designed for research (see for example [15]), 
as well as many educational tools. Most research grade tools for 
N-Body simulation have obstacles to their adoption as a 
classroom tool—notably a reliance on non-standard compilers, 
multiple software dependencies, and non-human-readable file 
formats. Most educational N-Body tools, however, focus on the 
use of graphical user interface to remove obstacles for students, 
but replace those obstacles with limitations on the size of N, either 
hard-coded in the tool itself or self-imposed by the CPU 
requirements of real-time visualization of results. 

Typical classroom use simulations for N-Body problems using 
tools with limits on the size of N range from 2-Body problems 
such as the orbit of the Earth around the Sun up to simulations of 
simple gravitational dynamics, exotic solutions of the few body 
problem [3], where users could create initial mass distributions 
with or without angular momentum and explore the disk 
formation that resulted from a spinning cluster of gravitationally 
bound masses, or collisions of disk galaxies under the assumption 
of small objects orbiting two massive cores [9]. 

1.2 GalaxSeeHPC Learning Goals 
The two scenarios presented in this paper focus on studies of 
structure, the first of the formation and stability of spiral structure 
and the second of elements in large scale structure. Both of these 
are meant to be viewed qualitatively, as there are many physical 
elements left out of the model. In the case of the spiral structure 
scenario, the galaxy model presented does not account for drag 
due to the interstellar medium. The large scale structure scenario 
assumes Newtonian gravity in a constantly expanding universe. 
Even with these phenomena left out, however, key concepts in 
gravitational dynamics can be quickly and easily seen by students.  

As the tool has been created for general purpose, specific learning 
goals would be largely implementation specific and would depend 
on the goals the instructor wanted to emphasize. An instructor 
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focusing on performance or algorithms might have different goals 
than an instructor focusing on a science lesson. Like many of the 
tools developed at Shodor, GalaxSee has always followed the 
paradigm that it should be able to address both (computational 
science) education and computational (science education). 

In the case of spiral structure, students might learn that the 
formation of spiral arms is a natural occurrence given a velocity 
profile that is gravitationally stable, and that not all velocity 
profiles will be gravitationally stable. Students can, in the process 
of exploring spiral structure get practice creating velocity curves 
for model galaxies which could then be compared to those of real 
galaxies, which might then prompt a discussion of dark matter or 
other issues of interest. 

In the case of large scale structure, students can explore the 
interplay between expansion velocity and initial mass density for 
an expanding cube with periodic boundary conditions and 
“wrapped” gravity. While this leaves out some key features of the 
Lambda-CDM model, it will allow students to see a trend towards 
initial clumping along filaments, provided sufficiently high mass 
density and sufficiently low expansion velocity. The stability of 
those filaments over time can be seen to be strongly affected, with 
a tendency towards a “big crunch” for more dense and more 
slowly expanding systems. 

Both of these cases lead naturally to goal-seeking exercises 
(“How can I change the velocity profile of this galaxy? What if 
this universe has more mass in a given expanding cube?”) that 
focus on simple conceptual questions related to the balance of 
gravity, angular momentum, and expansion. 

In terms of the computational science learning enabled by these 
lessons, students get practice using tools running at a command 
line, input file creation, management, and analysis, parallel job 
submission and monitoring. The data sets created are rich, with 
significant challenges in the visualization of results. The 
simulation includes a variety of force calculation methods, which, 
while not necessarily state-of-the-art, provide an entry level into 
two of the key methods used in modern N-Body, tree-based and 
particle-mesh methods.  

1.3 GalaxSee revision history 
The original GalaxSee, like many educational N-Body tools, took 
the approach of a graphical user interface with the ability to pre-
create systems at random with a small number of parameters. 
Later versions of the code included GalaxSee 2.0 for Windows, 
which kept the look and feel of the original, but added the ability 
to use a Barnes-Hut force calculation, and a Java based web-start 
version. GalaxSee-MPI was written to explore parallel computing, 
removing the GUI interface, as well as the Barnes-Hut force 
calculation, and allowing for MPI based parallelization of a direct 
force calculation[8]. GalaxSee-MPI was originally intended just 
as an exploration of parallelism, and lacked any features to control 
the input to the simulation, nor did it have any advanced features 
for visualization, limiting itself to a non-interactive top-down-
side-view image of the simulation. 

1.4 GalaxSeeHPC Software Goals 
The purpose in writing GalaxSeeHPC was to provide students 
with an N-Body code that (a) allowed students to explore the 
types of problems that cannot be solved at smaller values of N, (b) 
allowed students to see examples of some of the force calculation 
algorithms that have allowed for the increased use of N-Body 
algorithms, (c) was written in code that is designed for readability 

and modification, (d) had a simplified dependency stack so that 
some functionality would be available even without any additional 
code and that other features could be enabled easily as software 
dependencies were met, and (e) allowed for human-readable input 
and output files—so that students would not have to 
simultaneously learn modern hierarchical file structures at the 
same time as learning either the physics or algorithms of the N-
Body problem. 

GalaxSeeHPC is a re-write of the GalaxSee-MPI C++ code 
Lessons are available from the Blue Waters Petascale Education 
website[11] and source code is available from Sourceforge[6]. 
GalaxSeeHPC was written in C to allow for greater portability, 
and includes both the ability to perform a Barnes-Hut style force 
calculation algorithm as well as a Particle-Particle Particle-Mesh 
(PPPM) algorithm. While still command line based, 
GalaxSeeHPC allows for the user to use a text input file to specify 
model parameters, including changing the scaling and units used 
for the problem, allowing a linear expansion of the spatial units 
(e.g. for a simulation in an expanding universe), force calculation 
method and parameters, softening factors, numerical integration 
options, and output features. X-Window based output is still 
available, but a more interactive SDL-based visualization is also 
an option, as are multiple different graphics and text output 
options. CMake is used for configuration and build management, 
and the code can be configured at compile-time to ignore any 
options that require numerical or graphical libraries not present on 
the system. 

GalaxSeeHPC has been used and tested in multiple sessions for 
Physics faculty at the SC09 and SC10 education programs. The 
visualization of results from GalaxSeeHPC has been a feature of 
multiple SC and NCSI workshops on scientific visualization. 
GalaxSeeHPC has been used in two successive summer camp 
environments with high-school age students. 

2. GALAXSEEHPC ALGORITHMS 
As every object can interact with every other object, this 
potentially leads to ( )1−NN forces that need to be calculated, 
though in practice half of these forces will be redundant as each 
force pair is equal and opposite. As an ( )2NΟ  problem, as N 
grows large the computational time requirements of the problem 
can quickly grow beyond the limitations of a typical classroom PC 
or laptop. 

The three approaches that are used to alleviate this problem are 
parallelism to spread the work over multiple processes, binary tree 
based sorting of masses to determine which forces can be 
approximated by substituting a point mass in place of a large 
number of distance masses, and spectral techniques that 
interpolate onto a density grid which can be solved using Fourier 
techniques. 

2.1 Barnes-Hut 
The Barnes-Hut algorithm is a tree based approach to 
approximating the force field due to distant particles[2]. An oct-
tree is constructed for the space modeled, with the tree recursively 
refined until each sub-element contains only one object. As the 
force is calculated, nearby objects, which typically will be close 
by on the oct-tree and can be located quickly, are used in a direct 
force calculation, and as objects are further away, branches of the 
tree can be approximated as a point mass, averaging the masses 
and positions of many masses into a single force calculation. 
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Tree methods work on the principle that one can organize an n-
body model in a data structure that ensures that nearest neighbors 
can be easily defined for any one body, and that distant neighbors 
can be easily approximated using a center of mass treatment. In 
one dimension, this can be thought of as a binary tree, which can 
be extended to three dimensions using an oct-tree structure. 
A simple implementation of a tree-based structure might assume 
that physical proximity is equivalent to being leaves on the same 
branch, but problems can occur for particles at the edge of a high 
level branch boundary, that are physically close to each other, but 
separated by many branching on the oct-tree. A modification of 
the tree algorithm to take into account issues like this might check 
to see if a node being tested is close enough to the object of 
interest to be suspect. As one descends the tree, this “closeness 
radius” can get smaller and smaller. If we consider ls  to be the 
scale of a tree segment at depth l , one might attempt the 
following force calculation method 

1. For a given object, start at the top of the tree 
2. Descend tree 

a. If child node is not a predecessor (along the 
same branch) of the object being calculated 
AND the object in question is at a distance 
greater than lks  from the center of mass of 

the node, stop and use the total mass and 
center of mass of that node 

b. If child node is a predecessor (along the same 
branch) of the object being calculated OR the 
object in question is at a distance less than 

lks  from the center of mass of the node, but 

does not SOLELY contain the object being 
calculated, descend all children of node 

The accuracy of the method can be controlled by the closeness 
criterion k . Figure 1 gives a visualization of this in 1-dimension 
using a binary tree structure. Note that in the case 0=k  this 
reduces to the previous algorithm, and in the case ∞→k this 
approaches a direct force calculation. The total number of forces 
to be calculated will scale as ( )NN log  in this situation instead of 

2N  for large models, and the accuracy of the tree calculation (and 
associated trade-off in speed) can be adjusted by use of the 
closeness criteria. 
 

 
Figure 1: Use of a closeness checking factor can eliminate 

errors due to aggressive tree pruning 

 

2.2 Particle-Particle Particle-Mesh 
Spectral methods, typically solved using the FFT algorithm, 
reduce the discrete n-body problem to a continuous gravitational 
problem solved on periodic boundary conditions[4]. 
Computationally, the advantage of spectral techniques is that it 
allows you to separate the long-range forces from the short-range 
forces, and use a direct calculation of short range forces while 
replacing long range forces with the solution of a potential 
function that satisfies Poisson’s equation. 

ρπG42 =Φ∇  

If a function for the density of space can be approximated, this 
can be solved easily as the Laplacian of the Fourier transform of a 
function is given by 

Φ−=Φ∇ ˆ4ˆ 222 kπ  

where Φ̂ is the Fourier transform of Φ . This gives for the 
solution of Poisson’s equation  

ρ
π

ˆˆ
2k
G−

=Φ  

which can be solved using a discrete Fourier transform, typically 
the Fast Fourier Transform (FFT) algorithm. 

For the implementation in GalaxSeeHPC, the point mass 
distribution is first interpolated onto a density grid at evenly 
spaced intervals in x, y, and z. Each mass is treated as if it’s mass 
is spread out over a Gaussian with standard deviation Snk /σσ =   
where n is the number of grid points in each dimension (assumed 
to be equal in all dimensions in GalaxSeeHPC), S is the scale of a 
periodic box in the model, and σk  is a user supplied parameter. 

The Particle-Particle correction is applied to all points within 
some distance Snknearnear /=σ , where neark  is a user supplied 
constant. Default values of 0.2=σk  and 0.1=neark are used in 
the code. For the purposes of the periodic boundary conditions in 
the PPPM algorithm, particles are “ghosted” across a periodic 
boundary if it results in a particle being closer to a second for the 
purposes of force calculation. 

2.3 Parallelism 
2.3.1 Direct Force Calculation 
The wall-time when using a direct force calculation is dominated 
by the nested loop over all particles. This is parallelized in 
GalaxSeeHPC using MPI, and a round robin scheduling scheme to 
determine which particle’s forces are calculated by which process. 

2.3.2 Tree-Based Force Calculation 
The tree creation takes sufficiently little time compared to the 
force calculation that we parallelize only the calculation of the 
forces from the built tree. The tree is typically built every 
timestep, but this can be reduced by the user. The loop over all 
particles to calculate forces from the tree is scheduled using MPI 
in a round-robin fashion. 

2.3.3 PPPM Method 
The creation of the density grid and the interpolation of forces 
from the density grid both consume a significant portion of the 
force calculation in the PPPM method. Each of these processes 
are parallelized in MPI using a round robin scheduled loop.  
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2.4 Softened Potentials 
An issue occurs due to the r/1 potential in the gravitational N-
Body problem in that there is a singularity in the force as particles 
get very close to each other. Typically, one uses some method of 
altering the potential to remove any singularities. This can be 
done by one of two methods in GalaxSeeHPC. The first is through 
use of a shield radius, as is done in previous versions of GalaxSee, 
in which the user specifies a parameter which defines a cutoff 
radius, within which forces are ignored. In practice GalaxSeeHPC 
uses an adaptive algorithm that depends on the central mass 
causing the force and the timestep being used, and the actual 
shield radius is given by  

3 2tGMkr srs Δ=  

where the shield radius scaling factor srk  is taken to be 5 by 
default. 

Traditionally, most codes in the literature use what is referred to 
as a softened potential, in which the potential (and hence force) 
functions can be modified to include a softened distance, 
effectively treating all distances as if they were some small 
distance ε greater than they actually are. 

( )2
1

22 ε+

−=

R

GMP  

with accelerations 

∑
≠ +−

−
=

ij ij

ij
j

i

i

xx

xx
GM

M
F

22
ε





 

and potential energy 

∑ ∑
=

−

≠=
⎟
⎠
⎞

⎜
⎝
⎛ +−

−
−=
N

i

i

ij
ij

ij
ji

xx

xx
MGMPE

1

1

1
2/3

22

2

ε




 

3. SCENARIOS 
One question that has arisen in many presentations of GalaxSee-
MPI to faculty, particularly Physics faculty interested in the 
science that could be learned by such a simulation rather than 
computer science faculty interested in scaling properties, has been 
whether or not students working on projects involving N-body 
simulations need to run models with enough points to warrant 
high performance computing resources. A large class of 
astrophysical problems traditionally fit into what are often 
described as “million-body” problems—problems that require 
enough points for study that statistical or hydrodynamical 
approaches are not appropriate, but for which using too few points 
in an N-body solution will result in approximation error such that 
results are qualitatively incorrect[7]. Two problems are presented 
here that fit into this category, the modeling of galactic structure 
and the modeling of large scale structure in the universe. 

3.1 Galactic Structure 
3.1.1 Potential Learning Goals, Science 
Students performing this exploration might, depending on 
implementation, focus on the velocity profiles required to 
maintain a gravitationally stable structure and the patterns that 
develop, as well as how the patterns that develop depend on the 
initial anisotropy of the mass distribution. 

3.1.2 Potential Learning Goals, Skills 
As N is increased, the computational overhead of a direct force 
calculation rapidly will increase the computational requirements 
of each run. The use of a tree-based method would be appropriate 
in this case as a periodic solution is not needed and the problem 
domain will have large regions of physical space in which there 
are few stars. Students can explore performance of tree-based 
methods as compared to direct force calculations. The 
parallelization method currently implemented does not truly split 
bodies across processors but merely shares the results of force 
calculation at each step. Students can explore the effect of 
communication on scaling as the code moves from a computation 
bound problem to a communication bound problem when 
increasing the number of processes.  

3.1.3 Overview 
Galaxies are large collections of stars, gas, and dust surrounded by 
relatively empty space, typically on the order of many kiloparsecs 
in size and containing hundreds of billions of stars. A key feature 
of galactic structure is the shape as classified on a tuning-fork 
diagram, categorizing galaxies as elliptical, spiral, or barred 
spiral[12]. (Teachers and students can find public domain images 
of many of these objects online, organized by galaxy type[13].) A 
feature of the original GalaxSee code was the exploration of how 
the interplay between gravity and angular momentum tended to 
flatten a large rotating mass of gravitationally bound objects. 
However, running models larger than a few thousand points was 
impractical, both due to hard coded features in early version of the 
code and the lack of an ability to operate in a command line mode 
with saved snapshots for models that required longer to run. 
Additionally, while it was possible to create models with different 
mass distributions and rotation curves, the default initial mass 
distributions and rotation curves in GalaxSee did not produce 
results that could be easily compared to images of spiral galaxies. 

As GalaxSeeHPC makes for a more practical approach to running 
models with larger N, simulations were run to test the results at 
N=5,000, 50,000, and 500,000. Additionally, models were run 
with the default initial distribution and velocity profile in 
GalaxSee, with a mass distribution that is more heavily weighted 
to the center of the initial distribution, and with a velocity profile 
that is lowered for object near the center of the mass distribution. 

3.1.4 Initial Conditions 
The original windows GalaxSee used as its initial conditions a 
random uniform distribution within a sphere, and a velocity 
distribution associated with a circular orbit with centripetal 
acceleration equal to the central force being provided by gravity. 

As the number of particles is increased, certain issues related to 
the default GalaxSee initial conditions are seen. In particular, a 
uniform distribution does not have enough mass in the core to 
keep the entire structure cohesively bound, and the distribution 
breaks up into many small clusters in orbit around each other. 
Additionally, the assumption of velocity set to centripetal 
acceleration works well at the edges of the galaxy, but towards the 
center this overestimates the actual orbital speeds, and simulations 
see a clearing effect wherein a ring structure is formed as opposed 
to something that looks like an elliptical, spiral, or lenticular 
galaxy. 

As a result, our initial conditions are taken to be normal 
distributions in x, y, and z for position, parameterized by the 
standard deviations of the normal distributions xσ , yσ , and zσ . 
Velocities are calculated by modifying the assumption of 
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centripetal acceleration caused by gravitational force to allow for 
a slower velocity towards the center. 
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where [ ]0,, iii yx=ρ  assuming the entire mass distribution is 
centered at the origin, and Ρ is the point at which the slower 
velocities towards the core switch over to a more typical 
centripetal acceleration-based velocity towards the edges. For 
each of the models here, we have assumed 5/xσ=Ρ .  

3.1.5 Results of Galactic Structure Simulations 
A simulation was run with an initial distribution with 

pcx 383=σ , xy σσ 8.0= , and xz σσ 1.0= , at sizes of 1,000, 
5,000, 50,000, and 500,000 points (see Figure 2Error! Reference 
source not found.). At 1,000 points, typical of the problem sizes 
one would use with the Windows version of GalaxSee, the 
possibility of a spiral structure is hinted at by the results, but 
cannot be clearly seen with so few points. Increasing the size to 
5,000 points makes the spiral structure more visible, and 50,000 
points allows for a clear structure of spiral arms with clusters 
along the arms. Models were run for 1 billion years at a timestep 
of 500,000 years, using an Adams-Bashforth-Moulton integration 
scheme and a Barnes-Hut force calculation scheme. 

 

  

  
Figure 2 Spiral Galaxy Model with varying values of N. From top left to bottom right N= 1000, 5000, 50000, and 500000.  

 

As can be seen in the comparison of the N=1,000 point and 
N=5,000 point simulation, 5,000 points was the bare minimum to 
begin seeing clearly any spiral structure that formed in these 
models, and on the order of 10,000 points is preferred. A 5,000 
point model for GalaxSeeHPC with 8 processes ran in 3 minutes 
54 seconds, and a 50,000 point model with 16 processes ran in 43 
minutes. For practical use in a classroom lab, 5,000 point models 
are best run on a multi-core workstation or small cluster, and 
50,000 point models are best done as either a single model run at 
the beginning of a class and analyzed afterwards or overnight or 
as part of longer term student projects. Models with 500,000 
points showed more detail, but did not have qualitatively different 
features for this problem than those with N=50,000, while 
requiring significantly longer to run. 

3.1.6 Scenarios for students to investigate 
 

One key issue in the formation of classic spiral and barred spiral 
structures is the need for some difference in the scale in the x and 
y directions for the initial conditions. The lower the eccentricity of 
the initial material, the less likely it is that the resulting galaxy 
will have a classic two-armed spiral structure.  
A second issue for students to study is the distribution of mass in 
the forming galaxy—looking at the difference between normally 
distributed matter and uniformly distributed matter, without an 
elevated density towards the center of the galaxy there will not be 
enough gravity to hold the center together, and students will see 
systems that fragment into many smaller rotating clusters. 
Additionally, it is possible to overestimate the acceleration of 
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objects towards the center if one simply sets centripetal force 
equal to the gravitational force exerted on each object. Both of 

these are shown in Figure 3. 
 

Testing 
 

  
 

Figure 3 Simulation of galaxy formation without any eccentricity to induce spiral arm formation (left) and without a higher density 
in the central region to form a core (left) 

 
 

This can be seen by example with a though experiment in which 
two equal stars orbit each other. Since it is not a case of a single 
object orbiting a more massive one, the actual velocities required 
to maintain a stable orbit are half what it would be otherwise. 

This is addressed in the initial velocity function used in this paper 
by using an error function to create an interior zone where the 
objects are treated as if they are orbiting each other, and an 
exterior zone in which objects are orbiting a central mass. Having 
too little mass in the center can lead to fragmentation of the 
galaxy being modeled, and having too high of a speed for the 
interior objects can lead to clearing of the inner regions—and thus 
fragmentation of the galaxy being modeled.  
 

3.2 Large Scale Structure of the Universe 
Issues of cosmology on a large scale are both of interest to many 
students and are well reported in current media and research 
literature. Recent advances in computational simulations have led 
to understandings of the structure of the universe and the 
connection to the CDM−Λ model of big-bang cosmology[4]. 
One of the largest N-body simulations ever run—the Millennium 
Simulation—focuses on this problem[14]. 
Modeling of large scale structure is complex—the distance scales 
change as the universe expands, and results depend sensitively on 
both the initial anisotropy of the mass distribution as well as the 
density. Computationally the problem requires treating the space 
modeled as a unit cell with periodic boundary conditions. 
However, students can explore at some level conceptual ideas 
with a simple Newtonian model. Our approach in GalaxSee is to 
let the students explore self-gravitation of a random anisotropic 
initial mass distribution in an expanding periodic box. 

Initial student exploration into large scale structure can include an 
overview of the existing data on large scale structure, and 
attempts to fit models of big-bang expansion, gravitational 
condensation of galaxies, and freezing out of structures as the 

universe expands to that data, particularly with regards to the 
eventual end fate of our universe. While recent studies suggest 
that there is sufficient inflation to sustain the universe and have it 
continue its expansion, until recently it was unknown by scientists 
whether the universe’s gravitational pull would ever result in an 
eventual “big crunch” collapse. This provides a compelling 
question for students to investigate, and allows them to understand 
the process by which computational science has informed us 
about this phenomenon. Even without allowing for either an 
expanding universe or any inflation to that expansion, students 
can, with only Newtonian gravity, explore the creation of 
filamentary structure and the eventual progression to a collapse 
event without expansion to prevent it. (As of version 1.1, 
GalaxSeeHPC supports the ability to model an expanding 
universe with a constant expansion rate, but does not allow for 
inflation—though this is a modification that a student could 
make.) 

The models used in studying cosmological structure are often 
referred to as “universe-in-a-box” models, in that they take what 
might be considered a unit-cell of the universe, and approximate 
the gravitational effect of the surrounding universe by assuming 
that things are isotropic enough that whatever is happening on the 
left side of the cell is just as likely as anything else as to be a 
representation of what might be happening beyond the right edge 
of the unit cell. As such, periodic boundary conditions are applied, 
in effect giving us a toroidal geometry in order to approximate a 
piece of a larger universe. Students can change the initial mass 
density and size of this universe in a box, start with a random 
initial distribution, and simulate the initial clustering and eventual 
collapse that occurs. Students can see an interim stage before 
collapse where the types of structures formed closely resemble 
both the more accurate cosmological models being run on 
research codes. 

3.2.1 Initial Conditions 
The initial mass density and unit cell size were chosen so to 
ensure that the simulation would results in visible creation of 
filamentary structure, and the image shown are taken at the peak 
of the filamentary nature of the structure before further collapse 
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occurred. The models shown here were run with no expansion and 
1.0e14 solar masses randomly distributed in a 1 megaparsec cubed 
box. (Note that these numbers are chosen simply to produce 
qualitative results and are not meant to be physical. While these 
initial conditions can qualitatively show filamentary structure it 
results in a mass density of the universe that is orders of 
magnitude greater than observed and not stable for the lifetime of 
the universe.) 

3.2.2 Results of Universe in a Box simulations 
Simple effects can be seen with a fairly modest value of N. 
Consider the following simulation result, using GalaxSeeHPC 

with the PPPM algorithm and N=5,000. Figure 4 shows the results 
of a model with N=5,000 using the PPPM algorithm required 
roughly 1 second per timestep running in serial on a Xeon-based 
machine, with parallel performance peaking at only a few 
processes, though larger values of N were able to scale to more 
processes. With a typical model requiring on the order of a 
thousand timesteps, this is well within the range of what a student 
might do in a lab setting, running a simulation every 10-20 
minutes on typical hardware 
 

   
Figure 4 Large scale structure simulation, N=5000, 50000, 500000 

 
Looking at the same model for greater values of N, students will 
be able to see more detail. At N=50,000, the knots in the middle 
of the filaments become more readily apparent and additional 
structure in the filaments can be seen The connectedness of the 
filaments is much clearer. The typical CPU time for models of this 
size in our tests was on the order of 2 days. Scaling up to 8 
processes for this problem size on our test cluster was reasonably 
efficient; making this a simulation that students could run multiple 
times in one day on a quad-core or 8-core system. 
 

When looking at the simulation results with N=500,000 the 
structure of the filaments themselves becomes much more clear, 
as does the morphology of the knots where filaments intersect. 
Scaling of this problem to 16 processes was reasonably efficient, 
and while models with millions of objects might run in days to 
weeks, depending on the number of timesteps required, students 
with access to a 8-core system or small cluster could run models 
in less than a day to a few days. 

3.2.3 Scenarios for Students to Investigate 
Two key questions students can try to address with these models 
are the sensitivity to the initial mass density of the universe of 
large scale structure and the effect of the expansion of the 
universe on large scale structure. 

An initial study students may make is to look at the timescales 
needed for gravitational collapse of a large area of the universe 
with the current mass density and without any expansion. Starting 
with a random initial configuration, students should see that there 
is an initial clustering into a filamentary structure and that these 
filaments feed into superclusters which then themselves combine, 
but that the timescale for this happening is so short compared to 
the age of the universe that some degree of expansion is required 
to understand the structure of our current universe. The mass 
density in Error! Reference source not found.-Error! 
Reference source not found. shown in the previous section, for 
example, require a mass 4 orders of magnitude greater than 
observed, and would result in gravitational collapse within a few 
billion years. 

 
GalaxSeeHPC has an EXPANSION variable in the input file 
which allows for a constant expansion rate. The timescales in 
which major change occurs will vary greatly as the universe 
expands, so for practical purposes it is useful to also have a scaled 
timestep that gets larger as the model progresses, and for that 
reason the student has an option of setting the timestep as a ratio 
of the current time using the TIMESTEP_RATIO variable rather 
than as a fixed number. Tracking the initial formation of 
anisotropy back to the point when gravitation began will likely 
require timesteps and numbers of objects that go beyond the 
architecture students have available, however the students can still 
start with a largely anisotropic random distribution of points at 
some later time, such as 1/100th the age of the universe, and 
evolve forward with mass densities near the current mass density 
of the universe. By changing the initial mass, they can see that the 
difference between structure never forming, filamentary structure 
of the type seen today, or a “big crunch” is only a few orders of 
magnitude, and that the qualitative types of structures found in 
more detailed models can be seen as naturally resulting from a 
combination of self-gravitation, mass density, and expansion. 
Care must be taken in interpretation of results. While it is possible 
to independently set expansion rate and mass density in the 
GalaxSeeHPC input file, in practice it would be expected that 
these two parameters are related. 

3.3 Scaling of the N-Body problem 
An important concern with the N-Body problem is the scaling of 
the problem, both in terms of how the computing requirements 
scale with algorithm and problem size as well as how well the 
parallel implementation of the problem scales across a parallel 
architecture. 

The first type of scaling is often referred to in terms of the “Big 
O” of the problem—if one were to write a function of the number 
of total computations needed as a function of the problem size, 
what term in that will dominate as the problem size gets large. In 
this sense, a direct force calculation is order 2N , and tree and 
PPPM methods are both order )log(NN . 
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Parallel scaling, on the other hand, is typically referred to as either 
weak or strong. Parallel implementations with weak scaling allow 
for larger problems to be solved in roughly equal time on larger 
(i.e. more CPU cores) systems. Parallel implementations with 
strong scaling allow for same sized problems to be solved in less 
time on larger systems. 
GalaxSeeHPC allows students to explore the big O scaling of 
direct, tree-based, and PPPM methods, and to begin exploring 
questions related to parallel scaling. It should be noted that the 
parallel implementation used in GalaxSeeHPC is limited in its 
parallel scaling, particularly for moderate and large clusters. 

Students and teachers interested in pursuing questions related to 
state-of-the-art tools that exhibit strong scaling on larger systems 
are encouraged to look at the many professional-grade N-Body 
solvers. Of particular note is Gadget-2, which compiles with 
standard C compilers on many systems and has a fairly small 
number of dependencies required to run. GalaxSeeHPC includes 
an option to translate its own input files into Gadget-2 format. 

3.3.1 Timing and Scaling of Galactic Structure 
Simulations 
Running a simulation with 1,000 points and a Barnes-Hut 
calculation as described in the previous section, GalaxSee for 
Windows required roughly 17 minutes on an EEE PC with 1 
1.7GHz Atom chip running Windows XP. Similar speeds with 
GalaxSee for Windows were seen on a HP EliteBook with a 2.5 
GHz Centrino running Windows Vista. GalaxSeeHPC running on 
a single process on a Dell PowerEdge 1850 with a 2.7GHz Xeon 
running RedHat Linux finished in 1.7 minutes, on 4 processes 
finished in 31 seconds. For comparison on similar hardware, 
GalaxSee-MPI (which was largely based on the Windows 
GalaxSee codebase) using Barnes-Hut and a 4th order Runge 
Kutta took 4 minutes 18 seconds (GalaxSee-MPI does not 
currently support ABM integration methods). GalaxSeeHPC using 
Runge Kutta 4 took 3 minutes 24 seconds. 
Many of these models could be run with a larger timestep, 
bringing running times on all platforms down (typical class 
presentations for the rotation and flattening of a spherical cluster 
are done with timesteps of 8 million years as opposed to 0.5 
million years), however even for larger timesteps running models 
with on the order of 1,000 points is the practical classroom 
application limit of GalaxSee Windows. 

Wall times per timestep for serial jobs are shown for N=5,000, 
50,000, and 500,000 in Error! Reference source not found.. The 
tree-based implementation in GalaxSeeHPC scales closer to N log 
N than the N squared scaling expected of a direct force 
calculation. The parallel scaling of GalaxSeeHPC with the tree-
based force calculation method was consistent across problem 
sizes, scaling to speedups of on the order of 10-15 on our cluster. 
Efficiency typically peaked once a few 8 core nodes were 
involved in the solution of the problem. For each of the problem 

sized tested, parallel efficiency dropped to 50% at about 16 
processes. All are shown in Figure 5. 
 

3.3.2 Timing and Scaling of Large Scale Structure 
Calculations 
Like tree-based methods, the PPPM method in GalaxSeeHPC 
scales as roughly N log(N). The compute time required for the 
force calculation is dominated by the mapping of points to a grid 
and the interpolation of forces on that grid back onto the points, 
combined with nearest neighbor direct force calculations. 

Speedup peaked at around 8 for models with N ranging from 
5,000 to 500,000 on the cluster used in this study, with parallel 
efficiency dropping off somewhat faster for the PPPM methods 
compared to tree-based methods. Results are shown in Figure 5. 

4. VISUALIZATION 
4.1 Need for higher end hardware and 
software at large N 
In addition to the computational challenges of increasing N in 
GalaxSee by many orders of magnitude, the resulting data also 
poses challenges in how it can be visualized, as traditional method 
of filling in a pixel if there is a mass in the line of sight for that 
pixel quick saturates at large N, even for very high resolution 
images. Even in relatively low-density regions of the simulation, 
foreground objects can obscure more important details. Masking 
the image by only showing a subset of points can result in loss of 
detail for structures of interest. This can impact both the type of 
hardware and software that is needed for students to work with 
large datasets. While modest computers with embedded video 
may be able to load and render larger datasets, such hardware can 
experience much longer frame rates when loading data for a new 
time or when attempting to re-render data for a different 
perspective (such as by rotating a rendered dataset in ParaView.) 
Figure 6 shows the effect of not allowing for any opacity when 
drawing a large number of point masses, as well as the loss of 
resolution and structure that can occur from masking points. 

Many visualization packages exist that are available to students 
that allow for advanced features such as changing the opacity of 
points, volume rendering, and creating contours and slices of 
regular gridded data. ParaView[10] and VisIt[16] are two such 
examples that are available as open source, and will work with a 
variety of input data types included methods of opening simple 
comma separated files. 
The images created for this paper were made using ParaView. 
ParaView is multi-platform, and has been designed to work in a 
distributed fashion for massive data sets. Developed by Kitware 
Inc. and Los Alamos National Laboratory, ParaView is also 
supported by Sandia National Laboratory and the Army Research 
Laboratory. 
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Figure 5 Scaling properties of example problems. Top row shows serial performance of tree-based algorithm run in serial relative 
to direct force calculation, followed left to right by speedup and efficiency (ideal would be 1.0) of tree algorithm in parallel. Bottom 

row shows serial performance of PPPM relative to problem size followed by speedup and performance. 

4.2 Use of CAVE for visualization 
Additionally, a CAVE system was used with students to visualize 
the results of GalaxSeeHPC, using a simple package written in 
OpenGL with CAVELib. Rendering was limited to no lighting 
effects and pixels for each mass, and up to N=500,000 could be 
viewed with zero masking and a frame rate high enough for the 
user to walk through the image without noticeable lag. The CAVE 

system used was a three wall system with ART head tracking and 
a dedicated render node using separate NVidia Quadro cards for 
each wall. 

Our initial use of the CAVE has focused on the feasibility of using 
it for education. Technically, we wanted to know whether there 
were easy methods of getting student data into the CAVE and 
whether it would provide an obstacle that interrupted class flow. 

 

  
Figure 6 N=500,000. Shown at left is without any masking or opacity. At right masking is used, but no opacity is enabled to enhance 

visualization. 
 
 

5. PEDAGOGICAL CONCERNS 
5.1 Sample Lesson Plan 
GalaxSeeHPC is meant to be a general purpose pedagogical tool 
around which a variety of lessons might be built, focusing on both 

topics in computational science education as well as topics in 
physics and astronomy.  
The following lesson plan is designed based on past use of 
GalaxSeeHPC with high school students. It assumes the use of a 
helper code “GalaxSeeUI,” available on the Sourceforge site for 

Volume 5, Issue 1 Journal of Computational Science Education

18 ISSN 2153-4136 August 2014



GalaxSeeHPC, to generate input files for the investigation of 
spiral galaxy shapes. 
Subject: Physics 
Grade: 11-12 
Lesson Length: 90 minutes (2 classes of 45 minutes) 
Title: Galaxy Structure Simulations Using Computer Applications 
Overview: 

Galaxies are large collections of stars rotating around a central 
point in space, while moving about in the universe. These bodies 
of stars tend to crash and collide with each other, and take on new 
and varying forms. Through Hubble, galaxies have gained 
classifications based on their structures as they form over time. 
This lesson will have the students learn about how to classify 
galaxies by their structure, using Hubble’s model and computer 
simulations of their own design. 
Preparations and Materials: 

• The teacher should become familiar with the 
GalaxSeeUI application, GalaxSeeHPC application, and 
the ParaView application. (GalaxSeeUI application is 
available on Sourceforge site along with GalaxSeeHPC 
and can be used to generate input files for this lesson.) 

• The teacher will need an internet browser in order to 
access this site 

http://cosmictimes.gsfc.nasa.gov/teachers/guide/1929/g
uide/classifying_nebulae.html 

• The teacher should have a text editor, such as notepad, 
loaded along with the applications, and some way of 
displaying all of the applications on the monitor to the 
class. 

• The students will need access to computers to utilize 
text editing software, in order to generate their initial 
conditions. 

Objective:  

• Students will be able to distinguish the different galactic 
structures, using the tuning fork model and computer 
simulations. 

• Students will be able to apply their previous computer 
knowledge to generate input files for GalaxSeeUI and 
utilize ParaView. 

• Students will be able to compose an argument about 
their own observations and defend their point of view. 

• Students will be able to infer things about natural 
phenomenon based off of the activities conducted 
during this lesson. 

Standards: 

• NSES.9-12.A: Science as inquiry. 
o Use technology and mathematics to improve 

investigations and communications. 

o Communicate and defend a scientific 
argument. 

• NSES.9-12.D: 
o Origin and evolution of the universe. 

• NSES.9-12.E: 
o Understanding about science and technology. 

• DoDD.Science.9: 
o Use of computational models. 

o Use careful systematic observation and data 
collection to obtain valid information. 

o Relate force, motion, energy, and power. 
Procedure and Activities: 
Day 1 – 45 minutes 

1. The teacher will define the term galaxy. 
a. Galaxy - a system of stars, numbering in the 

millions to billions that, along with gas and 
dust, are held together by gravitational 
attraction. 

b. An example that can be given is the 
Andromeda galaxy, the closest spiral galaxy 
to the Milky Way galaxy. 

2. The teacher will define the types of galaxies: 
a. Elliptical - a galaxy, generally having an 

elliptical shape and no obvious inner structure 
or spiral arms 

b. Spiral - a galaxy, that exhibits a central 
nucleus from which many curved arms extend 

c. Bar Spiral – a galaxy, that contains a central 
bar structure from which two large arms 
extend 

d. Irregular – a galaxy, that cannot be labeled by 
the previous definitions 

3. The teacher will utilize the Hubble Classification, or the 
Tuning Fork Diagram, to discuss the development of 
galactic structure over time. A version of this diagram 
can be found on:  
http://skyserver.sdss.org/dr1/en/proj/advanced/galaxies/t
uningfork.asp 

4. The teacher will show students a general input file of 
GalaxSeeUI in Notepad, and will explain to the students 
the proper way to input and save the data. All files that 
are being submitted to GalaxSeeUI are .in files and can 
be saved with this extension when saving and asked to 
name file (Example: test.in). 

5. The students will be paired into small, 3-4 person, 
groups to work on their own input files. 

6. The students will utilize the computers to create an 
input file, using Notepad, following the teacher’s 
example on how to setup the text file and save it with 
the proper extension. 

7. The teacher will tell the students to finish what they are 
doing, and to return to their groups. The teacher will, 
then, have the students choose one member of their 
group to submit their file to GalaxSeeUI, and save the 
file to a folder, the teacher should have access to this 
folder. Advise that this folder should be a shared folder 
that the entire class can access, but the teacher can 
control. 

8. The teacher will show a variety of galaxy pictures to the 
students, and ask the students to make a classification of 
the galaxy’s structure, as well as provide their reasoning 
for coming to that conclusion. 
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Example images can be found on: 
http://hubblesite.org/gallery/album/galaxy/ 

9. The teacher will ask if there are any final questions or 
comments, and conclude the lesson. This time can also 
be used to aid the students with any errors that may 
arise. 

 
Day 2 – 45 minutes 
 

10. The teacher will show the students how to start 
ParaView, and how to configure ParaView to read in 
their data files. The teacher will, then, show the students 
how to play their animation, and how to download the 
images needed to examine the structure of the galaxies. 

11. The teacher will have the students retrieve their data 
from, a flash drive the teacher controls or, the folder 
used previously. The folder should have individual 
folders with the group of students’ names, and inside the 
folders should be the input file the students created, and 
the output from GalaxSeeHPC. 

12. The students will observe their galaxies, analysis the 
results they note, and make an educated conclusion on 
the structure of their galaxy. 

13. The teacher will instruct the students to use ParaView to 
take a picture of their “initial” step and their “final” 
step. 

14. The student groups will share their results with the 
class, having the students present a small summary of 
their results and making their final classification of their 
galaxy. 

15. During the ending to the period, make references to 
stable and unstable initial conditions. Care must be 
taken to differentiate between a student’s set of initial 
conditions and actual data. Possible wording would be 
to always refer to the students simulations as models 
and never as “a galaxy.” 

a. Stable – initial conditions such that the model 
does not exhibit overall change in structure or 
makeup as the simulation evolves. A stable 
simulation that additionally exhibits behavior 
similar to data is one in which the initial 
conditions are likely to correspond with real 
galaxies. 

b. Unstable – simulation exhibits behavior that 
changes greatly during evolution, particularly 
changes in the size, rotational speed, and 
overall geometric makeup. This may be due to 
numerical instability (have students try 
reducing timestep), or it may be due to initial 
conditions that are not physically likely. 

16. The teacher will ask if there are any final questions or 
comments, and conclude the lesson. This time can also 
be used to aid the students with any errors that may 
arise anywhere during the lesson. 

Extensions: 

17. Show the students how to plot the velocity of their 
galaxies in ParaView as star color. Show them how the 

velocity curve of their galaxies plays a role in how 
stable their structure is. 

5.2 Choice of Time-step 
Currently none of the versions of GalaxSee (GUI-based, the 
original command-line MPI, or the latest GalaxSeeHPC release) 
allow for an adaptive timestep in solution. While this change is 
planned in the future, this makes it especially important that an 
appropriate time-step is used. Even with professional grade codes 
using higher order and/or adaptive integration schemes, great care 
must be taken with choice of time-step. 

If students are not familiar with time-stepping methods, they 
should get some information on the drawbacks of a time-step that 
is either too large or too short. Any of the versions used with some 
form of visualization (GUI-based have built in visualization, 
GalaxSee-MPI and GalaxSeeHPC have the option of compiling 
X-based visualization into the program if supported by your 
platform) will show this clearly, with demonstrably wrong results 
and instabilities occurring with too large a time-step, and with 
visibly slower computation occurring with too small a time-step. 

5.3 Choice of Integration Method 
Integration methods available in GalaxSeeHPC mirror some of the 
more standard options used, as well as some options that are 
pedagogically easy to introduce yet not stable enough for 
professional work. The Euler method is included for pedagogical 
purpose as it is often the first numerical integration method 
students learn, and the easiest to code. The so-called “improved 
Euler” or second order Runge-Kutta scheme as well as the mid-
point Euler method and leapfrog methods are also allowed in the 
code as these are often introduced in numerical analysis classes as 
incremental improvements to Euler’s method. In practice, 
however, one would not want to run professional integration with 
these schemes. The fourth order Runge-Kutta algorithm is 
generally considered the simplest numerical integration scheme 
one would want to use for professional work, and is a standard 
method used across computational science disciplines. 
Additionally, predictor-corrector schemes, such as the Adams-
Bashforth-Moulton available in GalaxSeeHPC attempt to use 
previous timesteps to better predict future behavior. For anything 
other than investigating the numerical impact of using lower order 
integration schemes, students should use either the fourth order 
Runge-Kutta or Adams-Bashforth-Moulton integrators. 

5.4 Limitations of GalaxSee-MPI 
The primary limitations of GalaxSee-MPI from a classroom 
perspective was the inability to use it to teach any concept beyond 
which it was originally intended. GalaxSee-MPI as first written 
was designed to show scaling of the parallelization of direct force 
calculation using MPI, however all of the features of previous 
versions of GalaxSee that made it a useful tool for classroom 
exploration had been removed—the ability to easily modify input 
for new scenarios, the ability to design input files to meet your 
own problem, the ease of visualization had been removed in 
making a command line version of the program. Moving the 
program to a command line version in a HPC environment, 
however, did allow for much larger values of N—which the 
visualization abilities of early versions of GalaxSee would not 
handle well anyway.  

Additionally, over many years of using GalaxSee-MPI in faculty 
workshops with Physics faculty, many faculty expressed 
skepticism as to whether there would be benefit for their students 
to running N-Body simulations with a larger value of N—whether 
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there was anything the students would learn at large N that they 
would not learn at small N. Also, the lack of a feature to allow for 
periodic boundary conditions limited the types of situations that 
could be modeled. 

From a technical perspective, the use of GalaxSee-MPI in new 
environments was often hampered by the choice of C++ as a 
language. While C++ is largely standard and widely adopted as a 
language, the C++ version of GalaxSee-MPI suffered from 
portability issues as it was deployed on different clustering 
platforms. The dependency on specific standard libraries often 
caused software to fail to run as expected, and different mpicxx 
executables, from one MPI implementation to another, often 
required minor code changes to in order to deploy the software on 
a new platform. 

5.5 Changes Made 
The following feature comparison shows changes made in 
GalaxSeeHPC compared to previous GUI based and command 
line based versions. 

Feature GUI 
versions 

GalaxSee 
MPI 

GalaxSee 
HPC 

Runs from input file ü    ü  

Users can specify 
individual particle 
properties 

ü   ü  

Problem scale Choose  
from 
menu list 

 User 
specified 

Change integration 
method (Euler, 
Improved Euler, RK4, 
ABM) 

ü   ü  

Barnes-Hut ü   ü  

PPPM   ü  

Passive visualization ü  (with X11) (with X11) 

Interactive 
visualization 

ü   (with SDL) 

Command Line option  ü  ü  

MPI  ü  ü  

Write to snapshot files   ü  

Additional output 
options 

  ü  

Softened potential Adaptive 
shield 
radius 

Adaptive 
shield 
radius 

Adaptive 
shield 
radius or 
fixed 
softened 
potential 

5.6 Effect of Modifications 
One concern in moving to GalaxSeeHPC was whether the 
removal of the GUI component would make exploration of 
science questions significantly more difficult for students using 
GalaxSee. In previous workshops with students, typical use was to 
use the Windows, Mac, or Java version of GalaxSee when 
exploring science questions and to use the GalaxSee-MPI version 
of the code when exploring problems with parallel efficiency and 
scaling. Our first use of GalaxSeeHPC in a informal education 

setting in summer 2010 did show that the constant flow back and 
forth between windowed versus command line environments 
slowed the pace of activities down, and when given the choice 
students tended to stick with the GUI driven tools. In summer 
2011, we focused more specifically on using the command line 
tools, with more instruction on the use of the command line 
interface and activities that included visualization of results solved 
with larger N in a CAVE environment, which seemed to make for 
a more natural use of the command line driven HPC tools. 

Since the move to C, we have seen significantly reduced issues 
with portability. The new version of the code has been tested on 
multiple platforms with both GNU and Intel compilers. 

5.7 Visualization tools 
Any effort to bring scalable supercomputing applications into the 
classroom will need problems of significant size to (a) require 
supercomputing resources, and (b) scale on those resources. This 
provides an additional concern for the educator in that large 
problems produce large sets of results, and visualization of those 
results will need to be part of the plan for implementing the use of 
such tools in the classroom. The use of common data formats is 
encouraged in order to be able to make the best possible use of 
open source visualization tools. Comma Separated Value text files 
provide a low barrier for creation of files, and are readable by 
many visualization tools, but will typically require the 
configuration of many options within the tool to define how the 
CSV file should be interpreted. Other Common Data Formats, 
such as NetCDF or HDF, are well supported by the open source 
community, and are standard input file formats for most 
visualization tools, however this will provide an additional 
challenge for implementation as code libraries for those formats 
may have to be installed on the systems on which students are 
computing their results. 

5.8 Storage limitations 
Another concern for problems involving large N, particularly in a 
classroom situation in which many students will be running 
multiple sets of such models, is disk storage. For our N=500,000 
models, 30Mbytes per snapshot was typical, stored in NetCDF 
format. Keeping enough snapshots to create a smooth animation 
for N=500,000 typically required 3Gbytes per simulation. Storage 
requirements were linear with N.  

6. FUTURE WORK 
6.1 CAVE Visualization 
Our initial work in incorporating the CAVE into the visualization 
of GalaxSeeHPC has focused primarily on technical issues of how 
to get the data into the CAVE as well as the feasibility of 
incorporating a CAVE system into the flow of a class. While our 
general finding is that stereo immersive visualization, as it is 
inherently focused on one individuals point of view, is difficult to 
use in a large class setting it can be inspirational for students. We 
noticed a clear “wow factor” when bringing participants into the 
CAVE. It is easier to incorporate immersive visualization into 
individual student projects, as there is less of an issue with 
contention for the resource. 

Our initial work with students has used custom written software, 
and we are investigating whether we can replace this by using 
VisIt, for which a Conduit interface exists, or ParaView, which 
has been ported to other CAVE systems using FreeVR. 

We have not yet investigated whether participants learn 
differently in an immersive environment from a non-immersive 
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environment, or from viewing 3-D data in other, non-immersive, 
stereo visualization systems. 

While CAVE systems are unlikely for typical classroom use, 
students may consider using non-immersive stereo rendering in 
ParaView through more readily available 3D monitors, TVs, or 
projectors.  
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ABSTRACT
A typical upper-level undergraduate or first-year graduate
level regression course syllabus treats “model selection” with
various stepwise regression methods. In this paper, we im-
plement the method of evolutionary computing for “subset
model selection” in order to accomplish two goals: i) to in-
troduce students to the powerful optimization method of ge-
netic algorithms, and ii) to transform a regression analysis
course into a regression and modeling course without requir-
ing any additional time or software commitment. Further-
more, we employ the Akaike Information Criterion (AIC) as
a measure of model fitness instead of the commonly used
measure of R-square. The model selection tool uses Mi-
crosoft Excel, which makes the procedure accessible to a
very wide spectrum of interdisciplinary students, with no
specialized software requirement. An Excel macro, to be
used as an instructional tool, is freely available through the
author’s website.

Keywords
Genetic Algorithm, Model Selection, AIC

1. INTRODUCTION
Predictive model selection can be a difficult procedure for
data sets with a large number of explanatory variables. De-
termining what variables best explain the system by exhaus-
tive search becomes unreasonable as the number of variables
increases. For example, over one billion possible models ex-
ist for data with 30 explanatory variables.

One area in which model selection is important is multiple
linear regression. In ecological studies one of the commonly
used methods for selection is step-wise regression, with for-
ward or backward variable selection algorithms. These meth-
ods have been criticized for lacking the ability to truly pick
the best model for several reasons [2, 12]. One problem
is that the choice in which the variables enter the selec-
tion algorithm is not justified theoretically. In addition, the

probabilities for the selection procedure are chosen arbitrar-
ily, which may lead to a poorly selected model. One of the
leading advocates of implementing cutting-edge methods in
predictive model selection [11] provides a solid foundation
for evolutionary computing. Finally, since these methods
employ local search, it is unlikely that the global maximum
set of variables will be found [9, 6, 7, 10].

Because of the drawbacks of the current model selection pro-
cedures, we propose to use a genetic algorithm to optimally
determine the subset of variables for a multiple regression
model. Genetic algorithms are a wise choice for this proce-
dure. They are a global search tool and are not prone to
the problems associated with stepwise selection being a lo-
cal search. Genetic algorithms operate by considering many
models at the same time; through selection, components of
the best models come together to form the maximal model.
We will now go through the basics of genetic algorithms.
This is a brief explanation; a thorough one can be found
in [5].

2. GENETIC ALGORITHMS
Genetic algorithms (GAs) are a set of optimization tech-
niques inspired by biological evolution operating under nat-
ural selection. First developed by Holland [8], they have
grown in popularity because of the ability of the algorithm
to perform well on many different types of problems. In a
genetic algorithm, possible solutions are coded using binary
strings, which are called chromosomes. Each chromosome
has a fitness value associated with it based on how well the
string is optimizing the problem. During each generation,
the time step of the algorithm, a population of chromosomes
compete to have their “genes” passed on to the next genera-
tion. The selection step is used to pick the chromosomes for
the next generation based on their fitness. Those selected
enter the mating pool, where two chromosomes mate using
crossover. During this phase, parts of each parent string are
swapped to form two new chromosomes that have certain as-
pects of their parents. After crossover, mutation is applied.
Mutation occurs with a small probability, and is defined as
a change from 0 to 1 or 1 to 0 at a certain location in the bi-
nary string. Mutation allows the introduction of new“genes”
that were either lost from the population or were not there
to start with. Through successive generations, increasingly
better chromosomes come to dominate the population and
the optimal (or close enough) solution is realized.

3. AKAIKE INFORMATION CRITERION
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A key parameter of a GA is a method to evaluate the fitness
of a chromosome. In order to use a GA for model selection
in multiple regression, a way to evaluate the chromosomes
is needed. In other words, a method is needed to determine
how well the subset explains the system.

Akaike introduced AIC in 1973 [1] as a measure of the com-
plexity of a model. It measures the bias due to the estima-
tion of the model from the true distribution based on the
data. Additionally, AIC takes into account the number of
parameters used to create the model. The formula for AIC
is given as

AIC(k) = −2logL(θ̂k) + 2m(k), (1)

where L(θ̂k) denotes the maximum likelihood function, θ̂k
is the maximum likelihood estimate of parameter vector θk
under the model mk, and m(k) is the number of parameters
in the model. The first term of AIC gives the lack of fit of
the model, and the second term is a penalty for the number
of parameters in the model. The model with the lowest
AIC value is considered the best, because the model best
determines the underlying stochastic process with the least
number of parameters.

4. A GENETIC ALGORITHM FOR MUL-
TIPLE LINEAR REGRESSION MODEL
SELECTION

4.1 Background
The first step to implementing a genetic algorithm for any
optimization problem is to determine a way to encode the
problem into a binary string. In the case of multiple linear
regression, we have q data points with n explanatory vari-
ables and one response variable. We wish to fit the data
to

y = Xβ + ε, (2)

where y is an n×1 response vector, X is an n×q matrix of the
data points, β is a q× 1 coefficient matrix, and ε is an n× 1
error vector with entries from independent normal distribu-
tions (N(0, σ2) for all components). The dataset contains
n explanatory variables. The encoding is done by creating
a binary string with n+ 1 bits, where each bit represents a
different parameter of the model. The additional parameter
in the binary string is the intercept for the linear model. A
parameter is included in the model if the value of the bit for
that parameter is a 1 and is excluded if it is a 0. A quick
example will help explain this procedure.

Suppose that we have a dataset where we are interested in
what variables explain the reproductive fitness of a species
of trees. The possible explanatory variables will include

1. Age of tree

2. Height of tree

3. Soil pH

4. Density of trees in the surrounding area

5. Average temperature of environment

6. Average rainfall of environment

7. Circumference of trunk

8. Longitude of environment

9. Latitude of environment

10. Prevalence of disease in environment.

In order to use a genetic algorithm in choosing the best
model, each binary string will have 11 bits.The first bit is for
the intercept and the following 10 correspond to the possible
explanatory variables. For example, the string 10010111101
would code for a model which includes the intercept, soil
pH, average temperature of environment, average rainfall of
environment, circumference of trunk, longitude of environ-
ment, and prevalence of disease in environment. To further
demonstrate this point, the string 00001000110 is a model
that has no intercept, and includes density of trees in the
surrounding area, longitude of environment, and latitude of
environment (see Table 1).

Chromosome Variables Included
10010111101 Intercept,3,5,6,7,8,10
00001000110 4,8,9

Table 1: Chromosomes and variables included by
the model it represents

Once we have a method of encoding, we need a way to eval-
uate the binary strings in order to choose the best model.
Although several choices for evaluation are available, this
paper focuses on AIC. Since the model with the lowest AIC
value is considered the best, the genetic algorithm chooses
strings biased towards those with the lowest value.

The probability that a string will be chosen for the mating
pool is proportional to its transformed fitness. For example,
if one string has a value of k for its fitness and a second
has 5k for its fitness, the second string has 5 times a better
chance of being in the mating pool. Additionally, note that
the string with the worst AIC value will never be picked for
the mating pool, as its fitness will be 0.

Now that we have a method of encoding and a way to eval-
uate the strings, we will determine some parameters of the
genetic algorithm. The first one we consider is the method
of creating the initial population and determining its size.
Unless previous knowledge about the problem is available, it
is commonplace in genetic algorithms to randomly generate
binary strings [5]. However, in the case of model selection, a
user may want to force a parameter(s) to be included, even
if it is not part of the model with the lowest complexity. In
this case, the initial population can be generated in such a
way that certain parameters are always in the model. In ad-
dition to how the population is initially generated, the user
must choose the size of the initial population. This process
can be difficult. Generally the size should not be too large
because it will slow down the algorithm, and should not be
so small that genetic drift takes over the course of evolution
of the population. In typical genetic algorithms, the size of
the population stays the same; however, this may not be an
effective use of computation. We will see in the next section
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that starting with a larger size then reducing it may be more
effective.

Finally, we discuss the genetic operators which allow the
algorithm to find the optimal model. There are two oper-
ators that are generally implemented in genetic algorithms:
crossover and mutation. Crossover mimics biological crossover
in a simplified manner. First, the probability of crossover
(pc) is chosen. When in the mating pool, a pair of strings
are chosen along with a random number from [0, 1]. If that
number is less than the probability of crossover, crossover
occurs. Thus, if pc = 1, then every pair will cross, and if
pc = 0, then the strings will not be altered by crossover.
After the choice of pc, the number of crossover points must
be chosen. The location of the crossover points is chosen at
random. Then the bits from the parent strings are swapped
to create two new offspring strings (see Figure 1). The pur-
pose of crossover is to bring together models which have
components that reduce complexity. In the previous exam-
ple about trees, we had two parent strings where Parent 1
coded for a linear model with the intercept, soil pH, av-
erage temperature of environment, average rainfall of envi-
ronment, circumference of trunk, longitude of environment,
and prevalence of disease in environment. Parent 2 coded for
density of trees in the surrounding area, longitude of envi-
ronment and latitude of environment. Applying crossover of
the two parents created two offspring (see Figure 1), where
Offspring 1 coded for a model with an intercept, soil pH,
average temperature of environment, longitude of environ-
ment, latitude of environment, and prevalence of disease in
environment. Offspring 2 is a model that includes density
of trees in the surrounding area, average rainfall of environ-
ment, circumference of trunk, and longitude of environment.
Through successive generations and application of crossover
of low complexity models, the algorithm is able to find the
least (or close enough) complex model to explain the data.

Fig. 1: Diagram of crossover with 2 points

Crossover can only generate models that include parameters
that already exists in the population. What if the least com-
plex model includes a parameter that is not present in the
population? That is, the position in the string that codes
for that parameter is fixed at 0. Mutation alleviates this
problem. Mutation in genetic algorithms is similar to muta-
tion that occurs in DNA. First, the probability of mutation
(pm) has to be determined. This value gives the probability
that at each location in the string the bit will be flipped.
Flipping is defined as the change of a 0 to 1 or a 1 to a
0. Typically, mutation rates are low, on the order of 10−3

to 10−5, however, strings are usually longer for other appli-
cations of genetic algorithms than they are for determining
least complex models.

We conclude this section with pseudo code for a genetic algo-
rithm used to find the least complex model that sufficiently
describes the data.

1. Generate initial population

2. While (t<max generations OR the maximum number
of computations have not been executed)

(a) Calculate AIC for the model each string encodes

(b) Select strings for the mating pool

(c) Create a new population using crossover

(d) Mutate new population

(e) t=t+1

3. End

5. CLASSROOM IMPLEMENTATION
Since the goal of this approach is multifaceted, the classroom
implementation has three basic components as a part of a
typical regression analysis syllabus.

The first component is a one lecture-hour introduction to
genetic algorithm concepts that is best initiated just before
the time where a typical syllabus introduces model building
via stepwise regression. At this point students are familiar
with multiple regression, goodness of fit measures, and their
use in model comparison. This component does not need
to cover detailed descriptions of crossover options, optimal
mutation rates, population sizes, required number of gen-
erations, or stopping rule conditions, but rather should be
designed to expose the students to the basic notions of evo-
lutionary computing. In fact this is where, for instance, an
idea of “numbers mating to create new numbers” fascinates
most students, making them eager to learn what comes next.

The second component is also an hour-long demonstration
of evolutionary computing. It is made of an exercise where
students can witness how an initial guess evolves to be the
solution of a problem by following the performances of pop-
ulations within each generation. One of the best examples
of this classroom exercise is obtaining the solution for a Dio-
phantine equation using MS Excel. For this step, using MS
Excel, as opposed to an R-code written exclusively to per-
form GA optimization, a canned GA program, or an online
applet, would be highly recommended since this approach
allows the students to store each population on a sheet and
enables them to compare the improvement in fitness from
generation to generation. This step doesn’t have to be very
sophisticated. In fact performing the GA only for a few
generations (a few Excel worksheets) within a lecture will
be enough to convey the underlying message of evolutionary
computing. In particular, the recommended exercise is as
follows:

1) We are looking for positive integers a, b, c, and d such
that a + 2b + 3c + 4d = 30. This is the famous Diophan-
tine equation, which has now become a benchmark tool in
teaching evolutionary computing or GA based optimization
in undergraduate level courses due to its simple but yet non-
analytic solution structure. It is a commonly used example
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for teaching GA. Another use of it using C++ code can be
seen in [3].

2) Generate 4 uniform integers from (0, 30) and save them to
columns A2 through D2. Enter the formula = ABS(A2+2∗
B2+3∗C2+4∗D2−30) to cell E2 (Use A1 to E1 for labels).
Notice that since we are seeking a solution in terms of these
four positive integers, none of them can be greater than 30.
At this step the user needs to know how to hold the ran-
dom numbers static, else each time Enter is hit the random
numbers will change. This can easily be achieved by set-
ting the Calculation option to Manual in Excel 2010 (Click
Formulas ribbon, click Calculation Options,select Manual to
disable auto-calculation). In older versions use Click Tools
> Options > Calculation tab.

3) Repeat step 2, say 50 times (using the cells A51 to E51),
which creates the “1st generation” of 50 “chromosomes” each
of which has 4 “genes” (a through d) with “fitness” given in
column E. In this case, the smaller the value in column E,
the fitter the corresponding chromosome is. Hence, entering
the formula 1/fitness into column F will be useful during
the rest of the process.

4) Normalize fitness of each chromosome saved in column F
(by dividing each fitness by the total fitness) to create the
probability of selecting a chromosome proportional to its fit-
ness. As a suggestion, the instructor might use conditional
formatting in the fitness probability column to help students
to visualize the relative magnitudes of the selection proba-
bilities,. In Excel 2010, this can be achieved by using Data
Bars-Gradient Fill option.

5) Copy and boldface the “best” solution for these 50 indi-
viduals in row 52.

6) Randomly select one pair with probability given in col-
umn F and copy them into into the first two rows of column
G. These are the two parents of the first offspring. Specifi-
cally select two rows using the probabilities in column F.

7) Generate a uniform integer from (1,3) to determine the
crossover point. Swap the tails of the two parents to create
two children. Copy them to column H.

8) Repeat this process for 25 pairs, forming 50 new children.

9) Randomly choose 5 children (rows). For each selected
chromosome generate a uniform integer from (1,4). This will
indicate which gene to “mutate”. At this point, we explain
that 10% of the individuals are subject to mutation for some
“divine” reason.

10) Replace the selected genes with newly generated integers
from (0,30).

11) Copy these 50 rows onto a new worksheet with their
respective fitnesses.

12) The fitness of the best individual in row 52 of the 2nd
worksheet can now be compared with that of the first work-
sheet.

13) Repeat this process for 3 more generations so that a total
5 generations of 50 individuals can be used to to discuss the
principles evolutionary computing.

After these steps, the students are now ready to work with
GAs for subset model selection, which is the third compo-
nent of this approach. So far, with the use of the Diophan-
tine equation we demonstrated how chromosomes (variables
of the equation) evolve improving the fitness generation af-
ter generation. We now make the connection to regression
modeling, where the fitness is the quality of the model, say
R-square or AIC (another commonly used more robust good-
ness of fit measure for students of this level). We will see
how R-square improves as models evolve. Since the idea of
subset model selection requires comparing regression mod-
els containing different predictors we will treat models with
different set of predictors as different chromosomes. This is
exactly what we did for the Diophantine equation where dif-
ferent values of the variables were defined different chromo-
somes. As an alternative to stepwise regression, we generate
a binary string of length equal to the number of possible
predictors, and include only. the variables that correspond
to 1’s. Repeating this process generates a population of
regression models each one has its own fitness. We then
proceed with the natural selection process as described in
Section 4. For this step, it is recommended that the first
few steps are demonstrated, again using MS Excel. How-
ever, for model selection discussions using real-life data sets,
it is recommended that the freely available Excel macro on
the author’s website1 should be used to focus on the mod-
eling discussions without allocating any more class time to
the process itself. The first few steps can be implemented
as follows:

1) Save the response variable to column A, and explanatory
variables into columns starting with B.

2) Generate a binary string of length equal to the number
of explanatory variables.

3) Form a regression model by including only the explana-
tory variables that correspond to 1 in the binary string.

4) Run MS Excel regression utility for the model.

5) Repeat from step 2 for another model, pointing out the
different models due to the different set of explanatory vari-
ables being used.

6) Use the MS Excel macro for a desired number of gener-
ations, discussing the model sensitivity aspects of different
runs.

The steps given above were implemented as a part of a sec-
tion where subset model selection was covered in an upper
level undergraduate/lower level graduate Regression Anal-
ysis class. Since no regression analysis book has a chapter
allocated to this approach, the supplementary notes, Excel
files were distributed. Although the lectures were also sup-
plemented by Power Point presentations, this is optional and
not an essential part of the approach described here.

1www.ilstu.edu/∼oakman
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6. CONCLUSIONS
Treating predictive model selection via GA in a regression
analysis course serves two very useful purposes. First, it
introduces students to the notion of evolutionary comput-
ing by blending its basic concepts within the very familiar
framework of of regression methods. This requires no back-
ground beyond some introductory statistics knowledge. Sec-
ond, it arms students, especially those with diverse interests
such as biology, sociology, economics and so on, with a very
powerful and cutting-edge method of model building. Addi-
tionally, the genetic algorithm approach combined with the
use of AIC is better at handling data in which collinearity
exist than the traditional selection methods such as forward,
backward, and stepwise selection. Although no formal study
of student performance was conducted, every student, even
the ones who perform less than perfect seem to relate to
the material much better than they do to the traditional
approaches. Course evaluations consistently indicate this
chapter as of the their favorite chapters. In fact several in-
dependent Study projects, two M.S. theses were produced
on the topic by the students who approach the instructor
after this chapter was covered.
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Teaching Students to Program Using Visual 
Environments: Impetus for a Faulty Mental Model? 

 

ABSTRACT 
When learning to program, students are typically exposed to either 
a visual or command line environment. Visual environments are 
usually adopted to help engage students with programming due to 
their user-friendly feature capabilities. This article explores the 
effect of using visual environments such as Integrated 
Development Environments and syntax-free tools to teach students 
how to program.  

Prior studies have shown that some visual environments can have a 
productive impact on a student’s ability to learn and become 
engaged with programming.  However, the functional behavior of 
visual environments may cause a student to develop a faulty 
mental model for programming. One possible reason is due to the 
fixed set of skills that a student acquires upon initial exposure to 
programming while using a visual environment.  
Two systematic studies were conducted for exposing students to 
programming in introductory courses using both visual and 
command line environments. From the first study, it was found 
that visual environments can initially impose a lower learning 
curve for students. However, the second study revealed that visual 
environments may present a challenge for students to directly 
transfer their acquired skills to other programming environments 
after initial exposure.   

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: Interaction 
styles; K.3.2 [Computers and Education]: Computer science 
education 

General Terms 
Design, Human Factors 

Keywords 
Visual Environments, Human-Computer Interaction, Education, 
Learning 

1. INTRODUCTION 
Programming can be considered a skill for solving problems 
computationally. However, teaching students how to program has 
been a challenge. It has been argued that students sometimes fail to 
develop an accurate mental model for programming [3, 18]. 
Because of this deficiency, students can encounter programming as 
a barrier and in many cases leave fields that typically view this 
skill as a necessity. For example, Computer Science departments 
generally face the challenge of retaining incoming majors. 
Beaubouef and Mason detailed many factors that could cause 
students to leave Computer Science with one being the lack of 
skills for problem solving [1]. 

Attention has been placed on ways to improve a student’s ability to 
learn and apply programming skills. One area of focus has been 
programming environments. Guzdial advocates “the greatest 
contributions to be made in this field are not in building yet more 
novice programming environments but figuring out how to study 
the ones we have” [8]. Kelleher and Pausch noted that 
programming environments have been built since the 1960s with 
the purpose of making programming accessible to people of 
various ages and backgrounds [10]. Visual environments like 
integrated development environments (IDEs) and syntax-free tools 
have become more common for teaching programming. There 
have also been efforts to expose and engage students at earlier 
learning stages to programming using visual environments [11, 12, 
13].  

Because of their functional behavior, there is the potential concern 
whether visual environments cause students to develop a faulty 
mental model for programming. Visual environments are typically 
constructed in a way that hides basic programming behaviors (ex. 
compilation, debugging, and execution) under a GUI interface. 
This style of construction can restrict students from direct exposure 
to essential programming concepts and functionalities.  For 
instance, syntax-free tools like Alice and Scratch can cause a 
student to learn a limited set of programming skills by restricting 
exposure to code syntax, program compilation, and file systems. 
IDEs can provide program compilation and file system scaffolding, 
but disguises these and related behaviors as GUI options that are 
embedded into a menu item, widget, or icon.  It has been found 
that students can depend too much on the GUI options that an IDE 
offers with insufficient understanding of what they are doing [2].  
This article explores visual environments and their potential effect 
on a student’s productivity for programming. Section 2 discusses 
prior studies regarding visual environments and their effect on 
students. Section 3 expounds upon the construction, feature sets, 
and operation behavior of visual environments. Section 4 shows 
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two studies that were conducted to evaluate student behavior when 
a visual environment is used to teach programming. Section 5 
gives the conclusion, threats to validity, and future work for this 
research. 

2. RELATED WORK 
Previous studies have shown the impact of using visual 
environments to teach students how to program. Below is a 
summary of studies that evaluated visual environments and their 
effect on students at introductory stages of programming (Figure 
1). Measurements that were used to evaluate these environments 
were either subjective (ex. attitudes, motivation) or objective (ex. 
retention rates, time on task). 

 
Figure 1. Prior Evaluations of Visual Environments and their 

Effect on Novices 
Moskal, Lurie, and Cooper [15] measured the effect of Alice, a 
syntax-free environment, on CS1 students over a period of two 
years. Their results showed that Alice had a positive impact on 
performance, retention, and attitudes of the students, especially 
those who were considered at-risk (students with little to no 
programming experience prior to CS1 enrollment or a weak 
mathematical background) [15].  

Hagan and Markham [9] studied the effect of BlueJ, a Java IDE, 
for teaching CS1 students object-oriented programming. They 
found that initially students were indifferent towards BlueJ, but 
gradually their attitudes became more positive for using this 
environment as the semester progressed. The authors believed that 
the difficulty of installing and learning to use BlueJ might have 
influenced the students’ initial attitude toward this environment 
[9].  

DePasquale [4] evaluated the ease of use of the CS1 Sandbox IDE 
(with and without language subsets) against Microsoft Visual C++ 
.Net on CS1 students.  He found that students were more efficient 
with their tasks when using CS1 Sandbox than Microsoft Visual 
C++ .Net when language subsets were applied. In addition, 
DePasquale discovered that students who used CS1 Sandbox at the 
beginning of the study later migrated more readily to using 
Microsoft Visual C++ .Net [4].    
Chen and Marx [2] measured an Eclipse IDE against an IDE called 
Ready to Program in a CS2 course for a period of two years. 
During the first semester of this study, the students preferred 
Eclipse over Ready to Program due to their initial excitement for 
this environment during an in-class demonstration. However, many 
of these students chose to use Ready to Program to complete take-
home projects. Some of the reasons for not using Eclipse were 
based on the lack of experience, installment issues, and the 
difficulty of using this environment in the absence of the instructor 
[2]. During the following two semesters, the students enrolled were 
given a CD that provided hands-on experience with using Eclipse. 
Chen and Marx found that these particular students showed 
slightly better attitudes toward Eclipse. During the final semester 
of this study, Chen and Marx expanded the study into CS1 by 
exposing students in this course to Eclipse. They found that 
students depended too much on the wizards that Eclipse offered 

with insufficient understanding of what they were doing. 
Therefore, no IDE was used for programming during the following 
semester but rather Notepad and the Command Prompt terminal. 
The reason for this change was to help the students get a broader 
understanding of compilation, execution, and editing of programs. 
The authors also believed that this change would help the students 
better understand the usefulness of an IDE [2].  

McWhorter and O’Connor [14] performed a study on LEGO® 
Mindstorms to determine if this application could influence 
motivation (intrinsic or extrinsic) for students learning to program 
in a CS1 course. They found that students using LEGO® 
Mindstorms showed a barely significant decrease in their extrinsic 
motivation from the control group.  McWhorter and O’Connor 
concluded that LEGO® Mindstorms scarcely had any substantial 
effect on their students’ overall motivation for programming [14].  

From these studies, there were different conclusions about the 
effect of visual environments on students while learning to 
program. Environments like Alice, BlueJ, and CS1 Sandbox were 
able to influence positive productivity in the students. On the other 
hand, Eclipse and LEGO® Mindstorms revealed a different 
outcome. In particular, Chen and Marx found that the appearance 
of Eclipse excited their students. However, its complexity and 
implied behavior for programming procedures caused the authors 
to move later students to a command line environment. 

3. THE CONSTRUCT OF VISUAL TOOLS 
Visual environments are typically built using a WIMP format 
(window, icon, menu, and pointing device) for operation. IDEs are 
composed of a menu bar with a list of menu options and icons, a 
text editor for writing code, a built-in compiler/interpreter, and a 
debugger for conducting programming tasks via a mouse. In many 
cases, these features are integrated into one window for operation 
(Figure 2). Syntax-free environments like Alice and Scratch are 
also constructed using the WIMP format with additional features 
for drag-and-drop coding.  

Visual environments are usually constructed differently from 
command line environments.  Command line environments use a 
text editor to write and edit code but depend upon an external 
command terminal for code compilation/interpretation, debugging, 
and execution (Figure 3). In addition, students may be required to 
learn a variety of command arguments to effectively operate a 
command terminal. There are cases where certain text editors may 
provide a WIMP-oriented background to create and edit a program 
(Figure 4), but still require a command terminal to generate the 
program’s output. 

 
Figure 2: Microsoft Visual Studio IDE 2008 
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Figure 4: Text Editors for JEDIT and Notepad (respectively) 

3.1 Feature Sets  
The feature sets within visual environments typically provide a 
higher level of assistance to students when learning to program [5]. 
For example, IDEs can provide a large quantity of features that are 
designed specifically to assist users with programming; these 
include syntax highlighting, error highlighting, auto completion, 
mouse usage, and integrated compilation/execution. Usually, 
command line environments are not built with these capabilities, 
which restrict students to use a fixed set of features for operation. 
The next subsection provides more detail about the different levels 
of assistance that occur between visual and command line 
environments.  

 
 
 
 
 

Figure 5: Programming Environments: Feature Sets 
Continuum [5] 

*Feature set can readily be altered 

3.1.1 Continuum 
Figure 5 illustrates a continuum of basic feature sets that can be 
seen amongst visual and command line environments [5]. Feature 
sets enable these environments to provide low, moderate, or high 
assistance to a programmer. The continuum provides clarity for 
how specific environments are categorized based on their default 
feature sets. There are cases where individual features can be 
enabled or disabled within environments (notice the asterisk beside 
the Vi/Vim editor in Figure 5). This can alter an environment’s 
behavior, which can also cause an environment to shift either left 
or right on the continuum. 

Low assistive environments (left region of the continuum) 
typically possess basic essential features for programming. Some 
of these environments may only provide the user with an editing 
window and a window for compilation/execution or interpretation. 
These environments typically allow the user to perform textual 
coding, command usage, and manual debugging. Users depend on 
some independent compiler or interpreter to run a written program 
that usually generates a textual output. Example environments that 
provide low assistance are plain text editors and text editors with 
very limited features. As listed on the continuum, Vi/Vim is an 
example text editor that provides limited features, which include 
syntax highlighting and mouse usage for programming. In 
addition, environments that represent this region of the continuum 
tend to be command-line oriented [5]. 

Moderately assistive environments (middle region of the 
continuum) can provide a larger quantity of assistive features for 
programming. Some of these features consist of syntax 
highlighting, error highlighting, auto completion, mouse usage, 
integrated compilation/execution (or interpretation), and integrated 
debugging. Usually, these environments can also provide textual 
feedback. There are some full-featured environments that possess 
similar traits seen in low assistive environments. These traits 
include: command sets, independent window for 
compiling/executing (or interpreting), and manual debugging. 
Example environments that represent this region of the continuum 
are rich-featured editors, intermediate and advanced/commercial 
IDEs [5].  
Highly assistive environments (right region of the continuum) can 
also possess a larger quantity of assistive features for 
programming. Usually, these environments are built specifically to 
teach novices how to program. Therefore, many of these 
environments can also provide features that restrict the user to 
foundational programming concepts. Some highly assistive 
environments also require the user to perform drag and drop 
programming rather than syntax programming. In addition, 
physical or animated output can be used as an alternative to textual 
output. Example environments that represent this region of the 
continuum are graphical environments like Alice and Scratch, and 
pedagogical IDEs [5].  
For additional details about the feature set continuum, see our 
paper published in the Journal of Computing Sciences in 
Colleges [5]. 

3.1.2 Familiarity 
As part of feature assistance, there are features within 
programming environments, particularly those that are visual 
(Figure 6), that can provide a student with a familiar clue or 
affordance of how a particular action can be performed while 
programming [17].   Some of these features can also be seen in 
common software applications that provide service to users with 

 

 

Figure 3: Command Terminals for Windows and Linux 
Platforms (respectively) 
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different levels of computational experience, which include 
Microsoft Office suites, Internet Safari, and ITunes (Figure 7).   

It is likely that students have been exposed to these software 
applications to surf the web, chat online, write an essay or term 
paper, or listen to music prior to their first programming class. 
Because of these similar features, there is the potential for a visual 
environment’s behavior to be familiar to students while learning to 
program. For example, a student could perceive the procedures for 
using a visual environment to be relative to a word processor. This 
sense of familiarity could also lessen the learning curve for 
understanding the operations of a visual environment upon initial 
exposure. 

 

 

 

 

 

 

 

Figure 6: Examples of Visual Environments and their Relative 
Features [6] 

 
Figure 7: Software Applications and their Relative Features to 

Visual Environments (Internet Safari, Microsoft Word, and iTunes) 

3.2 Operation Behavior 
While students are learning to program, understanding 
programming concepts or language syntax is one aspect. Another 
is becoming accustomed to the procedures for operating a 
programming environment. When operating a command line 
environment, students typically cannot bypass one procedure and 
complete another. This is not the case for many visual 
environments. Instead, programmers can perform certain 
procedures automatically with a click of the mouse. The next 
subsections discuss the operation of command line environments, 
IDEs, and syntax-free environments respectively along with a brief 
discussion about their potential effect on students.  

3.2.1 Command Line Programming 
When conducting command line programming, students are 
usually directed to an editing window to begin composing (or 
writing) their program. Students must also save their program as a 
file for the remaining procedures. Next, students should test the 

correctness of their written program by compiling their saved file. 
Since a command terminal is typically used for compilation, 
students are required to use command sets for operation. Based on 
the command terminal and language being used for programming, 
there are certain commands that will enable the students to compile 
their program file. Upon compilation, students are faced with one 
of two scenarios: 1) If a syntax error(s) is detected during 
compilation, this error must be corrected before proceeding to the 
next step. 2) If no errors are detected during compilation, the 
program file undergoes the process of linking. When linking 
occurs, the program file is converted into an executable file in 
preparation for execution. After program linking is completed, the 
students must type a certain command in the terminal to invoke the 
execution of their program. Upon execution, the students are faced 
with one of two more scenarios: 1) If a semantic (or logical) 
error(s) occurs, this error must be corrected and would require the 
students to repeat the compilation and linking process again. 2) If 
no errors are detected during execution, the output of the program 
would be generated and viewed in the terminal window. Figure 8 
provides an outline of the typical operations for command line 
programing. Table 1 provides a summarized list of these operations 
in their respective order. 

  
Figure 8: Outline of Command Line Programming  

 
Table 1. Command Line Programming Operations  

Step 1 Editing window is used to compose (or write) 
program. (Program should be saved as a file) 

Step 2* 
The file of the written program is compiled and 
checked for syntax errors. (Students must use the 
appropriate command to invoke this behavior) 

Step 3* The file of the program is converted into an 
executable file for execution.  

Step 4* 
The executable file of the written program is 
executed to acquire the intended output. 
(Students must use the appropriate command to 
invoke this behavior) 

Step 5 The program’s output is generated and viewed. 

*May require multiple attempts due to syntax or semantic 
errors. 

 

It is also important to note that certain languages are not compiled, 
but rather interpreted. The operations for interpreted languages are 
almost identical to a compiled language with exception to the 
procedures for compiling and linking the program file. Instead, the 
program file containing the written code has to be interpreted. 
There are certain commands that will enable students to interpret 
the code in their program file. Upon interpretation, the students are 
faced with one of three scenarios: 1) If a syntax error(s) is detected 
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during interpretation, this error must be corrected before 
proceeding to the next step. 2) If a semantic (or logical) error(s) 
occurs, this error must be corrected before proceeding to the next 
step. 3) If no errors are detected during interpretation, the output of 
the program would be generated and viewed in the terminal 
window. Figure 9 provides an outline of the typical operations for 
command line programming with interpreted languages. Table 2 
provides a summarized list of these operations in their respective 
order. 

 
Figure 9: Outline of Command Line Programming            

(using an Interpreted Language) 
 

Table 2. Command Line Programming Operations 
(Interpreted Language) 

Step 1 Editing window is used to compose (or write) 
program. (Program should be saved as a file) 

Step 2* 
The file of the written program is interpreted and 
checked for syntax and semantic errors. 
(Students must use the appropriate command to 
invoke this behavior) 

Step 3 The program’s output is generated and viewed. 

*May require multiple attempts due to syntax or semantic 
errors. 

 

3.2.2 IDE Programming 
Similar to command line programming, students are directed to an 
editing window to begin composing their program in an IDE. 
Students must also save their program as a file for the remaining 
procedures. Next, students must test the correctness of their written 
program. Depending upon the IDE, this can occur in different 
ways. For example, many IDEs provide a menu option that enables 
students to automatically compile, link, and execute their program 
file with a single mouse click. During this process, students are 
faced with one of three scenarios: 1) If a syntax error(s) is detected 
during compilation, this error must be corrected before the file 
automatically proceeds to the linking phase. 2) If a semantic (or 
logical) error(s) occurs, this error must be corrected before the file 
is successfully executed. 3) If no errors are detected during this 
process, the output of the program would be generated and viewed 
either within the same window of the editor or in an independent 
window.   

Other IDEs follow a similar procedure seen in command line 
environments, which allow students to compile (and link) their 
program independently of execution. Instead of using a command 
terminal to do so, a menu option is provided to conduct this 
procedure. The output generated during execution from these 

particular IDEs can also be viewed either within the same window 
of the editor or in an independent window.    

For languages that are interpreted, certain IDEs are built to 
interpret a written language using a menu option that invokes this 
behavior using a single mouse click. Upon interpretation, the 
output is also generated and viewed either within the same window 
of the editor or in an independent window. Figure 10 provides an 
outline of IDE programming that includes all three styles of 
operation. Table 3-5 provides a summarized list of each style of 
IDE operation respectively.  

 

 
Figure 10: Outline of IDE Programming 

 

Table 3. IDE Programming Operations                     
(Compiling, Linking, and Executing automatically) 

Step 1 Editing window is used to compose (or write) 
program. (Program should be saved as a file) 

Step 2* 

The file of the written program is compiled, 
linked, and executed based upon the correctness 
of the written code. (Students must use the 
appropriate menu option to invoke this 
behavior). During this process, the file is 
checked for syntax and semantic errors.  

Step 3 The program’s output is generated and viewed. 

*May require multiple attempts due to syntax or semantic 
errors. 

 

Table 4. IDE Programming Operations         
(Compiling/Linking and Executing independently) 

Step 1 Editing window is used to compose (or write) 
program. (Program should be saved as a file) 

Step 2* 
The file of the written program is compiled and 
checked for syntax errors. (Students must use the 
appropriate menu option to invoke this behavior) 

Step 3* 
The executable file of the written program is 
executed to acquire the intended output. 
(Students must use the appropriate menu option 
to invoke this behavior) 

Step 4 The program’s output is generated and viewed. 

*May require multiple attempts due to syntax or semantic 
errors. 
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Table 5. IDE Programming Operations                                
(using an Interpreted Language) 

Step 1 Editing window is used to compose (or write) 
program. (Program should be saved as a file) 

Step 2* 
The file of the written program is interpreted. 
(Students must use the appropriate menu option 
to invoke this behavior). During this process, the 
file is checked for syntax and semantic errors.  

Step 3 The program’s output is generated and viewed. 

*May require multiple attempts due to syntax or semantic 
errors. 

 

3.2.3 Syntax-Free Programming 
Syntax-free programming also provides students with an editing 
window to create their program. Instead of using syntax as a 
method for composing a program, students in many cases must 
drag snippets of code from other windows of the environment and 
drop them into the editing window. Once a program has been 
created, students must also save their program as a file for the 
upcoming procedures. Similar to IDEs, syntax-free environments 
provide a menu option for students to test the correctness of their 
written program. During this process, students are faced with one 
of two scenarios: 1) If a semantic (or logical) error(s) occurs, this 
error must be corrected before the program can be executed. In 
many cases, errors can be corrected by either discarding 
inappropriate code from the composed program or 
dragging/dropping additional snippets of code into the same 
program. 2) If no errors are detected during this process, the output 
of the program would be generated and viewed either within the 
same window of the editor or in an independent window. Figure 11 
provides an outline of syntax-free programming. Table 6 provides 
a summarized list of these operations in their respective order.  

Table 6. Syntax-Free Programming Operations                                 

Step 1 Editing window is used to compose program. 
(Program should be saved as a file) 

Step 2* 
The file of the composed program is tested. 
(Students must use the appropriate menu option 
to invoke this behavior). During this process, the 
file is checked for semantic errors.  

Step 3 The program’s output is generated and viewed. 

*May require multiple attempts due to semantic errors. 

3.2.4 Discussion 
Command line programming directly exposes students more to 
basic procedures for programming, such as compiling a written 
program, generating an executable file of a program through 
linking, and executing the executable file to generate the program’s 
output. Students have to manually perform each procedure using 
certain commands to obtain the output of their written program. In 
contrast, visual environments can potentially provide a shorter 
process for students to conduct the same behavior. Because visual 
environments are usually operated using menu bars, icons, and 
mouse clicks, students are exposed to a higher level of abstraction 
for operation and navigation while programming. However, this 
style of construct may misrepresent some of the basic procedures 
for programming. For example, a student who is initially exposed 
to programming through an IDE may get the impression that 
clicking the appropriate menu option magically makes their 
program work while disregarding the actions of compiling, linking, 
executing, or interpreting.  

4. STUDIES 
To further examine the effects of visual environments on students 
while learning to program, a study was conducted on a CS1 lab 
and lecture course respectively at The University of Alabama. 
Section 4.1 discusses the first study that was conducted on the CS1 
lab. Section 4.2 talks about the second study that was conducted as 
a semester-long assessment on the CS1 lecture course.   

4.1 Study #1 
The first study was conducted as a one-day pilot study for 
measuring the initial effects of visual and command line 
programming on students.  The CS1 lab course generally 
introduces students to robotic programming through a syntax-free 
environment called PREOP that allows them to program real 
robots using drag-and-drop procedures in Alice. This particular 
course has no prerequisites and two or three sections are usually 
offered per semester. Three sections were offered during the time 
of this study (Spring 2011).  

4.1.1 Methods & Procedures 
For this study, each section received an environment to conduct 
Python programming: Section 1 received an IDLE IDE (Figure 
12), Section 2 was given a PyScripter IDE (Figure 13), and Section 
3 used Notepad/Command Prompt (Figure 14). Three measures 
were conducted for student assessment: Computer Programming 
Self-Efficacy Scale [16], a time on task assessment, and a usability 
survey.  
The number of students enrolled in the CS1 lab course was 133.  
There were 45, 45, and 43 students enrolled in the IDLE, 
PyScripter, and Notepad sections respectively. The student 
population for this study varied for each procedure. This was due 
to students either arriving late to class or not correctly following 
the instructions. Therefore, the student population represented in 
this study ranged from 91-102 students. Tables 7-20 (with 
exception to Table 13) list the numbers of students who 
participated during each assessment.  

 
Figure 11: Outline of Syntax-Free Programming 

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 33



 
Figure 12: IDLE IDE version 2.6.6 

 

 
Figure 13: PyScripter version 1.9.9.6 

 

 
Figure 14: Notepad/Command Prompt – Windows Platform 

 

To begin the study, each student received a self-efficacy survey. 
This survey consisted of 31 questions from the Computer 
Programming Self-Efficacy Scale. The responses were given on a 
7-point Likert scale that ranged from not confident at all to 
absolutely confident. As part of this survey, a demographics 
section was provided in order to acquire feedback about the 
students, which included academic major, classification, and prior 
programming experience.   

Next, the students received an introductory lecture on the Python 
language. This lecture introduced basic Python concepts that the 
students would need to complete the exercise. Students were 
exposed to concepts of code syntax and semantics, selection, and 
information hiding. Topics that were covered included print 

statements, variable usage and assignment, reserved keywords and 
mathematical operations (with inferences on division and modulus 
usage). The lecture concluded by showing an example program 
using every topic. This program converted x number of minutes 
into h hours and m minutes remaining. The behavior of this 
program resembled the assignment that the students would be 
asked to write.  

After the lecture, the students received a demonstration on how to 
use their respective environment and were required to write a small 
program that converted 700 days into y years, m months, and d 
days remaining. During this process, their time to complete this 
task was measured. The objective was to measure the students’ 
time on task for writing the required program using their respective 
environment.  For the IDLE group, a process monitoring 
application was used to measure time on task. In order to access 
their time logs, the students first accessed the process monitoring 
application before using IDLE, and then remain logged onto their 
computers after completing the assignment. However, some 
students did not follow these directions correctly which resulted in 
their time logs being lost. Therefore, the remaining two sections 
did not use the software. Instead these students were required to 
start at the same time and were required to raise their hands upon 
completing the assignment. The time on task for these sections was 
calculated by subtracting time of completion from the starting 
time. 
After the time on task assessment, a usability survey was issued. 
This survey was composed of questions that directly focused on 
the students’ experience with their respective tool. These questions 
measured subjective attributes regarding attitudes and feelings 
about using these environments respectively.  

4.1.2 Results 
The student demographics consisted of different majors at varying 
classification levels with contrasting levels of prior programming 
experience (Tables 7 - 10). For instance, the PyScripter group had 
more Electrical Engineering majors than Computer Science. The 
PyScripter and Notepad groups had significantly more juniors than 
the IDLE group (p<0.05). The IDLE group had less prior 
programming experience than the PyScripter group, which was 
also significantly less (p<0.05) than the Notepad group. In 
addition, the Notepad group had a higher percentage (50%) of 
students who were taking the CS1 lecture course in conjunction 
with this lab. Traditionally, CS1 teaches Python programming 
using the VIM command editor on the Linux platform.  

4.1.2.1 Self-Efficacy 
The self-efficacy survey was used as an indicator for initially 
determining the students’ self-efficacy for programming prior to 
their participation in this study. This survey measured the students’ 
confidence for performing certain programming procedures 
ranging from writing syntactically correct programs to writing a 
program that someone else could successfully comprehend. The 
students’ scores on this survey reflected their self-efficacy, 
meaning that a high score indicated an individual to have a high 
self-efficacy toward programming (and vice versa). The highest 
score that could have been made on this survey was 217. From this 
survey, the students showed an overall mean self-efficacy score of 
114.85 out of 217 (with a normalized mean of 0.51 on a scale of 0 
to 1). 

The mean self-efficacy scores (see Table 11) amongst the three 
sections were tested using a one-way ANOVA. The ANOVA 
showed a significant variation amongst the three sections (p<0.01). 
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Table 7. CS1 Lab Demographics  
*Number of responses before Time on Task was conducted. 

Participants (N=94*) 

 
Major 

Computer Science - 33% 
Electrical Engineering - 29% 
Computer Engineering - 15% 
MIS - 3% 
Math - 5% 
Other - 18% 

 
Classification 

Freshmen - 41% 
Sophomore - 32% 
Junior - 22% 
Senior - 3% 
Other - 1% 

 
Programming 
Experience 

CS1 programming - 31% 
High School programming - 26% 
Another College Course - 18% 
No Experience - 26% 

 
 

Table 8. CS1 Lab Demographics – IDLE 
*Number of responses before Time on Task was conducted. 

IDLE Group (N=30*)  
 
Major 

Computer Science - 37% 
Electrical Engineering - 27% 
Computer Engineering - 23% 
MIS - 7% 
Math - 7% 
Other - 7% 

 
Classification 

Freshmen - 57% 
Sophomore - 37% 
Junior - 7% 
Senior - 0% 
Other - 0% 

 
Programming 
Experience 

CS1 programming - 17% 
High School Course - 17% 
Another College Course - 17% 
No Experience - 40% 

 
 
 

Table 9. CS1 Lab Demographics – PyScripter 
*Number of responses before Time on Task was conducted. 

PyScripter Group (N=38*)  
 
Major 

Computer Science - 24% 
Electrical Engineering - 42% 
Computer Engineering - 13% 
MIS - 3% 
Math - 3% 
Other - 18% 

 
Classification 

Freshmen - 32% 
Sophomore - 37% 
Junior - 39% 
Senior - 0% 
Other - 3% 

 
Programming 
Experience 

CS1 programming - 34% 
High School Course- 16% 
Another College Course - 24% 
No Experience - 26% 

 
 

Table 10. CS1 Lab Demographics – Notepad 
*Number of responses before Time on Task was conducted. 

Notepad Group (N=26*)  
 
Major 

Computer Science - 42% 
Electrical Engineering - 12% 
Computer Engineering - 8% 
MIS - 4% 
Math - 8% 
Other - 31% 

 
Classification 

Freshmen - 38% 
Sophomore - 19% 
Junior - 31% 
Senior - 12% 
Other - 0% 

 
Programming 
Experience 

CS1 programming - 50% 
High School Course - 27% 
Another College Course - 8% 
No Experience - 15% 
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The ANOVA test was followed by T-tests to determine whether 
specific differences existed amongst the sections. The T-tests 
showed a significant difference between the IDLE and PyScripter 
groups (p<0.01) as well as the IDLE and Notepad groups (p<0.01) 
respectively. There was no significant difference between the 
PyScripter and Notepad groups. This indicated that students in the 
IDLE group were less confident in their programming abilities 
than their counterparts in the PyScripter and Notepad groups 
respectively. 

Table 11. Self-Efficacy Descriptive Data for CS1 Lab 

  Group  N Mean Score 
(Possible Score) StdDev 

Normalized 
Mean 

(scaling from 
0 to 1) 

IDLE  30 88.30 
(out of 217) 38.91 0.42 

PyScripter  38 125.63 
(out of 217) 49.57 0.53 

Notepad  26 129.73 
(out of 217)  38.90 0.59 

All Groups 94 114.85 
(out of 217) 46.83 0.51 

 
4.1.2.2 Time on Task 
Overall, the average performance time for students to complete the 
assignment was 24.63 minutes (Table 12). A one-way ANOVA 
showed a significant difference (p<0.01) between the average 
performance times amongst the three sections. The ANOVA test 
was followed by T-tests which showed a significant difference 
between the IDLE and PyScripter groups (p<0.05), the IDLE and 
Notepad groups (p<0.01), and the PyScripter and Notepad groups 
(p<0.01). This indicated that students who used PyScripter 
finished their required task quicker than the students using IDLE 
and Notepad respectively. At the same time, students who used 
IDLE completed their task quicker than the students using 
Notepad.  

Table 12. Time on Task Descriptive Data for CS1 Lab 

  Group  N Average Time StdDev 

IDLE  21 23.05 minutes 12.62 

PyScripter  40 15.88 minutes 10.89 

Notepad  30 34.97 minutes 16.83 

All Groups 91 24.63 minutes  13.45 

 
4.1.2.3 Environment Usability 
This survey was composed of several attributes to measure the 
environments’ usability. Questions in the survey are listed in 
(Table 13). The results that were generated from the students’ 
response to each question are also discussed in further detail. 
Tables 14-20 provide statistical analysis for each attribute 
measured. 

 

 

 

Table 13. Usability Attributes  
(OE = Open Ended; MC = Multiple Choice) 

Attribute  Question 

Initial Impression of Environment OE 

Comfort with Environment MC 

Confidence with Doing Another Assignment 
with Environment MC 

Fondness of Environment MC 

Easiest Attributes about the Environment OE 

Hardest Attributes about the Environment OE 

Experiences with Other Environments 
(besides PREOP) OE 

Initial Impression about the Environment. The responses were 
quantified into three categories: positive, non-positive, and no 
response. Non-positive responses consist of either neutral/confused 
or negative feelings about the environment. For quantification, the 
positive responses received a value of 1, and the non-positive and 
no responses received a value of 0.  

A one-way ANOVA indicated a significant difference (p<0.01) 
amongst the three groups. Afterwards, T-tests indicated a 
significant difference for each T-test: IDLE vs. PyScripter 
(p=0.05), IDLE vs. Notepad (p=0.05), PyScripter vs. Notepad 
(p<0.01). These results showed that the Notepad group had a less 
positive initial impression than the IDLE and PyScripter groups 
respectively. In addition, students in the IDLE group had a less 
positive initial impression than the PyScripter group. Table 14 
provides further analysis about this measure.  

Table 14. Initial Impression of Environment 

 

Comfort with Environment. Based on the response choices 
ranging from not comfortable at all to absolutely comfortable, a 
one-way ANOVA indicated a significant difference (p<0.01). 
Afterwards, T-tests indicated a significant difference for two of the 
pairings: IDLE vs. PyScripter (p<0.01) and IDLE vs. Notepad 
(p<0.05). These results showed that the IDLE group was less 
comfortable with using IDLE than the PyScripter group with 
PyScripter and the Notepad group with Notepad respectively. The 
PyScripter and Notepad groups showed no significant difference 
between each other. Table 15 provides further analysis about this 
measure.  

 

 

  Group  N Mean StdDev 

IDLE  34 0.35 0.49 

PyScripter  38 0.55 0.50 

Notepad  30 0.17 0.38 

All Groups 102 0.37 0.48 

The mean was calculated by labeling Positive Responses = 1, 
and Non-Positive and No Responses = 0.  
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Table 15. Comfort with Environment 

  Group  N Mean StdDev 

IDLE  34 3.44 1.52 

PyScripter  38 4.63 1.53 

Notepad  30 4.30 1.74 

All Groups 102 4.14 1.65 

The mean was calculated using weights from a 7-point Likert 
scale, ranging from 1 = Not Comfortable at All to                    

7 = Absolutely Comfortable 

 
Confidence with Doing Another Assignment with the 
Environment. Based on the response choices ranging from not 
confident at all to absolutely confident. A one-way ANOVA 
indicated a significant difference (p<0.01). Afterwards, T-tests 
indicated a significant difference for two of the pairings: IDLE vs. 
PyScripter (p<0.01) and IDLE vs. Notepad (p<0.05). These results 
showed that the IDLE group was less confident with using IDLE to 
do another assignment than the PyScripter group with PyScripter 
and the Notepad group with Notepad respectively. The PyScripter 
and Notepad groups showed no significant difference between 
each other. Table 16 provides further analysis about this measure.  

Table 16. Confidence with Doing Another Assignment with 
Environment 

  Group  N Mean StdDev 

IDLE  34 3.38 1.67 

PyScripter  38 4.74 1.64 

Notepad  30 4.37 1.96 

All Groups 102 4.18 1.82 

The mean was calculated using weights from a 7-point Likert 
scale, ranging from 1 = Not Confident at All to                       

7 = Absolutely Confident 

 
Like the Environment. Based on the response choices ranging 
from not at all to absolutely like. A one-way ANOVA indicated a 
significant difference (p<0.01). Afterwards, T-tests indicated a 
significant difference for two of the pairings: IDLE vs. PyScripter 
(p<0.01) and PyScripter vs. Notepad (p<0.01). The students in the 
IDLE and Notepad groups liked IDLE and Notepad respectively 
less than the PyScripter group with PyScripter. No significant 
variations were noted between the IDLE and Notepad groups. 
Table 17 provides further analysis about this measure.  

Table 17. Fondness of Environment 

  Group  N Mean StdDev 

IDLE  34 3.41 1.73 

PyScripter  38 4.87 1.66 

Notepad  30 3.77 1.79 

All Groups 102 4.06 1.81 

The mean was calculated using weights from a 7-point Likert 
scale, ranging from 1 = Not at All to 7 = Absolutely Like 

Easiest Attributes about the Environment. The responses were 
quantified into five categories: Python Attributes, Environment 
Attributes, Familiarity, Nothing/No Response and I Don’t Know. 
Python Attributes represented students who gave a response about 
the Python language. Environment Attributes represented students 
who gave a response about their respective environment based on 
its features. Familiarity represented students who responded based 
on a previous experience with programming. The categories of 
Nothing/No Response and I Don’t Know represented students who 
actually provided such responses. For quantification, responses 
that were categorized as Environment Attributes received a value 
of 1. All other responses received a value of 0.  

A one-way ANOVA indicated no significant difference amongst 
the three groups. Since many of the students were not exposed to 
Python prior to this study, several of them responded more 
frequently about the easiest attributes of the Python language itself 
rather than their respective environment. A T-test indicated a 
significant difference (p<0.05) between responses towards the 
Python language and the respective environments. Additional T-
tests were used to determine any significant differences within 
each group. The results indicated a significant difference (p<0.01) 
for only the IDLE group. These results showed that the IDLE 
group responded more frequently about the easy attributes of the 
Python language rather than the IDLE environment. The frequency 
of responses to Familiarity, Nothing/No Response, and I Don’t 
Know were insignificant. Table 18 provides further analysis about 
this measure.  

Table 18. Easiest Attributes of the Environment 

 
Hardest Attributes about the Environment. The responses were 
also quantified using the same categories as shown for the easiest 
attributes. For quantification, responses that were categorized as 
Environment Attributes received a value of 1. All other responses 
received a value of 0. A one-way ANOVA indicated a significant 
difference (p<0.01). Afterwards, T-tests indicated a significant 
difference for two of the pairings: IDLE vs. Notepad (p<0.01) and 
PyScripter vs. Notepad (p<0.01). These results showed that 
Notepad received more responses concerning its hard attributes 
than IDLE and PyScripter respectively. 

In regards to the responses about the Python language itself, a one-
way ANOVA indicated a slight significant difference (p=0.054). 
Afterwards, T-tests indicated a significant difference for two of the 
pairings: the IDLE group vs. the Notepad group (p=0.01) and the 
PyScripter group vs. the Notepad group (p<0.05). These results 
showed that students in the Notepad group gave fewer responses 
about the hardest attributes of the Python language than the IDLE 
and PyScripter groups respectively. The frequency of responses to 
Familiarity, Nothing/No Response, and I Don’t Know were 
insignificant. Table 19 provides further analysis about this 
measure.  

  Group  N Mean StdDev 

IDLE  34 0.18 0.37 

PyScripter  38 0.37 0.49 

Notepad  30 0.37 0.49 

All Groups 102 0.30 0.46 

The mean was calculated by labeling                      
Environment Attributes = 1 and all other categories = 0.  
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Table 19. Hardest Attributes of the Environment 

 
Experiences with Other Environments (Besides PREOP). This 
particular question was asked in conjunction with another question: 
Was the environment mandatory for a course? Statistical analyses 
were conducted for both questions.   

A one-way ANOVA was used to determine if certain sections had 
more prior experience with other environments besides PREOP. 
The results indicated a significant difference (p<0.01). Afterwards, 
T-tests were used to compare each group against another. A 
significant difference was found for two of the T-tests: the IDLE 
group vs. the PyScripter group (p<0.01) and the IDLE group vs. 
the Notepad group (p<0.01). These results showed that the IDLE 
group has less experience with using other environments (besides 
PREOP) than the PyScripter and Notepad groups respectively. 

A one-way ANOVA was also used to determine if these other 
environments were mandatory for another course. The results 
indicated a significant difference (p<0.05). Afterwards, T-tests 
indicated a significant difference for only one of the pairings: the 
IDLE group vs. the PyScripter group (p<0.01). These results not 
only showed that the PyScripter group had more experience with 
other environments than the IDLE group, but also that they were 
mandatory for another course. The PyScripter and Notepad groups 
showed no significant difference amongst each other. Table 20 
provides further analysis about this measure.  

Table 20. Experiences with Other Environments (besides 
PREOP) 

 

An additional T-test was used for the PyScripter group to 
determine whether their experience with other environments were 
actually IDEs. For the PyScripter group, the results were 
significant (p<0.01). These results showed that most of these 
students (68%) had prior experience with IDEs. As previously 
mentioned, many of the students in the PyScripter group were ECE 
majors. Traditionally at this university, all ECE majors must take 
CS285, which teaches the C language using the CodeBlocks IDE. 
Similar to PyScripter, CodeBlocks is an IDE rich with features. 
Out of the 68% of these students who had prior exposure to IDEs, 

90% of them had experience with CodeBlocks prior to this study. 

4.1.3 Discussion 
The IDLE group had less prior programming experience than their 
counterparts in the PyScripter and Notepad groups. This factor 
may have impacted a majority of the results seen from this group. 
They were found to be less confident in their programming 
abilities, less comfortable with IDLE after using it, and less 
confident about doing another assignment. They also did not like 
IDLE as much as students who liked PyScripter. Their lack of 
programming experience was obvious when asked about the ease 
or difficulty of using IDLE. Instead of providing positive 
responses about IDLE, they expressed comfort about the Python 
language. Despite lacking programming experience, the IDLE 
group completed their task significantly faster than the Notepad 
group. 

Students in the PyScripter and Notepad groups showed no 
differences in their programming experience. They also showed no 
differences in their comfort with their respective environments as 
well as their confidence of doing another assignment. However, 
the PyScripter group had a more positive initial impression, more 
of a fondness with PyScripter, and a faster completion time than 
the students using Notepad. Students in the Notepad group (not 
significantly) had more prior exposure to command line 
programming through CS1. However, they frequently showed 
difficulties with using Notepad, which influenced their time to 
complete the required exercise. In contrast, students using 
PyScripter rarely demonstrated difficulties about using PyScripter, 
and a majority of them had prior exposure to IDEs. In addition, 
45% of the PyScripter group had a non-positive initial impression. 
On the other hand, 70% of the Notepad group had a non-positive 
initial impression. Fifty-three percent of the IDLE group showed a 
non-positive impression. However, many of the IDLE students did 
not have prior programming experience unlike the other groups. 

4.2 Study #2 
This study was conducted as part of a larger empirical evaluation 
of visual and command line programming in CS1 over the course 
of a semester. As previously mentioned, the CS1 course at the 
University of Alabama traditionally teaches Python using the VIM 
command line environment on the Linux platform. During the Fall 
2011 semester, this course was altered to allow certain sections to 
use IDLE (in Linux) as an alternative to VIM. Four sections were 
offered during this particular semester; two sections were taught 
programming using VIM (Figure 15) and one section used IDLE 
(Figure 16). The remaining section, an honors section, was given 
the option of either tool. During the latter part of the semester, the 
non-honor sections were required to switch environments.  
 

 
Figure 15. VIM version 7.3.35 

 

  Group  N Mean StdDev 

IDLE  34 0.06 0.24 

PyScripter  38 0.11 0.31 

Notepad  30 0.40 0.50 

All Groups 102 0.18 0.38 

The mean was calculated by labeling                      
Environment Attributes = 1 and all other categories = 0.  

  Group  N Mean StdDev 

IDLE  34 0.26 0.45 

PyScripter  38 0.68 0.47 

Notepad  30 0.50 0.51 

All Groups 102 0.49 0.50 

The mean was calculated by labeling Yes  = 1 and No = 0.  
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4.2.1 Methods/Procedures 
As part of this empirical assessment, a demographic survey, three 
usability surveys and a protocol analysis were given during the 
semester. The usability surveys were administered twice before 
switching environments and once afterwards. After the 
environment switch, a protocol analysis was conducted on a small 
group of students to study their mental model for operating a visual 
or command line environment.  

The number of students enrolled in the CS1 course was 179.  There 
were 46, 88, and 45 students enrolled in the IDLE, two VIM, and 
honor sections respectively. Tables 21-27 list the numbers of 
students who participated during each assessment. 

4.2.2 Results 
The demographics shown in Tables 21-24 respectively are a 
representation of the CS1 student population (N=119) at the 
beginning of the semester. However, there were students who 
stopped attending class, dropped the CS1 course, or became 
agitated with participating in this study. These factors influenced a 
decrease in sample representations and student participation as the 
semester progressed, especially during the final assessments of this 
study.  

 
Table 21. CS1 Demographics 

Participants (N=119) 

 
Major 

Computer Science - 61% 
Electrical Engineering - 3% 
Computer Engineering - 3% 
MIS - 1% 
Math - 6% 
Other - 22% 
Double Major (including CS) - 1% 
Double Major (excluding CS) - 3% 

 
Classification 

Freshmen - 40% 
Sophomore - 32% 
Junior - 19% 
Senior - 8% 
Other - 3% 
*one student did not provide an answer 

 
Programming 
Experience 

High School programming - 16% 
Another College Course - 16% 
No Prior Experience - 68% 
 
*three students did not provide an answer 

 

 

Table 22. CS1 Demographics  - IDLE Section 

IDLE Section (N=33) 

 
Major 

Computer Science - 85% 
Electrical Engineering - 0% 
Computer Engineering - 0% 
MIS - 0% 
Math - 6% 
Other - 9% 
Double Major (including CS) - 0% 
Double Major (excluding CS) - 0% 

 
Classification 

Freshmen - 34% 
Sophomore - 42% 
Junior - 15% 
Senior - 9% 
Other - 0% 

 
Programming 
Experience 

High School programming - 9% 
Another College Course - 25% 
No Prior Experience - 66% 

 

Table 23. CS1 Demographics – VIM Sections  

VIM Sections (N=46) 

 
Major 

Computer Science - 49% 
Electrical Engineering - 2% 
Computer Engineering - 0% 
MIS - 2% 
Math - 9% 
Other - 29% 
Double Major (including CS) - 2% 
Double Major (excluding CS) - 7% 
*one student did not provide an answer 

 
Classification 

Freshmen - 31% 
Sophomore - 27% 
Junior - 29% 
Senior - 11% 
Other - 2% 
*one student did not provide an answer 

 
Programming 
Experience 

High School programming - 11% 
Another College Course - 9% 
No Prior Experience - 80% 

 
 

 
 Figure 16. IDLE-Python 3.2 
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Table 24. CS1 Demographics – Honor Section 

 

Honor Section (N=40) 

 
Major 

Computer Science - 56% 
Electrical Engineering - 5% 
Computer Engineering - 7% 
MIS - 0% 
Math - 5% 
Other - 27% 
Double Major (including CS) - 0% 
Double Major (excluding CS) - 3% 

 
Classification 

Freshmen - 55% 
Sophomore - 28% 
Junior - 10% 
Senior - 3% 
Other - 5% 

 
Programming 
Experience 

High School programming - 25% 
Another College Course - 17% 
No Prior Experience - 58% 

 
4.2.2.1 Usability 
One of the attributes measured in this survey was Tool 
Mishandling (Tables 25 and 26). Tool Mishandling was defined on 
the basis of how often students found themselves making errors, 
due to using IDLE or VIM incorrectly. This attribute was based on 
a 7-point Likert scale (where 1 = absolutely often & 7 = absolutely 
NOT often). The results discussed are strictly based on the 
behavior of the non-honor sections.  
In the IDLE section, the results from a one-way ANOVA indicated 
a significant difference (p<0.05). Afterwards, T-tests indicated a 
significant difference for two of the pairings: 1st vs. 3rd surveys 
(p<0.05) and 2nd vs. 3rd surveys (p<0.01). The results indicated 
two things: students in the IDLE section mishandled VIM more 
often than IDLE and the mishandling of a tool increased 
significantly after the switch. In the VIM sections, the results from 
a one-way ANOVA and T-Tests showed no significant difference. 
These results indicated students in the VIM sections did not 
mishandle one tool more often than the other. 

Table 25. Tool Mishandling Results – IDLE Section 
       Avg = Average; SD = standard deviation 

IDLE Section (IDLE to VIM) 

Tool Survey N Avg StdDev 
IDLE 1st 31 4.10 1.42 

IDLE 2nd 26 4.42 1.36 
VIM 3rd 13 3.08 1.75 
The mean was calculated using weights from a 7-point Likert 

scale, ranging from 1 = Absolutely Often to                                    
7 = Absolutely Not Often 

 

Table 26. Tool Mishandling Results – VIM Sections 
                         Avg = Average; SD = standard deviation 

VIM Sections (VIM to IDLE) 

Tool Survey N Avg StdDev 
VIM 1st 29 3.90 1.40 

VIM 2nd 49 4.22 1.21 

IDLE 3rd 39 4.41 1.58 
The mean was calculated using weights from a 7-point Likert 

scale, ranging from 1 = Absolutely Often to                                    
7 = Absolutely Not Often 

 
When comparing the average mishandling score between both 
groups after the environment switch (Table 27), the VIM sections 
showed a significantly higher average than the IDLE section (p < 
0.05). This indicated that the VIM sections mishandled IDLE less 
often than the IDLE section did with VIM. 

Table 27. Tool Mishandling Results  (after environment switch) 
Avg = Average; SD = standard deviation 

Section Tool N Avg StdDev 

IDLE VIM 13 3.08 1.75 

VIM IDLE 39 4.41 1.58 

The mean was calculated using weights from a 7-point Likert 
scale, ranging from 1 = Absolutely Often to                                    

7 = Absolutely Not Often 

 

For further details about these results and other attributes 
measured during the usability assessment, see our paper published 
in the Proceedings of the Human Factors and Ergonomics 
Society 56th Annual Meeting [7]. 

4.2.2.2 Protocol Analysis 
This assessment was conducted during the week of the 
environment switch. The structure of this assessment allowed for 
the collection of both qualitative data and first-hand information 
about the CS1 students’ mental model for programming. The 
objective was to determine whether certain features within these 
respective environments could shape the students’ mental model 
for programming. The selection process for this assessment was 
based on random volunteers.  
There were seven students who volunteered to participate in this 
study (all from non-honor sections); four were enrolled in the VIM 
sections and three were registered in the IDLE section. The same 
programming assignment was given to each student. Table 28 
provides background information about each student. Similar to 
the assignment given during the CS1 lab study, the students had to 
write a program that converted 700 days into y years, m months, 
and d days remaining. A video camera was used to record the 
behavior of each student while completing this assignment. During 
the recording, each student had to “think aloud” about their 
approach for writing this program using their new environment. 
Each student was given 30 minutes to complete the assignment.  

 

Volume 5, Issue 1 Journal of Computational Science Education

40 ISSN 2153-4136 August 2014



Table 28. Subject Background Information 
 *Student #4 was in the IDLE section but chose to use VIM in the course; 

**Student #6 was repeating the CS1 course; 

 

Each student who used VIM in this study (original IDLE users) 
indicated prior exposure to some form of programming before 
taking CS1. Each student from the VIM sections indicated 
otherwise. After conducting this assessment, the results showed 
that the students from the VIM sections had less challenges with 
using IDLE. Two of these particular students completed their 
assignment within the allotted time. The other two students’ 
inability to complete the assignment was due to the difficulty of 
the assignment rather than IDLE. The three students from the 
IDLE section were not able to complete the assignment due to the 
challenges of using and understanding the VIM command editor. 
Table 29 provides a summarized description of the subjects’ 
behavior during assessment.  

Table 29.  Subject Behavior 

Another notable observation from this assessment relates to the 
subjects’ tendency of reverting back to familiar procedures from 
their original tool if they felt lost or confused while using the new 
one. For example, the recording showed two of the original IDLE 
users attempting to use the menu bar of the command terminal 
assuming that VIM possessed relative features to IDLE. One of the 
original VIM users began using the command terminal to interpret 
her program when she felt unsure about performing this procedure 
in IDLE, but managed to complete this assignment. 

We concluded from this assessment that feature sets in 
programming environments could play a role in shaping a novice’s 
perception of programming. This study also showed that visual 
environments could potentially enable students to develop an 
inaccurate depiction of programming. For further detail about the 
results from this assessment, see our paper published in the 
Proceedings of the 50th Annual ACM Southeast Conference [6]. 

4.2.3 Discussion 
Students from the IDLE section showed a significant decrease in 
their ability to use a different tool after being exposed to IDLE. 
However, students from the VIM sections showed a slight increase 
in their ability to use a different tool after their exposure to VIM. 
After switching environments, the mean score for mishandling 
tools in the VIM sections remained significantly higher than the 
IDLE section. These results also support the findings from the 
protocol analysis. Participants from the IDLE section found it 
more challenging to transition to a command line tool after using 
IDLE, while students in the VIM sections had a better transitioning 
to a visual tool after exposure to VIM. 

5. CONCLUSION 
The objective of this article was to study visual environments and 
their potential effect on students who are learning to program. 
Prior studies have shown that visual environments can have both 
productive and unprofitable effects on a student’s ability to 
become accustomed to programming. From our studies, it was 
shown that visual environments could provide students with a 
lower learning curve for operation, while having the potential of 
placing limitations on their mental depiction of programming.  

In the first study, the familiarity of features in IDLE and 
PyScripter possibly played a role in lowering the learning curve for 
the students in the CS1-lab course. By the same token, some of 
these features may have placed a limitation on the skills that the 
IDLE students in the CS1 course acquired during the second study. 
Table 30 summarizes the outcomes from both studies.  
The question remains of whether visual environments are “ideal” 
for teaching students how to program.  Even though prior studies 
have shown visual environments to promote student retention [15], 
positive attitudes [9], and motivation [11] during exposure, our 
findings show that these environments may also cause students to 
develop a faulty mental model for programming. These results also 
support Chen and Marx’s reasoning for moving their students from 
an IDE to command line programming [2]. Certain visual 
environments may be too restrictive for learning specific 
programming concepts and procedures. In this case, it may be 
necessary for students to be exposed to other programming 
environments that are more inclined to round out their skill sets. 
As an alternative solution, it may be appropriate to train students to 
understand the implied behavior of visual environments. For 
instance, students may need to receive appropriate training for 
understanding programming procedures before being exposed to a  

Student Gender Ethnicity 
Prior 

Programming 
Experience 

Environment 
(after switch) 

S1 M Caucasian None IDLE 

S2 M Caucasian HTML VIM 

S3 M Caucasian HTML VIM 

S4 F African 
American None IDLE** 

S5 F Caucasian None IDLE 

S6 F African 
American VIM* VIM 

S7 M African 
American 

VI, C++, 
Java, Fortran VIM 

Student 
Completed 
Assignment 
YES           NO 

Reason for NOT Completing 
Assignment 

S1 X   

S2  X 
S2 spent the entire time trying to 
understand the functionality of the 
VIM editor. 

S3  X 
S3 spent most of her time trying to 
understand the functionality of the 
VIM editor. 

S4  X 

S4 struggled with understanding how 
to approach the assignment; She 
encountered several syntactical 
errors and struggled with correcting 
them.  

S5 X   

S6  X 

S6 struggled with understanding how 
to approach the assignment; She 
encountered semantic errors, which 
was due to her inability to determine 
the appropriate conversions for her 
program.  

S7  X 
S7 spent most of his time trying to 
understand the functionality of the 
VIM editor. 
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Table 30.  Study Outcomes 

visual environment. By understanding these underlying factors, it 
may be possible for a student to avoid the acquisition of a faulty 
mental model for programming while also being able to make a 
smoother transition to other types of environments.   

5.1 Threats to Validity 
There are potential threats that could affect the validity of our 
findings from these studies. One threat is the finite set of 
environments that were evaluated during these assessments. Every 
visual environment that is used to teach programming was not 
evaluated during these studies. Instead, our studies were conducted 
while using theories, prior conclusions, and anecdotal evidence as 
point of references. Another threat relates to the short-term 
duration of the CS1 Lab study. This particular study was only 
composed of a one-day assessment. A third issue relates to the low 
students samples during the latter assessments in the CS1 lecture 
course. As previously mentioned, there were students who stopped 
attending class, dropped the course, or showed agitation toward 
participation in this study due to the repeated assessments.  

5.2 Future Work 
One future work is to improve student participation during these 
empirical assessments.  This could be done by adjusting the 
amount of instruments employed during a study to obtain a high 
number of responses at a consistent level. A related future work is 
to assess students at particular times of the semester when the 
attendance rate tends to be high on a consistent basis. 

Another area of future work relates to the actual programming 
environments. Some of the environments used during the CS1 lab 

and lecture studies consisted of tools primarily for Python 
programming. A primary future work is to apply evaluations to 
environments outside of the Python language. 

6. FUNDING SOURCE 
This work was conducted independent of any financial support.  
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Study 1 

Outcome  Reason 
 

 

 

 

Visual environments can 
initially impose a lower 
learning curve 

The IDLE group completed 
their programming tasks 
significantly faster than their 
counterparts who used 
Notepad despite having less 
prior experience and a lower 
self-efficacy for 
programming.  

Students in the PyScripter 
and Notepad groups had more 
prior programming with using 
IDEs and command line 
environments respectively, 
however the PyScripter group 
completed their programming 
tasks significantly faster.   

 
 
 
 

Study 2 

Outcome Reason 
 

 

 

Visual environments may 
impose a greater challenge 
for a student to directly 
transition to a command 
line environment  

From the usability 
assessment, it was found 
that the students from the 
IDLE section showed a 
significant decrease in their 
ability to use VIM after 
being exposed to IDLE.  

From the protocol analysis, 
it was found that all of the 
IDLE participants were 
unable to complete their 
tasks due to struggling with 
using and understanding the 
VIM editor.   
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