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Steven I. Gordon
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Forward
In this issue we provide a articles that present excellent ex-
amples of computational science educational materials and
sources of materials for teaching computational science. Yasar
provides an overview of a general education curriculum that
uses computer modeling to both build analytical skills and
teach basic concepts in science and mathematics. He docu-
ments the success of an introductory course and also sum-
marizes the course sequence that move students from using
existing models to programming skills that build new mod-
els.

Shiflet and Shiflet present an article on the use of proba-
bilistic models to trace the age of populations over time.
The models were applied in several classes focusing on the
mathematical concepts and the scientific understanding of
the students. Markov chain models were used to model the
populations of a variety of species, tracking them by age and
the probabilities of survival and birth.

Ringenberg and Magana provide a review of STEM focused
computational materials that are web accessible. They pro-
vide an interesting analysis of the number and types of ma-
terials available along with a table of the resources and their
classification of their contents.

Chen et al provide a review of a research program for un-
dergraduates in mathematics that focuses on computational
mathematics. They describe the developments within their
department, the creation of a research workshop, and the
impacts of that program on their students and their depart-
ment.

Finally, two student papers summarize their computational
projects and the impacts of those projects on their own
learning. Tudor and Space describe experience as interns
working on a massively parallel Monte Carlo code using
GPUÕs. Crawford and Toth describe the use of the knap-
sack problem to introduce parallel computing and describe

the lessons learned from the project from both the student
and instructor view.
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ABSTRACT 
In this paper, we present a computational approach to teaching 
general education courses that expose students to science and 
computing principles in engaging contexts, including modeling 
and simulation, games, and history. The courses use scalable 
curriculum modules organized in layers of increasing difficulties 
in order to balance learning challenges and student abilities. We 
describe the computational pedagogy followed in these modules 
and courses, with particular attention to the simulation-based 
course, namely introduction to computational science, to present a 
case study for those considering similar initiatives.   

General Terms 
General Education, Pedagogy, Games, History, Natural Sciences 

Keywords 
Modeling and Simulation, Abstraction, Computational Thinking 

1. INTRODUCTION 
Recent increases in power, access and affordability of digital 
technology have impacted scientific research, industrial design, 
and education. Educators stated at the turn of the century that, 
when used in the context of applications, technology would 
support higher-order thinking by engaging students in authentic, 
complex tasks within collaborative learning contexts [26]. More 
recently, the National Science Teachers Association (NSTA) 
described computation as a “third pillar” of scientific inquiry, 
accompanying experiment and theory [19]. It cited a growing 
body of evidence that using models and simulations, students 
learn better since they are actively engaged in “doing,” rather than 
passively engaged in “receiving” knowledge. Within the scientific 
computing community, the role of computation had long been 
recognized and brought to the classroom through training by 
many organizations such as Shodor Foundation, and through 
formal degrees and courses by other institutions [15, 23], 
including ours [28-33]. However, now that we have help from 
educators and pedagogy experts to promote computational science 
education in more fundamental ways, we get a second chance to 
address some of the challenges we have faced.  

 

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial 
advantage and that copies bear this notice and the full citation on 
the first page. To copy otherwise, or republish, to post on servers 
or to redistribute to lists, requires prior specific permission and/or a 
fee. Copyright ©JOCSE, a supported publication of the Shodor 
Education Foundation Inc. 

While recruitment challenges can be linked to a general lack of 
interest and preparation by nation’s high school students [2, 5-6, 
9, 11, 16-17], computational science education requires additional 
preparation in multiple domains (math, programming, and 
sciences) that not every college student is willing to undertake. A 
fundamental (pedagogical) approach, including a focus on 
computational thinking skills [27], could bring all stakeholders 
together in a way not only to reform the computing education but 
also push scientific thinking into mainstream to address 
underlying causes of the rising category-5 storm in nation’s K-12 
education [16-17].    
The importance of math and computational skills for STEM 
workforce has been noted in many reports; including the 
projections by the Bureau of Labor Statistics [3], National Science 
Board statistics [21], and surveys by the American Institute of 
Physics [1]. AIP surveys taken at regular intervals (in 1999 and 
2010) of physics majors, 5+ years after finishing an undergraduate 
degree, indicate that some of the important job skills continue to 
be scientific problem solving, teamwork, computer programming, 
design and development, simulation and modeling, math skills, 
and technical writing (See Fig. 1).  

 

Figure 1: Results of the most recent AIP survey in 2010 [1]. 
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While the demand for computationally competent science, 
technology, engineering, and mathematics (STEM) workers is an 
unprecedented opportunity, enrollments have gone down steadily 
in recent years. The pipeline between institutions of higher 
education (IHE) and K-12 seems to be broken [2, 5-6, 9, 11, 16-
17]. The issue of why science is not as engaging as other subjects 
is complex, but according to the Relevance of Science Education 
(ROSE) study, student attitudes towards STEM become 
increasingly negative as a country advances economically, which 
suggests this phenomenon to be deeply cultural [22]. Learning 
science is demanding and it requires application, discipline and 
delayed gratification; values that contemporary culture does not 
seem to encourage. So, innovative and engaging ways of teaching 
science and computing are necessary. 

2. COMPUTATIONAL SCIENCE 
EDUCATION AT BROCKPORT 
Established in 1998, the computational science degree (BS and 
MS) program at Brockport attracted high parameter students and 
promoted research experience in an undergraduate institution [28-
33]. Success stories from alumni hired by the software industry 
include multiple offers from the same company, offers for 
significant others as incentives, promotion to senior positions 
upon hiring, and many more. Those hired as teachers could teach 
multiple subjects (math, programming, and general science) due 
to their diverse background. These examples all point out to the 
benefits of a broad education to improve one’s marketability and 
job orientation at a time when the likelihood of working at a job 
not related to one’s field of study is greater than 50% [21]. 

While the computational science (CPS) program has attracted to 
Brockport students who normally would go to a higher tier school, 
it has graduated only a handful (~5) of students annually. 
Concerns over the number of freshmen entering the program led 
to an outreach effort by the program in 2003 to address the IHE-
K12 pipeline issue as described earlier. An institute was formed in 
partnership with local school districts (Rochester City SD and 
Brighton Central SD) and national organizations (Shodor 
Foundation, Krell Institute, and Texas Instruments) to train 
secondary school teachers on the computational approach to math, 
science, and technology (C-MST). Improved teacher retention and 
student achievement reported by partnering districts drew national 
attention to this initiative, including testimony before the U.S. 
Congress. Over the past decade, institute staff and participants 
(faculty and teachers) created a large inventory of curriculum 
modules and lesson plans that are currently being used in the 
introductory-level general science courses described here. 

While the computational approach to STEM education has been 
recognized a novel strategy to improve the technical workforce, 
curricular and recruitment challenges have slowed its growth. 
Brockport has revised its degree programs and courses several 
times to update and diversify its curriculum in several fronts, 
including: a) science of computing (simulation tools, 
programming, parallel computing, numerical and statistical 
methods, visualization, technical writing, and computing 
principles), b) science done computationally in application 
domains, and c) education done computationally (pedagogy, 
teacher training and K-12 student outreach). While some of the 
application courses such as computational-x (x: biology, physics, 
etc.) and teacher education courses cover deep (x) content to 
support STEM majors, others include service courses, such as 
those described here, under general education category to spread 
the benefits to all college freshmen across the spectrum. What 

follows in the next section is the computational pedagogy we used 
in these courses, particularly in CPS 101, to draw both STEM and 
non-STEM majors into learning about computing and sciences. 
We believe that this pedagogical approach is also relevant to a 
recent initiative by the College Board to implement a new AP 
course on computational thinking [25]. The impact on the nation’s 
STEM education can be significant. 

3. C-MST PEDAGOGY 
While ‘attention to details’ is important to master a skill, we all 
have a limited memory to store information. The most pervasive 
strategy to improve memory performance (and information 
retrieval for problem solving) is organizing disparate pieces of 
information into meaningful units [14]. Abstraction skills can help 
with that by simplifying, categorizing, and registering key 
information and knowledge for quicker retrieval and processing. 
The act of abstraction is an inductive process by which we sort out 
details and connect the dots to arrive at more general patterns and 
conclusions [24]. While abstraction is essential for cognition, 
there are other benefits all around us. Since the nature itself 
employs abstraction by hiding the atomic-level motion and the 
cellular phenomena, we get the benefit of seeing the bigger 
picture. Computer scientists use abstraction to write large-scale 
complex codes (such as operating systems, compilers, and 
networking) where the complexity is distributed into seemingly 
independent layers and protocols of the code in such a way to hide 
the details of how each layer does the requested service. We all 
use abstraction in our daily lives. For example, when we go to a 
restaurant, we order our meal and not worry about how they 
cooked it in the kitchen. Those who worry and check it out once 
or twice cannot possibly afford doing it all the time. Abstraction 
skills can be improved beyond what was inherited, through 
training, education, additional knowledge and experience.  

Abstract 

 

Body of Details 
Figure 2: Illustration of the informational organization and 
the resulting deductive/inductive instructional pedagogies. 

Computational modeling uses abstraction by its simplification of 
the reality. Such simplification helps scientists eliminate certain 
parameters and focus on what is being studied. Another benefit of 
computational modeling is that it supports deductive learning. 
Modeling enables the learner to grasp important facts surrounding 
a topic before revealing the underlying details. In a sense it helps 
to do a reverse engineering by gradually leading the learner to the 
details that support the abstracted knowledge (See Fig 2 for a 
schematic view of inductive and deductive processes). Simulation 

	  

Deduc&ve	  

Induc&ve	  
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adds another level of benefit by providing a dynamic medium for 
the learner to conduct scientific experiments in a friendly, playful, 
predictive, eventful, and interactive way to test hypothetical 
scenarios without having to initially know the underlying science 
concepts. Together, both computational modeling and simulation 
lead to a deductive pedagogy by first introducing a topic from a 
simplistic framework and then moving deeper into details after 
learners gain a level of interest to help them endure the hardships 
and frustration of deeper learning. Such a stepwise progression in 
learning is consistent with the pedagogical framework Flow [8] 
and scaffolding strategy to balance skills with challenges as 
illustrated in Fig. 3.  

According to a national report [18], at early stages computational 
modeling approach to STEM education should involve easy 
experimentation (learners must be able to quickly set up and run a 
model using an intuitive user interface, with no knowledge of 
programming or system commands) and high interactivity 
(models need to evolve quickly and include smooth visualizations 
for providing interactions and feedback to users). Using existing 
computational models, instructors can start general science 
education via games and simulations without exposing them to 
STEM principles right away. Students can get to modify an 
existing model, or create one from scratch. Tools such as 
Interactive Physics (IP) and AgentSheets (AS) can be used to 
create many fun things that could engage students into science 
experimentation. They also provide easily discoverable links (i.e., 
buttons for controlling the run-time and accuracy) to underlying 
principles of computational and scientific modeling.  

After initial experimentation with modeling in the context of a 
game or science topic, students can be introduced to a simple 
principle of mathematical modeling (new = old + change) which 
eventually (and quickly) leads the learner into understanding 
several aspects of computational thinking [27], including 
decomposing a problem into smaller chunks, computational cost 
for more accuracy, and the need to use a programming language 
in order to handle complexity and increasing number of data 
points (due to decomposing the problem into much smaller 
chunks). The mathematical foundation of modeling and 
simulation can be taught in terms of building functional 
relationships (such as y=f(x)) using the rate of change equations 
and the above algebraic equation (ynew = yold + dy) where ynew and 
yold are new and old values of y, and dy is the change from the old 
to the new.  

As an example, consider finding a direct relationship, y=f(x), 
based on the rate of change (derivative) dy/dx= 2x, and the initial 
condition y=0 when x=0. The analytic answer to this 
mathematical integration is y = x2. However, students can be led 
to find an answer through numerical integration instead, by 
constructing a table of (x, y) data points starting from (0, 0) for 
different choices of increment in x values (dx= 1, 0.5, 0.1, and so 
on). When the numerical results are compared to the analytic 
solution (y= x2) for these cases, students could be led to discover 
the correlation between the step size (dx) and the accuracy of the 
numerical results: such as the smaller the dx, the more accurate 
the answer. While a human can calculate a few data points by 
hand when dx is 1, or 0.5, the need for automation (and accuracy) 
becomes obvious for smaller dx values such as 0.1 or 0.05. Excel 
can be used to automate the calculation and graph the y=f(x) 
curves, but for much smaller step sizes (dx), such as 0.001, 
0.0001, or 0.0000001, students might discover that even Excel 
cannot be of help in those computationally intensive cases. The 
need for finer and faster automation, via computer programming 
(example shown in later sections), becomes evident as the only 
way to obtain highly accurate results.  

In an after-school project, several 9th graders from Brighton High 
School (NY) were able to replicate IP results for the harmonic 
motion (Fig. 4) by first applying Excel (Table 1) and then Python 
(programming language) to algebraic formulas for the position 
(xnew = xold + dx) and velocity (vnew= vold + dv) of the spring-
driven object at times (tnew = told + dt) separated by interval dt. 
Here, time (t) is an independent variable and change in x and v 
are: dx= v · dt and dv= a· dt, where acceleration (a) is 
Force/mass. The force applied by a spring unto an attached box is 
F= - k · x, where k is the stiffness coefficient of the spring and x is 
the displacement of the box from the equilibrium position (x=0). 
The following year, these students modeled orbital motion of 
planets when the formula for the force, causing the change, was 
given to them (F=G·M·m/x2; where G is a Universal Constant, M 
and m are masses of the Sun and planet separated by distance x).  
 

 

Figure 4: Simple harmonic motion using Interactive Physics. 

 

 

Figure 3: Illustration of Optimal Flow in learning [8]. 
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Table 1: Simple harmonic motion using Excel (dt= 0.125). 
t(s) v(m/s) x(m) t(s) v(m/s) x(m) 

0.000 10.00 0.0 1.250 -8.97 1.49 
0.125 10.00 1.25 1.375 -9.90 0.26 
0.250 9.22 2.40 1.500 -10.06 -1.00 
0.375 7.72 3.37 1.625 -9.44 -2.18 
0.500 5.61 4.07 1.750 -8.08 -3.19 
0.625 3.07 4.45 1.875 -6.08 -3.95 
0.750 0.29 4.49 2.000 -3.61 -4.40 
0.875 -2.52 4.17 2.125 -0.86 -4.51 
1.000 -5.13 3.53 2.250 1.96 -4.26 
1.125 -7.33 2.62 2.375 4.62 -3.69 

 
While these high school students were exceptions, this (deductive 
+ inductive) pedagogical approach [13] does show a path that can 
be promoted in both IHE and K-12 classrooms. It starts with a 
deductive approach by using modeling to introduce the learner to 
important facts surrounding a topic. Then, by running hypothetical 
scenarios and investigative projects through simulations, they are 
encouraged to discover relevant principles of computing and 
sciences in an inductive fashion. We call the above approach ‘C-
MST pedagogy’ because of the local context; others may call it 
differently (i.e., Project-First, then Principles just-in-time [11, 
20]). Pros and cons of deductive and inductive learning have been 
a topic for many years in language training. Many contemporary 
programs use a combination to get double benefit [13].  

The computational approach to STEM education encourages 
inquiry, involves projects, and facilitates team-based instruction. 
It puts the learner at the center of a constructivist experience. 
While it uses a deductive approach to engage learners into a 
STEM topic, it emphasizes the importance of abstraction skills to 
support inductive learning. By linking computing to science 
through the computation of change, it provides a motivation for 
science majors to learn programming and for computing majors to 
learn more about science. Its motivational and deductive/inductive 
cycle can be used to broaden participation in computing and 
sciences among female students [11, 20]. 

Table 2: Gen-Ed Computing courses and their enrollments 

 

4. GEN-ED COMPUTING COURSES 
We have developed and taught three computing-based general 
science courses, including CPS 101 Introduction to Computational 
Science, CPS 105 Games in Sciences, and CPS 302 History of 
Science and Technology. While the primary topic of this article is 
CPS 101, we want to give a brief overview of all these 3 courses. 
Launched in 1998, CPS 101 was taught by the author in full 
capacity (25 students per semester) until 2007 when a new faculty 
was assigned to teach it. The new instructor’s tendency to teach it 
merely as a programming course with high level mathematics 
brought the course down to extinction. Through support from an 
NSF Course Development grant in 2010, the content of CPS 101 
was shifted back from ‘differential equations and computer 
programming’ to its original content of problem solving at a more 
fundamental level as described later. This modification brought 
the course back to life again (see Table 2 for enrollments), 
vindicating the fundamental computational thinking approach to 
introductory computing [27] and computational science education 

[29]. Currently, CPS 101 uses simulation tools such as IP to teach 
students basic science concepts without having to require a deep 
level of mathematics and knowledge of the natural laws. The CPS 
105 uses AgentSheets (AS; an agent-based modeling tool) to 
demonstrate science applications in the context of games and 
environmental issues. The CPS 302 uses an introduction to 
science and computing in the context of history, again supported 
by demonstrations using tools such as IP and AS.  

Table 3: External/Internal factors affecting enrollments. 
How did you hear about this course? 

CPS 
   ↓ 

Friend Advisor Department Other 

2011 2012 2011 2012 2011 2012 2011 2012 

101 7% 10% 40% 25% 7% 0% 46% 65% 

105 34% 34% 18% 4% 2% 0% 46% 60% 

302 17% 12% 44% 20% 16% 0% 23% 66% 
 

To meet the needs of students with various backgrounds, a 
contextual learning is critical for students’ success and it improves 
interest in technology while generating enthusiasm towards 
sciences [12]. Surveys reveal interesting observations on student 
attitude vs. the context (in which science topics were taught in 
these courses). They all had a broad appeal; drawing students 
from 28 departments, including non-science majors. In fall 2010, 
the College approved these as General Education courses in 
natural sciences. To meet the Gen-Ed designation in natural 
sciences, more general science content had to be added to the 
original syllabus. These modifications seem to have triggered an 
increase in the enrollment, as shown in Table 2. Interest by non-
STEM majors increased. More than 60% of currently enrolled 
students in these courses are non-STEM majors, while this ratio 
was about 35% before these modifications when the main focus 
was on computing and mathematics.  

According to the course surveys, the games-based course (CPS 
105) was the most popular; 34% of enrollments in this course 
came from the word of mouth among friends. The evolving self-
interest also seems to be high as about 80% of students in this 
course wanted to take another course on the same topic (See 
section on Results and Discussion). The simulation-based course 
(101) and the history-based course (302) were often recommended 
by student advisors. The Gen-Ed status contributed significantly 
to enrollments as can be seen from the ‘Other’ category in Table 
3. As we moved from 2011 to 2012, even more students enrolled 
under ‘Other’ category as a consequence of either easiness of 
online scheduling or popularity of Gen-Ed designation; or both. 
The 2012 data shows a significant increase in students’ self 
interest and a decrease in advisement by faculty and department.  

4.1 Course Description: CPS 101 
The weekly schedule for CPS 101 is shown in Table 4. Course 
materials include class notes and user manuals for software tools 
(such as IP) and the online C-MST curriculum modules open to 
public at www.brockport.edu/cmst. IP is used to model, simulate, 
and explore a wide range of physical phenomena, including 
harmonic motion (springs and pendulum), falling objects, 
trajectory of projectile, energy conservation, orbital motion, 
Kepler’s Laws, Newton’s second law of motion, and electrostatic 
oscillator. Through IP, students are able to build projects, conduct 
digital experiments, and investigate physical events without 
deeply knowing or memorizing the laws of physics. Users are 
allowed to set up their own physical world, choose physical 

 2010 2011 2012 Total 
101 Intro to Computational Sci. 12 20 38 70 
105 Games in Sciences 18 52 55 125 
302 History of Sci. & Tech. 6 22 25 53 

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 5



parameters, monitor the position, velocity, energy, and elapsed 
time and also create control buttons to facilitate simulation. 
Visuals images and data from IP can be transferred to geometrical 
software (such as Geometer’s Sketchpad, GSP) to measure angles, 
distances, and areas needed for proofs or other calculations. IP 
simulation data can also be transferred in numerical format to 
Excel for further analysis.  

A big advantage of the IP is what you see is what you get. It is 
interactive and it greatly enhances instruction and helps students 
build their confidence and success in learning. The use of IP tool 
is straightforward, and students are able to build their own 
projects after a couple of weeks training. A screen shot of 
simulating orbital motion is shown in Fig. 5, where the planets are 
represented with small circles and corresponding masses. For 
example, the earth (of mass 5.9 x 1024 kg and orbital velocity of 
6.65x104 mph) is placed at 150x106 km from the Sun (mass of 
1.89 x 1030 kg). The IP images can be transferred to GSP to 
measure the distances and areas to prove Kepler’s laws. For 
example, Fig. 5 shows the proof of the 3rd law, which states that 
for each planet the square of its period (T2) is proportional to its 
semi-major R3; or (T1/T2)2 = (R1/R2)3 for any two planets. 

Table 4. Weekly schedule for CPS 101 

Week 1: Conduct surveys to examine math and CS skills. 
Discuss survey results. Show videos on the role of 
computational modeling & simulations in science & industry. 
Week 2: Discuss the role of modeling in scientific inquiry and 
industrial design (show examples). HW #1: Short essay on the 
‘role of modeling’ in research, industry, and education. 
Computer Lab: Introduce Interactive Physics with examples 
Week 3: Computer Lab: Continue Interactive Physics (IP) 
training. HW #2: Design an IP project that demonstrates 
students’ comfort level with IP. 
Week 4: IP Labs: a) Simple harmonic motion: Generate 
position and velocity plots of a moving object attached to a 
spring; b) Pendulum: Examine the time it takes for a complete 
swing vs. initial velocity. c) Falling objects: Examine motion 
under different gravitational forces on the Earth and the Moon. 
HW #3: Report effects of elasticity, friction, and air resistance 
on motion in one of these labs. 
Week 5: Discuss principle of mathematical and computational 
modeling: new=old+change. Discuss functional (i.e., y= x2) 
and behavioral (i.e., dy= 2x · dx) relationships in tabular, 
formulated, and graphical forms. Discuss the Rate of Change 
(ROC) and the difference between Average & Instantaneous 
ROC. Test #1 (functions, ROC, and forms of representation). 
Week 6: Continue numerical integration with examples by 
hand first and later with Excel. Discuss the role of integration 
step in reducing error and the role of computational power to 
afford smaller steps. HW #4: numerical integration by hand.  
Week 7: Discuss the role of hardware (storage, processing, and 
communication) and software (data locality, memory usage, 
system software, and programming style) on performance and 
accuracy needed for problem solving. Introduce programming 
concepts using Python language. Conduct a midterm exam. 
Week 8: Break 
Week 9: Continue programming discussion with examples in 
Python. Hands-on experience on programming in a computer 
lab. Test #2 (factors affecting computational performance). 
HW #5 (on computer programming).  

Week 10: Review use of multiple tools (IP, Excel, and Python) 
for modeling. Lab: Redo harmonic motion using new = old + 
change computations via Excel and Python. Learn about 
Newton’s law of motion (F=m⋅ dv/dt) as a cause of change in 
velocity & position. Compare IP, Excel & Python results.  
Week 11: Lab: Trajectory of Projectile: Use IP & Excel to 
study 2-dimensional motion. HW #6: Write a Python program 
that computes the trajectory of a rock thrown up at an angle.  
Week 12: Lab: Conservation of Energy & Momentum. 
Discuss potential & kinetic energy of earlier examples. Use IP 
to graph potential and kinetic energies of objects. Examine 
effects of friction and air resistance. 
Week 13: Lab: Orbital motion: Watch videos on orbital motion 
and space explorations. Learn about gravitational force 
F=G·M·m/r2 as a cause of change in position of planets. 
Simulate orbital motion in 2-D using Excel and then Python. 
Week 14: Discuss Kepler’s laws and use IP to simulate 
multiple planets around the Sun. Lab: HW #7 (team project: 
proof of Kepler’s Laws). Introduce agent-based modeling 
using AgentSheets (AS). 
Week 15: AS Lab: Model collective behavior of agents. 
HW#8: Design an AS project. Re-visit HW #1 to improve the 
essay on ‘role of computation’. Review for Final Exam: 
Discuss and review scientific concepts learned. 

 

 

Figure 5: Orbital motion of several planets around the Sun. 
Orbits and periods are shown to prove Kepler’s 3rd Law.  

4.1.1 Programming with Excel 
While IP is a good tool to expose students to many physical 
concepts, computational STEM education needs to move beyond 
just using tools. Our previous experience indicates that students 
need to eventually understand the underlying mechanism of 
simulation and modeling and to flexibly master and apply 
acquired knowledge rather than practice rote memorization of 
scientific laws. In CPS 101, students are required to model a 
physics phenomenon by computer simulation using IP, and then 
solve the same problem via Excel and later by writing a computer 
code using a language such as Python.  

To use Excel for generating position and velocity values of an 
object that is subject to an external force, students need to 
designate three columns in an Excel worksheet to these variables 
as shown in Table 1. The columns were cut into half and put side 
by side for the purpose of fitting the data into a frame for this 

E 
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article. The first row in each column holds variable names and the 
2nd holds initial values (t=0 sec, v = 10 meters/s and x= 0 meters) 
and constants (m= 1 kg and k= 5 Newton/meters). The 3rd row 
holds expressions computed in the following order: t + dt à v + 
(-k⋅x/m)⋅dt à x + v⋅dt where t, v, and x are linked to their own 
values on the previous row; except that the value for “v” in the x 
+ v⋅dt expression is linked to the newly computed value of v (on 
the same row) in order to move forward updated information. The 
expressions in the 3rd row can be copied and pasted to the rest of 
the rows below until t reaches maximum time (T) desired. This is 
where the limitations of Excel come into play. The visible and 
scrollable screen might not accommodate the whole simulation 
range when the integration time step (dt) is very small. If one 
chooses dt to be 0.000001 sec, then one needs 1,000,000 rows to 
do an Excel computation for just only 1 second.  

In two-dimensions, the above equations need to be expanded to 
include position, velocity, and acceleration in additional 
dimensions:  

xnew = xold + vx·dt;     vxnew= vxold + ax·dt; where ax = (x/r) · a,  

ynew = yold + vy·dt;      vynew= vyold + ay·dt; where ay = (y/r) · a, 

and  

r2 = x2 + y2    and v2 =(vx)2 + (vy)2 

Using these algebraic equations along with interplanetary 
acceleration between Earth and the Sun (a =F/m = G·M/r2 
=1.26x1014 N·km2/kg · 1/r2; where G is a Universal Constant and 
M and m are masses of Sun and Earth), we get the orbital track 
seen in Fig. 6. At t=0, we assumed that the Earth’s orbital velocity 
was given by vx=0 and vy= 29.79 km/s and its position was given 
by y=0 and x= 1.50x108 km. What is shown in Fig.6 may not be 
the most accurate track, but qualitatively it is representative of a 
planet’s orbit. Some planets have more elliptically looking orbits. 
The above calculations are given for dt = 5 days, however smaller 
time steps (i.e., dt=1 day) could produce more accurate tracks. 
Again, that is where the limitations of Excel come into play, just 
like the million data points mentioned above. With computer 
programming, these limitations can be overcome. Computations 
with higher resolution and automation need use of programming. 

Figure 6: Orbital tracking of the Earth using Excel. 

4.1.2 Programming with Python 
In the past we used Fortran and C but we have recently switched 
to Python. The switch to Python was based on three major 
reasons, including relative easiness and quickness with learning of 
Python as a computer language, its simple and short constructs, 
and less error-prone coding. Python is a general-purpose, object-
oriented, high-level programming language, which comes with 
extensive standard libraries and supports the integration with other 
languages and tools. It is increasingly used in scientific 
computing, web development, and database operations. Python 
can be learned in a couple of weeks for basic operations; it is 
open-source and platform-independent, and it can be installed on 
almost any computers free of charge. An introduction to basic 
syntax, input/output functions, repetition structures (loops), and 
algorithmic thinking is adequate to carry out programming 
assignments necessary for computing a mathematical or logical 
expression repetitively, recursively, or iteratively. Students can 
write simple loops to compute and generate data points for a 
number of problems listed in the course syllabus including falling 
objects, trajectory of projectile, harmonic motion, and orbital 
motion. Below is a sample algorithm for one-dimensional 
Newtonian motion that can be easily extended to two- and three-
dimensions.  

Input initial position (x), velocity (v), and time (t) 
Input time step (dt), maximum time (T), mass (m) 
While t <=T: 
 Output position (x), velocity (v), and time (t) 
 Compute force F & acceleration a = F/m 
 Compute velocity in x direction v = v + a × dt 
 Compute position in x direction x = x + v × dt  
 Update the time t = t + dt  
End of While Loop 
 

5. RESULTS AND DISCUSSION 
We have used a mix-methods approach [7] to examine the 
context, pedagogy, and the tool set used in computational gen-
education courses. Table 5 and 6 show some of the statistics from 
student surveys. The tables show a multi-year data for each 
course. To examine whether there is any statistical difference 
between 2011 and 2012 responses (due to different instructors, 
pedagogies, or software tools), we computed z-scores assuming a 
normal distribution approximation to these binomial surveys [4]. 
The column p indicates the confidence level that results in each 
row may be different due to a nonrandom effect. Normally, any 
confidence level below 90% is less than significant. Plus, it is 
difficult to infer meaningful results from our research due to small 
sample sizes (20-25 students per sample). However, by 
triangulating these survey results with instructors’ classroom 
observations and student grades, and with experimentation of a 
similar approach with other audiences (K-12 teachers and 
students), we would like to make a few preliminary conclusions.  

Almost all students in the three gen-education courses liked 
project-based learning, which involved design of a game or a 
science experiment. More than 95% of them recommend others to 
take these courses. A significant portion of students (60%-80%) 
thought that modeling improved their understanding of science 
concepts and motivated them to pursue additional courses in 
computing and sciences. Although there are challenges of learning 
multiple fields in a single course, student skills can grow along 
with challenges to provide them an optimum Flow experience 
(Fig. 3). While a sizable number of students thought they did not 
initially have necessary background and skills, they eventually 

Orbital tracking with Excel

-2
00
.0
-1
50
.0
-1
00
.0

-5
0.
0

0.
0

50
.0

10
0.
0
15
0.
0
20
0.
0

-200.0 -150.0 -100.0 -50.0 0.0 50.0 100.0 150.0 200.0

M
ill

io
ns

Millions

x (km)

y 
(k

m
)

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 7



overcame these difficulties through professor’s help, practice, 
project-based learning, and scaffolding. The level of frustration 
has gone down in all courses and this may be due to several 
factors, including the use of more friendly tools, change of 
instructor in CPS 101, and improvements in the way we teach 
them. In 2011, the level of frustration was as high as 32% in CPS 
101 (due to mathematics and programming), yet the percentage of 
students who thought that the new skills and knowledge would 
help them in future courses was also very high. With the change 
from heavy programming and mathematics to the use of more 
friendly tools such as IP and AS, students felt more engaged and 
confident but they did not see a high prospect of using the new 
toolset and interdisciplinary approach in other classes (down from 
96% to 56%). This may be cultural and time needs to pass before 
it settles like the other two courses where the level of frustration is 
low (<10%), desire to take another course on the topic is high 
(70%-80%), and confidence in the later usage of newly learned 
skills is also high (74%-80%).  

Table 5: Survey results from CPS 101. The last column (p) 
shows statistically the confidence level that there is any 
difference between responses in 2011 and 2012 for each row. 
The z scores are calculated based on two proportions [4]. 

Survey Questions (Q) 
Responses are in percentages (%). 

Y E S Difference? 
2011 2012 z p (%) 

1. Recommend this course? 97 94 0.46 35 
2. Like to take another course? 44 63 1.20 78 
3.Modeling improve science learning? 68 82 1.02 70 
4. Like project-based learning? 90 94 0.47 36 
5. Had necessary background? 60 75 1.01 70 
6. Your skills a match for challenges? 78 82 0.32 26 
7. Ever felt frustrated? 32 25 0.49 38 
8.Skills may help you in later classes? 96 56 2.96 99 
9. Changed your major after? 10 13 0.30 24 
 
Table 6: Survey results for CPS 105 and 302. 

Q CPS105 CPS302 
Y E S (%) Difference? Y E S (%) Difference? 

2011 2012 z p(%) 2011 2012 z p (%) 
Q1 100  100 0 0 100 96 1.01 68 
Q2 85 80 0.47 36 50 70 1.44 85 
Q3 78 70 0.64 48 61 83 1.73 92 
Q4 98 100 0.71 52 95 90 0.67 50 
Q5 69 91 1.94 95 88 80 0.77 56 
Q6 80 91 1.10 73 100 92 1.44 85 
Q7 26 7 1.81 93 20 5 1.60 90 
Q8 85 74 0.96 66 89 80 0.88 62 
Q9 6 9 0.40 31 0 4 1.01 69 

 
Classroom observations and attendance records from instructors 
indicate a significant improvement in student behavior and 
participation in hands-on lab activities. While the attendance rate 
in the lecture session in classroom was around 70%, it jumped to 
90% in the computer lab. They seem highly engaged in lab 
activities and involved in practicing different computational tools. 
A different instructor taught the CPS 101 in 2012, and this may 
have impacted the course dynamics. Other more systematic 
changes mentioned before (shift away from programming and 
differential equations) took place before the change of instructors, 
however, we should note that the new instructor (Sounthone 
Vattana; MS in Computational Science-Brockport; and MS in 
Educational Technology-Robert Wesleyan) is a former K-12 
teacher and appears to have pedagogical skills with deep content 

knowledge in mathematics, programming and general science. He 
also teaches the other two gen-education courses. 

Beyond its college-level use as reported above, the C-MST 
approach has been introduced, through teacher training, into 
secondary school classrooms in two partnering school districts 
(Rochester City SD and Brighton Central SD). The content of 
teacher training and its overall impact on teacher retention and 
student achievement are being documented in other publications, 
but here we will briefly mention the surveys on student 
engagement. Majority of the 200 trained teachers agreed that 
using modeling tools (IP, AS, Excel, and GSP) in their classrooms 
increased student engagement. 100% of science and 97% of math 
teachers agreed that C-MST initiative made math and science 
concepts more comprehensible to students. Student reaction to 
modeling (versus traditional techniques) was found to be 97% 
favorable in math and 77% in science classes. 100% of 
technology, 72% of math, and 31% of science teachers reported 
observed improvement in problem solving skills. This order may 
be linked to low reliance and utilization of mathematical and 
computational skills in science courses as a result of limited 
access to computers and possibly lack of available science-related 
modeling examples. However, while science classes utilized 
technology less, in instances where it was utilized, it led to a 
deeper understanding of science topics than it did for math topics 
(83% in science and 76% in math). 

While computational modeling has been shown as an effective 
pedagogy to expose students to science concepts in an incremental 
fashion, by using tools that hide the underlying mathematics and 
science involved in the simulations, it can also motivate them to 
learn computer programming. By using multiple tools (IP, Excel, 
and Python) to solve the same problem, students had a chance to 
weigh advantages of each tool and conclude first-hand that more 
accurate and faster computation of new =old + change for a large 
number of data points will require computer programming. 
Additionally, various programming concepts (variables, loops, 
memory hierarchy, and data types, etc.) are learned in the process. 
For example, to simulate the orbital motion of an object with 
Python, a number of variables are needed to store elapsed time, 
time increment, acceleration, velocity, and position. To predict the 
velocity and position at the next time step, mathematical 
operations are used based on the relationships among acceleration, 
velocity, and position. To find the relations of velocity or position 
with respect to time, a loop is used to perform repeated 
calculations. To ensure correctness, the calculations of 
acceleration, velocity, and position have to be put in sequential 
while logically right order. Finally, in the context of applications, 
it is easy for students to understand why and how to learn 
computer programming. They show more willingness to learn 
computer programming in order to tackle real-world applications.  

A strong link is established between computing and natural 
sciences through the computation of change. For example, change 
in position and in velocity requires computation of acceleration, 
which requires knowledge of the Force. This not only links 
mathematical, computational, and scientific inquiry, it also 
reinforces in an inductive way the ‘learning the fundamentals of 
laws of nature’ and it simplifies the great complexity of the 
universe into a handful of natural laws (gravity, electromagnetism, 
and nuclear interactions) that one can learn in a general science 
course. At the same time, a link between mathematics (numerical 
integration) and science applications is established, which can be 
used both in math courses (in the context of rate of change, 
building functions, and modeling) and in science courses (in the 
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context of computational thinking (CT) as a method of science 
inquiry). The new K-12 learning standards support teaching of CT 
skills as early as the 5th grade (See http://www.corestandards.org/ 
for math and http://www.nextgenscience.org/ for science 
standards). 

6. CONCLUSION 
The practice of teaching introductory computing courses in the 
context of natural sciences (or vice versa) is a promising means of 
enhancing both General Education and the STEM education. 
When computational tools are used, students seem more engaged 
in the class, and their attitude toward learning is more active. 
While science majors get to use simulation tools and computer 
programming to solve science problems, math and computer 
science majors get to establish a link to natural sciences at an 
abstract level, through computation of change caused by natural 
laws, which projects science in a universal and simplistic 
framework. Those with curiosity could then acquire a deeper 
knowledge and pursue additional courses or even a career either in 
mathematics, computing, or natural sciences. About 50% of non-
STEM majors in these reported courses have shown an orientation 
to add STEM to their education; some (40%) through additional 
courses and some (10%) through a degree. We believe that 
solving real world problems by writing computer programs urges 
students to acquire knowledge through scientific inquiry beyond 
memorizing laws of science, encourages them to spawn ideas of 
computational thinking, and fosters them to develop habits of 
scientific thinking.  

A major contribution of computational approach to STEM 
education is that it integrates math, science and computing in a 
single unit, exposes and trains students with multiple skills, which 
are useful in their future careers. While we suggest inclusion of 
computationally oriented general education science courses for all 
college freshmen [11-12], attention to a more fundamental 
concept, computational thinking (CT) at secondary school level is 
also needed as a long-term strategy [25]. A focus on CT could not 
only help improve science and computing education at college 
level but it might also push scientific thinking into mainstream to 
address underlying causes of the rising Category-5 storm in 
nation’s K-12 education [25, 16-17]. Since abstraction is part of a 
CT skillset, through modeling and simulations, students can learn 
not only abstraction skills but also a whole set of other CT skills 
such as algorithmic thinking, decomposing a problem into smaller 
chunks, understanding the computational cost for more accuracy, 
and realizing the need to use a programming language in order to 
handle complexity and increasing number of data points. 

The findings presented here cannot be generalized due to small 
sample size, limited audience, and lack of reliable and valid 
instrumentation to assess knowledge, attitudes, and skills. The 
education research in computing is very new, unlike physics, 
mathematics, and statistics [10]. We need to pay more attention to 
findings of learning science. As outlined in [14], we need to: a) 
draw out and work with the preconceptions and misconceptions of 
learners; b) help them take control of their learning in a 
constructivist environment; c) teach subject matter in depth with 
many examples, and d) employ pedagogical approaches such as 
metacognition, scaffolding, and project-based learning. The roles 
for assessment need to be expanded beyond traditional testing to 
use frequent formative assessment that would help make students’ 
thinking visible to themselves, their peers, and instructors. 
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ABSTRACT 
The Blue Waters Undergraduate Petascale Education Program 
(NSF) sponsors the development of educational modules that help 
students understand computational science and the importance of 
high performance computing. As part of this materials 
development initiative, we developed two modules, "Time after 
Time:  Age- and Stage-Structured Models" and "Probable Cause:  
Modeling with Markov Chains," which develop application 
problems involving transition matrices and provide accompanying 
programs in a variety of systems (C/MPI, C, MATLAB, 
Mathematica). Age- and stage-structured models incorporate the 
probability of an animal passing from one age or stage to the next 
as well as the animal's average reproduction at each age or stage. 
Markov chain models are based on the probability of passing from 
one state to another.  These educational materials follow naturally 
from another Blue Waters module, "Living Links:  Applications 
of Matrix Operations to Population Studies," which provides a 
foundation for the use of matrix operations.  This paper describes 
the two modules and details experiences using the resources in 
classes. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education - Computer Science Education, Curriculum 

General Terms 
Design, Experimentation, Measurement. 

Keywords 
Computational Science, Matrices, Linear Algebra, Educational 
Modules, High-Performance Computing, Petascale, Blue Waters, 
Undergraduate. 

1. INTRODUCTION 
With NSF funding, the Blue Waters Undergraduate Petascale 
Education Program [1] is helping to prepare students and teachers 
to utilize high performance computing (HPC), particularly 
petascale computing, in computational science and engineering 
with the following three initiatives: 
• Professional Development Workshops for undergraduate 

faculty 
• Research Experiences for undergraduates 
• Materials Development by undergraduate faculty for 

undergraduates 
The goal of the Materials Development initiative is "to support 
undergraduate faculty in preparing a diverse community of 
students for petascale computing." 
For this program, the authors developed and class tested the 
computational science related modules "Time after Time:  Age- 
and Stage-Structured Models" and "Probable Cause:  Modeling 
with Markov Chains," which are available at [2] and [3], 
respectively, on the UPEP Curriculum Modules site.  This paper 
describes and discusses the modules and experiences using both in 
the course Modeling Biological Networks and class testing the 
first module in Linear Algebra and a course on Modeling and 
Simulation at Wofford College [4]. 

Several of the students in the classes at Wofford are pursuing an 
Emphasis in Computational Science (ECS). By taking Calculus I, 
Introduction to Programming and Problem Solving (in Python), 
Data Structures (in Python and C++), Modeling and Simulation, 
and Data and Visualization and doing a summer internship 
involving computation in the sciences, Bachelor of Science 
students may obtain an ECS [5].  Matrices are an important data 
structure in numerous computational models, and introducing 
transition matrices and eigenvalues with a variety of applications 
provides motivation to students in mathematics, computer science, 
and the other the sciences as well as in the Emphasis in 
Computational Science. 

2. MODULES 
2.1 Pedagogy 
Prerequisites for the modules "Time after Time:  Age- and Stage-
Structured Models" and "Probable Cause:  Modeling with Markov 
Chains" are minimal, requiring an understanding of matrix 
multiplication and the maturity to read the material but no 
programming or calculus background.  Those who do not know 
how to multiply matrices or how to multiply a matrix times a 
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vector might wish to cover first another Blue Waters module, 
"Living Links:  Applications of Matrix Operations to Population 
Studies," by the same authors [6].  

Students using the modules at Wofford College ranged from first- 
to fourth-year with majors from biology, chemistry, computer 
science, environmental studies, mathematics, physics, and 
undecided. The modules provide the biological background 
necessary to understand the applications; assuming an 
understanding of matrix multiplication, the mathematical 
background needed to complete the exercises and projects; and 
references for further study. Multi-part quick review questions 
throughout (three (3) in "Age- and Stage-Structured" and sixteen 
(16) in "Markov Chains") with answers at the end of the modules 
provide immediate feedback. The modules also have exercises 
(five and three, respectively) for reinforcement and practice and 
project assignments (eight or nine, respectively) for further 
exploration using a computational tool.   
To aid in exploration of the multi-scale aspects of the science and 
the computing process, example solutions involving serial and 
parallel model development accompany the modules.  For an age-
structured model, serial programs are available in MATLAB, 
Mathematica, and C, while HPC programs in C with MPI 
illustrate parallel parameter sweeps and matrix partitioning.  
Bioinformatics programs using Markov models to help locate 
genes are available in MATLAB, C, and C/MPI.  (Blue Waters 
Student Intern Jesse A. Hanley implemented a matrix partitioning 
program, and Intern Whitney E. Sanders developed the parameter 
sweeps and Markov model in C/MPI.)  Several datasets for use in 
projects also accompany the modules.   

2.2 Age- and Stage-Structured Matrices:  
Module Content and Applications 
"Time after Time:  Age- and Stage-Structured Models" considers 
situations that classify individuals in a species by age, such as 
Years 1, 2, and 3, or stage, such as larvae, juvenile, and adult.  
Solutions employ matrices to determine the intrinsic growth rates, 
the proportion of each group in a stable distribution, and how 
sensitive the long-term population growth rate and predicted time 
of extinction are to small changes in parameters.  We can employ 
the latter to determine the best category to target for conservation 
efforts for endangered species and for eradication efforts for pests. 

Figure 1 presents a state diagram for a problem with the states 
denoting ages (Year 1, 2, or 3) of a bird.  The left-pointing arrows 
represent fecundity or reproduction: A Year 2 (ages 1-to-2 years 
old) mother has a mean of five (5) female offspring, while a Year 
3 (ages 2-to-3 years old) mother has four (4) female offspring on 
the average.  The right-pointing arrows indicate survival rates of 
P1 = 15% and P2 = 50% from Year 1 to Year 2 and from Year 2 to 
Year 3, respectively.  The information can be consolidated into a 
matrix, called a Leslie matrix, as follows: 
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The module shows that over time the percentage of eggs/chicks 
stabilizes to 82.06% of the total population, while Year 2 birds 
comprise 12.05% and Year 3 birds are 5.90% of the population.  
Moreover, eventually each age group changes by a factor of λ = 
1.0216 (102.16%) from one year to the next, and this λ is the 
dominant eigenvalue for the matrix. 

Figure 1. State diagram for age-structured problem 
The sensitivity of λ with respect to Pi, (λnew - λ) / (Pi,new - Pi), 
measures the numeric impact on λ of a change in Pi.  For small 
changes in Pi, the module shows that λ is most sensitive to 
changes in survivability of Year 1 birds, P1.  Thus, 
conservationists should probably concentrate their efforts on 
helping eggs and nestlings survive. 

The module also covers a stage-structured model of the Indo-
Pacific lionfish, an invasive and destructive species to reef 
habitats.  Figure 2 illustrates that the model also includes 
probabilities for an animal remaining at the juvenile and adult 
stages.  From this information, we can form a matrix similar to the 
Leslie matrix, called a Lefkovitch matrix, as follows: 
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Module material and a project explore intrinsic grow rate, stable 
population distribution, and sensitivity analysis to make 
recommendations for controlling this menace. 

Figure 2. State diagram for stage-structured problem 

2.3 Markov Chains:  Module Content and 
Applications 
The module "Probable Cause:  Modeling with Markov Chains" 
also considers biological problems whose solutions involve 
transition matrices. Markov chain models (MCM) are based on 
the probability of passing from one state to another.  Developing 
the necessary probability theory and biological background, the 
module solves a variety of problems using MCM from predicting 
the behavior of animals to locating genes in the DNA.    

One problem considers a simplified system where the monkey is 
only in two states, eating (E) and resting/sleeping (R).  Figure 3 
enumerates the probabilities of moving between states, and the 
following transition matrix captures this data: 
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As time passes, the module shows that the proportions approach 
1/3 and 2/3 for eating and resting, respectively. 

Figure 3. State diagram for Markov chain problem 
We can employ such Markov models in a variety of problems in 
bioinformatics, which deals with the organization of biological 
data, such as in databases, and the analysis of such data.  In a 
similar fashion to the example of changes of state for the monkey, 
a Markov chain can model the mutation process in DNA.   

Moreover, the GeneMark algorithm employs Markov models to 
help locate genes in a DNA sequence. In many organisms, the 
sequence of bases CG appears less that we would expect from 
random occurrences of C and G independently.  However, small 
regions, called CpG islands, upstream (before) of many genes are 
rich in the sequence CG; so we can employ CpG islands to locate 
genes. The module body develops a simplified 1st-order Markov 
model using the probabilities of bases and pairs of bases, while a 
project considers the more involved GeneMark 5th-order Markov 
algorithm employing probabilities involving quintets and sextets 
of bases. 

2.4 High Performance Computing in Modules 
Following the aims of UPEP, both modules have example 
programs and sections that focus on high performance computing 
(HPC) related to their particular applications.  The section 
"Parameter Sweeping with High Performance Computing" in the 
age-structured module discusses the utility of parameter sweeping, 
or executing a model for each element in a set (often a large set) 
of parameters or of collections of parameters.  As stated in the 
module, "The results can help the modeler obtain a better overall 
picture of the model's behavior, determine the relationships 
among the variables, find variables to which the model is most 
sensitive, find ranges where small variations in parameters cause 
large output changes, locate particular parameter values that 
satisfy certain criteria, and ascertain variables that might be 
eliminated to reduce model complexity" [7].  Besides being very 
useful, such parameter sweeping is embarrassingly parallel. 

An algorithm for finding genes discussed in the Markov chains 
module is also embarrassingly parallel. Using a particular Markov 
model to score every subsequence of 200 bases, high scores 
indicate a greater likelihood that the subsequence is in a CpG 
island and that a gene is to follow.  Multiple processes can 
evaluate scores for different subsequences, speeding the task 
significantly.  Besides this specific example, a section on "High 
Performance Computing and Bioinformatics" discusses the utility 
of high-performance computing in a variety of other applications 
in bioinformatics. 

2.5 Blue Waters UPEP Internship 
Involvement 
During the summer of 2010 and following academic year, student 
Jesse Hanley held a Blue Waters UPEP Internship to develop 
parallel versions of programs using C and MPI to support "Age- 
and Stage-Structured Models" and other modules.  The following 
year, Blue Waters intern Whitney Sanders continued Jesse's 
efforts with HPC programs for both modules discussed in this 
paper.  Their programs accompany the modules on the NCSI 

UPEP Curriculum Modules site [2].  Jesse's is planning to work in 
the HPC field, and both students will be pursuing graduate work. 

2.6 Exercises and Answers in Modules 
After the body of educational material, each module contains a 
section with multi-part exercises, while a subsequent section has 
answers to selected parts.  For example, the section in the "Age- 
and Stage-Structure Models" includes five exercises with one 
problem from the research literature involving loggerhead sea 
turtles.   

2.7 Projects 
After the exercises, each module presents eight or nine large 
projects for students to complete as individuals or with a team.  
Instructions indicate to develop sequential or high performance 
computing versions.  
"Age- and Stage-Structure Models" has projects based on the 
research literature including ones on Uinta ground squirrels, skate, 
red-cockaded woodpeckers, lionfish, Pacific salmon, Furbish’s 
lousewort, and cane toads in Australia.  An additional project 
involves determining and graphing the speedup factor versus the 
number of processes for various parameter sweeps. 

The projects in the "Markov Chains" module include problems on 
the shapes of epithelium cells, succession in a forest, the dynamics 
of cattle fecal shedding of a pathogen, development of the BLAST 
algorithm for non-gapping local alignment of DNA segments, 
determination using the GeneMark algorithm of the most likely 
candidates for subsequences being in CpG islands, the Stepping 
Stone Model useful in genetics, and DNA sequence evolution. 

3. TESTING AND EVALUATION 

3.1 Class Testing of Age- and Stage-
Structured Module 
"Age- and Stage-Structured Models" was class tested in three 
courses, Modeling and Simulation in fall of 2011, Modeling 
Biological Networks in January of 2012, and two sections of 
Linear Algebra in spring of 2012.  In the first class, two Emphasis 
in Computational Science (ECS) students successfully 
implemented a system dynamics model for the age-based example 
in the text.   

Four biology majors and one triple major in chemistry, 
mathematics, and computer science considered the module in 
greater depth in a January interim on Modeling Biological 
Networks taught by the authors.  During the interim, students take 
only one course not in the usual curriculum.  Each day, students 
attended class for three hours, where they made presentations and 
worked on projects, and then continued developing projects 
between classes. Four of the students were freshmen, while one 
was a sophomore; and three of the students are pursuing the ECS.  
Before considering "Age- and Stage-Structured Models," the class 
worked through two MATLAB tutorials and the module "Living 
Links:  Applications of Matrix Operations to Population Studies" 
to gain a background in matrices [6].  Students read each module 
and worked exercises before class and took a short quiz on the 
quick review questions in class.  Over a three-day period, each 
student individually or with a partner developed and presented an 
age-structured and a stage-structured project.  In all, the class 
successfully completed six different models using MATLAB. 

Also reading the material before class, forty-one (41) students in 
two sections of Linear Algebra taught by Dr. Ted Monroe studied 
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age-structured models one day the last week of classes in Spring, 
2012.  Students in this course, typically sophomores, come from a 
variety of majors and minors including mathematics, computer 
science, biology, chemistry, and physics.  During class, the 
professor focused more on the mathematics and less on the 
biology for about 30 minutes. Examining the bird population 
diagram in Figure 1, he ensured that the students understood the 
system of equations, notation, and the matrix-vector equation. He 
reminded the class that the system is equivalent to a matrix-vector 
equation and that that they had looked at linear difference 
equations previously. Unlike problems where populations 
stabilized, he noted that this population problem led to growth 
over time. Also, the professor pointed out the population growth 
equations in annual and exponential form.  However, the focus of 
the class was on the connection of the model to eigenvalues and 
eigenvectors.   

3.2 Evaluation of Age- and Stage-Structured 
Module 
Immediately after using the material, students in the interim on 
Modeling Biological networks completed a questionnaire about 
the module.  The questionnaires had the students rate the 
following statements from 1 (strongly disagree) to 5 (strongly 
agree):  
• I understood the science applications in the module. 
• I understood the mathematics in the module. 
• The module was readable. 

• The Quick Review Questions helped me understand the 
material. 

• The exercises helped me understand the material. 

Means of the four responses were 4.5, 4.0, 4.25, 4.75, and 4.5, 
respectively. 

In Linear Algebra, the professor had the students complete the 
questionnaire at the beginning and the end of class.  Excluding 
students who had not read the material in the "before" category, 
Table 1 summarizes the results for questions 1-3.  Unfortunately, 
the page with answers to the Quick Review Questions was not 
included with their materials, reducing their effectiveness.  
Moreover, students were not required to work exercises before 
class.  Thus, particularly for the "Before" column, answers to the 
first three questions are more meaningful than those for the last 
two questions. 

Table 1.  Means, 1 (strongly disagree) to 5 (strongly agree) 

Question Before After 
I understood the science 
applications in the module. 

 
4.22 

 
4.45 

I understood the 
mathematics in the module. 

 
4.24 

 
4.74 

 
The module was readable. 

 
4.16 

 
4.40 

 

Two elaborated on the above scores, "I enjoyed reading about 
applications," and "The mathematics in this module was easy to 
understand and the questions helped to reinforce what I had read."   

Some of the comments in the questionnaire given at the beginning 
of class on what the student liked best about the module follow: 
"The module was easy and enjoyable to read.  The information on 

the turtles was really interesting."  "I liked how it was able to 
apply to real-life situations."  "Instantly visualizable, elegantly 
simple, easy to understand what each structure/value represented."  
"I liked that the math we are learning now can be applied to a real-
world problem to help understand endangered species." "I found it 
interesting that the example used actually converges to a specific 
percentage ratio."  "Quick review questions and examples."  "The 
introduction was very engaging and the mathematics was 
displayed very clearly and concisely."  "I liked the subject matter 
and the mathematical applications."  "I enjoyed the complete 
description of everything discussed and its relevance to science."  
"The module was very readable.  The science applications were 
well explained, and the examples were helpful."  "I liked that the 
module was easy to follow and the applications were clear."  "The 
mathematical procedures were very easy to follow.  I also liked 
the real-life applications of this kind of math."  "The module was 
set up very well.  The introduction and topic were interesting."  "I 
thought the explanations of the science was interesting so it made 
following the math easier."  "I enjoyed the idea of linking 
mathematical models to explain and possibly solve world issues I 
appreciate personally as an environmental enthusiast."  "I liked 
the science applications.  I'm a science person in general, and I 
also enjoy math, so putting the two together makes me happy."  
"The projected population growth rate [using the dominant 
eigenvalue] was very interesting."  "I liked the biology aspect of 
it!  (I'm a biology major, and really like how math works with 
living systems.)" 

The few students who indicated any difficulties with the module 
were challenged by the mathematics, particularly the concept of 
"eigenvalue."  However, on the questionnaire at the end of class, 
they indicated they now understood the concept and how to 
compute the eigenvalues.  One student found typographical errors 
in the module, which the authors have corrected. 

3.3 Class Testing of Markov Chains Module 
After completing the "Age- and Stage-Structured Models," for 
three days the Modeling Biological Networks interim class turned 
its attention to "Markov Chains."  Reading the module before 
class and completing two exercises, the group checked the 
exercises in class and had a quiz on selected quick review 
questions.  Students in pairs or individually developed and 
presented two models each with the class completing a total of 
five projects. 

3.4 Evaluation of Markov Chains Module 
With the same questionnaire as for "Age- and Stage-Structured 
Models," averages on the questions (4 responses) were 5.0, 4.0, 
4.5, 4.5, and 4.25, indicating that the most challenge came from 
the mathematics in the module.  Some responses to a question on 
what the student found most difficult in the module reinforced this 
perception: "Figuring out the math with the transition matrices 
and the length-normalized log-odds score," and "I didn’t fully 
understand some of things in the module until we talked about 
them in class the next day (i.e., transition matrices and ultimate 
distributions)." 

However, other remarks on what the student liked best included 
the following:  "It was easy to understand, and it gave everything 
to the reader that the reader needed to know." "Great explanations 
of calculating probabilities."  "The definitions/rules sections 
always help me understand the material in these modules. Having 
answers to the QRQ's is also helpful for understanding the 
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content."  "I enjoyed the quantity of helpful exercise and quick 
review problems." 

Some of the additional comments were as follows:  "I have always 
found probabilities to be difficult, but this module helped me 
understand them much better."  "I like that all of the material ties 
into real-life problems. It makes everything much more interesting 
and sometimes more understandable as well."  "I found this 
module very helpful. I was fully able to quickly grasp the 
information provided in each section and use the knowledge to 
work the review questions."  "This is a very well thought out, 
organized, and helpful module."   

One suggestion was,  "Include answers to the exercises."  In 
response, the authors added a section of answers to selected 
exercise parts. 

4. CONCLUSION 
"Time after Time:  Age- and Stage-Structured Models" and 
"Probable Cause:  Modeling with Markov Chains" and their 
associated programs in MATLAB, Mathematica, and C/MPI are 
available on the UPEP Curriculum Modules website [2, 3].  Class 
testing of the modules in Modeling Biological Networks, 
Modeling and Simulation, and Linear Algebra helped refine the 
modules and showed their utility in introducing applications of 
matrices, eigenvalues, parameter sweeping, and HPC concepts. 
High questionnaire scores and enthusiastic comments from 
undergraduates in three different types of courses verify the 
conclusion that "Time after Time:  Age- and Stage-Structured 
Models" and "Probable Cause:  Modeling with Markov Chains" 
can be an effective educational modules in a variety of classes, 
levels, and settings. 
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ABSTRACT 

This paper explores the scope of educational resources 
found on the web along with teaching and learning materials that 
can assist in integrating computational thinking into the 
classroom. Specifically, this paper focuses on finding and 
describing existing learning environments that integrate 
computational thinking into a STEM discipline. This survey 
provides initial steps towards the creation of a comprehensive 
list of STEM-based resources, on the web, which can help 
teachers to supplement and support their decision making when 
creating STEM curriculum. 
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1. INTRODUCTION 

Computing is increasingly used to extend the capabilities and 
therefore findings of scientific research.  For example, 
computing has enabled scientific breakthroughs by facilitating 
researchers through computerized instrumentation and detailed 
simulations to generate, visualize, and understand large amounts 
of scientific data. In tandem with the pervasive role of 
computing in science and engineering, there is a growing 
recognition of the importance of computational thinking.  

Computational thinking [1] has been recognized as a collection 
of understandings and skills required for new generations of 
students who are proficient not only at using tools, but also at 
creating them and understanding the nature and implication of 
that creation [2].  

For the scope of this study we refer to computational thinking as 
the combination of disciplinary knowledge (e.g., physics, 
biology, nanotechnology) [3] with thought processes (e.g., 
engineering thinking, quantitative reasoning, algorithmic 
thinking, systems thinking) involved in formulating problems 
and their solutions so that the solutions are represented in a form 
that can be effectively analyzed by an information-processing 
agent [4]. This requires using a set of concepts, such as 

abstraction, recursion, and iteration, to process and analyze data, 
and to create real and virtual artifacts [5, 6].  

2. BACKGROUND 

Learning science, science education and cyberlearning research 
and funding have resulted in high-quality internet-based learning 
resources that can now be re-purposed to emphasize 
computational thinking. In conjunction, there has been an 
increase of teachers who use online resources for planning and 
executing their learning activities [7, 8].  While educational 
digital libraries exists, teachers frequently turn to the internet to 
find learning resources [9]. Though it is known that these 
teachers are searching for resources on the web, it is unclear 
what criteria they are using to choose resources for use in the 
classroom. 

In a study focused on investigating educators’ expectations and 
requirements for the design of educational digital collections for 
classroom use [10], the authors found that in addition to the 
quality of the resource, these users expected additional 
contextual information in the resource.  Similarly, a different 
study that focused on a case study of how teachers find and use 
online resources [11], the authors identified that teachers 
interested in finding these resources were seeking on them 
characteristics such as age-appropriateness, accuracy and 
contemporariness [11]. 

This paper explores the landscape and characteristics of STEM-
based computing educational resources found on the web 
together with teaching and learning materials that can facilitate 
the integration of computational thinking into the classroom. 
Specifically, this paper describes strategies and instructional 
media of existing learning environments that can integrate 
computational thinking into a STEM discipline together with 
lesson plans, activities and other curricula organized by specific 
grade levels. The guiding research question for this study is: 

What are the characteristics of web based resources that 
fall under the definition or are identified as resources that 
can promote STEM-based computational thinking? 

3. METHODS 

We followed the approach created by Bagiati and colleagues 
[12] to identify resources that can be described as promoting 
computational thinking in STEM disciplines.  We started by 
identifying a list of resources mentioned on national reports and 
in portals that compile resources related to computational 
thinking. We then made a distinction among portals. Portals 
strictly created for research purposes were not included in this 
study. Portals with resources created by the same contributor 
were considered a single source and were only listed once within 
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this study. Portals housing resources from different contributors 
and organizations were considered on a per-resource basis. Each 
website found within a portal was documented and noted as 
having been found in that particular portal. Any resource in the 
portal not pertaining to STEM was discarded from this study. 
Websites, within a given portal, which were found to be 
abandoned or for which the URL was found to no longer 
existing, were also discarded. 

The next step was to identify additional resources on the web.  
These resources were found using a combination of the 
following search terms in Google: “computational thinking,” 
“science,” “technology,” “engineering,” “math,” “STEM 
resources,” “simulations,” “lessons,” “supplement,” “K-12,” 
“animations,” and “teaching.” Once all available resources 
through these searches were identified, we proceeded with their 
analysis. Our analysis started with identifying the primary 
instructional methods, instructional planning methods, scope of 
resources and evidence of research (e.g., publications, 
evaluations, feedback, testimonials or surveys) for each 
resource. 

To identify the instructional method we identified whether the 
resources included simulations, games, programming 
environments, videos, images, animations, lectures, or books. 
We also noted whether instructional planning resources were 
available.  Instructional planning resources are those 
supplemental materials consisting of motivation, orientation, 
information, application or evaluation activities [13]. 
Instructional planning resources were separated into lesson 
plans, tutorials, learning modules, activities, sample code, 
curriculum links, assignments and homework. 

The procedure used in identifying the existence of research, 
instructional planning methods, instructional methods and 
program scope, consisted of applying the three click rule [14]. 
The three click rule refers to a heuristic applied to the design of 
the navigation for usable websites that argues that a user of a 
website should be able to find any information with no more 
than three mouse clicks [14]. Under this heuristic we assumed 
that users such as teachers may become frustrated if they cannot 
find the information within the three clicks, thus the name of 
“the three click rule.” The complete search and analysis was 
performed for a second time to ensure accuracy and consistency. 

4. ANALYSIS AND RESULTS  

Results from this study identified 64 resources that were 
classified as STEM-based computational educational resources 
on the web, with 55 resources that can integrate computational 
thinking into K-12 classrooms to support learning in other 
STEM disciplines. Of the 55 resources, 31 were found to contain 
science materials, 22 contained technology materials, 14 
contained engineering materials and 23 contained math 
materials.  

As described earlier, the identified resources were then 
classified according to the primary instructional method.  Table 
1 depicts the number of resources found for each instructional 
method. Resources utilizing multiple instructional methods were 
also noted. These categories are described below. 

Simulations refer to working representations of reality 
describing a model that may require some input parameters and 
then are executed by the learners. Programming environments 
refer to computing environments that embed a programming 
language mostly used for creating interactive stories and games. 

Games refer to electronic and interactive media played by means 
of manipulating images. 

Videos were defined as the reproduction of visual images. 
Illustrations refer to static pictures and drawings while 
animations refer to a sequence of images to create the illusion of 
movement. Lectures were defined as notes or presentations. 
Books refer to electronic compendium of written materials. For 
the purpose of this study, books were also defined to include 
resources with a significant amount of text. 

 
TABLE I 

TYPE OF INSTRUCTIONAL METHOD 
Instructional Method Number of Resources 

Simulations 25 
Videos 13 
Games 12 
Books 10 
Animations 9 
Illustrations 9 
Programming environment 8 
Lectures 4 

 
As shown in Table 1, eight different types of instructional 
methods were identified.   

We also identified whether each of the resources included any 
supplemental material that could serve as an instructional 
planning resource.  As shown in Table 2, there were eight types 
of planning resources identified.  Supplemental materials are 
used by educators as a blueprint or guidance to teach and 
incorporate the primary instructional tools. 

Lesson plans refer to structured goal and objectives provided to 
teachers for a specific day’s topic.  Learning modules are 
organized collections of content that can range from a single 
lesson (i.e., a week-long activity with the goal of learning a 
single concept) to an entire curriculum (sets of week-long 
activities encompassing interrelated concepts, principles, 
procedures and problem-solving for a specific course or grade 
level). Learning modules often contain multiple instructional 
methods. In this case, a tool would be listed as a Learning 
Module as well as the other categories under which it would fall.  

TABLE II 
TYPE OF INSTRUCTIONAL PLANNING RESOURCE  

Instructional Method Number of Resources 
Assessments 26 
Activities 26 
Lesson plans 23 
Curriculum link 17 
Learning modules 14 
Tutorials 13 
Sample code 8 
Homework assignments 1 

 
Tutorials refer to instructions, in text or video form, which 
provide a teacher with a guide on how to integrate a particular 
resource into the classroom or how to use a particular resource.  

Activities refer to in-class interactions designed to teach students 
through doing. Activities are generally short term and cover a 
single concept. Sample code refers to code provided, by the 
resource or by site contributors, for a particular programing 
language. The goal of sample code is to teach by example. 
Curriculum links refer to ties made from the resource to a 
standard and accepted curriculum. Assessments refer to quizzes 
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and tests that are used to gauge learners’ progress to an extent. 
Assessments are generally monitored by the resource and results 
are provided to either the teacher or target audience. Homework 
assignments refer to work that is given outside of the classroom 
to reinforce concepts learned in the classroom. 

TABLE III 
RESOURCES BY GRADE LEVEL 

Grade Level Number of Resources 
Pre-K 4 
K 40 
1 40 
2 41 
3 43 
4 43 
5 44 
6 45 
7 44 
8 41 
9 48 
10 46 
11 44 
12 44 
College 18 
All 16 
Varies 10 
Not available 2 
 
Another measurement taken was the target audience for each 
resource. The target audience is defined as the student grade 
level for which a given resource was created. Table 3 shows the 
number of resources available for each grade level. Each number 
in the first column of the table represents its corresponding 
grade level. The category “K” lists number of resources found 
for kindergarten levels. The category “C” represents resources 
targeted for college level students. The category “A” represents 
resources that are created for all ages and not for a specific grade 
level. “NA” category refers to resources that did not have grade 
level information available. The “V” category is for resources 
whose grade levels depend on the sub-resources. 

Figure 1 shows the resources found to be used by audiences at 
multiple grade levels.  

 
Figure 1. Frequency of STEM resources by grade level 

 
Additionally we conducted searches aiming to identify available 
evidence of research or evaluation for each of the resources. 
Evidence of research is defined as some form of proof that the 
resource is effective or has been tested in some way. Table IV 
below divides these resources into publications, testimonials, 
evaluations, surveys and feedback. 

TABLE IV 
TYPES OF EVIDENCE OF RESEARCH 

Instructional Method Number of Resources 
Publications 21 
Feedback 5 
Testimonials 4 
Evaluations 3 
Surveys 2 
  

 
Publications provide formal evidence of the efficacy of a 
resource. Publications take the form of journals, conference 
papers, books and articles. Testimonials are responses from 
users provided by the resource. Evaluations are feedback in the 
form of pre-established criteria. Evaluations can be done by 
teachers, users or outside sources. Surveys are informal 
feedback in the form of multiple-choice questions asked to users 
about the product. Feedback is defined as reactions or concerns 
of users to a particular resource. There is either an email address 
provided for which feedback can be given or there is a specific 
link for feedback.  

Our criteria in the analysis were that all forms of resource 
evidence must be available on the resource website or linked to 
the resource website. For instance, if a resource has no 
publications but provides an HTML link to a website that has 
used its resource for publications; the resource receives credit 
for publications. Resources that contained multiple forms of 
evidence were listed under each type of evidence under which 
they fell. Approximately 31 of the total of resources had no 
visible evidence of research or evaluation at all. 

The last analysis concerned resource scope. Short resources 
were defined as those resources which were meant to be done 
within a single sitting. This means that, if used in class, it would 
take at most an hour or two of class time. Moderate resources 
are those resources which take more than a single class period, 
but no more than a week. Long resources are those resources 
that take an extended amount of time. They often include an 
entire curriculum. It was found that 44 resources included short 
resources, 22 included moderate and 16 included long.  

Appendix A lists all resources identified through in this paper as 
well as all of the associated statistics as previously discussed. 

5.  DISCUSSION 

This descriptive study provides an in depth view of 
(a) available web-based STEM computational resources, 
(b) primary tools used to teach STEM and (c) supplemental 
instructional tools that can be used by teachers to integrate the 
primary instructional tools. From the graphs and statistics listed 
in this paper, some trends can be suggested. 

As an observational note, independent STEM resources are 
very difficult to find. Though there are several resource portals, 
many of them have either the same information or outdated and 
abandoned resources. Resources not indexed in portals were 
difficult to find and had to be encountered through the right 
combination of search terms. This led to an abundance of 
unusable resources to be discarded. Central, up to date, resource 
hubs are needed to make finding computational thinking 
resources easier for teachers. 

Results from Figure 1 suggest that web resources are 
available, fairly consistently from K-12 grade levels. It is worth 
noting that there was a spike in resources for the 9-10 grade 
levels. Some resources specifically targeted for these grade 
levels were found particularly in math.  
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Educational resources for Pre-K, College, all ages and a 
varying audience are shown to be lacking. A potential 
explanation for this trend may be due to the broad nature of the 
age appropriateness of resources for each of the audiences. K-12 
audiences have more focused curriculums with very specific 
standards that are more easily followed by resources. Audiences 
such as college professors and students, however, contain too 
many sub-audiences with varying curricula. Another possible 
explanation for the lack of resources outside of the K-12 
audiences is the breadth of STEM disciplines outside of these. 

From highest to lowest, the instances of STEM resources 
were as follows: science (31), math (23), technology (22) and 
engineering (14).   

We expected the greatest quantity of resources to occur in 
science. This is due to the broadness of the topic. It is worth 
noting that most science resources were focused on individual 
areas of science. For instance, BioQuest is an excellent example 
focusing largely on biological sciences. 

Upon first examination of technology and math, it appears 
that they are nearly on par. However, when broken down by 
grade level, it is evident that more math resources were available 
to each grade than technology resources. Around 30% of 
resources at each grade level, within K-12, were math resources 
whereas only about 17% were technology resources. This shows 
that, although there are several technology resources at our 
disposal, not many of them cover the full spectrum for K-12 
audiences.  

The lack of engineering resources is not unexpected. 
Engineering is a more advanced discipline that largely isn’t 
taught in K-12.  Engineering is also a difficult category to define 
without the use of science, technology and math. 

Most of the resources found combine multiple branches of 
STEM. For instance, out of the 14 engineering resources found 
in this study, only 4 had solely engineering resources. It is 
believed that this is largely due to (a) the ambiguity of the 
understanding of the term engineering and lack of preeminence 
of traditional stipulated standards at the K-12 level and (b) the 
multidisciplinary nature and reliance of engineering on science, 
technology and math.  

There are 38 more occurrences of supplementary resources 
than there are of the primary tools. Further analysis shows that 
simulations are the only significant source of primary 
instructional tools. Though there is an abundance of simulations 
at 25 total occurrences, the other primary instructional tools are 
somewhat lacking. In the future, we will look further into the 
other primary instructional tools to understand this gap. It is 
possible that this gap exists due to the nature of STEM. 

Even though simulations were the most prevalent primary 
resources, they were the least explained. There were hardly any 
tutorials or guides on how to use the simulations. Many of these 
simulations were not intuitive. This leaves teachers or even 
learners often guessing its functionality. 

Learning objectives were removed from the scope of this 
study due to our inability to easily find them. Very few 
resources had learning objectives listed. Most of the objectives 
that were found were based on the resource as a whole, not the 
individual units within each resource. There were few sites that 
listed the objectives based on each learning unit; however, these 
were not enough to be examined in this study. Learning 
objectives was not the only category that was removed from the 
findings.  
 

6. CONCLUSION AND IMPLICATIONS 

Research studies have reported that searching and verifying 
online learning resources poses a challenge to teachers already 
pressed for time [15]. As a result of this investigation we concur 
that independent STEM-based computational resources are very 
difficult to find. Though there are several resource portals, many 
of them have either the same information or outdated and 
abandoned resources. Resources not indexed in portals are 
difficult to find and had to be encountered through the right 
combination of search terms. This led to an abundance of 
unusable resources that had to be discarded. 

Similarly, over half (31/55) of the total usable resources did 
not provide at least one of the categories used in this paper. This 
suggests that (a) STEM web resources may not be user friendly 
or (b) STEM resources are not well supported. All of the 
information that could be found within three clicks was added to 
this paper. Anything beyond three clicks was not included 
because it may exceed most users' tolerance for searching. This 
observation goes hand-in-hand with the lack of instructions for 
simulations. If resources are to be effective they must be well 
explained and must contain all necessary information within a 
reasonable number of clicks. 

Research has also identified that many educators limit their 
information seeking primarily within search engines and do not 
take full advantage of educational-related digital libraries 
specifically designed and crated for specific teaching and 
learning needs [15].  While digital libraries can solve the 
problem of finding these resources, there is still the issue of 
additional characteristics users are looking for in each of them.  
As more and more of these resources move to digital libraries, 
instructional designers and educational researchers should keep 
in mind that educators are not only looking for a collection of 
resources, but also additional well-documented contextual 
information (e.g., age-appropriateness) and evidence of their 
high quality as well (e.g., accuracy and scientific evidence).  
This study provides initial steps towards that goal by providing a 
list of STEM-based computational resources on the web that 
includes useful additional information, which can help teachers 
and parents make decisions and eventually integrate these 
resources easily for educational purposes. 
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Appendix:
 

Resource	  Name	   Website	  (URL)	   Grade	  
Level	  

STEM	  
field	  

Instructional	  
Planning	  
Resource	  

Instructional	  
Method	  

Evidence	  
Of	  

Research	  

Length	  Of	  
Resource	  

CyberChase	   http://pbskids.org/cyberchase
/	  

Pre-‐K-‐
12	   M	   A	   G,	  V	   P,E	   Short	  

eNLVM	  
http://enlvm.usu.edu/ma/nav
/bb_school.jsp?sid=emready&
coid=all	  

Pre-‐K-‐
12	   M	   LP,	  LM,	  A	   	  	   	  	   Short	  	  

Teacher	  Vision	   http://www.teachervision.fen.
com/	  

Pre-‐K-‐
12	   SM	   LP,	  A,	  AS	   B,	  I,	  G,	  V	   	  	   Short	  -‐	  

Moderate	  

eGFI	   http://teachers.egfi-‐k12.org/	   K-‐12	   E	   LP,	  A	   	  	   	  	   Short	  

iCoachMath.com	   http://www.icoachmath.com/
static/AboutUs.aspx	   K-‐12	   M	   CL,	  AS,	  T	   	  	   	  	   Short	  

Let's	  Go	  Learn	   http://letsgolearn.com/	   K-‐12	   M	   AS,	  A,	  CL,	  LM	   V,G	   	  	   Short	  -‐	  
Moderate	  

Mathalicious	   http://www.mathalicious.com
/	   K-‐12	   M	   LP,	  CL,	  LM	   V,I,	  B	   SU	   Short	  -‐	  

Moderate	  

BrainPop	   http://www.brainpop.com	   K-‐12	   S	   LP,	  LM,	  T,	  A,	  CL	   G,	  V,	  A	   P	   Short	  

Froguts	   http://www.froguts.com/	   K-‐12	   S	   LM,	  AS	   S	   P	   Short	  

HHMI's	  
BioInteractive	  

http://www.hhmi.org/biointe
ractive/stemcells/animations.
html	  

K-‐12	   S	   LP,	  LM,	  A	   S,	  V,	  L,	  A	   	  	   Short	  

illumin	   http://illumin.usc.edu/	   K-‐12	   S	   LP	   I,	  B	   	  	   Moderate	  -‐	  
Long	  

United	  States	  
Department	  of	  
Agriculture:	  
Agriculture	  in	  the	  
Classroom	  

http://www.agclassroom.org/	   K-‐12	   S	   LP,	  LM,	  A	   S,	  G,	  V	   	  	   Short	  -‐	  
Moderate	  

Engineering	  Is	  
Elementary	  

http://www.mos.org/eie/20_u
nit.php	   K-‐12	   STEM	   LP	  ,LM,	  CL,	  AS	   	  	   P,	  E	   Short	  
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Resource	  Name	   Website	  (URL)	   Grade	  
Level	  

STEM	  
field	  

Instructional	  
Planning	  
Resource	  

Instructional	  
Method	  

Evidence	  
Of	  

Research	  

Length	  
Of	  

Resource	  

Engineering	  
Pathway	  

http://www.engineeringpath
way.com/ep/k12/k12_curricu
lar_res.jhtml;jsessionid=KOMD
U3BKENICZABAVRSSFEQ	  

K-‐12	   STEM	   	   	  
NOT	  

APPLICAB
LE	  

	  

Lesson	  Planet	   http://www.lessonplanet.com
/lesson-‐plans/science	   K-‐12	   STEM	   LP,	  LM,	  A,	  CL	   	   F,A	   Short	  -‐	  

Moderate	  
NASA's	  Simulation-‐
Based	  Aerospace	  
Engineering	  
Teacher	  

Professional	  
Development	  
Program	  

https://simaero.rti.org/pages/
Coursework.aspx	   K-‐12	   STEM	   	   	   NA	   	  

Teach	  Engineering	   http://www.teachengineering.
org/	   K-‐12	   STEM	   LP,	  A,	  AS	   I	   P	   Short	  -‐	  

Moderate	  

teachers'	  domain	  
http://www.teachersdomain.o
rg/browse/?fq_hierarchy=k12.

sci.engin	  
K-‐12	   STEM	   CL,	  LM,	  A,	  LP	   V,	  I	   	   Short	  

Know	  It	  All	   http://www.knowitall.org/nas
a/ksnn/index.html	   K-‐12	   STM	   LM,	  A	   S,	  I	   F	   Short	  

Intel	  Computer	  
Clubhouse	  
Network	  

http://www.computerclubhou
se.org/	   K-‐12	   T	   In	  Person	  

Instruction	   PE	   NA	   	  

Concord	  
Consortium	   http://www.concord.org/	   K-‐12,	  

College	   S	   A,	  LM	   S	   P,A	   Short	  

PhET	   http://phet.colorado.edu/en/s
imulations/category/by-‐level	  

K-‐12,	  
College	   SM	   A,	  AS,	  HW	   S,	  A,	  L	   P	   Short	  

ROBOLAB	  @	  CEEO	   http://www.ceeo.tufts.edu/ro
bolabatceeo/	  

K-‐12,	  
College	   TE	   LP,	  T,	  A,	  SC,	  CL,	  

LM	   PE	   A	   Short	  -‐	  
Long	  

Computer	  Science	  
Teachers	  
Association	  

http://csta.acm.org/	  
K-‐12,	  
college,	  
industry	  

T	   	   	   P	  
Full	  

Curriculu
m	  

Women	  @	  SCS	   http://women.cs.cmu.edu/	   K-‐12,	  
Women	   T	   CL	   I	   	   	  

Kid's	  Field	  Day	   http://www.ksre.ksu.edu/fiel
dday/kids/	   K-‐5	   S	   LM	   I,	  S	   	   Short	  

Mad	  Dog	  Math	   http://www.maddogmath.com
/about.html	   K-‐6	   M	   A,AS,	  LM	   	   E	   Short	  -‐	  

Long	  
The	  K-‐8	  

Aeronautics	  
Internet	  Textbook	  

http://wings.avkids.com/	   K-‐8	   SE	   LP,	  A	   I	   	   Short	  

Explore	  Leanring	   www.explorelearning.com	   3-‐12	   SM	   LP,	  CL	   S,	  G	   P	   Short	  

Scratch	   scratch.mit.edu	   3-‐12	   T	   T	   S,	  PE,	  V	   P	   Moderate	  

Computer	  Science	  
in	  a	  Box	  

http://www.ncwit.org/unplug
ged	   5-‐9	   T	   	   	   	  

Full	  
Curriculu

m	  

WISE	   http://wise.berkeley.edu/	   5-‐12	   S	   LP,	  LM,	  T,	  AS	   S,	  A	   P,A	   Short	  -‐	  
Moderate	  

EcoScience	  Works	   www.fbr.org/swksweb/esw.ht
ml	   6-‐8	   S	   LP,	  AS,	  A,	  CL,	  LM	   S	   P	   Long	  

Engineer	  Your	  Life	   http://www.engineeryourlife.
org/	  

6-‐8,	  
Girls	   E	   	   V	   	   	  

sciencecourseware
.org	  

http://nemo.sciencecoursewa
re.org/	  

6-‐12,	  
college	   S	   AS,T,	  CL,	  LM	   S,	  V	   T,A	   Short	  

Stock	  Trak	   http://www.stocktrak.com/	   6-‐12	   SM	   	   S	   	   Long	  
Mathematics	  for	  
the	  Digital	  Age	  and	  
Programming	  in	  

Python	  

http://www.skylit.com/matha
ndpython.html	  

9-‐12,	  
college	   M	   	   B	   	   Long	  
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Level	  

STEM	  
field	  
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Of	  

Research	  

Length	  
Of	  
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DNA	  Learning	  

Center	   http://www.dnalc.org/about/	   9-‐12,	  
college	   S	   A	   S,	  A	   AR	   Short	  -‐	  

Long	  

Math	  Open	  
Reference	  

http://www.mathopenref.com
/index.html	   10	   M	   AS,	  LM	   I,	  B	   T	   Short	  

EDICS	   http://ocw.mit.edu/ans7870/
resources/edics/index.htm	   College	   E	   	   S,	  A,	  L,	  B	   	   Long	  

Statistics	  and	  
Visualization	  for	  
Data	  Analysis	  and	  

Inference	  

http://ocw.mit.edu/resources
/res-‐9-‐0002-‐statistics-‐and-‐
visualization-‐for-‐data-‐
analysis-‐and-‐inference-‐
january-‐iap-‐2009/	  

College	   TE	   	   L	   F	   Long	  

MathWorks	  

http://www.mathworks.com/
company/events/webinars/w
bnr56249.html?id=56249&p1
=869881405&p2=869881423	  

College	   EM	   T	   V,S,	  PE	   P	   Short	  -‐	  
Moderate	  

Evolution	  of	  
Physical	  

Oceanography	  

http://ocw.mit.edu/resources
/res-‐12-‐000-‐evolution-‐of-‐
physical-‐oceanography-‐

spring-‐2007/	  
College	   S	   	   B	   	   Long	  

Agripedia	   http://oir.fod.msu.edu/OIR/Bi
oAg/bioag_gen.asp	   College	   SE	   CL	   	   	   	  

DDA	  Medical	  
Simulations	  

http://www.zeroonezero.com
/medical/simulations/training

-‐simulations/medical-‐
technology-‐simulation.html	  

College	   ST	   A	   S,	  A	   P	   NA	  

Open	  Sees	   http://opensees.berkeley.edu/
OpenSees/home/about.php	   College	   STEM	   SC	   S,	  PE	   	   Short	  

Quizzes	  with	  a	  
THEME	  

http://csta.acm.org/Resources
/sub/ResourceFiles/BruceMax

wellThemeQuizzes.pdf	  
College	   T	   SC,	  AS	   PE	   	   Short	  

TryEngineering	   http://www.tryengineering.or
g/	   A	   E	   LP,	  CL	   G	   SU	   Short	  -‐	  

Moderate	  
Topology	  and	  

Geometry	  Software	  
http://www.geometrygames.o

rg/	   A	   M	   T	   G	   	   Short	  

Discovery:	  
Dinosaur	  Central	  

http://dsc.discovery.com/dino
saurs/dinosaur-‐
games/dinosaur-‐

viewer/dinosaur-‐viewer.html	  
A	   S	   LM	   S,	  A,	  G	   	   Short	  

Nobel	  Prize:	  All	  
Educational	  
Productions	  

http://www.nobelprize.org/e
ducational/all_productions.ht

ml	  
A	   S	   LP,	  LM	   G	   	   Short	  

Google:	  Exploring	  
Computational	  

Thinking:	  Lessons	  
and	  Examples	  

http://www.google.com/edu/
computational-‐

thinking/lessons.html	  
A	   STEM	   LP,	  SC,	  A,	  CL	   	   	   Short	  -‐	  

Moderate	  

Alice	   http://www.alice.org/	   A	   T	   T,	  LP,	  A,	  SC,	  CL,	  
LM	   S,	  PE,	  B	   P,T	   Short	  -‐	  

Long	  
Beginner	  
Developer	  

Learning	  Center	  

http://msdn.microsoft.com/en
-‐us/beginner/default.aspx	   A	   T	   SC,	  T	   V,	  B	   	   Short	  

Computational	  
Fairy	  Tales	  

http://computationaltales.blo
gspot.com/p/posts-‐by-‐

topic.html	  
A	   T	   	   B	   F	   Short	  

Computer	  Science	  
Unplugged	   http://csunplugged.com/	   A	   T	   A,CL	   V	   P	   Long	  

Furby	  Autopsy	   http://www.phobe.com/furby
/	   A	   T	   T,	  A	   	   	   Moderate	  

Phrogram	   http://phrogram.com/content
/about.aspx	   A	   T	   SC,	  LP,	  T	   S,	  PE	   T	   Short	  -‐	  

Long	  

GameMaker	  (by	  
YoYo	  Games)	   http://www.yoyogames.com/	   A	   TE	   T,	  A,	  SC	   S,	  PE,	  G	   	   Short-‐Long	  
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Resource	  Name	   Website	  (URL)	   Grade	  
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STEM	  
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Planning	  
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Evidence	  
Of	  
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Of	  
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NCWIT	   http://www.ncwit.org/work.p
ractices.html	  

A,	  
Women	   T	   	   	   	   	  

BioQuest	   http://bioquest.org/	   V	   S	   A,	  LM,	  CL	   S	   P	   Short	  -‐	  
Moderate	  

Molecular	  
Workbench	  

http://mw.concord.org/model
er/	   V	   ST	   LM	   S,	  A	   	   Short	  -‐	  

Long	  

Discovery	  
Education	  

http://stem.discoveryeducatio
n.com/	   V	   STEM	   LP,	  CL,	  LM	   V,	  G	   	   Short	  -‐	  

Long	  

Interactivate	   http://www.shodor.org/intera
ctivate/activities/	   V	   STM	   LM,	  AS	   S	   F	   Short	  

Grade Level: A=All; V=Varies NA=Not Available 
Instructional Planning Resource: LP=Lesson Plans; T=Tutorials; A=Activities; SC=Sample Code; CL=Curriculum Link; AS=Assessments; 
HW=Homework Assignments; LM=Learning Module 
Instructional Method: S=Simulation; PE=Programming Environment; G=Games; V=Videos; I=Illustrations/Pictures; A=Animations; L=Lectures; 
B=Books 
Evidence of Research: P=Publications (Journals and Papers); A=Articles (magazines and online); T=Testimonials; SU=Surveys ; F=Feedback; NA=Not 
Available; AR=Annual Reports; E=Evaluations 
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ABSTRACT 

Undergraduate teaching that focuses on student-driven research, 
mentored by research active faculty, can have a powerful effect in 
bringing relevance and cohesiveness to a department’s programs. 
We describe and discuss such a program in computational 
mathematics, and the effects this program has had on the students, 
the faculty, the department and the university.  

Keywords 

Computational science; scientific computing; undergraduate 
research; interdisciplinary research; transformation.  
1. INTRODUCTION 
We describe aspects of a transformation of a mathematics 
department that was initiated by a focus on computational science 
training for undergraduates and interdisciplinary research in 
computational science. National Science Foundation (NSF) 
support for this training initiative was instrumental in focusing 
undergraduate teaching around computational science and 
scientific computing, and also in assisting the development of a 
vision of the department as a major research and teaching over a 
period of four years. A significant feature of these changes is that 
teaching and research in scientific computing have become 
department in scientific computing. Execution of this vision led to 
some substantive changes in department structure and functioning 
progressively integrated one with the other, to the extent that 

motivated students have manifold opportunities to carry out 
significant research efforts from their earliest years, and to be 
mentored by research active faculty and graduate students.                                                        

2. DEPARTMENTAL DEVELOPMENT 
OVER 4 YEARS 
In Spring 2008 the Department of Mathematics at the University 
of Massachusetts Dartmouth had two active researchers in 
numerical analysis, and one scholar in applied linear algebra, as 
its entire computational mathematics group. Additionally the 
Department had no graduate degree (M.S. or Ph.D.) in 
mathematics. By Summer 2008 the Department had lost one of 
the active researchers in numerical analysis. Fast-forward four 
years to Fall 2012 and the Department had the following features: 

• A five-year NSF funded training program ($789,000) to 
train mathematics undergraduates in computational 
science, beginning September 2008. 

• Seven active researchers in scientific computing, with a 
focus on numerical methods for solving partial 
differential equations. Their areas span finite-elements 
methods, radial basis functions, spectral methods, multi-
scale methods, time discretizations, model order 
reduction, and uncertainty quantification. This group 
comprises two Full Professors one Associate Professor, 
and four Assistant Professors. 

• Two Full Professors engaged in computational 
mathematics/scientific computing education research 
and scholarship. 

• New computationally oriented mathematics courses, 
including a sophomore level course on scientific 
computing. 
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• Establishment of a University Office of Undergraduate 
Research. One of the authors was Foundation Director 
of this new Office, and CSUMS-RESCUE is an 
exemplar program for the Office. 

• A Ph.D. program in Computational Science and 
Engineering. 

• Over $2.5 million in competitive research, training or 
equipment grants over a four year period, in which 
Department of Mathematics faculty were PI or CoPI. 

• A lead role in a University Center for Scientific 
Computing and Visualization Research, under the 
leadership of one of the authors (Gottlieb), involving 
partners from engineering, oceanography, and physics.  

• A high performance computing facility, built through a 
partnership with mathematics and physics, and grants 
from the NSF and the Air Force Office of Scientific 
Research. 

• A proposal for a BS/MS interdisciplinary program in 
Data Science initiated by one of the authors, sponsored 
by the Department of Mathematics, and supported by 
the Dean of Engineering and Applied Science and the 
University administration. 

• A strong fit with the University strategic plan: the 
Provost and Chancellor now support Scientific 
Computing as a major research and training area for the 
University. 

3. THE NSF COMPUTATIONAL SCIENCE 
TRAINING GRANT 
Four faculty obtained an NSF training grant, CSUMS-RESCUE, 
for computational science for mathematics undergraduates. Before 
discussing the impact of this grant on the Department of 
Mathematics, we take a look at the structure and function of the 
undergraduate research workshops that became the visible face of 
the computational science program. Following that, in the next 
section, we examine in more detail the effect of this training grant 
on the structure and functioning of the Department and the 
University that led, in four years, to the developments described in 
the previous section. 

3.1 Structure of Undergraduate Research 
Workshops 
From the outset we conceived the CSUMS-RESCUE program as 
consisting of undergraduate research workshops, constructed as 
practical research sessions, in which students are inducted and 
mentored in research in computational science. We accept 
students into the program on the recommendation of instructors in 
other courses, and students at all academic levels, Freshman 
through Senior, are represented. Mathematics majors who work 
on a research project in a group with at least one other student are 
currently paid (approximately $18 per hour) for a maximum of 
two regular semesters and one summer. Summer sessions 
typically last 10 weeks with 20 hours a week. Mathematics 
majors, students from other disciplines, and those who wish to 
work singly, are free to participate at any time without receiving 
payment. We require all participating students to have a faculty 
research mentor. Student mentors might be from another 
department – physics or engineering typically, outside of 
mathematics.  

Students work in groups on a single project, or related projects. 
They are required to present short progress reports every few 
weeks. The final assessment is based on individual write-ups of 
projects, progress talks and a final presentation. 

A faculty member is instructor of record for the research 
workshop during semester (Fall and Spring) and typically two or 
more other faculty, often research advisers, will be present during 
the workshop meeting times. One of the authors was the first 
instructor for the research workshops in Spring 2009 and has 
played a major role in their format and structure since then. 
Faculty who are not instructors of record do not receive not 
compensation during Fall and Spring. During the Summer session, 
faculty are allocated specific weeks in which they run the 
workshop and they are compensated at their regular salary levels 
during those weeks. 

3.1.1 A marketplace of ideas 
The format of the seminar is that of a seminar/workshop in which 
students regularly present accounts of ongoing research in 
presentations normally lasting about 10-15 minutes. This length of 
presentation was chosen as being representative of times allotted 
to talks at conferences, so giving students valuable practice in 
concise and informative presentations. The in-class presentations 
are commonly followed by questions and suggestions from other 
student and attendant faculty. It is during these presentations that 
students learn to appreciate the interdisciplinary nature of 
computational mathematics and scientific computation, commonly 
offering suggestions for new lines of investigation, new 
computational techniques, or new ideas for consideration. The 
cohesion of the cohort is built in part by the regular interchange of 
results, approaches, and ideas. Additionally, students commonly 
work on their research projects during the computational seminar 
time, and will regularly walk around and join with other students 
to see what they are doing, and offer help and suggestions. The 
atmosphere of the seminar is best described as a market place of 
ideas and techniques where faculty present work to build an 
atmosphere of interest and respect across widely differing 
computational mathematics projects. Seeking common ground, 
and finding computational techniques and analyses that extend 
across these different applications has been a major goal of the 
seminar, and students quickly buy into this interdisciplinary 
approach. 

3.2 Recruitment 
Recruitment of students into the research workshop was initially 
through recommendations from instructors in other courses, 
especially early calculus courses. A group of three faculty - the PI 
and a Co-PI for the NSF grant, as well as the Director of 
Consulting & Data Management for the project – formed the 
admissions committee. When an instructor identified a promising 
student in their class they would talk with one or more members 
of the admissions committee who would most commonly 
interview the recommend student and ascertain their interests as 
well as existing or likely research advisers. When the program had 
been running for some semesters it was not uncommon for 
students to hear about it by word of mouth and come looking for a 
member of the admissions committee to see if the experience was 
right for them. Considerable effort was put into recruiting under-
represented minorities in computational science, particularly 
women and African-American students.  
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3.3 Building a Cohort 
The CSUMS program was designed to maximize the opportunities 
for peer support and collaboration. To this end, our students 
present their work to each other and become involved in each 
other’s projects. The reliance on MATLAB, Mathematica, 
Python, and Latex requires our students to work together and 
collaborate with each other, and the relaxed atmosphere in the 
computer classroom encourages the students to talk, ask, answer, 
and generally communicate well. Some of our students have done 
their best work in pairs. For example in the 2009 Summer 
workshop, two students worked together on coordinate metrology, 
two on collocation methods, aliasing, and the Runge phenomenon, 
with another student joining them for parts that overlapped with 
her research interests in wavelets and Fourier analysis. Two 
students formed a strong team, centered on their interest in 
cryptography, and presented a joint paper at the SIAM annual 
meeting. In addition, another student and a graduate student spent 
a lot of time on the implementation of MPI and parallel Python on 
the computers in the room. We consistently try to match up 
students to work on the same or similar topics, but this does not 
always match their interests and research style. Students talk to 
each other, learn from each other, challenge and advise, write 
summaries and code together and debug each other’s work. It is 
difficult to describe how we measure success in forming a 
cohesive cohort. One indication is the fact that our students decide 
to take the same sections of courses, they prefer to stick together 
and they discuss their projects outside of the CSUMS 
environment. Another indicator of success is the atmosphere in 
the computer room. It is a dynamic, exciting, collaborative 
atmosphere, which is fun to be in. The faculty like the atmosphere 
so much that they often hang out there and have impromptu 
meetings and talks. 

3.4 Enrolment Numbers 
The National Science Foundation supported research training 
workshops in computational science began Spring 2009 and will 
continue under this funding model until Summer 2013. To date, 
70 students have participated in these workshops, several of them 
for 3 semesters, and a few returning, unpaid, for another semester. 
Table 1, below, lists the enrolment numbers from Spring 2009 
through Fall 2012. 

 
Table 1. Research training workshop enrolments 

Semester # students  Semester # students 

Spring 2009 15  Summer 
2010 

11 

Summer 
2009 

12  Fall 2010 11 

Fall 2009 18  Spring 2011 16 

Spring 2010 8  Summer 
2011 

11 

Fall 2011 12  Fall 2012 8 

Spring 2012 9  Spring 2013 16 

Summer 
2012 

8  Summer 
2013 

9 

3.5 Conference Participation 
Funding from the NSF has meant that funded students are able to 
travel, at no cost to themselves, to regional and national 

conferences and to participate in those conferences as active 
participants, presenting posters on their research, or delivering 
talks or refereed papers, or as interested observers. 

Each April students are strongly encouraged to present posters or 
talks at both the Massachusetts Statewide Undergraduate 
Research Conference at the University of Massachusetts Amherst, 
and at the University of Massachusetts Dartmouth Sigma Xi 
Exhibition. Additionally, students participating in the Summer 
research workshops are encouraged to attend and, where possible, 
participate through poster presentations or talks in the annual 
conference of the Society for Industrial and Applied Mathematics 
(SIAM). Students were also strongly encouraged to participate in 
local, national and international meetings and conferences. Some 
details are shown below in Table 2. 

Table 2. Number of students attending Summer conferences 
Year Summer Conference #students 

2009 5th  MIT Conference on Computational 
Fluid and Solid Mechanics 

12 

 SIAM Annual Meeting, Denver, CO 4 + 1 grad 

2010 Northeast Section of the Mathematical 
Association of America, Salve Regina 
University, Newport, RI, 

8 + 1 grad 

2010 SIAM Annual Meeting, Pittsburgh, PA, 9 + 1 grad 

2011 NSF-CBMS Radial Basis Function 
Conference, UMass Dartmouth, Fall 
River, MA 

11 

 7th International Congress on Industrial 
and Applied Mathematics, Vancouver, 
BC, Canada 

9 

2012 SIAM Annual Meeting, Minneapolis, 
MN 

10 

2013 SIAM Annual Meeting, San Diego, 
California, USA. 

9 

 
3.6 The Summer Experience 
The Summer research workshops were more intensive than those 
during Fall and Spring semesters. Students meet 12:00 PM – 5:00 
PM Monday-Thursday for 10 weeks during the Summer. This 
intensive experience has proved most helpful in introducing 
students to the research experience and mentoring them in their 
first steps in research. The semester classes were held Tuesdays 
and Thursdays for 75 minutes per class, for a total of 15 weeks.  
Not only were the students in Summer getting 5 times the in-class 
research exposure, they were also getting it in more concentrated 
form. As a result, we found that students who began research 
experiences in computational mathematics in the Summer 
generally stuck with their research projects better than students 
who began in the Fall or Spring semesters. 

3.7 Effect on Students 
The question of how an intensive and sustained research 
experience for undergraduates affects individual students has been 
tackled in several studies. Kardash [1] reports that an 
undergraduate research experience can enhance skills 
differentially; Seymour et al. [2] report, in a study of 
undergraduate science research, that an overwhelming majority of 
participants experienced positive gains, including areas such as: 
“thinking and working like a scientist; clarification/confirmation 
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of career plans (including graduate school); and enhanced 
career/graduate school preparation (9%)”. Hunter et al. [3] found 
that in relation to undergraduate scientific research, faculty 
focused on gains related to apprenticeship in scientific research 
while students focused more on skills development. 

3.7.1 Surveys 
A Likert attitude survey was administered to participating students 
toward the end of the spring 2009 semester. Significant are the 
questions with a high (>1) or low (<-1) z-score. We infer from 
answers to questions with a high or low z-score, that students, on 
average: 

• liked having external speakers; 
• found it helpful to be with a group of students from 

different backgrounds; 
• learned a lot about their chose research topics by being 

part of the CSUMS cohort; 
• found the faculty who attended the seminar to be helpful 

and appreciated the style of interaction; 
• learned a lot about computation and programming; 
• felt comfortable approaching faculty to advise them; 
• found seminar presentations by students to be 

important;  
• agreed with the emphasis on MATLAB; 
• did not want student talks restricted to 10 minutes; 
• felt that students with less than high GPAs should also 

be recruited to the program; 
• were comfortable with giving external presentations; 
• did not find presenting stressful; 
• appreciated the diversity of interests of student 

participants. 
This survey provides evidence that the cohort structure of the 
program is a beneficial feature. 
A 2010 survey of students indicated that students rate giving in-
class presentations positively, scoring 4.35 on a 5 point scale, 
ranging from Very Negative to Very Positive, when asked: 
“Please rate your overall experience of talking in class. My 
overall experience of giving in-class talks is that it has been, for 
me personally: [Very Negative through Very Positive] ” 
Comments included: 

• This greatly improved my confidence in public 
speaking. 

• I have gained valuable experience for speaking in class. 
I have learned from the CSUMS group on how to better 
my presentations. 

• Great feedback. Excellent direction from Professors and 
Students alike. 

• Personally, I get very nervous giving talks, but with 
each presentation it does seem easier, and when you 
know your research well, talks can be a very good way 
of getting feedback. Talks also make you rethink and 
understand your work better, in order to allow the 
audience to understand. 

• Although nerve-racking at first, class presentations 
helped make in the long run. It improved my public 
speaking skills, but also when explaining the material it 
really let me know what I needed to re visit to get a 
better understanding. Plus it was a good way to see what 
everyone else was working on, and learn some new 
things. 

• For me, all the presentations and talk helped me to 
improve my presentation skill for my later profession. 
Feedback is always very helpful and a lot of the 

questions asked really help me understand my projects 
even better. 

3.8 Productive Outcomes 
A significant effect on participating students has been a 
realization that research, unlike course-work, is often messy, with 
numerous backtracks and changes of direction. Students have 
come to realize that their professors and mentors do not always 
know everything and that learning through research is a 
partnership. Faculty members, for their part, have been willing to 
trust students, even those with relatively modest achievements in 
mathematics, to find their way through a research problem with 
advice and mentoring. A very telling example of this is a young 
man who worked on fitting normal inverse Gaussian distributions 
to distributions of percentage obesity by U.S. county for the years 
2004-2009. His mathematics achievements prior to this were 
modest. Yet, motivated by the research topic he chose, and 
mentored and assisted by two faculty members, he learned how to 
practically implement maximum likelihood methods for 
complicated parametric distributions, and to use those to say 
something statistically important about the data. With the two 
faculty members, this student is in the process of writing up his 
research for publication. Other, more mathematically talented 
students have written professional research papers with their 
faculty mentors, and others have been stimulated to seek summer 
research experiences elsewhere, following their CSUMS-
RESCUE experiences.  Some, who went on to quantitative 
research environments, have written to us to say how important 
were the technical skills they learned during their time in the 
computational science research workshops. These skills included 
programming skills – MATLAB and Python particularly – data 
analysis skills and statistics more generally, linear algebra, writing 
in LaTeX and Beamer, and presentation skills. 

3.9 Less Productive Outcomes 
Not all student experiences in the CSUMS-RESCUE program 
were as positive as the faculty would have liked them to be. Some 
of the issues that arose over the period the program has been 
funded by NSF include: 

• Students who, despite being paid, did not engage with 
their research topics. Such students were more likely to 
have been admitted to the program as part of a group, 
and agreed to the project as part of that group, without 
being fully motivated to carry out research. 

• Students who consistently did not listen carefully to 
other student presentations, either working on a 
computer or idly staring out a window. 

• Some highly mathematically talented students, who see 
their mathematical career in teaching, are not amenable 
to thinking computationally about mathematical 
problems and generally do not like programming. 

• Students who, despite heroic efforts on the part of 
participating faculty, just were not able to show the 
necessary technical ability, skills, or attitude to carry out 
computational science research projects.  

This last point has several aspects to it, and requires further study 
and elucidation, in our view. While all faculty are delighted to 
find exceptionally talented students who soar when exposed to a 
research environment, we have an educational mission to 
productively educate all students, and a belief that undergraduate 
research can be empowering for a majority of students, and can 
and should be integrated into the undergraduate curriculum, in 
line with a 1989 NSF report [4]. 
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Additionally, one of us (Davis) tried unsuccessfully for several 
summers to run computational science training workshops for 
local high school teachers. The work of Jacobs et al [5] has 
recently come to our attention, and the programs described there 
may be helpful in this regard.  
 

4. EFFECT OF THE COMPUTATIONAL 
SCIENCE TRAINING GRANT ON THE 
DEPARTMENT AND THE UNIVERSITY 
4.1 Effect on the Department 
4.1.1 New Faculty 
The NSF computational science training grant played a significant 
role in focusing the entire Department on computational 
mathematics and computational science. In the Fall of 2008 two 
new appointments were made in numerical analysis at the 
Assistant Professor level. This brought to three the number of 
active researchers in numerical analysis. Since then new tenure-
track faculty appointments have all been in the area of 
computational mathematics, with 3 additional faculty appointed as 
of 2012. Additionally, another faculty member changed her 
research from commutative algebra to computational applied 
mathematics, and obtained promotion to Full Professor on the 
basis of her new research. 

4.1.2 External Review 
An AQAD external review of the Department of Mathematics was 
conducted in 2009. The reviewers commented on the CSUMS-
RESCUE program as follows:  

 
“A most notable, very recent development in this area has 

been the Research in Scientific Computing in Undergraduate 
Education (RESCUE) project … It would be hard to overstate the 
positive impact of this activity. The major concrete outcomes have 
been a program of undergraduate student research projects and a 
seminar course in which students present the results of their 
projects. These provide excellent vehicles for obtaining "hands-
on" experience applying modern mathematical and computational 
methods to real-world problems and making presentations on the 
results. During our visit, we attended a seminar session during 
which several students gave presentations about their research 
projects. We were very impressed by the timely mathematical 
content and societal relevance of the projects presented, as well as 
the overall polish of the presentations. In a later meeting with a 
group of students, most of whom participated in RESCUE, we 
heard strong words of praise and appreciation for the program. 
Students liked working on projects that interested them, enjoyed 
the close working relationships with faculty advisors, and 
appreciated the funding (up to 10 hours of work per week) 
provided by the grant to participate in the project. (One student 
said that the funding allowed her to quit her second part-time job.) 
We also observed that RESCUE appears to involve many faculty 
members, including a number who were not originally involved in 
the RESCUE grant proposal. Indeed, seven faculty members meet 
every other week to work together on this project. Our summary 
opinion is that the RESCUE project has become a centerpiece of 
the department’s programs that appeals to both students and 
faculty and that is helping greatly to add cohesiveness and 
relevance to the department’s programs.” 
 

4.1.3 Research Advisers 
With only two exceptions, faculty in the Department of 
Mathematics, have been research advisers to students in the 
computational science program. As faculty increased in numbers, 
at least six faculty were actively involved in semester and 
Summer workshops – advising students, overseeing their work 
and mentoring them through the research process.   
Many students were interested in research topics for which the 
principal, often sole, adviser was a faculty member in Engineering 
or Physics. This had an effect of bringing faculty in Engineering, 
Mathematics and Physics with a computational science interest 
closer together. Faculty from Engineering Departments and 
Physics gave computationally oriented talks to undergraduate 
students. Faculty in Mathematics gave talks on software 
development to the undergraduate students, to which faculty from 
other Departments occasionally attended. Gradually, a spirit of 
cooperation over research advising, more general research 
projects, and attendance at seminars in other Departments became 
common. Undergraduate students in the computational science 
program are expected and encouraged to attend research 
presentations from speakers from outside the University.  
4.1.4 New and Modified Courses 
In 2007 one of the authors (Hausknecht) introduced a course on 
Scientific Programming as an upper level course. For the early 
versions of the course he used Java, Octave and TEMATH [6]. He 
learned about Visual Python from an ICTCM talk he attended, 
and switched to Python for the following reasons: 

• The potential of Visual Python to graphically illustrate 
ideas of computational mathematics; 

• Many mathematicians and scientists were using Python 
as an open source replacement for MATLAB; 

• Python can be used for general computing including 
gluing together programs written in FORTRAN and C; 

•  Many people find Python easier to learn than other 
languages.  

One of the authors was also motivated by the Department's shift to 
numerical/applied mathematics, which became more focused with 
the advent of the CSUMS-RESCUE program.  
After trialing for several semesters at the upper level the course on 
Scientific Computing has now been institutionalized as a 
sophomore level offering for all mathematics students. The course 
description includes: 
“Calculus-based programming covering conditionals, loops, 
arrays, file I/O, libraries, data types, and operating system 
commands. This course provides a project driven introduction to 
programming using a selection of mathematics programming 
tools, scripting languages, and traditional languages …” 
Calculus 2 is a pre-requisite for the Scientific Programming 
course, and either Calculus 3, Differential Equations, or Linear 
Algebra is a co-requisite. The purpose of these pre- and co-
requisites is to restrict enrolment in this sophomore level course to 
students with a strong enough mathematical background, and 
continuing study in mathematics, to be able to cope with the 
scientific examples used in the course. 
To a large degree this course in Scientific Programming fulfills 
the mathematics major requirements for a computing course, and 
is one that is more clearly directed to mathematics majors. 
Recently the Department of Physics has decided to use this course 
as a preferred training for students in programming that is more 
closely aligned to physics majors.  
Additionally, several courses including differential equations, 
mathematical modeling, numerical analysis, and mathematical 
statistics have been revised to include a computational emphasis. 
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In Spring 2012 one of us (Heryudono) designed and taught a 
graduate level course in High Performance computing, using 
MATLAB as a high level language to access a high performance 
computer cluster. The experiences of Shiflet & Shiflet [7] indicate 
that such a course could also be accessible to undergraduates. 

4.2 Effect on the University 
The CSUMS-RESCUE solidified ties for faculty particularly in 
Engineering Departments, Mathematics, and Physics, with some 
input from Biology and Chemistry.  Faculty from different 
Departments talked more about research, including research plans. 
An atmosphere developed in which collaboration seemed not only 
possible but genuinely desirable. An issue that had been on the 
mind of one of the authors (Gottlieb) for some time now seemed 
eminently possible, and so the Scientific Computing Group [8] 
was born which led very rapidly to University approval for a 
Center for Scientific Computing and Visualization Research, with 
very strong support and input from the Dean of Engineering and 
Applied Science. A result of this growth is the alignment of the 
Department of Mathematics with the University strategic plan in 
which computational mathematics and scientific computing more 
generally, are a central part of that plan.   
 

5. CONCLUSIONS 
An embryonic computational mathematics group was in danger of 
slipping away without a plan and vision for the future. Faculty 
worked on the CSUMS-RESCUE training grant which, as the 
Department’s external reviewers stated: “… has become a 
centerpiece of the department’s programs that appeals to both 
students and faculty and that is helping greatly to add 
cohesiveness and relevance to the department’s programs.” That 
cohesiveness and relevance picked up steam through a focused 
faculty recruitment plan, the establishment of a Center for 
Scientific Computing and Visualization Research, a Ph.D. 
program, establishment of a University Office of Undergraduate 
Research, developments in Data Science through a proposed 
BS/MS, and marked improvement in competitive research and 
training grants.  
Research and teaching in the Department are now more integrated 
than they were four years ago. Students who participate in the 
research training program are in regular contact with research 
active faculty and graduate students. The number of students 
participating in the computational science research program in a 
given semester is a relatively small percentage of the total number 
of mathematics majors. However, students can participate in the 
research program any time from the second semester of their 
Freshman year (after completing Calculus 1) up to their Senior 
year, students have a total of 10 semesters (including summers) in 
which to participate. This means the program has impacted a 
significant percentage of mathematics majors to date. Teaching 
mathematics, for almost all tenured and tenure/track faculty has 
become more focused on computation and on research 
opportunities for students.  
The computational science research training program is 
institutionalized in the Department. How strong student 
participation will be once NSF funding is no longer available 
remains to be seen.  Establishment of an Office of Undergraduate 

Research in the University has lead to a fund-raising effort for 
undergraduate research in general, and a focus on the importance 
of undergraduate research in the curriculum for which the 
CSUMS-RESCUE program is an exemplar. The establishment of 
a Ph.D. program in Computational Science and Engineering, a 
Center for Scientific Computing and Visualization Research, and 
a planned Data Science BS/MS program, have all extended and 
solidified the opportunities for undergraduate students to become 
deeply involved in serious scientific research in computational 
science as part of their normal undergraduate experience.  
. 
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ABSTRACT 
Massively Parallel Monte Carlo, an in-house computer code 

available at http://code.google.com/p/mpmc/, has been 

successfully utilized to simulate interactions between gas phase 

sorbates and various metal-organic materials. In this regard, 

calculations involving polarizability were found to be critical, and 

computationally expensive. Although GPGPU routines have 

increased the speed of these calculations immensely, in its 

original state, the program was only able to leverage a GPU’s 

power on small systems. In order to study larger and evermore 

complex systems, the program model was modified such that 

limitations related to system size were relaxed while performance 

was either increased or maintained. In this project, parallel 

programming techniques learned from the Blue Waters 

Undergraduate Petascale Education Program were employed to 

increase the efficiency and expand the utility of this code. 
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1. INTRODUCTION 
Metal-Organic Frameworks (MOFs) are highly porous, crystalline 

materials characterized by inorganic clusters, or nodes, connected 

via organic linkers. The linking molecules are roughly linear and 

force a relatively high level of space between the inorganic nodes. 

Consequently, these materials are remarkable in their high surface 

areas, which suggest great opportunities for applications such as 

gas storage via physisorptive processes. The ability to selectively 

control pore size, polarity and placement of functional groups on 

the linkers provides further opportunity for the engineering of 

materials suited for specific separations or catalytic activity. In 

order to rationally design such materials, it is desirable to 

understand how they work on a molecular level. For example, it 

would be useful to know how exactly how and why each node, 

linker or functional group’s place within the MOF improves or 

retards the process of interest. Additionally, the identification of 

non-existent MOFs with useful properties, or the identification of 

useful, overlooked properties on existent MOFs, is another widely 

held aim.  

 

To that end, accurate, efficient simulation of MOF materials is an 

area of active research. A program developed in-house, Massively 

Parallel Monte Carlo (MPMC), has demonstrated its effectiveness 

in MOF-centric and related simulations [1-3]. This program has 

been successfully employed to generate sorption isotherms for 

MOFs with high fidelity to experiment [1]. Crucial to the 

accuracy of such isotherms is a careful accounting of the 

polarization energy of the MOF, and, unfortunately, this task has 

proven to be a computational bottleneck [4]. Early versions of 

MPMC had a limited ability to utilize GPGPUs to perform these 

calculations. Although a significant performance boost was 

realized, the system size was constrained by the amount of shared 

memory on the card, effectively limiting the simulations to 

approximately 2000 atoms on the available hardware (a number 

only suitable for simulation of smaller MOF systems). 

 

2. BACKGROUND 
Polarization calculations in MPMC are conducted using the 

Thole-Applequist model [5, 6]. This model assigns each atomic 

site a point dipole whose interactions with all the other dipoles of 

the system are dictated by many-body polarization equations. 

Using a set of training molecules, a 3x3 polarizability tensor is 

calculated for each site. Then, in a static electric field, each 

dipole,  𝜇 , is thus represented by the product of the calculated 

polarizability tensor, α, and the field vector at that point, �⃗⃗�𝑠𝑡𝑎𝑡: 
 

𝜇 = 𝛼�⃗⃗�𝑠𝑡𝑎𝑡 (1) 
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In this model, the dipole for a molecule is then treated as a 

collection of N atomic-point dipoles, which are summed to give 

the net dipole for the set [4]: 

 

𝜇𝑚𝑜𝑙 =∑𝜇𝑖

𝑁

𝑖

= ∑𝛼𝑖

𝑁

𝑖

�⃗⃗�𝑖
𝑠𝑡𝑎𝑡 (2) 

 

Here, 𝜇𝑖 is the dipole for an individual site, 𝛼𝑖 is the polarizability 

tensor for the site, and �⃗⃗�𝑖
𝑠𝑡𝑎𝑡 is the electrostatic field vector at that 

point, for each site, i, in the molecule. The Thole-Applequist 

system is then treated as a collection of N dipoles and a dipole 

field tensor, 𝑇𝑖𝑗
𝛼𝛽

. The elements of T are the complete set of 

tensors describing every induced dipole-dipole interaction in the 

system [4]. The product of the dipole field tensor, T, and a system 

dipole results in the many-body induced-dipole contribution to the 

electric field, �⃗⃗�𝑖𝑛𝑑, at the dipole site. The dipole field tensor was 

designed to contain the entire induction contribution, allowing the 

assignment of a scalar point polarizability, 𝛼∘  for each site, 

instead of the polarizability tensor [4]: 

 

𝛼𝑖 �⃗⃗�𝑖
𝑠𝑡𝑎𝑡 =  𝛼𝑖

∘(�⃗⃗�𝑖
𝑠𝑡𝑎𝑡 + �⃗⃗�𝑖

𝑖𝑛𝑑) (3) 

 =  𝛼𝑖
∘ (�⃗⃗�𝑖

𝑠𝑡𝑎𝑡 − 𝑇𝑖𝑗
𝛼𝛽
𝜇𝑗) (4) 

 

If �⃗⃗⃗� is treated as a vector, each entry of which is one of the system 

dipoles (each of those a vector), equation (5) is the result. A 

similar “super vector” is formed by treating vectors of the static 

electric field (at a point in space corresponding to each of the 

dipoles) in an identical fashion, the result of which is equation (6). 

 

�⃗⃗⃗� = (

𝜇1
𝜇2
⋮
𝜇𝑁

) (5) 

�⃗⃗⃗�𝑠𝑡𝑎𝑡 =

(

 
 
�⃗⃗�1
𝑠𝑡𝑎𝑡

�⃗⃗�2
𝑠𝑡𝑎𝑡

⋮

�⃗⃗�𝑁
𝑠𝑡𝑎𝑡
)

 
 

 (6) 

 

Additionally, if matrices A and B are defined as 

 

𝐴 = [(𝛼∘)−1 + 𝑇𝑖𝑗
𝛼𝛽
] (7) 

𝐵 = 𝐴−1 (8) 

 

the problem is reduced to two compact matrix equations, (9) and 

(10). Matrix A is thus constructed such that each element is the 

3x3 matrix 𝑇𝑖𝑗. Each element of matrix B is also a 3x3 matrix—

the site polarizability tensor characterizing each site’s response to 

an electric field [4]. 

 

𝐴�⃗⃗⃗� = �⃗⃗⃗�𝑠𝑡𝑎𝑡 (9) 

�⃗⃗⃗� = 𝐵�⃗⃗⃗�𝑠𝑡𝑎𝑡  (10) 

 

The system dipoles can therefore be found by inverting matrix A 

(giving B) and solving equation (10) directly. However, the size 

of matrices required to model typical MOF systems renders the 

computation required for matrix inversion impractical. MPMC 

solves these equations by guessing at the value of each point 

dipole and solving equation (9) iteratively.  

 

3. MPMC 
 

3.1 Limitations of the Initial Solution 
MPMC typically solves for the system dipoles iteratively [7]. The 

initial guess for each dipole is simply the product of the scalar 

point polarizability and the electrostatic field vector at that point. 

Each dipole is considered sequentially, and is marginally 

corrected according to the induced contribution calculated using 

all the other dipoles in the system. This process is repeated for 

each dipole (thus concluding a single iteration), and the whole 

process is then repeated for the entire system until convergence to 

within a specified tolerance is realized. MPMC also has the ability 

to solve this problem through matrix inversion, but, as previously 

mentioned, this method is only viable for small systems. 

 

Additionally, the original version of MPMC included support for 

finding the system dipoles using a General Purpose Graphics 

Processing Unit (GPGPU) device. This algorithm performed the 

iterative process previously described with only a few key 

differences. First, each step of the calculation updated every 

dipole in the system, whereas the serial algorithm incorporated the 

Gauss-Seidel numerical iterative technique. In this method, newly 

calculated dipole data replaces old dipole data as soon as it 

becomes available. The new values are then used in calculating all 

the remaining dipoles in the system. This technique can 

significantly decrease convergence times, but since, in the parallel 

algorithm, all the newly calculated dipoles become available 

simultaneously, the Gauss-Seidel technique was not implemented. 

 

A test for convergence of the GPGPU polarization calculation was 

not implemented in the original version of MPMC. Hence, the 

computation would run for a preset number of iterations and 

results were delivered without any way of estimating their 

accuracy. 

 

Finally, simulations utilizing the GPGPU device were limited to 

2048 atoms due to the manner in which MPMC employed the 

GPU’s shared memory system. This constraint renders the 

GPGPU algorithm useful only in simulations of relatively small 

system size. A MOF simulator should ideally be able to handle 

system sizes of 10,000+ atoms in order to be useful for several 

MOFs of current and future interest to investigators. 

 

3.2 Updated Program Model 
Several changes to improve and expand the functionality of 

MPMC were realized.  

 

3.2.1 Maximum System Size Expansion 
The 2048 atom cap imposed on simulations was the first 

limitation addressed during the course of this project. In the 

updated program model, each GPU thread was assigned a single 

system dipole. Each thread calculates its dipole’s interaction with 

every other dipole in the system, and sums these interactions to 

arrive at the dipole vector to be used in the next iteration. Since 
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every thread needs access to the vector data of every other dipole, 

it only makes sense to load the dipole information into shared 

memory so that each thread in the block can access it. This 

precludes the need for each of these threads to access the data 

individually from global memory (a relatively time consuming 

process to be avoided when possible) [8]. However, since shared 

memory is fairly limited, it is impossible to fit all the dipole data 

in this memory system simultaneously (for moderate to large-

sized systems). This situation is amenable to a tiled model of data 

handling such that the complete set of dipole information resides 

in global memory and is moved in and out of shared memory as 

needed, one block at a time (FIGURE 1). Organizing the data in 

this manner shifts the limitation of system size from shared 

memory to one of global memory and/or maximum grid size. 

Obviously, the global memory of the GPGPU device must be 

large enough to hold dipole data for the entire system. However, 

since each thread is responsible for a dipole and each thread block 

executes a limited number of threads, the maximum grid size 

(which dictates the total number of blocks) is ultimately 

responsible for determining the maximum number of threads [8], 

and therefore the maximum number of dipoles (i.e. atoms). 

Fortunately, on current hardware, the system sizes imposed by 

these limitations number in the millions of atoms, thus 

transforming MPMC’s prohibiting considerations from those of 

system size to one of computational duration. 

 

3.2.2 Gauss-Seidel in Parallel 
The original GPGPU algorithm did not attempt to implement the 

Gauss-Seidel iterative method of using newly calculated dipole 

information in the calculations for later dipoles. From outside the 

GPU kernel, all the dipoles appear to be updated simultaneously, 

so a treatment of this nature simply is not possible. However, 

from inside the kernel, once a thread block has completed, it is 

possible for each thread to overwrite its value in global memory 

with its newly calculated value (FIGURE 2). This treatment will 

allow any subsequent calculations to use the latest available 

information for their own computations. This technique updates a 

block of dipoles at a time, and as such effects a coarse-grained 

version of the Gauss-Seidel method. Typically, several thread 

blocks will be executing concurrently and these blocks will not be 

able to take advantage each other’s updates, thus it is expected 

that this modification will only become significant on larger 

system sizes where only a small portion of the total number of the 

required thread blocks can run concurrently.  

 

3.2.3 Convergence Verification 
Prior to this work, MPMC set a fixed number of iterations for the 

GPGPU algorithm and the level of convergence obtained after this 

number of iterations was what any dependent calculations were 

forced to use. After extensive testing, it became apparent that, in 

many cases, the set number of iterations was sufficient for a high 

level of convergence. However, in some cases it was not. Worse, 

the program was unable to tell if a set of dipoles converged, so the 

user received no warning that their calculation may be suspect. 

 

From inside the kernel, before each thread updates its data in 

global memory (for Gauss-Seidel), modifications were made such 

that each thread now copies its original dipole data into a local 

register. The difference between the old dipole data and the newly 

calculated dipole is squared and stored in an output array which 

can then be examined by the function that launched the kernel. 

Outside the kernel, in the calling function, the transfer of the 

squared-difference data from the GPGPU device to the host 

machine can take a significant amount of time compared to a 

single iteration. In some cases, the transfer duration can take 

longer than a single iteration, more than doubling the length of the 

total calculation. To mitigate this effect, the squared dipole 

differences are only downloaded and examined after every tenth 

iteration.  

 

3.2.4 Energy Calculations in Parallel 
The Monte Carlo portion of MPMC aims to identify low-energy 

system configurations. As such, the purpose of calculating the 
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system dipoles is to quantify an energy contribution from 

polarization effects. The time required to calculate this energy 

tends to vary widely. Kinetic and coulombic energies are also 

considered and the combined time required for these calculations, 

depending on the duration of the polarization energy, can be 

mildly to highly significant by comparison. Finally, MPMC can 

calculate an energy contribution due to van der Waals effects. 

This computation relies on matrix diagonalization and, when 

utilized, invariably takes the longest of any of the calculations. 

Using the Open Multi-Processing API (OpenMP), MPMC is now 

able to split into three concurrent threads of execution, one of 

which is responsible for both the kinetic and coulombic energy 

calculation, another of which is responsible for the polarization 

energy calculation, and the last of which is responsible for 

calculating the van der Waals energy contribution. 

 

3.2.5 Van der Waals Calculations Using MAGMA 
The final modification made to MPMC was to utilize the Matrix 

Algebra on GPU and Multi-core Architectures library (MAGMA) 

in order to compute the van der Waals energy contribution. The 

original routine calls for a matrix diagonalization via the 

LAPACK routine dsyev_(). It was a simple matter to construct 

an alternate routine, to be used in the event that a GPGPU device 

was detected. The two routines were practically identical in all 

respects except that the new one makes a call to MAGMA’s 

magma_dsyevd() instead of to the equivalent LAPACK 

function. 

 

4. RESULTS 
The updated version of GPGPU portion of MPMC is able to 

reproduce the results of the original with perfect fidelity for 

system sizes less than or equal to 2048 atoms, in approximately 

the same amount of time. For larger systems, no direct 

comparison can be made since the older version is unable to 

produce a result, although the computation is performed six to 

eight times faster on the GPU than the CPU. Comparing GPU 

results against data obtained through matrix inversion, presumed 

exact, reveals that calculations on typical systems are within five 

percent error.  

 

Performance increases due to the multi-threaded, OpenMP 

handling of the energy calculations, though present, is difficult to 

quantify. The combined calculation time for the kinetic and 

coulombic contributions represents roughly 10 to 50 percent of 

the total calculation time, and this figure varies widely from 

iteration to iteration. Effectively, the total calculation time is now 

reduced to the duration of whichever calculation takes the longest 

(coulombic/kinetic, polarization, or van der Waals), plus a small 

penalty for the overhead required to establish the threads. On test 

systems, the net speedup of the multithreaded treatment was 

typically around 20 percent. 

 

The use of the MAGMA routine in the calculation of the van der 

Waals energies is able to exactly reproduce the LAPACK result. 

However, the calculations are completed in approximately half the 

time. 

 

5. FUTURE WORK 
The accuracy of the GPGPU polarization calculation is lower than 

ideal, on the order of three percent error. Different techniques are 

being tried in order to increase the accuracy of these results, as 

well as to decrease convergence times. Additionally, the version 

of MPMC under discussion was designed to simulate a crystalline 

material and a single species of sorbate. Currently, efforts are 

underway to modify the program such that it can simulate 

multiple sorbate species simultaneously introduced into the 

material. 

 

6. REFLECTIONS 
The summer portion of the Blue Waters Undergraduate Petascale 

Education Program (BW-UPEP) provided training and instruction 

at the Urbana-Champagne campus of the University of Illinois. 

During this program, various technologies and techniques for 

scientific coding on parallel and supercomputer architectures were 
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discussed and elucidated. Of particular interest to this project was 

the training on GPGPU programming through NVIDIA Compute 

Unified Device Architecture (CUDA) as well as the Open Multi-

processing API (OpenMP) maintained by the OpenMP 

Architecture Review Board. The workshop introduced students to 

various algorithmic models, concepts and issues that were 

particularly useful to the current project, such as deconstruction of 

large repetitious problems into loosely coupled blocks appropriate 

for efficient handling by GPGPU devices, concurrent processing 

of dissimilar tasks through multi-threading, and, perhaps most 

importantly, how to leverage both techniques within a single 

program. Resources for learning any one of the technologies 

abound, but an area where the program excelled was instruction 

on how to effectively harness all these technologies to work 

together within a single project. 

 

Through the work started during the BW-UPEP program, I was 

able to foster a deep understanding of the architecture sitting 

underneath the hood of various high performance computing 

systems. Whereas before, I had only superficial experience with 

supercomputers, I currently develop scientific software and 

perform research computation on my own university’s local 

research computing cluster, as well as on many of the computing 

systems made available through the NSF’s Extreme Science and 

Engineering Discovery Environment (XSEDE) project. Speaking 

from personal experience, I believe undergraduates who have an 

interest in scientific computing stand to gain a considerable 

amount of confidence, experience and expertise by attending such 

a program as the BW-UPEP. The abundant knowledge and 

support available during the development of various pedagogical 

codes, as well as the guidance received regarding submission of 

these jobs to actual work environments (research computing 

clusters of universities with ties to the program), made it much 

easier to “leave the nest” and create and submit my own 

computational jobs to world-class research computing facilities 

throughout the academic world.  

 

I am currently in the early stages of my Doctoral program in 

theoretical and computational chemistry at the University of 

South Florida, and the skills and knowledge acquired through the 

BW-UPEP program have definitely helped to jumpstart my career 

therein. The time saved by not having to start from scratch in 

learning the basics of HPC coding (or the ins-and-outs of 

interaction with research computing environments) may have 

shaved a semester or more off my time in graduate school. In 

classes oriented around high performance computation and 

scientific coding, I find that while my peers spend much of their 

time trying to frame the posed problems in a manner suitable for 

parallel computation, the practical experience gained through the 

Blue Waters program often allows me to skip this step and 

immediately begin to identify opportunities to make the code 

more efficient in terms of the low-level hardware, e.g. efficient 

use of cache, shared memory systems, coalesced memory 

accesses, etc. My association with the BW-UPEP has proven to be 

an invaluable advantage in this regard and my ardent gratitude 

toward the program remains steadfast. 
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ABSTRACT 
As part of a parallel computing course where undergraduate 
students learned parallel computing techniques and got to run 
their programs on a supercomputer, one student designed and 
implemented a sequential algorithm and two versions of a parallel 
algorithm to solve the knapsack problem. Performance tests of the 
programs were conducted on the Ranger supercomputer. The 
performance of the sequential and parallel implementations was 
compared to determine speedup and efficiency. We observed 
82%-86% efficiency for the MPI version and 89% efficiency for 
the OpenMP version for sufficiently large inputs to the problem. 
Additionally, we discuss both the student and faculty member's 
reflections about the experience.   

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 
Computer science education.  

General Terms 
Experimentation. 

Keywords 
Parallel computing, education, performance, knapsack problem. 

1. INTRODUCTION 
The 0-1 knapsack problem is an optimization problem with the 
goal of selecting items with weights and values in order to 
maximize the value of the items selected while keeping the total 
weight of the items below a set value [1]. In contrast to the 
bounded and unbounded variants of the knapsack problem that 
allow multiple copies of an item to be placed in the knapsack, in 
the 0-1 version of the knapsack problem, an item is either put in 
the knapsack or not [1]. The 0-1 knapsack problem is an NP-
complete problem [1]. 

In an undergraduate parallel computing course, students learned to 
develop parallel programs with OpenMP and MPI. Because 

the course’s instructor has found that NP-complete problems can 
help illustrate a number of concepts that can be useful when 
studying parallel computing, students were required to choose an 
NP-complete problem to have their programs solve. Students 
developed their programs using a multi-core server on campus 
and on their own systems and lab systems using the Bootable 
Cluster CD software [2]. Once the students had debugged their 
programs, they were able to run them on the Ranger 
supercomputer at the Texas Advanced Computing Center (TACC) 
at the University of Texas at Austin. Ranger, which was just 
recently decommissioned after this project was completed, 
contained 3,936 distinct compute nodes with 16 general-purpose 
CPU cores each, for a total of 62,976 cores [3]. Running on 
Ranger allowed the students to compare the performance of the 
sequential version of their programs with the performance of 
parallel programs with OpenMP using 16 cores and using MPI 
with 16, 32, and 48 cores. 

It is important to keep in mind that we were not attempting to 
devise a better algorithm than existing ones, but were focused on 
using the problem as a way of learning to use OpenMP and MPI 
and conduct some performance testing. Therefore, our results are 
not the important contribution of this paper. What’s important is 
the learning that this project facilitated and our reflections about 
it. The first author, Michael Crawford, was a student in the second 
author’s undergraduate course. This paper is written primarily 
from the student’s perspective and describes the student’s 
experience completing the course’s final project. 

2. RELATED WORK 
A significant amount of research has been done on the 0-1 
knapsack problem, which has numerous applications in business. 
Balas and Zemel developed an algorithm, as did Fayard and 
Plateau, and Martello and Toth [4, 5, 6]. Pisinger also developed 
algorithms, as have others [7, 8]. More recently, parallel 
algorithms have been discussed by a number of people. Loots and 
Smith developed a variation of a branch-and-bound algorithm to 
solve the problem for large numbers of objects [9]. Chen and Jang 
also developed parallel algorithms, as have others [10]. Even 
more recently, Pospichal et. al. have developed a parallel genetic 
algorithm to solve the 0-1 knapsack problem using GPUs [11].† 
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3. METHODOLOGY 
3.1 Sequential Algorithm 
Since the goal of the project was to become comfortable with 
OpenMP and MPI and to conduct some performance testing, 
rather than to implement an optimal algorithm, we chose to 
implement a brute force algorithm to solve the problem. The brute 
force algorithm could be parallelized with OpenMP and MPI with 
only minor changes and was easier to parallelize than a more 
complicated algorithm. The algorithm generates each possible 
permutation using the C++ standard library's next_permutation 
function. As each permutation is generated, the items in the 
permutation are placed in the knapsack from left to right, as long 
as there is space. Once an item in a given permutation is 
encountered that does not fit in the knapsack, no further work is 
done with that permutation and it receives the score of the items 
that did fit in the knapsack. If the score of the permutation is the 
largest one so far, the permutation and its score are saved as the 
current maximum. Then the next permutation is generated and 
scored until all permutations have been generated and scored and 
the permutation with the maximum score has been determined. To 
ensure reliable and reproducible results, the item sets were pre-
generated and stored in a text file which was used by all three 
versions of the program. This allowed for easy testing of the 
sequential algorithm to prove it finds the optimal set of items, and 
subsequently easier verification of both parallel versions.  

3.2 Parallel Algorithm 
We created a parallel version of the program with OpenMP and 
then another one with MPI. Like the sequential algorithm, both 
the OpenMP and MPI algorithms were brute force. The parallel 
algorithms divided up the different permutations to test amongst 
the available CPU cores, with each core running a thread in the 
OpenMP version and each core running an MPI process in the 
MPI version. Each thread or MPI process tested an equal share of 
the permutations. Our sequential brute force, lexicographic 
permutation-dependent algorithm is nontrivial to parallelize, as 
each permutation is determined by the permutation before it. In 
order to divide the set of distinct orderings into a subset for each 
thread or MPI process, the factorial number system, or factoradic, 
was used [12, 13]. 

Factoradic allows one to calculate a specific lexicographic 
permutation of a set of numbers without having to generate each 
permutation between the first permutation and the one you are 
trying to generate. Thus, using the OpenMP thread ID number or 
the MPI rank and how many permutations per thread or MPI 
process will be computed, it is possible to determine the 
lexicographic permutation that any given thread or MPI process 
begins on. 

The algorithm for OpenMP used factoradic to determine the 
starting permutation of each thread. Using the thread ID number 
and how many permutations per thread needed to be computed, 
each thread determined its own starting permutation and worked 
until it finished its assigned chunk of permutations to compute. 
Each thread kept its own best combination. After calculating the 
best combination from all of its permutations, in a critical section, 
each thread would compare its maximum value to the current 
global maximum value and update the global maximum if its 
value was greater than the current global maximum. The 
algorithm for MPI was identical to the OpenMP one, with the 
exception that at the end of their calculations, each MPI process 
sent its best permutation and corresponding score to the master 

process, which, starting with its own best as the default compared 
all of them to find the most optimal knapsack items. At the end of 
the calculation, the master node printed the result. 

4. TECHNICAL RESULTS 
When there were fewer than 11 items that could be selected to put 
in the knapsack, the sequential version of the program took less 
than 1 second. While one might think there is nothing to be 
learned from running a parallel version of the program for that 
few items, we observed that the MPI version of the program using 
48 cores took 1 second which illustrates the overhead associated 
with it and shows that for small input sizes, the parallelism can 
actually cause slowdown. With 11 or more items, the sequential 
version of the program began to take larger quantities of time and 
took almost 62 minutes to complete for 14 items. In contrast to 
that, the MPI version of the program took less than two minutes 
when running on 48 cores on the same computer. The full set of 
running times for the sequential, OpenMP, and MPI versions is 
shown in Table 1. 

Because the times the programs took to run were measured in 
seconds, it wasn’t possible to accurately calculate the speedup and 
efficiency when there were fewer than 12 items that could be put 
in the knapsack. For 12 items, we could not calculate the speedup 
or efficiency of the MPI program that used 48 cores. We were 
able to put a very coarse lower bound on the speedup and 
efficiency. The speedups and efficiencies for the OpenMP version 
and the MPI version of the program are shown in Table 2 and 
Table 3 respectively. For 13 and 14 items, the speedup observed 
with OpenMP is not quite as close to proportional to the number 
of cores used as one might expect for an embarrassingly parallel 
implementation (0.94 and 0.89 for 13 and 14 items, respectively). 
This could have been a result of the algorithm used, which could 
result in a number of computations being short-circuited by some 
threads while other threads might have fewer computations that 
are short circuited. It is also possible that computations that are 
short circuited by some threads run further into their process than 
the ones short circuited by other threads. This could result in some 
threads needing to do more calculations than other threads, thus 
resulting in a load that is not balanced perfectly, which might 
account for some of why the speedup was not proportional to the 
number of cores. 

In terms of speedup, the MPI version of the program when run 
with 48 cores saw a speedup of almost 40 for both 13 and 14 
items. With MPI, using 16, 32, and 48 cores split on 1, 2, and 3 
nodes respectively, we observed 86%, 85%, and 83% efficiencies 
with 14 items. The lower efficiency as the number of cores 
increased may have been due to the additional network traffic 
needed by using multiple compute nodes or also due to a 
computation imbalance between the nodes or between the cores 
on the nodes. We did expect MPI to be slightly less efficient than 
OpenMP, however, due to the required network communication. 
More interesting was that for the instance where there was only 1 
possible item to put in the knapsack, the MPI run using 48 cores 
that took longer than the sequential and OpenMP runs and the 
MPI runs using fewer nodes (and cores).   

With a brute force algorithm in parallel, we expected to observe 
linear speedup. To our surprise, our program did not achieve as 
close to linear speedup as we expected. However, we believe that 
the number of objects that could be put in the knapsack was too 
small to produce a good test, which might have caused this. 
Increasing the number of items available and the knapsack's 
capacity might have resulted in closer to linear speedup. This was 
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limited due to limits on the amount of hours on the supercomputer 
allocated to each student. We noticed that the speedup and 

efficiency were better with OpenMP than with MPI, which we

Table 1. Runtime of the Programs (sec) 

Items Available 
to Put in 

Knapsack 

Sequential 
Version 

OpenMP 
Version (16 

Cores) 

MPI Version 
1 Node (16 

Cores) 

MPI Version 
2 Nodes (32 

Cores) 

MPI Version 
3 Nodes (48 

Cores) 

1 0 0 0 0 1 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 0 0 
6 0 0 0 0 0 
7 0 0 0 0 0 
8 0 0 0 0 0 
9 0 0 0 0 0 
10 0 0 0 0 0 
11 2 0 0 0 0 
12 23 3 2 1 0 
13 316 21 23 12 8 
14 3716 260 271 137 93 

 

Table 2. Speedup of the Parallel Versions 

Items Available to 
Put in Knapsack 

OpenMP 
Version Using 

16 Cores 

MPI Version 
Using 1 Node 

(16 Cores) 

MPI Version 
Using 2 Node 

(32 Cores) 

MPI Version 
Using 3 Nodes 

(48 Cores) 
12 7.67 11.50 23.00 > 23 
13 15.05 13.74 26.33 39.50 
14 14.29 13.71 27.12 39.96 

 

Table 3. Efficiency of the Parallel Versions 

Items Available to 
Put in Knapsack 

OpenMP 
Version Using 

16 Cores 

MPI Version 
Using 1 Node 

(16 Cores) 

MPI Version 
Using 2 Node 

(32 Cores) 

MPI Version 
Using 3 Nodes 

(48 Cores) 

12 0.48 0.72 0.72 >0.48 
13 0.94 0.86 0.82 0.82 
14 0.89 0.86 0.85 0.83 

 

believe was due to the extra network communication required for 
the MPI version of the program. 

5. FUTURE WORK 
There are several ways this work can be extended in the future. 
The first task is to create an OpenMP/MPI hybrid version of the 
program and conduct performance testing to see how that 

compares to the other versions of the program. We note that since 
Ranger has been decommissioned, we will need to redo the 
performance testing on a new supercomputer, such as Stampede, 
which replaced Ranger. The second task that should be done is to 
port the algorithm to run on CUDA-enabled GPUs and compare 
the performance of that version of the program to the results from 
the Stampede performance tests. We note that all the 
measurements in the future should be done in msec instead of 
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seconds, so more accurate comparisons can be made with small 
numbers of items. We would also like to implement different 
sequential and parallel algorithms such as branch-and-bound and 
dynamic programming algorithms to solve the same problem so 
we can see parallel performance comparisons of those algorithms 
in comparison to the brute force algorithm. 

6. REFLECTIONS 
6.1 Student Reflections 
From a learning perspective, I think that this exercise was 
incredibly fruitful. Over the last couple of years, I have been 
exposed to a number of computationally intensive problems 
within the domains of theoretical computation and modeling and 
simulation. Knowledge on parallel processing is invaluable for the 
next generation of both computer scientists and natural scientists.  

This exercise introduced me to the challenges and opportunities of 
high performance computing. It led me to consider the challenges 
of implementing parallel programs to solve problems in a way 
more theoretical classes cannot. While I was acquainted with NP-
complete problems from my course on the theoretical foundations 
of computer science, this project gave me the opportunity to truly 
understand what it means for a problem to be NP-complete. It was 
enlightening to write an algorithm to “solve” an NP-complete 
problem; actually watching the runtime of the algorithm grow at a 
factorial rate with more items is humbling and seeing the 
limitations of a supercomputer is profound. 

In retrospect, there were a number of changes I would make to 
both how I did the project and the course itself.  

First, I wish I had paid far more attention to overhead as I coded 
my project. My algorithm had the potential to achieve nearly 
linear speedup, but I only saw roughly 85 percent efficiency. I 
wonder if my algorithm could have been written in such a way as 
to decrease the overhead and increase efficiency. In the future 
iterations of this class, it would be helpful to see a lesson on 
limiting overhead in HPC projects.  

Second, we did not write programs that combined MPI with 
OpenMP, and I would have liked to have seen the performance of 
an MPI & OpenMP hybrid version of my algorithm.  

Third, we did not talk about the impacts of using different 
compilers and optimizations during the course, so when I 
encountered a major performance difference of the same code 
running on the same hardware when it was compiled using 
different compilers, I was surprised. Previously, my mental model 
of compilers had naïvely assumed their equality for practical 
purposes. A brief exploration of compiler optimizations would be 
an interesting module for the course.  

Fourth, each student was only given 3000 hours of CPU time on 
the supercomputer to conduct the performance testing. In the 
future, increasing this amount of time would provide the 
opportunity to test an OpenMP version of the program with 2, 4, 
and 8 cores in addition to with 16 cores, which might provide 
additional interesting results in terms of speedup. 

Lastly, in order to learn the basics of parallel computing libraries 
like MPI and OpenMP, we were encouraged to solve our NP-
complete problems using brute force algorithms. However, it 
would be interesting to see the difference in speedup and 
efficiency that other types of algorithms to solve the same 
problem would achieve. For example, what kind of speedup and 
efficiency would we see using a branch and bound versus a 
dynamic programming algorithm? While it would be impossible 
to expect students taking a three credit hour course to test three 

versions of each algorithm, each using a different parallel 
platform, it would have been a valuable juxtaposition to see 
different types of parallel algorithms pitted against each other. 

As a student at a small liberal arts university, it was empowering 
to run code on one of the fastest computers in the world. The 
experience taught me humility in the face of computational 
intensity and provided me the tools to think in parallel. It will be a 
priceless course for students in the future. 

6.2 Instructor Reflections 
This course project spanned 8 weeks of a 15-week semester, 
making it one of the larger projects students do in our courses. 
The idea behind assigning such a large project was to give the 
students an opportunity to gain experience with not only the 
technical aspects of the material, but also with other important 
skills like time management, creating a poster, and giving a talk. 
The project was supposed to give students the opportunity to 
demonstrate mastery of the basics of OpenMP and MPI, as well as 
to perform some performance comparisons and give them 
experience running a program on a supercomputer. A side goal 
was to introduce the students to a variety of NP-complete 
problems. 

Although I have taught a parallel computing course twice before, 
this was the first time I integrated this project and the use of a 
supercomputer into the course. Because of that, I learned a 
number of lessons, including that too many students will 
procrastinate if they are not given enough intermediate deadlines 
for a big project, as was the case with this project. A number of 
students were unable to complete the project, only developing an 
OpenMP implementation and not completing an MPI 
implementation or the performance analysis portion of the project. 
In general, the students that did not complete the project did not 
lack technical ability, but rather, they simply did not start the 
project until the last couple of weeks of the semester. Next time I 
teach the course, I will have parts of the projects due every 1-2 
weeks. 

Each student had to select an NP-complete problem for the 
project, but I limited the number of students who could choose the 
same problem to 2. This was done to force the students to produce 
a variety of posters and talks, so they would not all be the same 
and to keep things more interesting, as we as to prevent cheating. 
This caused some students to choose harder problems than they 
should have chosen. In the future, I will sacrifice the variety of the 
posters and talks to make the students more successful. 

Students were supposed to develop a sequential program to solve 
their problem for small instances and then run the program to see 
how large an instance their program could solve in 24 hours. This 
instance of the problem was then supposed to be used as the 
baseline for their performance comparisons. Because the instance 
was supposed to take close to 24 hours to solve, I did not tell the 
students to do their timing in milliseconds because that granularity 
should not have been required for the performance comparison. 
However, some students benchmarked their code on systems other 
than the supercomputer and that led to them running their code for 
instances of the problems that were too small for the timing 
granularity of seconds to be as useful as needed. Because many 
students didn’t run their program on the supercomputer until right 
before the project was due, they did not have time to test the 
programs with larger instances if the problem instances they used 
were too small. In the future, I will make sure that the students do 
their timing in msec instead of seconds. 
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The students were told that they each had 3000 hours to use on the 
supercomputer for the projects. At the end of the semester, a 
couple students said they wished they could have had more time 
on the supercomputer. After the projects were completed, those 
student were told they could use the remaining time from the 
educational grant that had not been used by others, but that was 
during finals week and the students didn’t get around to using the 
extra time. Because students were supposed to have a program 
that ran for almost 24 hours sequentially and Ranger had 16 cores 
per node, doing that would have used 384 of the students 3000 
hours. Since the students were supposed to run the program with 
OpenMP on one node and MPI on 1, 2, and 3 nodes, if they had 
no speedup, they would have consumed 3072 hours. I expected 
they would get significant speedup, but that there would also be 
problems and students would need to run their programs more 
than once to complete the project. Therefore, 3000 hours per 
student seemed reasonable. In the future, I want to rethink that. 

6.3 Suggestions For Instructors  
Our recommendations to a faculty member who adopts this 
project for their course are: 
 

1. Have the entire class do the same NP-complete problem or 
half of the class do one and the other half of the class do 
another. We recommend the 0-1 knapsack problem and the 
traveling salesman problem. 

2. Have the students who did one problems compare their 
speedups and efficiencies for their implementations and 
discuss the reasons for any differences. 

3. Have prebuilt implementations of the problem(s) with data 
set(s) that students can run their algorithm on and compare 
their algorithm's solutions to the known correct solution. 

4. Do not bother with presentations, which took time that might 
be better spent on other tasks. In particular, teaching the 
basics of CUDA would be helpful. However, having the 
students create a poster might still be useful. 

5. Ensure that the compiler used on the supercomputer is 
available to the students on the local computer where they 
develop their solutions to ensure consistency. Discuss the 
different optimization levels for the compiler and ensure all 
the students use the same level. 

6. Ensure students conduct timing in msec rather than seconds. 

7. Have intermediate deadlines so that students do not get 
behind and are all ready to run their code on the 
supercomputer before the end of the course. 

8. Request twice as much time on the supercomputer as you 
think the students will need to conduct the performance 
comparisons to ensure that even with mistakes, students have 
adequate time to test their implementations. 
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