
Scaling and Visualization of N-Body Gravitational
Dynamics with GalaxSeeHPC

David A. Joiner
Kean University
1000 Morris Ave

Union, NJ

djoiner@kean.edu

James Walters
Kean University
1000 Morris Ave

Union, NJ

walterj1@kean.edu

ABSTRACT
In this paper, we present GalaxSeeHPC, a new cluster-enabled
gravitational N-Body program designed for educational use, along
with two potential student experiences that illustrate what students
might be able to investigate at larger N than available with earlier
versions of GalaxSee. GalaxSeeHPC adds additional force
calculation algorithms and input options to the previous cluster-
enabled version. GalaxSeeHPC lessons have been developed
focusing on two key studies, the structure of rotating galaxies and
the large scale structure of the universe. At large N, visualizing
the results becomes a significant challenge, and tools for
visualization are presented. The canonical lesson in the original
version of GalaxSee is the rotation and flattening of a cluster with
angular momentum. Model discrepancies that are not obvious at
the range of N available in previous versions become quite
obvious at large N, and changes to the initial mass and velocity
distribution can be seen more readily. For the large scale structure
models, while basic clearing and clustering can be seen at around
N=5,000, N=50,000 allows for a much clearer visualization of the
filamentary structure at large scale, and N=500,000 allows for a
more detailed geometry of the knots formed as the filaments
combine to form superclusters. For the galactic dynamics
simulations, we found that while a flattening due to overall
angular momentum can be explored with N=1,000 or smaller,
formation of spiral structure requires not only a larger number of
objects, typically on the order of 10,000, but also modifications to
the default initial mass and velocity distributions used in older
versions of GalaxSee.

Keywords
N-Body simulations. Gravitational dynamics. Scaling,
Visualization.

1. INTRODUCTION
1.1 Motivation
GalaxSee is a gravitational dynamics program initially developed
by Mike South and the Shodor Education Foundation, Inc.[5]. The

original version was designed for the Macintosh, and focused on
allowing users to create small N-Body simulations using a point
and click interface, to solve the problem of gravitational
dynamics, where the force on any object i due to any other object j
is given by:

()ij
ij

ji
ij xx

xx

MM
GF

 −
−

= 3

A wide variety of approaches have been developed to solve the
gravitational N-body problem[1], including many state of the art
computational tools designed for research (see for example [15]),
as well as many educational tools. Most research grade tools for
N-Body simulation have obstacles to their adoption as a
classroom tool—notably a reliance on non-standard compilers,
multiple software dependencies, and non-human-readable file
formats. Most educational N-Body tools, however, focus on the
use of graphical user interface to remove obstacles for students,
but replace those obstacles with limitations on the size of N, either
hard-coded in the tool itself or self-imposed by the CPU
requirements of real-time visualization of results.

Typical classroom use simulations for N-Body problems using
tools with limits on the size of N range from 2-Body problems
such as the orbit of the Earth around the Sun up to simulations of
simple gravitational dynamics, exotic solutions of the few body
problem [3], where users could create initial mass distributions
with or without angular momentum and explore the disk
formation that resulted from a spinning cluster of gravitationally
bound masses, or collisions of disk galaxies under the assumption
of small objects orbiting two massive cores [9].

1.2 GalaxSeeHPC Learning Goals
The two scenarios presented in this paper focus on studies of
structure, the first of the formation and stability of spiral structure
and the second of elements in large scale structure. Both of these
are meant to be viewed qualitatively, as there are many physical
elements left out of the model. In the case of the spiral structure
scenario, the galaxy model presented does not account for drag
due to the interstellar medium. The large scale structure scenario
assumes Newtonian gravity in a constantly expanding universe.
Even with these phenomena left out, however, key concepts in
gravitational dynamics can be quickly and easily seen by students.

As the tool has been created for general purpose, specific learning
goals would be largely implementation specific and would depend
on the goals the instructor wanted to emphasize. An instructor

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Copyright ©JOCSE, a supported publication of the Shodor
Education Foundation Inc.

Volume 5, Issue 1 Journal of Computational Science Education

10 ISSN 2153-4136 August 2014

focusing on performance or algorithms might have different goals
than an instructor focusing on a science lesson. Like many of the
tools developed at Shodor, GalaxSee has always followed the
paradigm that it should be able to address both (computational
science) education and computational (science education).

In the case of spiral structure, students might learn that the
formation of spiral arms is a natural occurrence given a velocity
profile that is gravitationally stable, and that not all velocity
profiles will be gravitationally stable. Students can, in the process
of exploring spiral structure get practice creating velocity curves
for model galaxies which could then be compared to those of real
galaxies, which might then prompt a discussion of dark matter or
other issues of interest.

In the case of large scale structure, students can explore the
interplay between expansion velocity and initial mass density for
an expanding cube with periodic boundary conditions and
“wrapped” gravity. While this leaves out some key features of the
Lambda-CDM model, it will allow students to see a trend towards
initial clumping along filaments, provided sufficiently high mass
density and sufficiently low expansion velocity. The stability of
those filaments over time can be seen to be strongly affected, with
a tendency towards a “big crunch” for more dense and more
slowly expanding systems.

Both of these cases lead naturally to goal-seeking exercises
(“How can I change the velocity profile of this galaxy? What if
this universe has more mass in a given expanding cube?”) that
focus on simple conceptual questions related to the balance of
gravity, angular momentum, and expansion.

In terms of the computational science learning enabled by these
lessons, students get practice using tools running at a command
line, input file creation, management, and analysis, parallel job
submission and monitoring. The data sets created are rich, with
significant challenges in the visualization of results. The
simulation includes a variety of force calculation methods, which,
while not necessarily state-of-the-art, provide an entry level into
two of the key methods used in modern N-Body, tree-based and
particle-mesh methods.

1.3 GalaxSee revision history
The original GalaxSee, like many educational N-Body tools, took
the approach of a graphical user interface with the ability to pre-
create systems at random with a small number of parameters.
Later versions of the code included GalaxSee 2.0 for Windows,
which kept the look and feel of the original, but added the ability
to use a Barnes-Hut force calculation, and a Java based web-start
version. GalaxSee-MPI was written to explore parallel computing,
removing the GUI interface, as well as the Barnes-Hut force
calculation, and allowing for MPI based parallelization of a direct
force calculation[8]. GalaxSee-MPI was originally intended just
as an exploration of parallelism, and lacked any features to control
the input to the simulation, nor did it have any advanced features
for visualization, limiting itself to a non-interactive top-down-
side-view image of the simulation.

1.4 GalaxSeeHPC Software Goals
The purpose in writing GalaxSeeHPC was to provide students
with an N-Body code that (a) allowed students to explore the
types of problems that cannot be solved at smaller values of N, (b)
allowed students to see examples of some of the force calculation
algorithms that have allowed for the increased use of N-Body
algorithms, (c) was written in code that is designed for readability

and modification, (d) had a simplified dependency stack so that
some functionality would be available even without any additional
code and that other features could be enabled easily as software
dependencies were met, and (e) allowed for human-readable input
and output files—so that students would not have to
simultaneously learn modern hierarchical file structures at the
same time as learning either the physics or algorithms of the N-
Body problem.

GalaxSeeHPC is a re-write of the GalaxSee-MPI C++ code
Lessons are available from the Blue Waters Petascale Education
website[11] and source code is available from Sourceforge[6].
GalaxSeeHPC was written in C to allow for greater portability,
and includes both the ability to perform a Barnes-Hut style force
calculation algorithm as well as a Particle-Particle Particle-Mesh
(PPPM) algorithm. While still command line based,
GalaxSeeHPC allows for the user to use a text input file to specify
model parameters, including changing the scaling and units used
for the problem, allowing a linear expansion of the spatial units
(e.g. for a simulation in an expanding universe), force calculation
method and parameters, softening factors, numerical integration
options, and output features. X-Window based output is still
available, but a more interactive SDL-based visualization is also
an option, as are multiple different graphics and text output
options. CMake is used for configuration and build management,
and the code can be configured at compile-time to ignore any
options that require numerical or graphical libraries not present on
the system.

GalaxSeeHPC has been used and tested in multiple sessions for
Physics faculty at the SC09 and SC10 education programs. The
visualization of results from GalaxSeeHPC has been a feature of
multiple SC and NCSI workshops on scientific visualization.
GalaxSeeHPC has been used in two successive summer camp
environments with high-school age students.

2. GALAXSEEHPC ALGORITHMS
As every object can interact with every other object, this
potentially leads to ()1−NN forces that need to be calculated,
though in practice half of these forces will be redundant as each
force pair is equal and opposite. As an ()2NΟ problem, as N
grows large the computational time requirements of the problem
can quickly grow beyond the limitations of a typical classroom PC
or laptop.

The three approaches that are used to alleviate this problem are
parallelism to spread the work over multiple processes, binary tree
based sorting of masses to determine which forces can be
approximated by substituting a point mass in place of a large
number of distance masses, and spectral techniques that
interpolate onto a density grid which can be solved using Fourier
techniques.

2.1 Barnes-Hut
The Barnes-Hut algorithm is a tree based approach to
approximating the force field due to distant particles[2]. An oct-
tree is constructed for the space modeled, with the tree recursively
refined until each sub-element contains only one object. As the
force is calculated, nearby objects, which typically will be close
by on the oct-tree and can be located quickly, are used in a direct
force calculation, and as objects are further away, branches of the
tree can be approximated as a point mass, averaging the masses
and positions of many masses into a single force calculation.

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 11

Tree methods work on the principle that one can organize an n-
body model in a data structure that ensures that nearest neighbors
can be easily defined for any one body, and that distant neighbors
can be easily approximated using a center of mass treatment. In
one dimension, this can be thought of as a binary tree, which can
be extended to three dimensions using an oct-tree structure.
A simple implementation of a tree-based structure might assume
that physical proximity is equivalent to being leaves on the same
branch, but problems can occur for particles at the edge of a high
level branch boundary, that are physically close to each other, but
separated by many branching on the oct-tree. A modification of
the tree algorithm to take into account issues like this might check
to see if a node being tested is close enough to the object of
interest to be suspect. As one descends the tree, this “closeness
radius” can get smaller and smaller. If we consider ls to be the
scale of a tree segment at depth l , one might attempt the
following force calculation method

1. For a given object, start at the top of the tree
2. Descend tree

a. If child node is not a predecessor (along the
same branch) of the object being calculated
AND the object in question is at a distance
greater than lks from the center of mass of

the node, stop and use the total mass and
center of mass of that node

b. If child node is a predecessor (along the same
branch) of the object being calculated OR the
object in question is at a distance less than

lks from the center of mass of the node, but

does not SOLELY contain the object being
calculated, descend all children of node

The accuracy of the method can be controlled by the closeness
criterion k . Figure 1 gives a visualization of this in 1-dimension
using a binary tree structure. Note that in the case 0=k this
reduces to the previous algorithm, and in the case ∞→k this
approaches a direct force calculation. The total number of forces
to be calculated will scale as ()NN log in this situation instead of

2N for large models, and the accuracy of the tree calculation (and
associated trade-off in speed) can be adjusted by use of the
closeness criteria.

Figure 1: Use of a closeness checking factor can eliminate

errors due to aggressive tree pruning

2.2 Particle-Particle Particle-Mesh
Spectral methods, typically solved using the FFT algorithm,
reduce the discrete n-body problem to a continuous gravitational
problem solved on periodic boundary conditions[4].
Computationally, the advantage of spectral techniques is that it
allows you to separate the long-range forces from the short-range
forces, and use a direct calculation of short range forces while
replacing long range forces with the solution of a potential
function that satisfies Poisson’s equation.

ρπG42 =Φ∇

If a function for the density of space can be approximated, this
can be solved easily as the Laplacian of the Fourier transform of a
function is given by

Φ−=Φ∇ ˆ4ˆ 222 kπ

where Φ̂ is the Fourier transform of Φ . This gives for the
solution of Poisson’s equation

ρ
π

ˆˆ
2k
G−

=Φ

which can be solved using a discrete Fourier transform, typically
the Fast Fourier Transform (FFT) algorithm.

For the implementation in GalaxSeeHPC, the point mass
distribution is first interpolated onto a density grid at evenly
spaced intervals in x, y, and z. Each mass is treated as if it’s mass
is spread out over a Gaussian with standard deviation Snk /σσ =
where n is the number of grid points in each dimension (assumed
to be equal in all dimensions in GalaxSeeHPC), S is the scale of a
periodic box in the model, and σk is a user supplied parameter.

The Particle-Particle correction is applied to all points within
some distance Snknearnear /=σ , where neark is a user supplied
constant. Default values of 0.2=σk and 0.1=neark are used in
the code. For the purposes of the periodic boundary conditions in
the PPPM algorithm, particles are “ghosted” across a periodic
boundary if it results in a particle being closer to a second for the
purposes of force calculation.

2.3 Parallelism
2.3.1 Direct Force Calculation
The wall-time when using a direct force calculation is dominated
by the nested loop over all particles. This is parallelized in
GalaxSeeHPC using MPI, and a round robin scheduling scheme to
determine which particle’s forces are calculated by which process.

2.3.2 Tree-Based Force Calculation
The tree creation takes sufficiently little time compared to the
force calculation that we parallelize only the calculation of the
forces from the built tree. The tree is typically built every
timestep, but this can be reduced by the user. The loop over all
particles to calculate forces from the tree is scheduled using MPI
in a round-robin fashion.

2.3.3 PPPM Method
The creation of the density grid and the interpolation of forces
from the density grid both consume a significant portion of the
force calculation in the PPPM method. Each of these processes
are parallelized in MPI using a round robin scheduled loop.

Volume 5, Issue 1 Journal of Computational Science Education

12 ISSN 2153-4136 August 2014

2.4 Softened Potentials
An issue occurs due to the r/1 potential in the gravitational N-
Body problem in that there is a singularity in the force as particles
get very close to each other. Typically, one uses some method of
altering the potential to remove any singularities. This can be
done by one of two methods in GalaxSeeHPC. The first is through
use of a shield radius, as is done in previous versions of GalaxSee,
in which the user specifies a parameter which defines a cutoff
radius, within which forces are ignored. In practice GalaxSeeHPC
uses an adaptive algorithm that depends on the central mass
causing the force and the timestep being used, and the actual
shield radius is given by

3 2tGMkr srs Δ=

where the shield radius scaling factor srk is taken to be 5 by
default.

Traditionally, most codes in the literature use what is referred to
as a softened potential, in which the potential (and hence force)
functions can be modified to include a softened distance,
effectively treating all distances as if they were some small
distance ε greater than they actually are.

()2
1

22 ε+

−=

R

GMP

with accelerations

∑
≠ +−

−
=

ij ij

ij
j

i

i

xx

xx
GM

M
F

22
ε

and potential energy

∑ ∑
=

−

≠=
⎟
⎠
⎞

⎜
⎝
⎛ +−

−
−=
N

i

i

ij
ij

ij
ji

xx

xx
MGMPE

1

1

1
2/3

22

2

ε

3. SCENARIOS
One question that has arisen in many presentations of GalaxSee-
MPI to faculty, particularly Physics faculty interested in the
science that could be learned by such a simulation rather than
computer science faculty interested in scaling properties, has been
whether or not students working on projects involving N-body
simulations need to run models with enough points to warrant
high performance computing resources. A large class of
astrophysical problems traditionally fit into what are often
described as “million-body” problems—problems that require
enough points for study that statistical or hydrodynamical
approaches are not appropriate, but for which using too few points
in an N-body solution will result in approximation error such that
results are qualitatively incorrect[7]. Two problems are presented
here that fit into this category, the modeling of galactic structure
and the modeling of large scale structure in the universe.

3.1 Galactic Structure
3.1.1 Potential Learning Goals, Science
Students performing this exploration might, depending on
implementation, focus on the velocity profiles required to
maintain a gravitationally stable structure and the patterns that
develop, as well as how the patterns that develop depend on the
initial anisotropy of the mass distribution.

3.1.2 Potential Learning Goals, Skills
As N is increased, the computational overhead of a direct force
calculation rapidly will increase the computational requirements
of each run. The use of a tree-based method would be appropriate
in this case as a periodic solution is not needed and the problem
domain will have large regions of physical space in which there
are few stars. Students can explore performance of tree-based
methods as compared to direct force calculations. The
parallelization method currently implemented does not truly split
bodies across processors but merely shares the results of force
calculation at each step. Students can explore the effect of
communication on scaling as the code moves from a computation
bound problem to a communication bound problem when
increasing the number of processes.

3.1.3 Overview
Galaxies are large collections of stars, gas, and dust surrounded by
relatively empty space, typically on the order of many kiloparsecs
in size and containing hundreds of billions of stars. A key feature
of galactic structure is the shape as classified on a tuning-fork
diagram, categorizing galaxies as elliptical, spiral, or barred
spiral[12]. (Teachers and students can find public domain images
of many of these objects online, organized by galaxy type[13].) A
feature of the original GalaxSee code was the exploration of how
the interplay between gravity and angular momentum tended to
flatten a large rotating mass of gravitationally bound objects.
However, running models larger than a few thousand points was
impractical, both due to hard coded features in early version of the
code and the lack of an ability to operate in a command line mode
with saved snapshots for models that required longer to run.
Additionally, while it was possible to create models with different
mass distributions and rotation curves, the default initial mass
distributions and rotation curves in GalaxSee did not produce
results that could be easily compared to images of spiral galaxies.

As GalaxSeeHPC makes for a more practical approach to running
models with larger N, simulations were run to test the results at
N=5,000, 50,000, and 500,000. Additionally, models were run
with the default initial distribution and velocity profile in
GalaxSee, with a mass distribution that is more heavily weighted
to the center of the initial distribution, and with a velocity profile
that is lowered for object near the center of the mass distribution.

3.1.4 Initial Conditions
The original windows GalaxSee used as its initial conditions a
random uniform distribution within a sphere, and a velocity
distribution associated with a circular orbit with centripetal
acceleration equal to the central force being provided by gravity.

As the number of particles is increased, certain issues related to
the default GalaxSee initial conditions are seen. In particular, a
uniform distribution does not have enough mass in the core to
keep the entire structure cohesively bound, and the distribution
breaks up into many small clusters in orbit around each other.
Additionally, the assumption of velocity set to centripetal
acceleration works well at the edges of the galaxy, but towards the
center this overestimates the actual orbital speeds, and simulations
see a clearing effect wherein a ring structure is formed as opposed
to something that looks like an elliptical, spiral, or lenticular
galaxy.

As a result, our initial conditions are taken to be normal
distributions in x, y, and z for position, parameterized by the
standard deviations of the normal distributions xσ , yσ , and zσ .
Velocities are calculated by modifying the assumption of

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 13

centripetal acceleration caused by gravitational force to allow for
a slower velocity towards the center.

∑−=
j ij

ij
ji
r

r
GMa 3

[]0,, yixiTi aaa =

iTi
i

Ti aerfv ρ
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−

Ρ
+= 11

2
1

where []0,, iii yx=ρ assuming the entire mass distribution is
centered at the origin, and Ρ is the point at which the slower
velocities towards the core switch over to a more typical
centripetal acceleration-based velocity towards the edges. For
each of the models here, we have assumed 5/xσ=Ρ .

3.1.5 Results of Galactic Structure Simulations
A simulation was run with an initial distribution with

pcx 383=σ , xy σσ 8.0= , and xz σσ 1.0= , at sizes of 1,000,
5,000, 50,000, and 500,000 points (see Figure 2Error! Reference
source not found.). At 1,000 points, typical of the problem sizes
one would use with the Windows version of GalaxSee, the
possibility of a spiral structure is hinted at by the results, but
cannot be clearly seen with so few points. Increasing the size to
5,000 points makes the spiral structure more visible, and 50,000
points allows for a clear structure of spiral arms with clusters
along the arms. Models were run for 1 billion years at a timestep
of 500,000 years, using an Adams-Bashforth-Moulton integration
scheme and a Barnes-Hut force calculation scheme.

Figure 2 Spiral Galaxy Model with varying values of N. From top left to bottom right N= 1000, 5000, 50000, and 500000.

As can be seen in the comparison of the N=1,000 point and
N=5,000 point simulation, 5,000 points was the bare minimum to
begin seeing clearly any spiral structure that formed in these
models, and on the order of 10,000 points is preferred. A 5,000
point model for GalaxSeeHPC with 8 processes ran in 3 minutes
54 seconds, and a 50,000 point model with 16 processes ran in 43
minutes. For practical use in a classroom lab, 5,000 point models
are best run on a multi-core workstation or small cluster, and
50,000 point models are best done as either a single model run at
the beginning of a class and analyzed afterwards or overnight or
as part of longer term student projects. Models with 500,000
points showed more detail, but did not have qualitatively different
features for this problem than those with N=50,000, while
requiring significantly longer to run.

3.1.6 Scenarios for students to investigate

One key issue in the formation of classic spiral and barred spiral
structures is the need for some difference in the scale in the x and
y directions for the initial conditions. The lower the eccentricity of
the initial material, the less likely it is that the resulting galaxy
will have a classic two-armed spiral structure.
A second issue for students to study is the distribution of mass in
the forming galaxy—looking at the difference between normally
distributed matter and uniformly distributed matter, without an
elevated density towards the center of the galaxy there will not be
enough gravity to hold the center together, and students will see
systems that fragment into many smaller rotating clusters.
Additionally, it is possible to overestimate the acceleration of

Volume 5, Issue 1 Journal of Computational Science Education

14 ISSN 2153-4136 August 2014

objects towards the center if one simply sets centripetal force
equal to the gravitational force exerted on each object. Both of

these are shown in Figure 3.

Testing

Figure 3 Simulation of galaxy formation without any eccentricity to induce spiral arm formation (left) and without a higher density
in the central region to form a core (left)

This can be seen by example with a though experiment in which
two equal stars orbit each other. Since it is not a case of a single
object orbiting a more massive one, the actual velocities required
to maintain a stable orbit are half what it would be otherwise.

This is addressed in the initial velocity function used in this paper
by using an error function to create an interior zone where the
objects are treated as if they are orbiting each other, and an
exterior zone in which objects are orbiting a central mass. Having
too little mass in the center can lead to fragmentation of the
galaxy being modeled, and having too high of a speed for the
interior objects can lead to clearing of the inner regions—and thus
fragmentation of the galaxy being modeled.

3.2 Large Scale Structure of the Universe
Issues of cosmology on a large scale are both of interest to many
students and are well reported in current media and research
literature. Recent advances in computational simulations have led
to understandings of the structure of the universe and the
connection to the CDM−Λ model of big-bang cosmology[4].
One of the largest N-body simulations ever run—the Millennium
Simulation—focuses on this problem[14].
Modeling of large scale structure is complex—the distance scales
change as the universe expands, and results depend sensitively on
both the initial anisotropy of the mass distribution as well as the
density. Computationally the problem requires treating the space
modeled as a unit cell with periodic boundary conditions.
However, students can explore at some level conceptual ideas
with a simple Newtonian model. Our approach in GalaxSee is to
let the students explore self-gravitation of a random anisotropic
initial mass distribution in an expanding periodic box.

Initial student exploration into large scale structure can include an
overview of the existing data on large scale structure, and
attempts to fit models of big-bang expansion, gravitational
condensation of galaxies, and freezing out of structures as the

universe expands to that data, particularly with regards to the
eventual end fate of our universe. While recent studies suggest
that there is sufficient inflation to sustain the universe and have it
continue its expansion, until recently it was unknown by scientists
whether the universe’s gravitational pull would ever result in an
eventual “big crunch” collapse. This provides a compelling
question for students to investigate, and allows them to understand
the process by which computational science has informed us
about this phenomenon. Even without allowing for either an
expanding universe or any inflation to that expansion, students
can, with only Newtonian gravity, explore the creation of
filamentary structure and the eventual progression to a collapse
event without expansion to prevent it. (As of version 1.1,
GalaxSeeHPC supports the ability to model an expanding
universe with a constant expansion rate, but does not allow for
inflation—though this is a modification that a student could
make.)

The models used in studying cosmological structure are often
referred to as “universe-in-a-box” models, in that they take what
might be considered a unit-cell of the universe, and approximate
the gravitational effect of the surrounding universe by assuming
that things are isotropic enough that whatever is happening on the
left side of the cell is just as likely as anything else as to be a
representation of what might be happening beyond the right edge
of the unit cell. As such, periodic boundary conditions are applied,
in effect giving us a toroidal geometry in order to approximate a
piece of a larger universe. Students can change the initial mass
density and size of this universe in a box, start with a random
initial distribution, and simulate the initial clustering and eventual
collapse that occurs. Students can see an interim stage before
collapse where the types of structures formed closely resemble
both the more accurate cosmological models being run on
research codes.

3.2.1 Initial Conditions
The initial mass density and unit cell size were chosen so to
ensure that the simulation would results in visible creation of
filamentary structure, and the image shown are taken at the peak
of the filamentary nature of the structure before further collapse

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 15

occurred. The models shown here were run with no expansion and
1.0e14 solar masses randomly distributed in a 1 megaparsec cubed
box. (Note that these numbers are chosen simply to produce
qualitative results and are not meant to be physical. While these
initial conditions can qualitatively show filamentary structure it
results in a mass density of the universe that is orders of
magnitude greater than observed and not stable for the lifetime of
the universe.)

3.2.2 Results of Universe in a Box simulations
Simple effects can be seen with a fairly modest value of N.
Consider the following simulation result, using GalaxSeeHPC

with the PPPM algorithm and N=5,000. Figure 4 shows the results
of a model with N=5,000 using the PPPM algorithm required
roughly 1 second per timestep running in serial on a Xeon-based
machine, with parallel performance peaking at only a few
processes, though larger values of N were able to scale to more
processes. With a typical model requiring on the order of a
thousand timesteps, this is well within the range of what a student
might do in a lab setting, running a simulation every 10-20
minutes on typical hardware

Figure 4 Large scale structure simulation, N=5000, 50000, 500000

Looking at the same model for greater values of N, students will
be able to see more detail. At N=50,000, the knots in the middle
of the filaments become more readily apparent and additional
structure in the filaments can be seen The connectedness of the
filaments is much clearer. The typical CPU time for models of this
size in our tests was on the order of 2 days. Scaling up to 8
processes for this problem size on our test cluster was reasonably
efficient; making this a simulation that students could run multiple
times in one day on a quad-core or 8-core system.

When looking at the simulation results with N=500,000 the
structure of the filaments themselves becomes much more clear,
as does the morphology of the knots where filaments intersect.
Scaling of this problem to 16 processes was reasonably efficient,
and while models with millions of objects might run in days to
weeks, depending on the number of timesteps required, students
with access to a 8-core system or small cluster could run models
in less than a day to a few days.

3.2.3 Scenarios for Students to Investigate
Two key questions students can try to address with these models
are the sensitivity to the initial mass density of the universe of
large scale structure and the effect of the expansion of the
universe on large scale structure.

An initial study students may make is to look at the timescales
needed for gravitational collapse of a large area of the universe
with the current mass density and without any expansion. Starting
with a random initial configuration, students should see that there
is an initial clustering into a filamentary structure and that these
filaments feed into superclusters which then themselves combine,
but that the timescale for this happening is so short compared to
the age of the universe that some degree of expansion is required
to understand the structure of our current universe. The mass
density in Error! Reference source not found.-Error!
Reference source not found. shown in the previous section, for
example, require a mass 4 orders of magnitude greater than
observed, and would result in gravitational collapse within a few
billion years.

GalaxSeeHPC has an EXPANSION variable in the input file
which allows for a constant expansion rate. The timescales in
which major change occurs will vary greatly as the universe
expands, so for practical purposes it is useful to also have a scaled
timestep that gets larger as the model progresses, and for that
reason the student has an option of setting the timestep as a ratio
of the current time using the TIMESTEP_RATIO variable rather
than as a fixed number. Tracking the initial formation of
anisotropy back to the point when gravitation began will likely
require timesteps and numbers of objects that go beyond the
architecture students have available, however the students can still
start with a largely anisotropic random distribution of points at
some later time, such as 1/100th the age of the universe, and
evolve forward with mass densities near the current mass density
of the universe. By changing the initial mass, they can see that the
difference between structure never forming, filamentary structure
of the type seen today, or a “big crunch” is only a few orders of
magnitude, and that the qualitative types of structures found in
more detailed models can be seen as naturally resulting from a
combination of self-gravitation, mass density, and expansion.
Care must be taken in interpretation of results. While it is possible
to independently set expansion rate and mass density in the
GalaxSeeHPC input file, in practice it would be expected that
these two parameters are related.

3.3 Scaling of the N-Body problem
An important concern with the N-Body problem is the scaling of
the problem, both in terms of how the computing requirements
scale with algorithm and problem size as well as how well the
parallel implementation of the problem scales across a parallel
architecture.

The first type of scaling is often referred to in terms of the “Big
O” of the problem—if one were to write a function of the number
of total computations needed as a function of the problem size,
what term in that will dominate as the problem size gets large. In
this sense, a direct force calculation is order 2N , and tree and
PPPM methods are both order)log(NN .

Volume 5, Issue 1 Journal of Computational Science Education

16 ISSN 2153-4136 August 2014

Parallel scaling, on the other hand, is typically referred to as either
weak or strong. Parallel implementations with weak scaling allow
for larger problems to be solved in roughly equal time on larger
(i.e. more CPU cores) systems. Parallel implementations with
strong scaling allow for same sized problems to be solved in less
time on larger systems.
GalaxSeeHPC allows students to explore the big O scaling of
direct, tree-based, and PPPM methods, and to begin exploring
questions related to parallel scaling. It should be noted that the
parallel implementation used in GalaxSeeHPC is limited in its
parallel scaling, particularly for moderate and large clusters.

Students and teachers interested in pursuing questions related to
state-of-the-art tools that exhibit strong scaling on larger systems
are encouraged to look at the many professional-grade N-Body
solvers. Of particular note is Gadget-2, which compiles with
standard C compilers on many systems and has a fairly small
number of dependencies required to run. GalaxSeeHPC includes
an option to translate its own input files into Gadget-2 format.

3.3.1 Timing and Scaling of Galactic Structure
Simulations
Running a simulation with 1,000 points and a Barnes-Hut
calculation as described in the previous section, GalaxSee for
Windows required roughly 17 minutes on an EEE PC with 1
1.7GHz Atom chip running Windows XP. Similar speeds with
GalaxSee for Windows were seen on a HP EliteBook with a 2.5
GHz Centrino running Windows Vista. GalaxSeeHPC running on
a single process on a Dell PowerEdge 1850 with a 2.7GHz Xeon
running RedHat Linux finished in 1.7 minutes, on 4 processes
finished in 31 seconds. For comparison on similar hardware,
GalaxSee-MPI (which was largely based on the Windows
GalaxSee codebase) using Barnes-Hut and a 4th order Runge
Kutta took 4 minutes 18 seconds (GalaxSee-MPI does not
currently support ABM integration methods). GalaxSeeHPC using
Runge Kutta 4 took 3 minutes 24 seconds.
Many of these models could be run with a larger timestep,
bringing running times on all platforms down (typical class
presentations for the rotation and flattening of a spherical cluster
are done with timesteps of 8 million years as opposed to 0.5
million years), however even for larger timesteps running models
with on the order of 1,000 points is the practical classroom
application limit of GalaxSee Windows.

Wall times per timestep for serial jobs are shown for N=5,000,
50,000, and 500,000 in Error! Reference source not found.. The
tree-based implementation in GalaxSeeHPC scales closer to N log
N than the N squared scaling expected of a direct force
calculation. The parallel scaling of GalaxSeeHPC with the tree-
based force calculation method was consistent across problem
sizes, scaling to speedups of on the order of 10-15 on our cluster.
Efficiency typically peaked once a few 8 core nodes were
involved in the solution of the problem. For each of the problem

sized tested, parallel efficiency dropped to 50% at about 16
processes. All are shown in Figure 5.

3.3.2 Timing and Scaling of Large Scale Structure
Calculations
Like tree-based methods, the PPPM method in GalaxSeeHPC
scales as roughly N log(N). The compute time required for the
force calculation is dominated by the mapping of points to a grid
and the interpolation of forces on that grid back onto the points,
combined with nearest neighbor direct force calculations.

Speedup peaked at around 8 for models with N ranging from
5,000 to 500,000 on the cluster used in this study, with parallel
efficiency dropping off somewhat faster for the PPPM methods
compared to tree-based methods. Results are shown in Figure 5.

4. VISUALIZATION
4.1 Need for higher end hardware and
software at large N
In addition to the computational challenges of increasing N in
GalaxSee by many orders of magnitude, the resulting data also
poses challenges in how it can be visualized, as traditional method
of filling in a pixel if there is a mass in the line of sight for that
pixel quick saturates at large N, even for very high resolution
images. Even in relatively low-density regions of the simulation,
foreground objects can obscure more important details. Masking
the image by only showing a subset of points can result in loss of
detail for structures of interest. This can impact both the type of
hardware and software that is needed for students to work with
large datasets. While modest computers with embedded video
may be able to load and render larger datasets, such hardware can
experience much longer frame rates when loading data for a new
time or when attempting to re-render data for a different
perspective (such as by rotating a rendered dataset in ParaView.)
Figure 6 shows the effect of not allowing for any opacity when
drawing a large number of point masses, as well as the loss of
resolution and structure that can occur from masking points.

Many visualization packages exist that are available to students
that allow for advanced features such as changing the opacity of
points, volume rendering, and creating contours and slices of
regular gridded data. ParaView[10] and VisIt[16] are two such
examples that are available as open source, and will work with a
variety of input data types included methods of opening simple
comma separated files.
The images created for this paper were made using ParaView.
ParaView is multi-platform, and has been designed to work in a
distributed fashion for massive data sets. Developed by Kitware
Inc. and Los Alamos National Laboratory, ParaView is also
supported by Sandia National Laboratory and the Army Research
Laboratory.

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 17

Figure 5 Scaling properties of example problems. Top row shows serial performance of tree-based algorithm run in serial relative
to direct force calculation, followed left to right by speedup and efficiency (ideal would be 1.0) of tree algorithm in parallel. Bottom

row shows serial performance of PPPM relative to problem size followed by speedup and performance.

4.2 Use of CAVE for visualization
Additionally, a CAVE system was used with students to visualize
the results of GalaxSeeHPC, using a simple package written in
OpenGL with CAVELib. Rendering was limited to no lighting
effects and pixels for each mass, and up to N=500,000 could be
viewed with zero masking and a frame rate high enough for the
user to walk through the image without noticeable lag. The CAVE

system used was a three wall system with ART head tracking and
a dedicated render node using separate NVidia Quadro cards for
each wall.

Our initial use of the CAVE has focused on the feasibility of using
it for education. Technically, we wanted to know whether there
were easy methods of getting student data into the CAVE and
whether it would provide an obstacle that interrupted class flow.

Figure 6 N=500,000. Shown at left is without any masking or opacity. At right masking is used, but no opacity is enabled to enhance

visualization.

5. PEDAGOGICAL CONCERNS
5.1 Sample Lesson Plan
GalaxSeeHPC is meant to be a general purpose pedagogical tool
around which a variety of lessons might be built, focusing on both

topics in computational science education as well as topics in
physics and astronomy.
The following lesson plan is designed based on past use of
GalaxSeeHPC with high school students. It assumes the use of a
helper code “GalaxSeeUI,” available on the Sourceforge site for

Volume 5, Issue 1 Journal of Computational Science Education

18 ISSN 2153-4136 August 2014

GalaxSeeHPC, to generate input files for the investigation of
spiral galaxy shapes.
Subject: Physics
Grade: 11-12
Lesson Length: 90 minutes (2 classes of 45 minutes)
Title: Galaxy Structure Simulations Using Computer Applications
Overview:

Galaxies are large collections of stars rotating around a central
point in space, while moving about in the universe. These bodies
of stars tend to crash and collide with each other, and take on new
and varying forms. Through Hubble, galaxies have gained
classifications based on their structures as they form over time.
This lesson will have the students learn about how to classify
galaxies by their structure, using Hubble’s model and computer
simulations of their own design.
Preparations and Materials:

• The teacher should become familiar with the
GalaxSeeUI application, GalaxSeeHPC application, and
the ParaView application. (GalaxSeeUI application is
available on Sourceforge site along with GalaxSeeHPC
and can be used to generate input files for this lesson.)

• The teacher will need an internet browser in order to
access this site

http://cosmictimes.gsfc.nasa.gov/teachers/guide/1929/g
uide/classifying_nebulae.html

• The teacher should have a text editor, such as notepad,
loaded along with the applications, and some way of
displaying all of the applications on the monitor to the
class.

• The students will need access to computers to utilize
text editing software, in order to generate their initial
conditions.

Objective:

• Students will be able to distinguish the different galactic
structures, using the tuning fork model and computer
simulations.

• Students will be able to apply their previous computer
knowledge to generate input files for GalaxSeeUI and
utilize ParaView.

• Students will be able to compose an argument about
their own observations and defend their point of view.

• Students will be able to infer things about natural
phenomenon based off of the activities conducted
during this lesson.

Standards:

• NSES.9-12.A: Science as inquiry.
o Use technology and mathematics to improve

investigations and communications.

o Communicate and defend a scientific
argument.

• NSES.9-12.D:
o Origin and evolution of the universe.

• NSES.9-12.E:
o Understanding about science and technology.

• DoDD.Science.9:
o Use of computational models.

o Use careful systematic observation and data
collection to obtain valid information.

o Relate force, motion, energy, and power.
Procedure and Activities:
Day 1 – 45 minutes

1. The teacher will define the term galaxy.
a. Galaxy - a system of stars, numbering in the

millions to billions that, along with gas and
dust, are held together by gravitational
attraction.

b. An example that can be given is the
Andromeda galaxy, the closest spiral galaxy
to the Milky Way galaxy.

2. The teacher will define the types of galaxies:
a. Elliptical - a galaxy, generally having an

elliptical shape and no obvious inner structure
or spiral arms

b. Spiral - a galaxy, that exhibits a central
nucleus from which many curved arms extend

c. Bar Spiral – a galaxy, that contains a central
bar structure from which two large arms
extend

d. Irregular – a galaxy, that cannot be labeled by
the previous definitions

3. The teacher will utilize the Hubble Classification, or the
Tuning Fork Diagram, to discuss the development of
galactic structure over time. A version of this diagram
can be found on:
http://skyserver.sdss.org/dr1/en/proj/advanced/galaxies/t
uningfork.asp

4. The teacher will show students a general input file of
GalaxSeeUI in Notepad, and will explain to the students
the proper way to input and save the data. All files that
are being submitted to GalaxSeeUI are .in files and can
be saved with this extension when saving and asked to
name file (Example: test.in).

5. The students will be paired into small, 3-4 person,
groups to work on their own input files.

6. The students will utilize the computers to create an
input file, using Notepad, following the teacher’s
example on how to setup the text file and save it with
the proper extension.

7. The teacher will tell the students to finish what they are
doing, and to return to their groups. The teacher will,
then, have the students choose one member of their
group to submit their file to GalaxSeeUI, and save the
file to a folder, the teacher should have access to this
folder. Advise that this folder should be a shared folder
that the entire class can access, but the teacher can
control.

8. The teacher will show a variety of galaxy pictures to the
students, and ask the students to make a classification of
the galaxy’s structure, as well as provide their reasoning
for coming to that conclusion.

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 19

Example images can be found on:
http://hubblesite.org/gallery/album/galaxy/

9. The teacher will ask if there are any final questions or
comments, and conclude the lesson. This time can also
be used to aid the students with any errors that may
arise.

Day 2 – 45 minutes

10. The teacher will show the students how to start
ParaView, and how to configure ParaView to read in
their data files. The teacher will, then, show the students
how to play their animation, and how to download the
images needed to examine the structure of the galaxies.

11. The teacher will have the students retrieve their data
from, a flash drive the teacher controls or, the folder
used previously. The folder should have individual
folders with the group of students’ names, and inside the
folders should be the input file the students created, and
the output from GalaxSeeHPC.

12. The students will observe their galaxies, analysis the
results they note, and make an educated conclusion on
the structure of their galaxy.

13. The teacher will instruct the students to use ParaView to
take a picture of their “initial” step and their “final”
step.

14. The student groups will share their results with the
class, having the students present a small summary of
their results and making their final classification of their
galaxy.

15. During the ending to the period, make references to
stable and unstable initial conditions. Care must be
taken to differentiate between a student’s set of initial
conditions and actual data. Possible wording would be
to always refer to the students simulations as models
and never as “a galaxy.”

a. Stable – initial conditions such that the model
does not exhibit overall change in structure or
makeup as the simulation evolves. A stable
simulation that additionally exhibits behavior
similar to data is one in which the initial
conditions are likely to correspond with real
galaxies.

b. Unstable – simulation exhibits behavior that
changes greatly during evolution, particularly
changes in the size, rotational speed, and
overall geometric makeup. This may be due to
numerical instability (have students try
reducing timestep), or it may be due to initial
conditions that are not physically likely.

16. The teacher will ask if there are any final questions or
comments, and conclude the lesson. This time can also
be used to aid the students with any errors that may
arise anywhere during the lesson.

Extensions:

17. Show the students how to plot the velocity of their
galaxies in ParaView as star color. Show them how the

velocity curve of their galaxies plays a role in how
stable their structure is.

5.2 Choice of Time-step
Currently none of the versions of GalaxSee (GUI-based, the
original command-line MPI, or the latest GalaxSeeHPC release)
allow for an adaptive timestep in solution. While this change is
planned in the future, this makes it especially important that an
appropriate time-step is used. Even with professional grade codes
using higher order and/or adaptive integration schemes, great care
must be taken with choice of time-step.

If students are not familiar with time-stepping methods, they
should get some information on the drawbacks of a time-step that
is either too large or too short. Any of the versions used with some
form of visualization (GUI-based have built in visualization,
GalaxSee-MPI and GalaxSeeHPC have the option of compiling
X-based visualization into the program if supported by your
platform) will show this clearly, with demonstrably wrong results
and instabilities occurring with too large a time-step, and with
visibly slower computation occurring with too small a time-step.

5.3 Choice of Integration Method
Integration methods available in GalaxSeeHPC mirror some of the
more standard options used, as well as some options that are
pedagogically easy to introduce yet not stable enough for
professional work. The Euler method is included for pedagogical
purpose as it is often the first numerical integration method
students learn, and the easiest to code. The so-called “improved
Euler” or second order Runge-Kutta scheme as well as the mid-
point Euler method and leapfrog methods are also allowed in the
code as these are often introduced in numerical analysis classes as
incremental improvements to Euler’s method. In practice,
however, one would not want to run professional integration with
these schemes. The fourth order Runge-Kutta algorithm is
generally considered the simplest numerical integration scheme
one would want to use for professional work, and is a standard
method used across computational science disciplines.
Additionally, predictor-corrector schemes, such as the Adams-
Bashforth-Moulton available in GalaxSeeHPC attempt to use
previous timesteps to better predict future behavior. For anything
other than investigating the numerical impact of using lower order
integration schemes, students should use either the fourth order
Runge-Kutta or Adams-Bashforth-Moulton integrators.

5.4 Limitations of GalaxSee-MPI
The primary limitations of GalaxSee-MPI from a classroom
perspective was the inability to use it to teach any concept beyond
which it was originally intended. GalaxSee-MPI as first written
was designed to show scaling of the parallelization of direct force
calculation using MPI, however all of the features of previous
versions of GalaxSee that made it a useful tool for classroom
exploration had been removed—the ability to easily modify input
for new scenarios, the ability to design input files to meet your
own problem, the ease of visualization had been removed in
making a command line version of the program. Moving the
program to a command line version in a HPC environment,
however, did allow for much larger values of N—which the
visualization abilities of early versions of GalaxSee would not
handle well anyway.

Additionally, over many years of using GalaxSee-MPI in faculty
workshops with Physics faculty, many faculty expressed
skepticism as to whether there would be benefit for their students
to running N-Body simulations with a larger value of N—whether

Volume 5, Issue 1 Journal of Computational Science Education

20 ISSN 2153-4136 August 2014

there was anything the students would learn at large N that they
would not learn at small N. Also, the lack of a feature to allow for
periodic boundary conditions limited the types of situations that
could be modeled.

From a technical perspective, the use of GalaxSee-MPI in new
environments was often hampered by the choice of C++ as a
language. While C++ is largely standard and widely adopted as a
language, the C++ version of GalaxSee-MPI suffered from
portability issues as it was deployed on different clustering
platforms. The dependency on specific standard libraries often
caused software to fail to run as expected, and different mpicxx
executables, from one MPI implementation to another, often
required minor code changes to in order to deploy the software on
a new platform.

5.5 Changes Made
The following feature comparison shows changes made in
GalaxSeeHPC compared to previous GUI based and command
line based versions.

Feature GUI
versions

GalaxSee
MPI

GalaxSee
HPC

Runs from input file ü ü

Users can specify
individual particle
properties

ü ü

Problem scale Choose
from
menu list

 User
specified

Change integration
method (Euler,
Improved Euler, RK4,
ABM)

ü ü

Barnes-Hut ü ü

PPPM ü

Passive visualization ü (with X11) (with X11)

Interactive
visualization

ü (with SDL)

Command Line option ü ü

MPI ü ü

Write to snapshot files ü

Additional output
options

 ü

Softened potential Adaptive
shield
radius

Adaptive
shield
radius

Adaptive
shield
radius or
fixed
softened
potential

5.6 Effect of Modifications
One concern in moving to GalaxSeeHPC was whether the
removal of the GUI component would make exploration of
science questions significantly more difficult for students using
GalaxSee. In previous workshops with students, typical use was to
use the Windows, Mac, or Java version of GalaxSee when
exploring science questions and to use the GalaxSee-MPI version
of the code when exploring problems with parallel efficiency and
scaling. Our first use of GalaxSeeHPC in a informal education

setting in summer 2010 did show that the constant flow back and
forth between windowed versus command line environments
slowed the pace of activities down, and when given the choice
students tended to stick with the GUI driven tools. In summer
2011, we focused more specifically on using the command line
tools, with more instruction on the use of the command line
interface and activities that included visualization of results solved
with larger N in a CAVE environment, which seemed to make for
a more natural use of the command line driven HPC tools.

Since the move to C, we have seen significantly reduced issues
with portability. The new version of the code has been tested on
multiple platforms with both GNU and Intel compilers.

5.7 Visualization tools
Any effort to bring scalable supercomputing applications into the
classroom will need problems of significant size to (a) require
supercomputing resources, and (b) scale on those resources. This
provides an additional concern for the educator in that large
problems produce large sets of results, and visualization of those
results will need to be part of the plan for implementing the use of
such tools in the classroom. The use of common data formats is
encouraged in order to be able to make the best possible use of
open source visualization tools. Comma Separated Value text files
provide a low barrier for creation of files, and are readable by
many visualization tools, but will typically require the
configuration of many options within the tool to define how the
CSV file should be interpreted. Other Common Data Formats,
such as NetCDF or HDF, are well supported by the open source
community, and are standard input file formats for most
visualization tools, however this will provide an additional
challenge for implementation as code libraries for those formats
may have to be installed on the systems on which students are
computing their results.

5.8 Storage limitations
Another concern for problems involving large N, particularly in a
classroom situation in which many students will be running
multiple sets of such models, is disk storage. For our N=500,000
models, 30Mbytes per snapshot was typical, stored in NetCDF
format. Keeping enough snapshots to create a smooth animation
for N=500,000 typically required 3Gbytes per simulation. Storage
requirements were linear with N.

6. FUTURE WORK
6.1 CAVE Visualization
Our initial work in incorporating the CAVE into the visualization
of GalaxSeeHPC has focused primarily on technical issues of how
to get the data into the CAVE as well as the feasibility of
incorporating a CAVE system into the flow of a class. While our
general finding is that stereo immersive visualization, as it is
inherently focused on one individuals point of view, is difficult to
use in a large class setting it can be inspirational for students. We
noticed a clear “wow factor” when bringing participants into the
CAVE. It is easier to incorporate immersive visualization into
individual student projects, as there is less of an issue with
contention for the resource.

Our initial work with students has used custom written software,
and we are investigating whether we can replace this by using
VisIt, for which a Conduit interface exists, or ParaView, which
has been ported to other CAVE systems using FreeVR.

We have not yet investigated whether participants learn
differently in an immersive environment from a non-immersive

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 21

environment, or from viewing 3-D data in other, non-immersive,
stereo visualization systems.

While CAVE systems are unlikely for typical classroom use,
students may consider using non-immersive stereo rendering in
ParaView through more readily available 3D monitors, TVs, or
projectors.

7. ACKNOWLEDGEMENTS
The GalaxSeeHPC revisions were funded as a module project
under the Blue Waters Petascale Education program. The cluster
used for this project was funded by NSF award OCI-722790. The
CAVE used in this project was funded by NSF award OCI-
0959504.

8. REFERENCES
[1] Aarseth, S. 2003. Gravitational N-Body Simulations.

Cambridge Monographs on Computational Physics.
[2] Barnes, J.E. and Hut, P. 1989. Error analysis of a tree code.

Astrophysical Journal Supplement. 70, (Jun. 1989), 389–
417.

[3] Christian, W. 2010. EJS CSM Textbook Chapter 5: Few-
Body Problems. An Introduction to Computer Simulation
Methods - Draft EJS edition.

[4] Efstathiou, G. and Eastwood, J.W. 1981. On the clustering
of particles in an expanding universe. Monthly Notices of
the Royal Astronomical Society. 194, (Feb. 1981), 503–
525.

[5] GalaxSee Curriculum Resources:
http://www.shodor.org/master/galaxsee/.

[6] GalaxSeeHPC:
http://sourceforge.net/projects/galaxseehpc/.

[7] Heggie, D. and Hut, P. 2003. The Gravitational Million-
Body Problem. Cambridge University Press.

[8] Joiner, D.A. et al. 2008. Supercomputer based laboratories
and the evolution of the personal computer based
laboratory. American Journal of Physics. 76, 4 (2008), 379.

[9] Mihos, C. et al. 1999. GalCrash: N-body Simulations on
the Student Desktop. American Astronomical Society
Meeting Abstracts (Dec. 1999), #101.04.

[10] ParaView - Open Source Scientific Visualization:
http://www.paraview.org/. Accessed: 2012-04-25.

[11] Petascale: GalaxSeeHPC: 2011.
http://www.shodor.org/petascale/materials/UPModules/NB
ody/.

[12] Rood, H.J. and Sastry, G.N. 1971. ”Tuning Fork”
Classification of Rich Clusters of Galaxies. Publications of
the Astronomical Society of the Pacific. 83, (Jun. 1971),
313.

[13] SEDS Messier Database: http://messier.seds.org/.
[14] Springel, V. et al. 2005. Simulations of the formation,

evolution and clustering of galaxies and quasars. Nature.
435, 7042 (Jun. 2005), 629–636.

[15] Springel, V. 2005. The cosmological simulation code
gadget-2. Monthly Notices of the Royal Astronomical
Society. 364, (2005), 1105–1134.

[16] VisIt Visualization Tool: https://wci.llnl.gov/codes/visit/.
Accessed: 2012-04-25.

Volume 5, Issue 1 Journal of Computational Science Education

22 ISSN 2153-4136 August 2014

