
Volume 4 Issue 1

November 2013

Volume 4, Issue 1 November 2013

Editor: Steven Gordon
Associate Editors: Thomas Hacker, Holly Hirst, David Joiner,

Ashok Krishnamurthy, Robert Panoff,
Helen Piontkivska, Susan Ragan, Shawn Sendlinger,
D.E. Stevenson, Mayya Tokman, Theresa Windus

CSERD Project Manager: Patricia Jacobs. Managing Editor: Kristen
Ross. Web Development: Phil List. Graphics: Stephen Behun, Heather
Marvin.

The Journal Of Computational Science Education (JOCSE), ISSN 2153-4136,
is published quarterly in online form, with more frequent releases if submission
quantity warrants, and is a supported publication of the Shodor Education
Foundation Incorporated. Materials accepted by JOCSE will be hosted on the
JOCSE website, and will be catalogued by the Computational Science Education
Reference Desk (CSERD) for inclusion in the National Science Digital Library
(NSDL).

Subscription: JOCSE is a freely available online peer-reviewed publication
which can be accessed at http://jocse.org.

Copyright c©JOCSE 2013 by the Journal Of Computational Science Education,
a supported publication of the Shodor Education Foundation Incorporated.

Contents

Introduction to Volume 4 Issue 1
Steven I. Gordon, Editor

1

Computational Math, Science, and Technology (C-MST) Approach to General
Education Courses
Osman Yaşar 2

Introducing Transition Matrices and Their Biological Applications
Angela B. Shiflet and George W. Shiflet 11

STEM-Beased Computing Educational Resources on the Web
Tatiana Ringenberg and Alejandra Magana 16

Transformation of a Mathematics Department’s Teaching and Research Through
a Focus on Computational Science
Yanlai Chen, Gary Davis, Sigal Gottlieb, Adam Hausknecht, Alfa Heryudono,
and Saeja Kim 24

Solving the Many-Body Polarization Problem on GPUs: Application to MOFs
Brant Tudor and Brian Space 30

Parallelization of the Knapsack Problem as an Introductory Experience in
Parallel Computing
Michael Crawford and David Toth 35

Introduction to Volume 4 Issue 1

Steven I. Gordon
Editor

Ohio Supercomputer Center
Columbus, OH

sgordon@osc.edu

Forward
In this issue we provide a articles that present excellent ex-
amples of computational science educational materials and
sources of materials for teaching computational science. Yasar
provides an overview of a general education curriculum that
uses computer modeling to both build analytical skills and
teach basic concepts in science and mathematics. He docu-
ments the success of an introductory course and also sum-
marizes the course sequence that move students from using
existing models to programming skills that build new mod-
els.

Shiflet and Shiflet present an article on the use of proba-
bilistic models to trace the age of populations over time.
The models were applied in several classes focusing on the
mathematical concepts and the scientific understanding of
the students. Markov chain models were used to model the
populations of a variety of species, tracking them by age and
the probabilities of survival and birth.

Ringenberg and Magana provide a review of STEM focused
computational materials that are web accessible. They pro-
vide an interesting analysis of the number and types of ma-
terials available along with a table of the resources and their
classification of their contents.

Chen et al provide a review of a research program for un-
dergraduates in mathematics that focuses on computational
mathematics. They describe the developments within their
department, the creation of a research workshop, and the
impacts of that program on their students and their depart-
ment.

Finally, two student papers summarize their computational
projects and the impacts of those projects on their own
learning. Tudor and Space describe experience as interns
working on a massively parallel Monte Carlo code using
GPUÕs. Crawford and Toth describe the use of the knap-
sack problem to introduce parallel computing and describe

the lessons learned from the project from both the student
and instructor view.

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 1

Computational Math, Science, and Technology (C-MST)
Approach to General Education Courses

Osman Yaşar

The College at Brockport
State University of New York

Brockport, NY 14420
Tel: +1 (585) 395-2595

oyasar@brockport.edu

ABSTRACT
In this paper, we present a computational approach to teaching
general education courses that expose students to science and
computing principles in engaging contexts, including modeling
and simulation, games, and history. The courses use scalable
curriculum modules organized in layers of increasing difficulties
in order to balance learning challenges and student abilities. We
describe the computational pedagogy followed in these modules
and courses, with particular attention to the simulation-based
course, namely introduction to computational science, to present a
case study for those considering similar initiatives.

General Terms
General Education, Pedagogy, Games, History, Natural Sciences

Keywords
Modeling and Simulation, Abstraction, Computational Thinking

1. INTRODUCTION
Recent increases in power, access and affordability of digital
technology have impacted scientific research, industrial design,
and education. Educators stated at the turn of the century that,
when used in the context of applications, technology would
support higher-order thinking by engaging students in authentic,
complex tasks within collaborative learning contexts [26]. More
recently, the National Science Teachers Association (NSTA)
described computation as a “third pillar” of scientific inquiry,
accompanying experiment and theory [19]. It cited a growing
body of evidence that using models and simulations, students
learn better since they are actively engaged in “doing,” rather than
passively engaged in “receiving” knowledge. Within the scientific
computing community, the role of computation had long been
recognized and brought to the classroom through training by
many organizations such as Shodor Foundation, and through
formal degrees and courses by other institutions [15, 23],
including ours [28-33]. However, now that we have help from
educators and pedagogy experts to promote computational science
education in more fundamental ways, we get a second chance to
address some of the challenges we have faced.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee. Copyright ©JOCSE, a supported publication of the Shodor
Education Foundation Inc.

While recruitment challenges can be linked to a general lack of
interest and preparation by nation’s high school students [2, 5-6,
9, 11, 16-17], computational science education requires additional
preparation in multiple domains (math, programming, and
sciences) that not every college student is willing to undertake. A
fundamental (pedagogical) approach, including a focus on
computational thinking skills [27], could bring all stakeholders
together in a way not only to reform the computing education but
also push scientific thinking into mainstream to address
underlying causes of the rising category-5 storm in nation’s K-12
education [16-17].
The importance of math and computational skills for STEM
workforce has been noted in many reports; including the
projections by the Bureau of Labor Statistics [3], National Science
Board statistics [21], and surveys by the American Institute of
Physics [1]. AIP surveys taken at regular intervals (in 1999 and
2010) of physics majors, 5+ years after finishing an undergraduate
degree, indicate that some of the important job skills continue to
be scientific problem solving, teamwork, computer programming,
design and development, simulation and modeling, math skills,
and technical writing (See Fig. 1).

Figure 1: Results of the most recent AIP survey in 2010 [1].

Volume 4, Issue 1 Journal of Computational Science Education

2 ISSN 2153-4136 November 2013

While the demand for computationally competent science,
technology, engineering, and mathematics (STEM) workers is an
unprecedented opportunity, enrollments have gone down steadily
in recent years. The pipeline between institutions of higher
education (IHE) and K-12 seems to be broken [2, 5-6, 9, 11, 16-
17]. The issue of why science is not as engaging as other subjects
is complex, but according to the Relevance of Science Education
(ROSE) study, student attitudes towards STEM become
increasingly negative as a country advances economically, which
suggests this phenomenon to be deeply cultural [22]. Learning
science is demanding and it requires application, discipline and
delayed gratification; values that contemporary culture does not
seem to encourage. So, innovative and engaging ways of teaching
science and computing are necessary.

2. COMPUTATIONAL SCIENCE
EDUCATION AT BROCKPORT
Established in 1998, the computational science degree (BS and
MS) program at Brockport attracted high parameter students and
promoted research experience in an undergraduate institution [28-
33]. Success stories from alumni hired by the software industry
include multiple offers from the same company, offers for
significant others as incentives, promotion to senior positions
upon hiring, and many more. Those hired as teachers could teach
multiple subjects (math, programming, and general science) due
to their diverse background. These examples all point out to the
benefits of a broad education to improve one’s marketability and
job orientation at a time when the likelihood of working at a job
not related to one’s field of study is greater than 50% [21].

While the computational science (CPS) program has attracted to
Brockport students who normally would go to a higher tier school,
it has graduated only a handful (~5) of students annually.
Concerns over the number of freshmen entering the program led
to an outreach effort by the program in 2003 to address the IHE-
K12 pipeline issue as described earlier. An institute was formed in
partnership with local school districts (Rochester City SD and
Brighton Central SD) and national organizations (Shodor
Foundation, Krell Institute, and Texas Instruments) to train
secondary school teachers on the computational approach to math,
science, and technology (C-MST). Improved teacher retention and
student achievement reported by partnering districts drew national
attention to this initiative, including testimony before the U.S.
Congress. Over the past decade, institute staff and participants
(faculty and teachers) created a large inventory of curriculum
modules and lesson plans that are currently being used in the
introductory-level general science courses described here.

While the computational approach to STEM education has been
recognized a novel strategy to improve the technical workforce,
curricular and recruitment challenges have slowed its growth.
Brockport has revised its degree programs and courses several
times to update and diversify its curriculum in several fronts,
including: a) science of computing (simulation tools,
programming, parallel computing, numerical and statistical
methods, visualization, technical writing, and computing
principles), b) science done computationally in application
domains, and c) education done computationally (pedagogy,
teacher training and K-12 student outreach). While some of the
application courses such as computational-x (x: biology, physics,
etc.) and teacher education courses cover deep (x) content to
support STEM majors, others include service courses, such as
those described here, under general education category to spread
the benefits to all college freshmen across the spectrum. What

follows in the next section is the computational pedagogy we used
in these courses, particularly in CPS 101, to draw both STEM and
non-STEM majors into learning about computing and sciences.
We believe that this pedagogical approach is also relevant to a
recent initiative by the College Board to implement a new AP
course on computational thinking [25]. The impact on the nation’s
STEM education can be significant.

3. C-MST PEDAGOGY
While ‘attention to details’ is important to master a skill, we all
have a limited memory to store information. The most pervasive
strategy to improve memory performance (and information
retrieval for problem solving) is organizing disparate pieces of
information into meaningful units [14]. Abstraction skills can help
with that by simplifying, categorizing, and registering key
information and knowledge for quicker retrieval and processing.
The act of abstraction is an inductive process by which we sort out
details and connect the dots to arrive at more general patterns and
conclusions [24]. While abstraction is essential for cognition,
there are other benefits all around us. Since the nature itself
employs abstraction by hiding the atomic-level motion and the
cellular phenomena, we get the benefit of seeing the bigger
picture. Computer scientists use abstraction to write large-scale
complex codes (such as operating systems, compilers, and
networking) where the complexity is distributed into seemingly
independent layers and protocols of the code in such a way to hide
the details of how each layer does the requested service. We all
use abstraction in our daily lives. For example, when we go to a
restaurant, we order our meal and not worry about how they
cooked it in the kitchen. Those who worry and check it out once
or twice cannot possibly afford doing it all the time. Abstraction
skills can be improved beyond what was inherited, through
training, education, additional knowledge and experience.

Abstract

Body of Details
Figure 2: Illustration of the informational organization and
the resulting deductive/inductive instructional pedagogies.

Computational modeling uses abstraction by its simplification of
the reality. Such simplification helps scientists eliminate certain
parameters and focus on what is being studied. Another benefit of
computational modeling is that it supports deductive learning.
Modeling enables the learner to grasp important facts surrounding
a topic before revealing the underlying details. In a sense it helps
to do a reverse engineering by gradually leading the learner to the
details that support the abstracted knowledge (See Fig 2 for a
schematic view of inductive and deductive processes). Simulation

	

Deduc&ve	

Induc&ve	

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 3

adds another level of benefit by providing a dynamic medium for
the learner to conduct scientific experiments in a friendly, playful,
predictive, eventful, and interactive way to test hypothetical
scenarios without having to initially know the underlying science
concepts. Together, both computational modeling and simulation
lead to a deductive pedagogy by first introducing a topic from a
simplistic framework and then moving deeper into details after
learners gain a level of interest to help them endure the hardships
and frustration of deeper learning. Such a stepwise progression in
learning is consistent with the pedagogical framework Flow [8]
and scaffolding strategy to balance skills with challenges as
illustrated in Fig. 3.

According to a national report [18], at early stages computational
modeling approach to STEM education should involve easy
experimentation (learners must be able to quickly set up and run a
model using an intuitive user interface, with no knowledge of
programming or system commands) and high interactivity
(models need to evolve quickly and include smooth visualizations
for providing interactions and feedback to users). Using existing
computational models, instructors can start general science
education via games and simulations without exposing them to
STEM principles right away. Students can get to modify an
existing model, or create one from scratch. Tools such as
Interactive Physics (IP) and AgentSheets (AS) can be used to
create many fun things that could engage students into science
experimentation. They also provide easily discoverable links (i.e.,
buttons for controlling the run-time and accuracy) to underlying
principles of computational and scientific modeling.

After initial experimentation with modeling in the context of a
game or science topic, students can be introduced to a simple
principle of mathematical modeling (new = old + change) which
eventually (and quickly) leads the learner into understanding
several aspects of computational thinking [27], including
decomposing a problem into smaller chunks, computational cost
for more accuracy, and the need to use a programming language
in order to handle complexity and increasing number of data
points (due to decomposing the problem into much smaller
chunks). The mathematical foundation of modeling and
simulation can be taught in terms of building functional
relationships (such as y=f(x)) using the rate of change equations
and the above algebraic equation (ynew = yold + dy) where ynew and
yold are new and old values of y, and dy is the change from the old
to the new.

As an example, consider finding a direct relationship, y=f(x),
based on the rate of change (derivative) dy/dx= 2x, and the initial
condition y=0 when x=0. The analytic answer to this
mathematical integration is y = x2. However, students can be led
to find an answer through numerical integration instead, by
constructing a table of (x, y) data points starting from (0, 0) for
different choices of increment in x values (dx= 1, 0.5, 0.1, and so
on). When the numerical results are compared to the analytic
solution (y= x2) for these cases, students could be led to discover
the correlation between the step size (dx) and the accuracy of the
numerical results: such as the smaller the dx, the more accurate
the answer. While a human can calculate a few data points by
hand when dx is 1, or 0.5, the need for automation (and accuracy)
becomes obvious for smaller dx values such as 0.1 or 0.05. Excel
can be used to automate the calculation and graph the y=f(x)
curves, but for much smaller step sizes (dx), such as 0.001,
0.0001, or 0.0000001, students might discover that even Excel
cannot be of help in those computationally intensive cases. The
need for finer and faster automation, via computer programming
(example shown in later sections), becomes evident as the only
way to obtain highly accurate results.

In an after-school project, several 9th graders from Brighton High
School (NY) were able to replicate IP results for the harmonic
motion (Fig. 4) by first applying Excel (Table 1) and then Python
(programming language) to algebraic formulas for the position
(xnew = xold + dx) and velocity (vnew= vold + dv) of the spring-
driven object at times (tnew = told + dt) separated by interval dt.
Here, time (t) is an independent variable and change in x and v
are: dx= v · dt and dv= a· dt, where acceleration (a) is
Force/mass. The force applied by a spring unto an attached box is
F= - k · x, where k is the stiffness coefficient of the spring and x is
the displacement of the box from the equilibrium position (x=0).
The following year, these students modeled orbital motion of
planets when the formula for the force, causing the change, was
given to them (F=G·M·m/x2; where G is a Universal Constant, M
and m are masses of the Sun and planet separated by distance x).

Figure 4: Simple harmonic motion using Interactive Physics.

Figure 3: Illustration of Optimal Flow in learning [8].

Volume 4, Issue 1 Journal of Computational Science Education

4 ISSN 2153-4136 November 2013

Table 1: Simple harmonic motion using Excel (dt= 0.125).
t(s) v(m/s) x(m) t(s) v(m/s) x(m)

0.000 10.00 0.0 1.250 -8.97 1.49
0.125 10.00 1.25 1.375 -9.90 0.26
0.250 9.22 2.40 1.500 -10.06 -1.00
0.375 7.72 3.37 1.625 -9.44 -2.18
0.500 5.61 4.07 1.750 -8.08 -3.19
0.625 3.07 4.45 1.875 -6.08 -3.95
0.750 0.29 4.49 2.000 -3.61 -4.40
0.875 -2.52 4.17 2.125 -0.86 -4.51
1.000 -5.13 3.53 2.250 1.96 -4.26
1.125 -7.33 2.62 2.375 4.62 -3.69

While these high school students were exceptions, this (deductive
+ inductive) pedagogical approach [13] does show a path that can
be promoted in both IHE and K-12 classrooms. It starts with a
deductive approach by using modeling to introduce the learner to
important facts surrounding a topic. Then, by running hypothetical
scenarios and investigative projects through simulations, they are
encouraged to discover relevant principles of computing and
sciences in an inductive fashion. We call the above approach ‘C-
MST pedagogy’ because of the local context; others may call it
differently (i.e., Project-First, then Principles just-in-time [11,
20]). Pros and cons of deductive and inductive learning have been
a topic for many years in language training. Many contemporary
programs use a combination to get double benefit [13].

The computational approach to STEM education encourages
inquiry, involves projects, and facilitates team-based instruction.
It puts the learner at the center of a constructivist experience.
While it uses a deductive approach to engage learners into a
STEM topic, it emphasizes the importance of abstraction skills to
support inductive learning. By linking computing to science
through the computation of change, it provides a motivation for
science majors to learn programming and for computing majors to
learn more about science. Its motivational and deductive/inductive
cycle can be used to broaden participation in computing and
sciences among female students [11, 20].

Table 2: Gen-Ed Computing courses and their enrollments

4. GEN-ED COMPUTING COURSES
We have developed and taught three computing-based general
science courses, including CPS 101 Introduction to Computational
Science, CPS 105 Games in Sciences, and CPS 302 History of
Science and Technology. While the primary topic of this article is
CPS 101, we want to give a brief overview of all these 3 courses.
Launched in 1998, CPS 101 was taught by the author in full
capacity (25 students per semester) until 2007 when a new faculty
was assigned to teach it. The new instructor’s tendency to teach it
merely as a programming course with high level mathematics
brought the course down to extinction. Through support from an
NSF Course Development grant in 2010, the content of CPS 101
was shifted back from ‘differential equations and computer
programming’ to its original content of problem solving at a more
fundamental level as described later. This modification brought
the course back to life again (see Table 2 for enrollments),
vindicating the fundamental computational thinking approach to
introductory computing [27] and computational science education

[29]. Currently, CPS 101 uses simulation tools such as IP to teach
students basic science concepts without having to require a deep
level of mathematics and knowledge of the natural laws. The CPS
105 uses AgentSheets (AS; an agent-based modeling tool) to
demonstrate science applications in the context of games and
environmental issues. The CPS 302 uses an introduction to
science and computing in the context of history, again supported
by demonstrations using tools such as IP and AS.

Table 3: External/Internal factors affecting enrollments.
How did you hear about this course?

CPS
 ↓

Friend Advisor Department Other

2011 2012 2011 2012 2011 2012 2011 2012

101 7% 10% 40% 25% 7% 0% 46% 65%

105 34% 34% 18% 4% 2% 0% 46% 60%

302 17% 12% 44% 20% 16% 0% 23% 66%

To meet the needs of students with various backgrounds, a
contextual learning is critical for students’ success and it improves
interest in technology while generating enthusiasm towards
sciences [12]. Surveys reveal interesting observations on student
attitude vs. the context (in which science topics were taught in
these courses). They all had a broad appeal; drawing students
from 28 departments, including non-science majors. In fall 2010,
the College approved these as General Education courses in
natural sciences. To meet the Gen-Ed designation in natural
sciences, more general science content had to be added to the
original syllabus. These modifications seem to have triggered an
increase in the enrollment, as shown in Table 2. Interest by non-
STEM majors increased. More than 60% of currently enrolled
students in these courses are non-STEM majors, while this ratio
was about 35% before these modifications when the main focus
was on computing and mathematics.

According to the course surveys, the games-based course (CPS
105) was the most popular; 34% of enrollments in this course
came from the word of mouth among friends. The evolving self-
interest also seems to be high as about 80% of students in this
course wanted to take another course on the same topic (See
section on Results and Discussion). The simulation-based course
(101) and the history-based course (302) were often recommended
by student advisors. The Gen-Ed status contributed significantly
to enrollments as can be seen from the ‘Other’ category in Table
3. As we moved from 2011 to 2012, even more students enrolled
under ‘Other’ category as a consequence of either easiness of
online scheduling or popularity of Gen-Ed designation; or both.
The 2012 data shows a significant increase in students’ self
interest and a decrease in advisement by faculty and department.

4.1 Course Description: CPS 101
The weekly schedule for CPS 101 is shown in Table 4. Course
materials include class notes and user manuals for software tools
(such as IP) and the online C-MST curriculum modules open to
public at www.brockport.edu/cmst. IP is used to model, simulate,
and explore a wide range of physical phenomena, including
harmonic motion (springs and pendulum), falling objects,
trajectory of projectile, energy conservation, orbital motion,
Kepler’s Laws, Newton’s second law of motion, and electrostatic
oscillator. Through IP, students are able to build projects, conduct
digital experiments, and investigate physical events without
deeply knowing or memorizing the laws of physics. Users are
allowed to set up their own physical world, choose physical

 2010 2011 2012 Total
101 Intro to Computational Sci. 12 20 38 70
105 Games in Sciences 18 52 55 125
302 History of Sci. & Tech. 6 22 25 53

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 5

parameters, monitor the position, velocity, energy, and elapsed
time and also create control buttons to facilitate simulation.
Visuals images and data from IP can be transferred to geometrical
software (such as Geometer’s Sketchpad, GSP) to measure angles,
distances, and areas needed for proofs or other calculations. IP
simulation data can also be transferred in numerical format to
Excel for further analysis.

A big advantage of the IP is what you see is what you get. It is
interactive and it greatly enhances instruction and helps students
build their confidence and success in learning. The use of IP tool
is straightforward, and students are able to build their own
projects after a couple of weeks training. A screen shot of
simulating orbital motion is shown in Fig. 5, where the planets are
represented with small circles and corresponding masses. For
example, the earth (of mass 5.9 x 1024 kg and orbital velocity of
6.65x104 mph) is placed at 150x106 km from the Sun (mass of
1.89 x 1030 kg). The IP images can be transferred to GSP to
measure the distances and areas to prove Kepler’s laws. For
example, Fig. 5 shows the proof of the 3rd law, which states that
for each planet the square of its period (T2) is proportional to its
semi-major R3; or (T1/T2)2 = (R1/R2)3 for any two planets.

Table 4. Weekly schedule for CPS 101

Week 1: Conduct surveys to examine math and CS skills.
Discuss survey results. Show videos on the role of
computational modeling & simulations in science & industry.
Week 2: Discuss the role of modeling in scientific inquiry and
industrial design (show examples). HW #1: Short essay on the
‘role of modeling’ in research, industry, and education.
Computer Lab: Introduce Interactive Physics with examples
Week 3: Computer Lab: Continue Interactive Physics (IP)
training. HW #2: Design an IP project that demonstrates
students’ comfort level with IP.
Week 4: IP Labs: a) Simple harmonic motion: Generate
position and velocity plots of a moving object attached to a
spring; b) Pendulum: Examine the time it takes for a complete
swing vs. initial velocity. c) Falling objects: Examine motion
under different gravitational forces on the Earth and the Moon.
HW #3: Report effects of elasticity, friction, and air resistance
on motion in one of these labs.
Week 5: Discuss principle of mathematical and computational
modeling: new=old+change. Discuss functional (i.e., y= x2)
and behavioral (i.e., dy= 2x · dx) relationships in tabular,
formulated, and graphical forms. Discuss the Rate of Change
(ROC) and the difference between Average & Instantaneous
ROC. Test #1 (functions, ROC, and forms of representation).
Week 6: Continue numerical integration with examples by
hand first and later with Excel. Discuss the role of integration
step in reducing error and the role of computational power to
afford smaller steps. HW #4: numerical integration by hand.
Week 7: Discuss the role of hardware (storage, processing, and
communication) and software (data locality, memory usage,
system software, and programming style) on performance and
accuracy needed for problem solving. Introduce programming
concepts using Python language. Conduct a midterm exam.
Week 8: Break
Week 9: Continue programming discussion with examples in
Python. Hands-on experience on programming in a computer
lab. Test #2 (factors affecting computational performance).
HW #5 (on computer programming).

Week 10: Review use of multiple tools (IP, Excel, and Python)
for modeling. Lab: Redo harmonic motion using new = old +
change computations via Excel and Python. Learn about
Newton’s law of motion (F=m⋅ dv/dt) as a cause of change in
velocity & position. Compare IP, Excel & Python results.
Week 11: Lab: Trajectory of Projectile: Use IP & Excel to
study 2-dimensional motion. HW #6: Write a Python program
that computes the trajectory of a rock thrown up at an angle.
Week 12: Lab: Conservation of Energy & Momentum.
Discuss potential & kinetic energy of earlier examples. Use IP
to graph potential and kinetic energies of objects. Examine
effects of friction and air resistance.
Week 13: Lab: Orbital motion: Watch videos on orbital motion
and space explorations. Learn about gravitational force
F=G·M·m/r2 as a cause of change in position of planets.
Simulate orbital motion in 2-D using Excel and then Python.
Week 14: Discuss Kepler’s laws and use IP to simulate
multiple planets around the Sun. Lab: HW #7 (team project:
proof of Kepler’s Laws). Introduce agent-based modeling
using AgentSheets (AS).
Week 15: AS Lab: Model collective behavior of agents.
HW#8: Design an AS project. Re-visit HW #1 to improve the
essay on ‘role of computation’. Review for Final Exam:
Discuss and review scientific concepts learned.

Figure 5: Orbital motion of several planets around the Sun.
Orbits and periods are shown to prove Kepler’s 3rd Law.

4.1.1 Programming with Excel
While IP is a good tool to expose students to many physical
concepts, computational STEM education needs to move beyond
just using tools. Our previous experience indicates that students
need to eventually understand the underlying mechanism of
simulation and modeling and to flexibly master and apply
acquired knowledge rather than practice rote memorization of
scientific laws. In CPS 101, students are required to model a
physics phenomenon by computer simulation using IP, and then
solve the same problem via Excel and later by writing a computer
code using a language such as Python.

To use Excel for generating position and velocity values of an
object that is subject to an external force, students need to
designate three columns in an Excel worksheet to these variables
as shown in Table 1. The columns were cut into half and put side
by side for the purpose of fitting the data into a frame for this

E

Volume 4, Issue 1 Journal of Computational Science Education

6 ISSN 2153-4136 November 2013

article. The first row in each column holds variable names and the
2nd holds initial values (t=0 sec, v = 10 meters/s and x= 0 meters)
and constants (m= 1 kg and k= 5 Newton/meters). The 3rd row
holds expressions computed in the following order: t + dt à v +
(-k⋅x/m)⋅dt à x + v⋅dt where t, v, and x are linked to their own
values on the previous row; except that the value for “v” in the x
+ v⋅dt expression is linked to the newly computed value of v (on
the same row) in order to move forward updated information. The
expressions in the 3rd row can be copied and pasted to the rest of
the rows below until t reaches maximum time (T) desired. This is
where the limitations of Excel come into play. The visible and
scrollable screen might not accommodate the whole simulation
range when the integration time step (dt) is very small. If one
chooses dt to be 0.000001 sec, then one needs 1,000,000 rows to
do an Excel computation for just only 1 second.

In two-dimensions, the above equations need to be expanded to
include position, velocity, and acceleration in additional
dimensions:

xnew = xold + vx·dt; vxnew= vxold + ax·dt; where ax = (x/r) · a,

ynew = yold + vy·dt; vynew= vyold + ay·dt; where ay = (y/r) · a,

and

r2 = x2 + y2 and v2 =(vx)2 + (vy)2

Using these algebraic equations along with interplanetary
acceleration between Earth and the Sun (a =F/m = G·M/r2
=1.26x1014 N·km2/kg · 1/r2; where G is a Universal Constant and
M and m are masses of Sun and Earth), we get the orbital track
seen in Fig. 6. At t=0, we assumed that the Earth’s orbital velocity
was given by vx=0 and vy= 29.79 km/s and its position was given
by y=0 and x= 1.50x108 km. What is shown in Fig.6 may not be
the most accurate track, but qualitatively it is representative of a
planet’s orbit. Some planets have more elliptically looking orbits.
The above calculations are given for dt = 5 days, however smaller
time steps (i.e., dt=1 day) could produce more accurate tracks.
Again, that is where the limitations of Excel come into play, just
like the million data points mentioned above. With computer
programming, these limitations can be overcome. Computations
with higher resolution and automation need use of programming.

Figure 6: Orbital tracking of the Earth using Excel.

4.1.2 Programming with Python
In the past we used Fortran and C but we have recently switched
to Python. The switch to Python was based on three major
reasons, including relative easiness and quickness with learning of
Python as a computer language, its simple and short constructs,
and less error-prone coding. Python is a general-purpose, object-
oriented, high-level programming language, which comes with
extensive standard libraries and supports the integration with other
languages and tools. It is increasingly used in scientific
computing, web development, and database operations. Python
can be learned in a couple of weeks for basic operations; it is
open-source and platform-independent, and it can be installed on
almost any computers free of charge. An introduction to basic
syntax, input/output functions, repetition structures (loops), and
algorithmic thinking is adequate to carry out programming
assignments necessary for computing a mathematical or logical
expression repetitively, recursively, or iteratively. Students can
write simple loops to compute and generate data points for a
number of problems listed in the course syllabus including falling
objects, trajectory of projectile, harmonic motion, and orbital
motion. Below is a sample algorithm for one-dimensional
Newtonian motion that can be easily extended to two- and three-
dimensions.

Input initial position (x), velocity (v), and time (t)
Input time step (dt), maximum time (T), mass (m)
While t <=T:
 Output position (x), velocity (v), and time (t)
 Compute force F & acceleration a = F/m
 Compute velocity in x direction v = v + a × dt
 Compute position in x direction x = x + v × dt
 Update the time t = t + dt
End of While Loop

5. RESULTS AND DISCUSSION
We have used a mix-methods approach [7] to examine the
context, pedagogy, and the tool set used in computational gen-
education courses. Table 5 and 6 show some of the statistics from
student surveys. The tables show a multi-year data for each
course. To examine whether there is any statistical difference
between 2011 and 2012 responses (due to different instructors,
pedagogies, or software tools), we computed z-scores assuming a
normal distribution approximation to these binomial surveys [4].
The column p indicates the confidence level that results in each
row may be different due to a nonrandom effect. Normally, any
confidence level below 90% is less than significant. Plus, it is
difficult to infer meaningful results from our research due to small
sample sizes (20-25 students per sample). However, by
triangulating these survey results with instructors’ classroom
observations and student grades, and with experimentation of a
similar approach with other audiences (K-12 teachers and
students), we would like to make a few preliminary conclusions.

Almost all students in the three gen-education courses liked
project-based learning, which involved design of a game or a
science experiment. More than 95% of them recommend others to
take these courses. A significant portion of students (60%-80%)
thought that modeling improved their understanding of science
concepts and motivated them to pursue additional courses in
computing and sciences. Although there are challenges of learning
multiple fields in a single course, student skills can grow along
with challenges to provide them an optimum Flow experience
(Fig. 3). While a sizable number of students thought they did not
initially have necessary background and skills, they eventually

Orbital tracking with Excel

-2
00
.0
-1
50
.0
-1
00
.0

-5
0.
0

0.
0

50
.0

10
0.
0
15
0.
0
20
0.
0

-200.0 -150.0 -100.0 -50.0 0.0 50.0 100.0 150.0 200.0

M
ill

io
ns

Millions

x (km)

y
(k

m
)

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 7

overcame these difficulties through professor’s help, practice,
project-based learning, and scaffolding. The level of frustration
has gone down in all courses and this may be due to several
factors, including the use of more friendly tools, change of
instructor in CPS 101, and improvements in the way we teach
them. In 2011, the level of frustration was as high as 32% in CPS
101 (due to mathematics and programming), yet the percentage of
students who thought that the new skills and knowledge would
help them in future courses was also very high. With the change
from heavy programming and mathematics to the use of more
friendly tools such as IP and AS, students felt more engaged and
confident but they did not see a high prospect of using the new
toolset and interdisciplinary approach in other classes (down from
96% to 56%). This may be cultural and time needs to pass before
it settles like the other two courses where the level of frustration is
low (<10%), desire to take another course on the topic is high
(70%-80%), and confidence in the later usage of newly learned
skills is also high (74%-80%).

Table 5: Survey results from CPS 101. The last column (p)
shows statistically the confidence level that there is any
difference between responses in 2011 and 2012 for each row.
The z scores are calculated based on two proportions [4].

Survey Questions (Q)
Responses are in percentages (%).

Y E S Difference?
2011 2012 z p (%)

1. Recommend this course? 97 94 0.46 35
2. Like to take another course? 44 63 1.20 78
3.Modeling improve science learning? 68 82 1.02 70
4. Like project-based learning? 90 94 0.47 36
5. Had necessary background? 60 75 1.01 70
6. Your skills a match for challenges? 78 82 0.32 26
7. Ever felt frustrated? 32 25 0.49 38
8.Skills may help you in later classes? 96 56 2.96 99
9. Changed your major after? 10 13 0.30 24

Table 6: Survey results for CPS 105 and 302.

Q CPS105 CPS302
Y E S (%) Difference? Y E S (%) Difference?

2011 2012 z p(%) 2011 2012 z p (%)
Q1 100 100 0 0 100 96 1.01 68
Q2 85 80 0.47 36 50 70 1.44 85
Q3 78 70 0.64 48 61 83 1.73 92
Q4 98 100 0.71 52 95 90 0.67 50
Q5 69 91 1.94 95 88 80 0.77 56
Q6 80 91 1.10 73 100 92 1.44 85
Q7 26 7 1.81 93 20 5 1.60 90
Q8 85 74 0.96 66 89 80 0.88 62
Q9 6 9 0.40 31 0 4 1.01 69

Classroom observations and attendance records from instructors
indicate a significant improvement in student behavior and
participation in hands-on lab activities. While the attendance rate
in the lecture session in classroom was around 70%, it jumped to
90% in the computer lab. They seem highly engaged in lab
activities and involved in practicing different computational tools.
A different instructor taught the CPS 101 in 2012, and this may
have impacted the course dynamics. Other more systematic
changes mentioned before (shift away from programming and
differential equations) took place before the change of instructors,
however, we should note that the new instructor (Sounthone
Vattana; MS in Computational Science-Brockport; and MS in
Educational Technology-Robert Wesleyan) is a former K-12
teacher and appears to have pedagogical skills with deep content

knowledge in mathematics, programming and general science. He
also teaches the other two gen-education courses.

Beyond its college-level use as reported above, the C-MST
approach has been introduced, through teacher training, into
secondary school classrooms in two partnering school districts
(Rochester City SD and Brighton Central SD). The content of
teacher training and its overall impact on teacher retention and
student achievement are being documented in other publications,
but here we will briefly mention the surveys on student
engagement. Majority of the 200 trained teachers agreed that
using modeling tools (IP, AS, Excel, and GSP) in their classrooms
increased student engagement. 100% of science and 97% of math
teachers agreed that C-MST initiative made math and science
concepts more comprehensible to students. Student reaction to
modeling (versus traditional techniques) was found to be 97%
favorable in math and 77% in science classes. 100% of
technology, 72% of math, and 31% of science teachers reported
observed improvement in problem solving skills. This order may
be linked to low reliance and utilization of mathematical and
computational skills in science courses as a result of limited
access to computers and possibly lack of available science-related
modeling examples. However, while science classes utilized
technology less, in instances where it was utilized, it led to a
deeper understanding of science topics than it did for math topics
(83% in science and 76% in math).

While computational modeling has been shown as an effective
pedagogy to expose students to science concepts in an incremental
fashion, by using tools that hide the underlying mathematics and
science involved in the simulations, it can also motivate them to
learn computer programming. By using multiple tools (IP, Excel,
and Python) to solve the same problem, students had a chance to
weigh advantages of each tool and conclude first-hand that more
accurate and faster computation of new =old + change for a large
number of data points will require computer programming.
Additionally, various programming concepts (variables, loops,
memory hierarchy, and data types, etc.) are learned in the process.
For example, to simulate the orbital motion of an object with
Python, a number of variables are needed to store elapsed time,
time increment, acceleration, velocity, and position. To predict the
velocity and position at the next time step, mathematical
operations are used based on the relationships among acceleration,
velocity, and position. To find the relations of velocity or position
with respect to time, a loop is used to perform repeated
calculations. To ensure correctness, the calculations of
acceleration, velocity, and position have to be put in sequential
while logically right order. Finally, in the context of applications,
it is easy for students to understand why and how to learn
computer programming. They show more willingness to learn
computer programming in order to tackle real-world applications.

A strong link is established between computing and natural
sciences through the computation of change. For example, change
in position and in velocity requires computation of acceleration,
which requires knowledge of the Force. This not only links
mathematical, computational, and scientific inquiry, it also
reinforces in an inductive way the ‘learning the fundamentals of
laws of nature’ and it simplifies the great complexity of the
universe into a handful of natural laws (gravity, electromagnetism,
and nuclear interactions) that one can learn in a general science
course. At the same time, a link between mathematics (numerical
integration) and science applications is established, which can be
used both in math courses (in the context of rate of change,
building functions, and modeling) and in science courses (in the

Volume 4, Issue 1 Journal of Computational Science Education

8 ISSN 2153-4136 November 2013

context of computational thinking (CT) as a method of science
inquiry). The new K-12 learning standards support teaching of CT
skills as early as the 5th grade (See http://www.corestandards.org/
for math and http://www.nextgenscience.org/ for science
standards).

6. CONCLUSION
The practice of teaching introductory computing courses in the
context of natural sciences (or vice versa) is a promising means of
enhancing both General Education and the STEM education.
When computational tools are used, students seem more engaged
in the class, and their attitude toward learning is more active.
While science majors get to use simulation tools and computer
programming to solve science problems, math and computer
science majors get to establish a link to natural sciences at an
abstract level, through computation of change caused by natural
laws, which projects science in a universal and simplistic
framework. Those with curiosity could then acquire a deeper
knowledge and pursue additional courses or even a career either in
mathematics, computing, or natural sciences. About 50% of non-
STEM majors in these reported courses have shown an orientation
to add STEM to their education; some (40%) through additional
courses and some (10%) through a degree. We believe that
solving real world problems by writing computer programs urges
students to acquire knowledge through scientific inquiry beyond
memorizing laws of science, encourages them to spawn ideas of
computational thinking, and fosters them to develop habits of
scientific thinking.

A major contribution of computational approach to STEM
education is that it integrates math, science and computing in a
single unit, exposes and trains students with multiple skills, which
are useful in their future careers. While we suggest inclusion of
computationally oriented general education science courses for all
college freshmen [11-12], attention to a more fundamental
concept, computational thinking (CT) at secondary school level is
also needed as a long-term strategy [25]. A focus on CT could not
only help improve science and computing education at college
level but it might also push scientific thinking into mainstream to
address underlying causes of the rising Category-5 storm in
nation’s K-12 education [25, 16-17]. Since abstraction is part of a
CT skillset, through modeling and simulations, students can learn
not only abstraction skills but also a whole set of other CT skills
such as algorithmic thinking, decomposing a problem into smaller
chunks, understanding the computational cost for more accuracy,
and realizing the need to use a programming language in order to
handle complexity and increasing number of data points.

The findings presented here cannot be generalized due to small
sample size, limited audience, and lack of reliable and valid
instrumentation to assess knowledge, attitudes, and skills. The
education research in computing is very new, unlike physics,
mathematics, and statistics [10]. We need to pay more attention to
findings of learning science. As outlined in [14], we need to: a)
draw out and work with the preconceptions and misconceptions of
learners; b) help them take control of their learning in a
constructivist environment; c) teach subject matter in depth with
many examples, and d) employ pedagogical approaches such as
metacognition, scaffolding, and project-based learning. The roles
for assessment need to be expanded beyond traditional testing to
use frequent formative assessment that would help make students’
thinking visible to themselves, their peers, and instructors.

7. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
(NSF) funds via Grant #0942569. We would like to thank to
faculty and teachers whose efforts contributed to the development,
teaching, and assessment of the reported courses and materials.

8. REFERENCES
[1] AIP Survey. Important Knowledge & Skills Used on the Job.

American Institute of Physics. http://www.aip.org/
statistics/trends/highlite/; 1999: /bachplus5/figure2.htm.
2010: /emp3/figure4b.htm.

[2] Augustine, N. 2007. Is America Falling Off the Flat Earth?
Washington, D.C.: The National Academic Press.

[3] BLS Report. 2010. The Bureau of Labor Statistics.
Occupational Employment Statistics.
http://www.bls.gov/oes/2010/may/stem.htm.

[4] Brase, C. H. and Brase, C. P. 2012. Understandable
Statistics. 10th Edition. ISBN: 0840048386. Also, see Stat
Trek web site on Hypothesis Test: Difference Between
Proportions. http://stattrek.com/hypothesis-test/difference-in-
proportions.aspx.

[5] Congressional Research Service (CRS) Report. 2008. STEM
education: Background, Federal Policy, and Legislative
Action. http://fas.org/sgp/crs/misc/RL33434.pdf.

[6] Computing Curricula 2005: The Overview Report. A
Cooperative Project of the Association for Computing
Machinery (ACM), the Association for Information Sciences
(AIS), and the IEEE Computer Society (IEEE-CS).

[7] Creswell, J. W. 2012 Educational Research: Planning,
Conducting and Evaluating Quantitative and Qualitative
Research. 4th Edition. Pearson Education, Inc.

[8] Csikszentmihalyi, M. 1990. Flow: The Psychology of
Optimal Experience. New York: Harper Collins.

[9] Cuny, J. 2011. Transforming Computer Science Education in
High School. IEEE Computer, June 2011, 107-109.

[10] Fincher, S. and Petre, M. 2005. Computer Science Education
Research. Taylor&Francis e-Library: London and New York.

[11] Goode, J. and Margolis, J. 2011. Exploring computer
science: A case study of school reform. Transactions on
Computing Education. 11(2).

[12] Guzdial, Mark. 2009. Teaching computing to everyone.
Communications of the ACM 52: 31.

[13] Haight, C. E., Herron, C., and Cole, S. P. 2007. The Effects
of Deductive and Guided Inductive Instructional Approaches
on the Learning of Grammar in the Elementary Foreign
Language College Classroom. Foreign Language Annals, 40
(20), 288-301.

[14] How People Learn: Brain, Mind, and School. 2000. The
National Academies Press. Wash., D.C. http://www.nap.edu.

[15] Landau, R. 2006. Computational Physics: A Better Model for
Physics Education? IEEE Comp. in Sci & Eng., 8 (5), 22-30.

[16] NAP Report. 2007. Rising Above The Gathering Storm.
Washington, D.C.: The National Academy Press.
http://www.nap.edu/catalog/11463.html.

[17] NAP Report. 2010. Rising Above The Gathering Storm,
Revisited: Washington, D.C.: The National Academy Press.
http://www.uic.edu/home/Chancellor/risingabove.pdf.

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 9

[18] NSF Report on Cyberlearning. 2008. Fostering Learning in
the Networked World. National Science Foundation.
http://www.nsf.gov/pubs/2008/nsf08204/nsf08204.pdf.

[19] NSTA (National Science Teachers Association). 2008.
Technology in the Secondary Science Classroom. (Eds) Bell,
L. R., Gess-Newsome, J., and Luft, J. Washington, DC.

[20] Repenning, A. 2012. Programming Goes Back to School.
Communications of the ACM, 55 (5), 35-37.

[21] Science and Engineering Indicators. 2010. National Science
Board. http://www.nsf.gov/statistics/seind10/c2/c2s2.htm.

[22] Sjøberg, S. and Schreiner, C. 2005. How do learners in
different cultures relate to science and technology? Results
and perspectives from the project ROSE
(http://roseproject.no). Asia Pacific Forum on Science
Learning & Teaching, 6, 1-16.

[23] Swanson Survey. 2010. A Survey of Computational Science
Education. By C. Swanson. The Krell Institute,
http://www2.krellinst.org/services/technology/CSE_survey/.

[24] Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N.
D. 2011. How to Grow a Mind: Statistics, Structure, and
Abstraction. Science, 331, 1279-1285.

[25] The College Board. 2011. AP CS Principles Course.
http://www.csprinciples.org. Also see June 2012 ACM
Inroads.

[26] Wenglinsky, H. 2005. Using Technology Wisely: The Keys to
Success in Schools. New York: Teachers College Press.

[27] Wing, J. M. 2006. Computational Thinking, Communications
of the ACM, Vol. 49, No. 3, 33-35.

[28] Yaşar, O., Rajasethupathy, K., Tuzun, R., McCoy, A. and
Harkin, J. 2000. A New Perspective on Computational
Science Education, IEEE Comp. in Sci & Eng, 5 (2), 74-79.

[29] Yaşar, O. 2001. Computational Science Education:
Standards, Learning Outcomes and Assessment. Lecture
Notes in Computer Science, 2073, 1159-1169.

[30] Yaşar, O. and Landau, R. 2003. Elements of Computational
Science & Eng. Education, SIAM Review, 45, 787-805.

[31] Yaşar, O. 2004. C-MST Pedagogical Approach to Math and
Science Education. Lect Notes in Comp Sci, 3045, 807-816.

[32] Yaşar, O., Little, L., Tuzun, R. Rajasethupathy, K., Maliekal,
J. and Tahar, M. 2006. Computational Math, Science, and
Technology, Lecture Notes in Comp Science, 3992, 169-176.

[33] Yaşar, O., Maliekal, J., Little, L. J. and Jones, D. 2006.
Computational Technology Approach to Math and Science
Education. IEEE Comp. in Sci & Eng., 8 (3), 76-81.

Volume 4, Issue 1 Journal of Computational Science Education

10 ISSN 2153-4136 November 2013

Introducing Transition Matrices and
Their Biological Applications

Angela B. Shiflet
Department of Computer Science

Wofford College
Spartanburg, S. C. 29303 USA

001-864-597-4528

shifletab@wofford.edu

George W. Shiflet
Department of Biology

Wofford College
Spartanburg, S. C. 29303 USA

001-864-597-4625

shifletgw@wofford.edu

ABSTRACT
The Blue Waters Undergraduate Petascale Education Program
(NSF) sponsors the development of educational modules that help
students understand computational science and the importance of
high performance computing. As part of this materials
development initiative, we developed two modules, "Time after
Time: Age- and Stage-Structured Models" and "Probable Cause:
Modeling with Markov Chains," which develop application
problems involving transition matrices and provide accompanying
programs in a variety of systems (C/MPI, C, MATLAB,
Mathematica). Age- and stage-structured models incorporate the
probability of an animal passing from one age or stage to the next
as well as the animal's average reproduction at each age or stage.
Markov chain models are based on the probability of passing from
one state to another. These educational materials follow naturally
from another Blue Waters module, "Living Links: Applications
of Matrix Operations to Population Studies," which provides a
foundation for the use of matrix operations. This paper describes
the two modules and details experiences using the resources in
classes.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education - Computer Science Education, Curriculum

General Terms
Design, Experimentation, Measurement.

Keywords
Computational Science, Matrices, Linear Algebra, Educational
Modules, High-Performance Computing, Petascale, Blue Waters,
Undergraduate.

1. INTRODUCTION
With NSF funding, the Blue Waters Undergraduate Petascale
Education Program [1] is helping to prepare students and teachers
to utilize high performance computing (HPC), particularly
petascale computing, in computational science and engineering
with the following three initiatives:
• Professional Development Workshops for undergraduate

faculty
• Research Experiences for undergraduates
• Materials Development by undergraduate faculty for

undergraduates
The goal of the Materials Development initiative is "to support
undergraduate faculty in preparing a diverse community of
students for petascale computing."
For this program, the authors developed and class tested the
computational science related modules "Time after Time: Age-
and Stage-Structured Models" and "Probable Cause: Modeling
with Markov Chains," which are available at [2] and [3],
respectively, on the UPEP Curriculum Modules site. This paper
describes and discusses the modules and experiences using both in
the course Modeling Biological Networks and class testing the
first module in Linear Algebra and a course on Modeling and
Simulation at Wofford College [4].

Several of the students in the classes at Wofford are pursuing an
Emphasis in Computational Science (ECS). By taking Calculus I,
Introduction to Programming and Problem Solving (in Python),
Data Structures (in Python and C++), Modeling and Simulation,
and Data and Visualization and doing a summer internship
involving computation in the sciences, Bachelor of Science
students may obtain an ECS [5]. Matrices are an important data
structure in numerous computational models, and introducing
transition matrices and eigenvalues with a variety of applications
provides motivation to students in mathematics, computer science,
and the other the sciences as well as in the Emphasis in
Computational Science.

2. MODULES
2.1 Pedagogy
Prerequisites for the modules "Time after Time: Age- and Stage-
Structured Models" and "Probable Cause: Modeling with Markov
Chains" are minimal, requiring an understanding of matrix
multiplication and the maturity to read the material but no
programming or calculus background. Those who do not know
how to multiply matrices or how to multiply a matrix times a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Copyright ©JOCSE, a
supported publication of the Shodor Education Foundation Inc.

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 11

vector might wish to cover first another Blue Waters module,
"Living Links: Applications of Matrix Operations to Population
Studies," by the same authors [6].

Students using the modules at Wofford College ranged from first-
to fourth-year with majors from biology, chemistry, computer
science, environmental studies, mathematics, physics, and
undecided. The modules provide the biological background
necessary to understand the applications; assuming an
understanding of matrix multiplication, the mathematical
background needed to complete the exercises and projects; and
references for further study. Multi-part quick review questions
throughout (three (3) in "Age- and Stage-Structured" and sixteen
(16) in "Markov Chains") with answers at the end of the modules
provide immediate feedback. The modules also have exercises
(five and three, respectively) for reinforcement and practice and
project assignments (eight or nine, respectively) for further
exploration using a computational tool.
To aid in exploration of the multi-scale aspects of the science and
the computing process, example solutions involving serial and
parallel model development accompany the modules. For an age-
structured model, serial programs are available in MATLAB,
Mathematica, and C, while HPC programs in C with MPI
illustrate parallel parameter sweeps and matrix partitioning.
Bioinformatics programs using Markov models to help locate
genes are available in MATLAB, C, and C/MPI. (Blue Waters
Student Intern Jesse A. Hanley implemented a matrix partitioning
program, and Intern Whitney E. Sanders developed the parameter
sweeps and Markov model in C/MPI.) Several datasets for use in
projects also accompany the modules.

2.2 Age- and Stage-Structured Matrices:
Module Content and Applications
"Time after Time: Age- and Stage-Structured Models" considers
situations that classify individuals in a species by age, such as
Years 1, 2, and 3, or stage, such as larvae, juvenile, and adult.
Solutions employ matrices to determine the intrinsic growth rates,
the proportion of each group in a stable distribution, and how
sensitive the long-term population growth rate and predicted time
of extinction are to small changes in parameters. We can employ
the latter to determine the best category to target for conservation
efforts for endangered species and for eradication efforts for pests.

Figure 1 presents a state diagram for a problem with the states
denoting ages (Year 1, 2, or 3) of a bird. The left-pointing arrows
represent fecundity or reproduction: A Year 2 (ages 1-to-2 years
old) mother has a mean of five (5) female offspring, while a Year
3 (ages 2-to-3 years old) mother has four (4) female offspring on
the average. The right-pointing arrows indicate survival rates of
P1 = 15% and P2 = 50% from Year 1 to Year 2 and from Year 2 to
Year 3, respectively. The information can be consolidated into a
matrix, called a Leslie matrix, as follows:

€

0 5 4
0.15 0 0
0 0.50 0

"

$
$
$

%

&

'
'
'

The module shows that over time the percentage of eggs/chicks
stabilizes to 82.06% of the total population, while Year 2 birds
comprise 12.05% and Year 3 birds are 5.90% of the population.
Moreover, eventually each age group changes by a factor of λ =
1.0216 (102.16%) from one year to the next, and this λ is the
dominant eigenvalue for the matrix.

Figure 1. State diagram for age-structured problem
The sensitivity of λ with respect to Pi, (λnew - λ) / (Pi,new - Pi),
measures the numeric impact on λ of a change in Pi. For small
changes in Pi, the module shows that λ is most sensitive to
changes in survivability of Year 1 birds, P1. Thus,
conservationists should probably concentrate their efforts on
helping eggs and nestlings survive.

The module also covers a stage-structured model of the Indo-
Pacific lionfish, an invasive and destructive species to reef
habitats. Figure 2 illustrates that the model also includes
probabilities for an animal remaining at the juvenile and adult
stages. From this information, we can form a matrix similar to the
Leslie matrix, called a Lefkovitch matrix, as follows:

€

0 0 35315
0.00003 0.777 0
0 0.071 0.949

"

$
$
$

%

&

'
'
'

Module material and a project explore intrinsic grow rate, stable
population distribution, and sensitivity analysis to make
recommendations for controlling this menace.

Figure 2. State diagram for stage-structured problem

2.3 Markov Chains: Module Content and
Applications
The module "Probable Cause: Modeling with Markov Chains"
also considers biological problems whose solutions involve
transition matrices. Markov chain models (MCM) are based on
the probability of passing from one state to another. Developing
the necessary probability theory and biological background, the
module solves a variety of problems using MCM from predicting
the behavior of animals to locating genes in the DNA.

One problem considers a simplified system where the monkey is
only in two states, eating (E) and resting/sleeping (R). Figure 3
enumerates the probabilities of moving between states, and the
following transition matrix captures this data:

€

0.6 0.2
0.4 0.8
"

$

%

&
'

Y e a r 1 Y e a r 3Y e a r 2
P = 0 . 1 51 P = 0 . 5 02

F = 52 F = 43

L a r v a e
G = 0 . 0 7 1

L
G = 0 . 0 0 0 0 3

J

P = 0 . 7 7 7J

R = 3 5 , 3 1 5A

J u v e n i l e A d u l t

P = 0 . 9 4 9A

Volume 4, Issue 1 Journal of Computational Science Education

12 ISSN 2153-4136 November 2013

As time passes, the module shows that the proportions approach
1/3 and 2/3 for eating and resting, respectively.

Figure 3. State diagram for Markov chain problem
We can employ such Markov models in a variety of problems in
bioinformatics, which deals with the organization of biological
data, such as in databases, and the analysis of such data. In a
similar fashion to the example of changes of state for the monkey,
a Markov chain can model the mutation process in DNA.

Moreover, the GeneMark algorithm employs Markov models to
help locate genes in a DNA sequence. In many organisms, the
sequence of bases CG appears less that we would expect from
random occurrences of C and G independently. However, small
regions, called CpG islands, upstream (before) of many genes are
rich in the sequence CG; so we can employ CpG islands to locate
genes. The module body develops a simplified 1st-order Markov
model using the probabilities of bases and pairs of bases, while a
project considers the more involved GeneMark 5th-order Markov
algorithm employing probabilities involving quintets and sextets
of bases.

2.4 High Performance Computing in Modules
Following the aims of UPEP, both modules have example
programs and sections that focus on high performance computing
(HPC) related to their particular applications. The section
"Parameter Sweeping with High Performance Computing" in the
age-structured module discusses the utility of parameter sweeping,
or executing a model for each element in a set (often a large set)
of parameters or of collections of parameters. As stated in the
module, "The results can help the modeler obtain a better overall
picture of the model's behavior, determine the relationships
among the variables, find variables to which the model is most
sensitive, find ranges where small variations in parameters cause
large output changes, locate particular parameter values that
satisfy certain criteria, and ascertain variables that might be
eliminated to reduce model complexity" [7]. Besides being very
useful, such parameter sweeping is embarrassingly parallel.

An algorithm for finding genes discussed in the Markov chains
module is also embarrassingly parallel. Using a particular Markov
model to score every subsequence of 200 bases, high scores
indicate a greater likelihood that the subsequence is in a CpG
island and that a gene is to follow. Multiple processes can
evaluate scores for different subsequences, speeding the task
significantly. Besides this specific example, a section on "High
Performance Computing and Bioinformatics" discusses the utility
of high-performance computing in a variety of other applications
in bioinformatics.

2.5 Blue Waters UPEP Internship
Involvement
During the summer of 2010 and following academic year, student
Jesse Hanley held a Blue Waters UPEP Internship to develop
parallel versions of programs using C and MPI to support "Age-
and Stage-Structured Models" and other modules. The following
year, Blue Waters intern Whitney Sanders continued Jesse's
efforts with HPC programs for both modules discussed in this
paper. Their programs accompany the modules on the NCSI

UPEP Curriculum Modules site [2]. Jesse's is planning to work in
the HPC field, and both students will be pursuing graduate work.

2.6 Exercises and Answers in Modules
After the body of educational material, each module contains a
section with multi-part exercises, while a subsequent section has
answers to selected parts. For example, the section in the "Age-
and Stage-Structure Models" includes five exercises with one
problem from the research literature involving loggerhead sea
turtles.

2.7 Projects
After the exercises, each module presents eight or nine large
projects for students to complete as individuals or with a team.
Instructions indicate to develop sequential or high performance
computing versions.
"Age- and Stage-Structure Models" has projects based on the
research literature including ones on Uinta ground squirrels, skate,
red-cockaded woodpeckers, lionfish, Pacific salmon, Furbish’s
lousewort, and cane toads in Australia. An additional project
involves determining and graphing the speedup factor versus the
number of processes for various parameter sweeps.

The projects in the "Markov Chains" module include problems on
the shapes of epithelium cells, succession in a forest, the dynamics
of cattle fecal shedding of a pathogen, development of the BLAST
algorithm for non-gapping local alignment of DNA segments,
determination using the GeneMark algorithm of the most likely
candidates for subsequences being in CpG islands, the Stepping
Stone Model useful in genetics, and DNA sequence evolution.

3. TESTING AND EVALUATION

3.1 Class Testing of Age- and Stage-
Structured Module
"Age- and Stage-Structured Models" was class tested in three
courses, Modeling and Simulation in fall of 2011, Modeling
Biological Networks in January of 2012, and two sections of
Linear Algebra in spring of 2012. In the first class, two Emphasis
in Computational Science (ECS) students successfully
implemented a system dynamics model for the age-based example
in the text.

Four biology majors and one triple major in chemistry,
mathematics, and computer science considered the module in
greater depth in a January interim on Modeling Biological
Networks taught by the authors. During the interim, students take
only one course not in the usual curriculum. Each day, students
attended class for three hours, where they made presentations and
worked on projects, and then continued developing projects
between classes. Four of the students were freshmen, while one
was a sophomore; and three of the students are pursuing the ECS.
Before considering "Age- and Stage-Structured Models," the class
worked through two MATLAB tutorials and the module "Living
Links: Applications of Matrix Operations to Population Studies"
to gain a background in matrices [6]. Students read each module
and worked exercises before class and took a short quiz on the
quick review questions in class. Over a three-day period, each
student individually or with a partner developed and presented an
age-structured and a stage-structured project. In all, the class
successfully completed six different models using MATLAB.

Also reading the material before class, forty-one (41) students in
two sections of Linear Algebra taught by Dr. Ted Monroe studied

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 13

age-structured models one day the last week of classes in Spring,
2012. Students in this course, typically sophomores, come from a
variety of majors and minors including mathematics, computer
science, biology, chemistry, and physics. During class, the
professor focused more on the mathematics and less on the
biology for about 30 minutes. Examining the bird population
diagram in Figure 1, he ensured that the students understood the
system of equations, notation, and the matrix-vector equation. He
reminded the class that the system is equivalent to a matrix-vector
equation and that that they had looked at linear difference
equations previously. Unlike problems where populations
stabilized, he noted that this population problem led to growth
over time. Also, the professor pointed out the population growth
equations in annual and exponential form. However, the focus of
the class was on the connection of the model to eigenvalues and
eigenvectors.

3.2 Evaluation of Age- and Stage-Structured
Module
Immediately after using the material, students in the interim on
Modeling Biological networks completed a questionnaire about
the module. The questionnaires had the students rate the
following statements from 1 (strongly disagree) to 5 (strongly
agree):
• I understood the science applications in the module.
• I understood the mathematics in the module.
• The module was readable.

• The Quick Review Questions helped me understand the
material.

• The exercises helped me understand the material.

Means of the four responses were 4.5, 4.0, 4.25, 4.75, and 4.5,
respectively.

In Linear Algebra, the professor had the students complete the
questionnaire at the beginning and the end of class. Excluding
students who had not read the material in the "before" category,
Table 1 summarizes the results for questions 1-3. Unfortunately,
the page with answers to the Quick Review Questions was not
included with their materials, reducing their effectiveness.
Moreover, students were not required to work exercises before
class. Thus, particularly for the "Before" column, answers to the
first three questions are more meaningful than those for the last
two questions.

Table 1. Means, 1 (strongly disagree) to 5 (strongly agree)

Question Before After
I understood the science
applications in the module.

4.22

4.45

I understood the
mathematics in the module.

4.24

4.74

The module was readable.

4.16

4.40

Two elaborated on the above scores, "I enjoyed reading about
applications," and "The mathematics in this module was easy to
understand and the questions helped to reinforce what I had read."

Some of the comments in the questionnaire given at the beginning
of class on what the student liked best about the module follow:
"The module was easy and enjoyable to read. The information on

the turtles was really interesting." "I liked how it was able to
apply to real-life situations." "Instantly visualizable, elegantly
simple, easy to understand what each structure/value represented."
"I liked that the math we are learning now can be applied to a real-
world problem to help understand endangered species." "I found it
interesting that the example used actually converges to a specific
percentage ratio." "Quick review questions and examples." "The
introduction was very engaging and the mathematics was
displayed very clearly and concisely." "I liked the subject matter
and the mathematical applications." "I enjoyed the complete
description of everything discussed and its relevance to science."
"The module was very readable. The science applications were
well explained, and the examples were helpful." "I liked that the
module was easy to follow and the applications were clear." "The
mathematical procedures were very easy to follow. I also liked
the real-life applications of this kind of math." "The module was
set up very well. The introduction and topic were interesting." "I
thought the explanations of the science was interesting so it made
following the math easier." "I enjoyed the idea of linking
mathematical models to explain and possibly solve world issues I
appreciate personally as an environmental enthusiast." "I liked
the science applications. I'm a science person in general, and I
also enjoy math, so putting the two together makes me happy."
"The projected population growth rate [using the dominant
eigenvalue] was very interesting." "I liked the biology aspect of
it! (I'm a biology major, and really like how math works with
living systems.)"

The few students who indicated any difficulties with the module
were challenged by the mathematics, particularly the concept of
"eigenvalue." However, on the questionnaire at the end of class,
they indicated they now understood the concept and how to
compute the eigenvalues. One student found typographical errors
in the module, which the authors have corrected.

3.3 Class Testing of Markov Chains Module
After completing the "Age- and Stage-Structured Models," for
three days the Modeling Biological Networks interim class turned
its attention to "Markov Chains." Reading the module before
class and completing two exercises, the group checked the
exercises in class and had a quiz on selected quick review
questions. Students in pairs or individually developed and
presented two models each with the class completing a total of
five projects.

3.4 Evaluation of Markov Chains Module
With the same questionnaire as for "Age- and Stage-Structured
Models," averages on the questions (4 responses) were 5.0, 4.0,
4.5, 4.5, and 4.25, indicating that the most challenge came from
the mathematics in the module. Some responses to a question on
what the student found most difficult in the module reinforced this
perception: "Figuring out the math with the transition matrices
and the length-normalized log-odds score," and "I didn’t fully
understand some of things in the module until we talked about
them in class the next day (i.e., transition matrices and ultimate
distributions)."

However, other remarks on what the student liked best included
the following: "It was easy to understand, and it gave everything
to the reader that the reader needed to know." "Great explanations
of calculating probabilities." "The definitions/rules sections
always help me understand the material in these modules. Having
answers to the QRQ's is also helpful for understanding the

Volume 4, Issue 1 Journal of Computational Science Education

14 ISSN 2153-4136 November 2013

content." "I enjoyed the quantity of helpful exercise and quick
review problems."

Some of the additional comments were as follows: "I have always
found probabilities to be difficult, but this module helped me
understand them much better." "I like that all of the material ties
into real-life problems. It makes everything much more interesting
and sometimes more understandable as well." "I found this
module very helpful. I was fully able to quickly grasp the
information provided in each section and use the knowledge to
work the review questions." "This is a very well thought out,
organized, and helpful module."

One suggestion was, "Include answers to the exercises." In
response, the authors added a section of answers to selected
exercise parts.

4. CONCLUSION
"Time after Time: Age- and Stage-Structured Models" and
"Probable Cause: Modeling with Markov Chains" and their
associated programs in MATLAB, Mathematica, and C/MPI are
available on the UPEP Curriculum Modules website [2, 3]. Class
testing of the modules in Modeling Biological Networks,
Modeling and Simulation, and Linear Algebra helped refine the
modules and showed their utility in introducing applications of
matrices, eigenvalues, parameter sweeping, and HPC concepts.
High questionnaire scores and enthusiastic comments from
undergraduates in three different types of courses verify the
conclusion that "Time after Time: Age- and Stage-Structured
Models" and "Probable Cause: Modeling with Markov Chains"
can be an effective educational modules in a variety of classes,
levels, and settings.

5. REFERENCES
[1] National Computational Science Institute

Undergraduate Petascale Education Program (UPEP).

http://computationalscience.org/upep Accessed
3/5/11.

[2] Shiflet, A. and Shiflet, G. 2012. "Time after Time: Age- and
Stage-Structured Models." National Computational Science
Institute Undergraduate Petascale Education Program
(UPEP) Curriculum Modules, UPEP Curriculum Modules
site. http://
www.shodor.org/petascale/materials/UPModules/
ageStructuredModels/ Accessed 5/21/12.

[3] Shiflet, A. and Shiflet, G. 2012. "Probable Cause: Modeling
with Markov Chains." National Computational Science
Institute Undergraduate Petascale Education Program
(UPEP) Curriculum Modules, UPEP Curriculum Modules
site. http://shodor.org/petascale/materials/
UPModules/probableCause/ Accessed 5/21/12.

[4] Wofford College. http://www.wofford.edu/ Accessed
3/5/11.

[5] Computational Science - Wofford College.
http://www.wofford.edu/computationalscience/
Accessed 3/5/11.

[6] Shiflet, A. and Shiflet, G. 2011. "Living Links:
Applications of Matrix Operations to Population Studies."
National Computational Science Institute
Undergraduate Petascale Education Program (UPEP)
Curriculum Modules, UPEP Curriculum Modules site.
http://shodor.org/petascale/materials/UPModule
s/populationMatrices/ Accessed 5/21/11.

[7] Luke, Sean, Deeparka Sharma, Gabriel Catalin Balan.
"Finding Interesting Things: Population-based Adaptive
Parameter Sweeping." 2007. In GECCO '07: Proceedings of
the 9th Annual Conference on Genetic and Evolutionary
Computation. Pages 86-93. ACM.

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 15

STEM-Based Computing Educational Resources
on the Web

Tatiana Ringenberg
Purdue University

401 Grant St.
KNOY 231

West Lafayette, IN
tringenb@purdue.edu

Alejandra Magana
Purdue University

401 Grant St.
KNOY 231

West Lafayette, IN
admagana@purdue.edu

ABSTRACT

This paper explores the scope of educational resources
found on the web along with teaching and learning materials that
can assist in integrating computational thinking into the
classroom. Specifically, this paper focuses on finding and
describing existing learning environments that integrate
computational thinking into a STEM discipline. This survey
provides initial steps towards the creation of a comprehensive
list of STEM-based resources, on the web, which can help
teachers to supplement and support their decision making when
creating STEM curriculum.

Keywords

Computational thinking, STEM, learning resources,
supplemental materials web-based educational materials.

1. INTRODUCTION

Computing is increasingly used to extend the capabilities and
therefore findings of scientific research. For example,
computing has enabled scientific breakthroughs by facilitating
researchers through computerized instrumentation and detailed
simulations to generate, visualize, and understand large amounts
of scientific data. In tandem with the pervasive role of
computing in science and engineering, there is a growing
recognition of the importance of computational thinking.

Computational thinking [1] has been recognized as a collection
of understandings and skills required for new generations of
students who are proficient not only at using tools, but also at
creating them and understanding the nature and implication of
that creation [2].

For the scope of this study we refer to computational thinking as
the combination of disciplinary knowledge (e.g., physics,
biology, nanotechnology) [3] with thought processes (e.g.,
engineering thinking, quantitative reasoning, algorithmic
thinking, systems thinking) involved in formulating problems
and their solutions so that the solutions are represented in a form
that can be effectively analyzed by an information-processing
agent [4]. This requires using a set of concepts, such as

abstraction, recursion, and iteration, to process and analyze data,
and to create real and virtual artifacts [5, 6].

2. BACKGROUND

Learning science, science education and cyberlearning research
and funding have resulted in high-quality internet-based learning
resources that can now be re-purposed to emphasize
computational thinking. In conjunction, there has been an
increase of teachers who use online resources for planning and
executing their learning activities [7, 8]. While educational
digital libraries exists, teachers frequently turn to the internet to
find learning resources [9]. Though it is known that these
teachers are searching for resources on the web, it is unclear
what criteria they are using to choose resources for use in the
classroom.

In a study focused on investigating educators’ expectations and
requirements for the design of educational digital collections for
classroom use [10], the authors found that in addition to the
quality of the resource, these users expected additional
contextual information in the resource. Similarly, a different
study that focused on a case study of how teachers find and use
online resources [11], the authors identified that teachers
interested in finding these resources were seeking on them
characteristics such as age-appropriateness, accuracy and
contemporariness [11].

This paper explores the landscape and characteristics of STEM-
based computing educational resources found on the web
together with teaching and learning materials that can facilitate
the integration of computational thinking into the classroom.
Specifically, this paper describes strategies and instructional
media of existing learning environments that can integrate
computational thinking into a STEM discipline together with
lesson plans, activities and other curricula organized by specific
grade levels. The guiding research question for this study is:

What are the characteristics of web based resources that
fall under the definition or are identified as resources that
can promote STEM-based computational thinking?

3. METHODS

We followed the approach created by Bagiati and colleagues
[12] to identify resources that can be described as promoting
computational thinking in STEM disciplines. We started by
identifying a list of resources mentioned on national reports and
in portals that compile resources related to computational
thinking. We then made a distinction among portals. Portals
strictly created for research purposes were not included in this
study. Portals with resources created by the same contributor
were considered a single source and were only listed once within

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Copyright ©JOCSE, a
supported publication of the Shodor Education Foundation Inc.

Volume 4, Issue 1 Journal of Computational Science Education

16 ISSN 2153-4136 November 2013

this study. Portals housing resources from different contributors
and organizations were considered on a per-resource basis. Each
website found within a portal was documented and noted as
having been found in that particular portal. Any resource in the
portal not pertaining to STEM was discarded from this study.
Websites, within a given portal, which were found to be
abandoned or for which the URL was found to no longer
existing, were also discarded.

The next step was to identify additional resources on the web.
These resources were found using a combination of the
following search terms in Google: “computational thinking,”
“science,” “technology,” “engineering,” “math,” “STEM
resources,” “simulations,” “lessons,” “supplement,” “K-12,”
“animations,” and “teaching.” Once all available resources
through these searches were identified, we proceeded with their
analysis. Our analysis started with identifying the primary
instructional methods, instructional planning methods, scope of
resources and evidence of research (e.g., publications,
evaluations, feedback, testimonials or surveys) for each
resource.

To identify the instructional method we identified whether the
resources included simulations, games, programming
environments, videos, images, animations, lectures, or books.
We also noted whether instructional planning resources were
available. Instructional planning resources are those
supplemental materials consisting of motivation, orientation,
information, application or evaluation activities [13].
Instructional planning resources were separated into lesson
plans, tutorials, learning modules, activities, sample code,
curriculum links, assignments and homework.

The procedure used in identifying the existence of research,
instructional planning methods, instructional methods and
program scope, consisted of applying the three click rule [14].
The three click rule refers to a heuristic applied to the design of
the navigation for usable websites that argues that a user of a
website should be able to find any information with no more
than three mouse clicks [14]. Under this heuristic we assumed
that users such as teachers may become frustrated if they cannot
find the information within the three clicks, thus the name of
“the three click rule.” The complete search and analysis was
performed for a second time to ensure accuracy and consistency.

4. ANALYSIS AND RESULTS

Results from this study identified 64 resources that were
classified as STEM-based computational educational resources
on the web, with 55 resources that can integrate computational
thinking into K-12 classrooms to support learning in other
STEM disciplines. Of the 55 resources, 31 were found to contain
science materials, 22 contained technology materials, 14
contained engineering materials and 23 contained math
materials.

As described earlier, the identified resources were then
classified according to the primary instructional method. Table
1 depicts the number of resources found for each instructional
method. Resources utilizing multiple instructional methods were
also noted. These categories are described below.

Simulations refer to working representations of reality
describing a model that may require some input parameters and
then are executed by the learners. Programming environments
refer to computing environments that embed a programming
language mostly used for creating interactive stories and games.

Games refer to electronic and interactive media played by means
of manipulating images.

Videos were defined as the reproduction of visual images.
Illustrations refer to static pictures and drawings while
animations refer to a sequence of images to create the illusion of
movement. Lectures were defined as notes or presentations.
Books refer to electronic compendium of written materials. For
the purpose of this study, books were also defined to include
resources with a significant amount of text.

TABLE I

TYPE OF INSTRUCTIONAL METHOD
Instructional Method Number of Resources

Simulations 25
Videos 13
Games 12
Books 10
Animations 9
Illustrations 9
Programming environment 8
Lectures 4

As shown in Table 1, eight different types of instructional
methods were identified.

We also identified whether each of the resources included any
supplemental material that could serve as an instructional
planning resource. As shown in Table 2, there were eight types
of planning resources identified. Supplemental materials are
used by educators as a blueprint or guidance to teach and
incorporate the primary instructional tools.

Lesson plans refer to structured goal and objectives provided to
teachers for a specific day’s topic. Learning modules are
organized collections of content that can range from a single
lesson (i.e., a week-long activity with the goal of learning a
single concept) to an entire curriculum (sets of week-long
activities encompassing interrelated concepts, principles,
procedures and problem-solving for a specific course or grade
level). Learning modules often contain multiple instructional
methods. In this case, a tool would be listed as a Learning
Module as well as the other categories under which it would fall.

TABLE II
TYPE OF INSTRUCTIONAL PLANNING RESOURCE

Instructional Method Number of Resources
Assessments 26
Activities 26
Lesson plans 23
Curriculum link 17
Learning modules 14
Tutorials 13
Sample code 8
Homework assignments 1

Tutorials refer to instructions, in text or video form, which
provide a teacher with a guide on how to integrate a particular
resource into the classroom or how to use a particular resource.

Activities refer to in-class interactions designed to teach students
through doing. Activities are generally short term and cover a
single concept. Sample code refers to code provided, by the
resource or by site contributors, for a particular programing
language. The goal of sample code is to teach by example.
Curriculum links refer to ties made from the resource to a
standard and accepted curriculum. Assessments refer to quizzes

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 17

and tests that are used to gauge learners’ progress to an extent.
Assessments are generally monitored by the resource and results
are provided to either the teacher or target audience. Homework
assignments refer to work that is given outside of the classroom
to reinforce concepts learned in the classroom.

TABLE III
RESOURCES BY GRADE LEVEL

Grade Level Number of Resources
Pre-K 4
K 40
1 40
2 41
3 43
4 43
5 44
6 45
7 44
8 41
9 48
10 46
11 44
12 44
College 18
All 16
Varies 10
Not available 2

Another measurement taken was the target audience for each
resource. The target audience is defined as the student grade
level for which a given resource was created. Table 3 shows the
number of resources available for each grade level. Each number
in the first column of the table represents its corresponding
grade level. The category “K” lists number of resources found
for kindergarten levels. The category “C” represents resources
targeted for college level students. The category “A” represents
resources that are created for all ages and not for a specific grade
level. “NA” category refers to resources that did not have grade
level information available. The “V” category is for resources
whose grade levels depend on the sub-resources.

Figure 1 shows the resources found to be used by audiences at
multiple grade levels.

Figure 1. Frequency of STEM resources by grade level

Additionally we conducted searches aiming to identify available
evidence of research or evaluation for each of the resources.
Evidence of research is defined as some form of proof that the
resource is effective or has been tested in some way. Table IV
below divides these resources into publications, testimonials,
evaluations, surveys and feedback.

TABLE IV
TYPES OF EVIDENCE OF RESEARCH

Instructional Method Number of Resources
Publications 21
Feedback 5
Testimonials 4
Evaluations 3
Surveys 2

Publications provide formal evidence of the efficacy of a
resource. Publications take the form of journals, conference
papers, books and articles. Testimonials are responses from
users provided by the resource. Evaluations are feedback in the
form of pre-established criteria. Evaluations can be done by
teachers, users or outside sources. Surveys are informal
feedback in the form of multiple-choice questions asked to users
about the product. Feedback is defined as reactions or concerns
of users to a particular resource. There is either an email address
provided for which feedback can be given or there is a specific
link for feedback.

Our criteria in the analysis were that all forms of resource
evidence must be available on the resource website or linked to
the resource website. For instance, if a resource has no
publications but provides an HTML link to a website that has
used its resource for publications; the resource receives credit
for publications. Resources that contained multiple forms of
evidence were listed under each type of evidence under which
they fell. Approximately 31 of the total of resources had no
visible evidence of research or evaluation at all.

The last analysis concerned resource scope. Short resources
were defined as those resources which were meant to be done
within a single sitting. This means that, if used in class, it would
take at most an hour or two of class time. Moderate resources
are those resources which take more than a single class period,
but no more than a week. Long resources are those resources
that take an extended amount of time. They often include an
entire curriculum. It was found that 44 resources included short
resources, 22 included moderate and 16 included long.

Appendix A lists all resources identified through in this paper as
well as all of the associated statistics as previously discussed.

5. DISCUSSION

This descriptive study provides an in depth view of
(a) available web-based STEM computational resources,
(b) primary tools used to teach STEM and (c) supplemental
instructional tools that can be used by teachers to integrate the
primary instructional tools. From the graphs and statistics listed
in this paper, some trends can be suggested.

As an observational note, independent STEM resources are
very difficult to find. Though there are several resource portals,
many of them have either the same information or outdated and
abandoned resources. Resources not indexed in portals were
difficult to find and had to be encountered through the right
combination of search terms. This led to an abundance of
unusable resources to be discarded. Central, up to date, resource
hubs are needed to make finding computational thinking
resources easier for teachers.

Results from Figure 1 suggest that web resources are
available, fairly consistently from K-12 grade levels. It is worth
noting that there was a spike in resources for the 9-10 grade
levels. Some resources specifically targeted for these grade
levels were found particularly in math.

Volume 4, Issue 1 Journal of Computational Science Education

18 ISSN 2153-4136 November 2013

Educational resources for Pre-K, College, all ages and a
varying audience are shown to be lacking. A potential
explanation for this trend may be due to the broad nature of the
age appropriateness of resources for each of the audiences. K-12
audiences have more focused curriculums with very specific
standards that are more easily followed by resources. Audiences
such as college professors and students, however, contain too
many sub-audiences with varying curricula. Another possible
explanation for the lack of resources outside of the K-12
audiences is the breadth of STEM disciplines outside of these.

From highest to lowest, the instances of STEM resources
were as follows: science (31), math (23), technology (22) and
engineering (14).

We expected the greatest quantity of resources to occur in
science. This is due to the broadness of the topic. It is worth
noting that most science resources were focused on individual
areas of science. For instance, BioQuest is an excellent example
focusing largely on biological sciences.

Upon first examination of technology and math, it appears
that they are nearly on par. However, when broken down by
grade level, it is evident that more math resources were available
to each grade than technology resources. Around 30% of
resources at each grade level, within K-12, were math resources
whereas only about 17% were technology resources. This shows
that, although there are several technology resources at our
disposal, not many of them cover the full spectrum for K-12
audiences.

The lack of engineering resources is not unexpected.
Engineering is a more advanced discipline that largely isn’t
taught in K-12. Engineering is also a difficult category to define
without the use of science, technology and math.

Most of the resources found combine multiple branches of
STEM. For instance, out of the 14 engineering resources found
in this study, only 4 had solely engineering resources. It is
believed that this is largely due to (a) the ambiguity of the
understanding of the term engineering and lack of preeminence
of traditional stipulated standards at the K-12 level and (b) the
multidisciplinary nature and reliance of engineering on science,
technology and math.

There are 38 more occurrences of supplementary resources
than there are of the primary tools. Further analysis shows that
simulations are the only significant source of primary
instructional tools. Though there is an abundance of simulations
at 25 total occurrences, the other primary instructional tools are
somewhat lacking. In the future, we will look further into the
other primary instructional tools to understand this gap. It is
possible that this gap exists due to the nature of STEM.

Even though simulations were the most prevalent primary
resources, they were the least explained. There were hardly any
tutorials or guides on how to use the simulations. Many of these
simulations were not intuitive. This leaves teachers or even
learners often guessing its functionality.

Learning objectives were removed from the scope of this
study due to our inability to easily find them. Very few
resources had learning objectives listed. Most of the objectives
that were found were based on the resource as a whole, not the
individual units within each resource. There were few sites that
listed the objectives based on each learning unit; however, these
were not enough to be examined in this study. Learning
objectives was not the only category that was removed from the
findings.

6. CONCLUSION AND IMPLICATIONS

Research studies have reported that searching and verifying
online learning resources poses a challenge to teachers already
pressed for time [15]. As a result of this investigation we concur
that independent STEM-based computational resources are very
difficult to find. Though there are several resource portals, many
of them have either the same information or outdated and
abandoned resources. Resources not indexed in portals are
difficult to find and had to be encountered through the right
combination of search terms. This led to an abundance of
unusable resources that had to be discarded.

Similarly, over half (31/55) of the total usable resources did
not provide at least one of the categories used in this paper. This
suggests that (a) STEM web resources may not be user friendly
or (b) STEM resources are not well supported. All of the
information that could be found within three clicks was added to
this paper. Anything beyond three clicks was not included
because it may exceed most users' tolerance for searching. This
observation goes hand-in-hand with the lack of instructions for
simulations. If resources are to be effective they must be well
explained and must contain all necessary information within a
reasonable number of clicks.

Research has also identified that many educators limit their
information seeking primarily within search engines and do not
take full advantage of educational-related digital libraries
specifically designed and crated for specific teaching and
learning needs [15]. While digital libraries can solve the
problem of finding these resources, there is still the issue of
additional characteristics users are looking for in each of them.
As more and more of these resources move to digital libraries,
instructional designers and educational researchers should keep
in mind that educators are not only looking for a collection of
resources, but also additional well-documented contextual
information (e.g., age-appropriateness) and evidence of their
high quality as well (e.g., accuracy and scientific evidence).
This study provides initial steps towards that goal by providing a
list of STEM-based computational resources on the web that
includes useful additional information, which can help teachers
and parents make decisions and eventually integrate these
resources easily for educational purposes.

7. REFERENCES

[1] Wing, J.M., Computational thinking.
Communications of the ACM, 2006. 49(2): p. 33-35.

[2] Soh, L.K., et al., Renaissance computing: an
initiative for promoting student participation in
computing. 2009.

[3] [NRC], Report of a workshop on the pedagogical
aspects of computational thinking, in National
Research Council. 2011, National Research Council
of the National Academies: Washington, D.C.

[4] Cuny, J., L. Snyder, and J.M. Wing, Demystifying
Computational Thinking for Non-Computer
Scientists. Work in progress, 2010.

[5] [CSTA]. Operational definition of computational
thinking. Computer Science Teacher Association
2012 [cited 2012 March 15]; Available from: .

[6] Barr, V. and C. Stephenson, Bringing computational
thinking to K-12: what is Involved and what is the

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 19

role of the computer science education community?
ACM Inroads, 2011. 2(1): p. 48-54.

[7] Hedtke, R., et al., Service industry for teachers?
Using the Internet to plan lessons. European journal
of education, 2001. 36(2): p. 189-193.

[8] Recker, M., Perspectives on Teachers as Digital
Library Users: Consumers, Contributors, and
Designers. D-Lib Magazine, 2006. 12(9): p. 2.

[9] Williams, T., Teachers' Link to Electronic Resources
in the Media Center: A Local Study of Awareness,
Knowledge and Influence. 2004.

[10] Sumner, T., et al. Understanding educator
perceptions of "quality" in Digital Libraries. in
Proceedings of Joint Conference of Digital Libraries
2003. New York, NY: IEEE.

[11] Recker, M.M., J. Dorward, and L.M. Nelson,
Discovery and use of online learning resources: Case
study findings. Journal of Educational Technology
and Society, 2004. 7: p. 93-104.

[12] Bagiati, A., et al., Engineering Curricula in Early
Education: Describing the Landscape of Open

Resources. Early Childhood Research & Practice,
2010. 12(2).

[13] Newby, T., et al., Instructional technology for
teaching and learning: Designing instruction,
integrating computers, and using media. Educational
Technology & Society, 2000. 3: p. 2.

[14] Porter, J., Testing the three-click rule. User Interface
Engineering, 2003.

[15] Perrault, A.M., An Exploratory Study of Biology
Teachers' Online Information Seeking Practices.
School Library Media Research, 2007. 10.

AUTHOR INFORMATION

Tatiana Ringenberg, Undergraduate Student of
Computer and Information Technology at Purdue
University, tringenb@purdue.edu

Alejandra J. Magana, Ph.D. Assistant Professor of
Computer and Information Technology at Purdue
University, admagana@purdue.edu

Appendix:

Resource	 Name	 Website	 (URL)	 Grade	
Level	

STEM	
field	

Instructional	
Planning	
Resource	

Instructional	
Method	

Evidence	
Of	

Research	

Length	 Of	
Resource	

CyberChase	 http://pbskids.org/cyberchase
/	

Pre-‐K-‐
12	 M	 A	 G,	 V	 P,E	 Short	

eNLVM	
http://enlvm.usu.edu/ma/nav
/bb_school.jsp?sid=emready&
coid=all	

Pre-‐K-‐
12	 M	 LP,	 LM,	 A	 	 	 	 	 Short	 	

Teacher	 Vision	 http://www.teachervision.fen.
com/	

Pre-‐K-‐
12	 SM	 LP,	 A,	 AS	 B,	 I,	 G,	 V	 	 	 Short	 -‐	

Moderate	

eGFI	 http://teachers.egfi-‐k12.org/	 K-‐12	 E	 LP,	 A	 	 	 	 	 Short	

iCoachMath.com	 http://www.icoachmath.com/
static/AboutUs.aspx	 K-‐12	 M	 CL,	 AS,	 T	 	 	 	 	 Short	

Let's	 Go	 Learn	 http://letsgolearn.com/	 K-‐12	 M	 AS,	 A,	 CL,	 LM	 V,G	 	 	 Short	 -‐	
Moderate	

Mathalicious	 http://www.mathalicious.com
/	 K-‐12	 M	 LP,	 CL,	 LM	 V,I,	 B	 SU	 Short	 -‐	

Moderate	

BrainPop	 http://www.brainpop.com	 K-‐12	 S	 LP,	 LM,	 T,	 A,	 CL	 G,	 V,	 A	 P	 Short	

Froguts	 http://www.froguts.com/	 K-‐12	 S	 LM,	 AS	 S	 P	 Short	

HHMI's	
BioInteractive	

http://www.hhmi.org/biointe
ractive/stemcells/animations.
html	

K-‐12	 S	 LP,	 LM,	 A	 S,	 V,	 L,	 A	 	 	 Short	

illumin	 http://illumin.usc.edu/	 K-‐12	 S	 LP	 I,	 B	 	 	 Moderate	 -‐	
Long	

United	 States	
Department	 of	
Agriculture:	
Agriculture	 in	 the	
Classroom	

http://www.agclassroom.org/	 K-‐12	 S	 LP,	 LM,	 A	 S,	 G,	 V	 	 	 Short	 -‐	
Moderate	

Engineering	 Is	
Elementary	

http://www.mos.org/eie/20_u
nit.php	 K-‐12	 STEM	 LP	 ,LM,	 CL,	 AS	 	 	 P,	 E	 Short	

Volume 4, Issue 1 Journal of Computational Science Education

20 ISSN 2153-4136 November 2013

Resource	 Name	 Website	 (URL)	 Grade	
Level	

STEM	
field	

Instructional	
Planning	
Resource	

Instructional	
Method	

Evidence	
Of	

Research	

Length	
Of	

Resource	

Engineering	
Pathway	

http://www.engineeringpath
way.com/ep/k12/k12_curricu
lar_res.jhtml;jsessionid=KOMD
U3BKENICZABAVRSSFEQ	

K-‐12	 STEM	 	 	
NOT	

APPLICAB
LE	

	

Lesson	 Planet	 http://www.lessonplanet.com
/lesson-‐plans/science	 K-‐12	 STEM	 LP,	 LM,	 A,	 CL	 	 F,A	 Short	 -‐	

Moderate	
NASA's	 Simulation-‐
Based	 Aerospace	
Engineering	
Teacher	

Professional	
Development	
Program	

https://simaero.rti.org/pages/
Coursework.aspx	 K-‐12	 STEM	 	 	 NA	 	

Teach	 Engineering	 http://www.teachengineering.
org/	 K-‐12	 STEM	 LP,	 A,	 AS	 I	 P	 Short	 -‐	

Moderate	

teachers'	 domain	
http://www.teachersdomain.o
rg/browse/?fq_hierarchy=k12.

sci.engin	
K-‐12	 STEM	 CL,	 LM,	 A,	 LP	 V,	 I	 	 Short	

Know	 It	 All	 http://www.knowitall.org/nas
a/ksnn/index.html	 K-‐12	 STM	 LM,	 A	 S,	 I	 F	 Short	

Intel	 Computer	
Clubhouse	
Network	

http://www.computerclubhou
se.org/	 K-‐12	 T	 In	 Person	

Instruction	 PE	 NA	 	

Concord	
Consortium	 http://www.concord.org/	 K-‐12,	

College	 S	 A,	 LM	 S	 P,A	 Short	

PhET	 http://phet.colorado.edu/en/s
imulations/category/by-‐level	

K-‐12,	
College	 SM	 A,	 AS,	 HW	 S,	 A,	 L	 P	 Short	

ROBOLAB	 @	 CEEO	 http://www.ceeo.tufts.edu/ro
bolabatceeo/	

K-‐12,	
College	 TE	 LP,	 T,	 A,	 SC,	 CL,	

LM	 PE	 A	 Short	 -‐	
Long	

Computer	 Science	
Teachers	
Association	

http://csta.acm.org/	
K-‐12,	
college,	
industry	

T	 	 	 P	
Full	

Curriculu
m	

Women	 @	 SCS	 http://women.cs.cmu.edu/	 K-‐12,	
Women	 T	 CL	 I	 	 	

Kid's	 Field	 Day	 http://www.ksre.ksu.edu/fiel
dday/kids/	 K-‐5	 S	 LM	 I,	 S	 	 Short	

Mad	 Dog	 Math	 http://www.maddogmath.com
/about.html	 K-‐6	 M	 A,AS,	 LM	 	 E	 Short	 -‐	

Long	
The	 K-‐8	

Aeronautics	
Internet	 Textbook	

http://wings.avkids.com/	 K-‐8	 SE	 LP,	 A	 I	 	 Short	

Explore	 Leanring	 www.explorelearning.com	 3-‐12	 SM	 LP,	 CL	 S,	 G	 P	 Short	

Scratch	 scratch.mit.edu	 3-‐12	 T	 T	 S,	 PE,	 V	 P	 Moderate	

Computer	 Science	
in	 a	 Box	

http://www.ncwit.org/unplug
ged	 5-‐9	 T	 	 	 	

Full	
Curriculu

m	

WISE	 http://wise.berkeley.edu/	 5-‐12	 S	 LP,	 LM,	 T,	 AS	 S,	 A	 P,A	 Short	 -‐	
Moderate	

EcoScience	 Works	 www.fbr.org/swksweb/esw.ht
ml	 6-‐8	 S	 LP,	 AS,	 A,	 CL,	 LM	 S	 P	 Long	

Engineer	 Your	 Life	 http://www.engineeryourlife.
org/	

6-‐8,	
Girls	 E	 	 V	 	 	

sciencecourseware
.org	

http://nemo.sciencecoursewa
re.org/	

6-‐12,	
college	 S	 AS,T,	 CL,	 LM	 S,	 V	 T,A	 Short	

Stock	 Trak	 http://www.stocktrak.com/	 6-‐12	 SM	 	 S	 	 Long	
Mathematics	 for	
the	 Digital	 Age	 and	
Programming	 in	

Python	

http://www.skylit.com/matha
ndpython.html	

9-‐12,	
college	 M	 	 B	 	 Long	

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 21

Resource	 Name	 Website	 (URL)	 Grade	
Level	

STEM	
field	

Instructional	
Planning	
Resource	

Instructional	
Method	

Evidence	
Of	

Research	

Length	
Of	

Resource	
DNA	 Learning	

Center	 http://www.dnalc.org/about/	 9-‐12,	
college	 S	 A	 S,	 A	 AR	 Short	 -‐	

Long	

Math	 Open	
Reference	

http://www.mathopenref.com
/index.html	 10	 M	 AS,	 LM	 I,	 B	 T	 Short	

EDICS	 http://ocw.mit.edu/ans7870/
resources/edics/index.htm	 College	 E	 	 S,	 A,	 L,	 B	 	 Long	

Statistics	 and	
Visualization	 for	
Data	 Analysis	 and	

Inference	

http://ocw.mit.edu/resources
/res-‐9-‐0002-‐statistics-‐and-‐
visualization-‐for-‐data-‐
analysis-‐and-‐inference-‐
january-‐iap-‐2009/	

College	 TE	 	 L	 F	 Long	

MathWorks	

http://www.mathworks.com/
company/events/webinars/w
bnr56249.html?id=56249&p1
=869881405&p2=869881423	

College	 EM	 T	 V,S,	 PE	 P	 Short	 -‐	
Moderate	

Evolution	 of	
Physical	

Oceanography	

http://ocw.mit.edu/resources
/res-‐12-‐000-‐evolution-‐of-‐
physical-‐oceanography-‐

spring-‐2007/	
College	 S	 	 B	 	 Long	

Agripedia	 http://oir.fod.msu.edu/OIR/Bi
oAg/bioag_gen.asp	 College	 SE	 CL	 	 	 	

DDA	 Medical	
Simulations	

http://www.zeroonezero.com
/medical/simulations/training

-‐simulations/medical-‐
technology-‐simulation.html	

College	 ST	 A	 S,	 A	 P	 NA	

Open	 Sees	 http://opensees.berkeley.edu/
OpenSees/home/about.php	 College	 STEM	 SC	 S,	 PE	 	 Short	

Quizzes	 with	 a	
THEME	

http://csta.acm.org/Resources
/sub/ResourceFiles/BruceMax

wellThemeQuizzes.pdf	
College	 T	 SC,	 AS	 PE	 	 Short	

TryEngineering	 http://www.tryengineering.or
g/	 A	 E	 LP,	 CL	 G	 SU	 Short	 -‐	

Moderate	
Topology	 and	

Geometry	 Software	
http://www.geometrygames.o

rg/	 A	 M	 T	 G	 	 Short	

Discovery:	
Dinosaur	 Central	

http://dsc.discovery.com/dino
saurs/dinosaur-‐
games/dinosaur-‐

viewer/dinosaur-‐viewer.html	
A	 S	 LM	 S,	 A,	 G	 	 Short	

Nobel	 Prize:	 All	
Educational	
Productions	

http://www.nobelprize.org/e
ducational/all_productions.ht

ml	
A	 S	 LP,	 LM	 G	 	 Short	

Google:	 Exploring	
Computational	

Thinking:	 Lessons	
and	 Examples	

http://www.google.com/edu/
computational-‐

thinking/lessons.html	
A	 STEM	 LP,	 SC,	 A,	 CL	 	 	 Short	 -‐	

Moderate	

Alice	 http://www.alice.org/	 A	 T	 T,	 LP,	 A,	 SC,	 CL,	
LM	 S,	 PE,	 B	 P,T	 Short	 -‐	

Long	
Beginner	
Developer	

Learning	 Center	

http://msdn.microsoft.com/en
-‐us/beginner/default.aspx	 A	 T	 SC,	 T	 V,	 B	 	 Short	

Computational	
Fairy	 Tales	

http://computationaltales.blo
gspot.com/p/posts-‐by-‐

topic.html	
A	 T	 	 B	 F	 Short	

Computer	 Science	
Unplugged	 http://csunplugged.com/	 A	 T	 A,CL	 V	 P	 Long	

Furby	 Autopsy	 http://www.phobe.com/furby
/	 A	 T	 T,	 A	 	 	 Moderate	

Phrogram	 http://phrogram.com/content
/about.aspx	 A	 T	 SC,	 LP,	 T	 S,	 PE	 T	 Short	 -‐	

Long	

GameMaker	 (by	
YoYo	 Games)	 http://www.yoyogames.com/	 A	 TE	 T,	 A,	 SC	 S,	 PE,	 G	 	 Short-‐Long	

Volume 4, Issue 1 Journal of Computational Science Education

22 ISSN 2153-4136 November 2013

Resource	 Name	 Website	 (URL)	 Grade	
Level	

STEM	
field	

Instructional	
Planning	
Resource	

Instructional	
Method	

Evidence	
Of	

Research	

Length	
Of	

Resource	

NCWIT	 http://www.ncwit.org/work.p
ractices.html	

A,	
Women	 T	 	 	 	 	

BioQuest	 http://bioquest.org/	 V	 S	 A,	 LM,	 CL	 S	 P	 Short	 -‐	
Moderate	

Molecular	
Workbench	

http://mw.concord.org/model
er/	 V	 ST	 LM	 S,	 A	 	 Short	 -‐	

Long	

Discovery	
Education	

http://stem.discoveryeducatio
n.com/	 V	 STEM	 LP,	 CL,	 LM	 V,	 G	 	 Short	 -‐	

Long	

Interactivate	 http://www.shodor.org/intera
ctivate/activities/	 V	 STM	 LM,	 AS	 S	 F	 Short	

Grade Level: A=All; V=Varies NA=Not Available
Instructional Planning Resource: LP=Lesson Plans; T=Tutorials; A=Activities; SC=Sample Code; CL=Curriculum Link; AS=Assessments;
HW=Homework Assignments; LM=Learning Module
Instructional Method: S=Simulation; PE=Programming Environment; G=Games; V=Videos; I=Illustrations/Pictures; A=Animations; L=Lectures;
B=Books
Evidence of Research: P=Publications (Journals and Papers); A=Articles (magazines and online); T=Testimonials; SU=Surveys ; F=Feedback; NA=Not
Available; AR=Annual Reports; E=Evaluations

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 23

Transformation of a Mathematics Department’s Teaching
and Research Through a Focus on Computational Science

Yanlai Chen
University of Massachusetts

Dartmouth
285 Old Westport Rd

Dartmouth, MA 02747, USA
+1 508-999-8438

yanlai.chen@umassd.edu

Adam Hausknecht
University of Massachusetts

Dartmouth
285 Old Westport Rd

Dartmouth, MA 02747, USA
+1 508-999-8322

ahausknecht@umassd.edu

Gary Davis
University of Massachusetts

Dartmouth
285 Old Westport Rd

Dartmouth, MA 02747, USA
+1 508-999-8739

gdavis@umassd.edu

Alfa Heryudono
University of Massachusetts

Dartmouth
285 Old Westport Rd

Dartmouth, MA 02747, USA
+1 508-999-8516

aheryudono@umassd.edu

Sigal Gottlieb
University of Massachusetts

Dartmouth
285 Old Westport Rd

Dartmouth, MA 02747, USA
+1 508-999-8205

sgottlieb@umassd.edu

Saeja Kim
University of Massachusetts

Dartmouth
285 Old Westport Rd

Dartmouth, MA 02747, USA
+1 508-999-8325

skim@umassd.edu

ABSTRACT

Undergraduate teaching that focuses on student-driven research,
mentored by research active faculty, can have a powerful effect in
bringing relevance and cohesiveness to a department’s programs.
We describe and discuss such a program in computational
mathematics, and the effects this program has had on the students,
the faculty, the department and the university.

Keywords

Computational science; scientific computing; undergraduate
research; interdisciplinary research; transformation.
1. INTRODUCTION
We describe aspects of a transformation of a mathematics
department that was initiated by a focus on computational science
training for undergraduates and interdisciplinary research in
computational science. National Science Foundation (NSF)
support for this training initiative was instrumental in focusing
undergraduate teaching around computational science and
scientific computing, and also in assisting the development of a
vision of the department as a major research and teaching over a
period of four years. A significant feature of these changes is that
teaching and research in scientific computing have become
department in scientific computing. Execution of this vision led to
some substantive changes in department structure and functioning
progressively integrated one with the other, to the extent that

motivated students have manifold opportunities to carry out
significant research efforts from their earliest years, and to be
mentored by research active faculty and graduate students.

2. DEPARTMENTAL DEVELOPMENT
OVER 4 YEARS
In Spring 2008 the Department of Mathematics at the University
of Massachusetts Dartmouth had two active researchers in
numerical analysis, and one scholar in applied linear algebra, as
its entire computational mathematics group. Additionally the
Department had no graduate degree (M.S. or Ph.D.) in
mathematics. By Summer 2008 the Department had lost one of
the active researchers in numerical analysis. Fast-forward four
years to Fall 2012 and the Department had the following features:

• A five-year NSF funded training program ($789,000) to
train mathematics undergraduates in computational
science, beginning September 2008.

• Seven active researchers in scientific computing, with a
focus on numerical methods for solving partial
differential equations. Their areas span finite-elements
methods, radial basis functions, spectral methods, multi-
scale methods, time discretizations, model order
reduction, and uncertainty quantification. This group
comprises two Full Professors one Associate Professor,
and four Assistant Professors.

• Two Full Professors engaged in computational
mathematics/scientific computing education research
and scholarship.

• New computationally oriented mathematics courses,
including a sophomore level course on scientific
computing.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

Volume 4, Issue 1 Journal of Computational Science Education

24 ISSN 2153-4136 November 2013

• Establishment of a University Office of Undergraduate
Research. One of the authors was Foundation Director
of this new Office, and CSUMS-RESCUE is an
exemplar program for the Office.

• A Ph.D. program in Computational Science and
Engineering.

• Over $2.5 million in competitive research, training or
equipment grants over a four year period, in which
Department of Mathematics faculty were PI or CoPI.

• A lead role in a University Center for Scientific
Computing and Visualization Research, under the
leadership of one of the authors (Gottlieb), involving
partners from engineering, oceanography, and physics.

• A high performance computing facility, built through a
partnership with mathematics and physics, and grants
from the NSF and the Air Force Office of Scientific
Research.

• A proposal for a BS/MS interdisciplinary program in
Data Science initiated by one of the authors, sponsored
by the Department of Mathematics, and supported by
the Dean of Engineering and Applied Science and the
University administration.

• A strong fit with the University strategic plan: the
Provost and Chancellor now support Scientific
Computing as a major research and training area for the
University.

3. THE NSF COMPUTATIONAL SCIENCE
TRAINING GRANT
Four faculty obtained an NSF training grant, CSUMS-RESCUE,
for computational science for mathematics undergraduates. Before
discussing the impact of this grant on the Department of
Mathematics, we take a look at the structure and function of the
undergraduate research workshops that became the visible face of
the computational science program. Following that, in the next
section, we examine in more detail the effect of this training grant
on the structure and functioning of the Department and the
University that led, in four years, to the developments described in
the previous section.

3.1 Structure of Undergraduate Research
Workshops
From the outset we conceived the CSUMS-RESCUE program as
consisting of undergraduate research workshops, constructed as
practical research sessions, in which students are inducted and
mentored in research in computational science. We accept
students into the program on the recommendation of instructors in
other courses, and students at all academic levels, Freshman
through Senior, are represented. Mathematics majors who work
on a research project in a group with at least one other student are
currently paid (approximately $18 per hour) for a maximum of
two regular semesters and one summer. Summer sessions
typically last 10 weeks with 20 hours a week. Mathematics
majors, students from other disciplines, and those who wish to
work singly, are free to participate at any time without receiving
payment. We require all participating students to have a faculty
research mentor. Student mentors might be from another
department – physics or engineering typically, outside of
mathematics.

Students work in groups on a single project, or related projects.
They are required to present short progress reports every few
weeks. The final assessment is based on individual write-ups of
projects, progress talks and a final presentation.

A faculty member is instructor of record for the research
workshop during semester (Fall and Spring) and typically two or
more other faculty, often research advisers, will be present during
the workshop meeting times. One of the authors was the first
instructor for the research workshops in Spring 2009 and has
played a major role in their format and structure since then.
Faculty who are not instructors of record do not receive not
compensation during Fall and Spring. During the Summer session,
faculty are allocated specific weeks in which they run the
workshop and they are compensated at their regular salary levels
during those weeks.

3.1.1 A marketplace of ideas
The format of the seminar is that of a seminar/workshop in which
students regularly present accounts of ongoing research in
presentations normally lasting about 10-15 minutes. This length of
presentation was chosen as being representative of times allotted
to talks at conferences, so giving students valuable practice in
concise and informative presentations. The in-class presentations
are commonly followed by questions and suggestions from other
student and attendant faculty. It is during these presentations that
students learn to appreciate the interdisciplinary nature of
computational mathematics and scientific computation, commonly
offering suggestions for new lines of investigation, new
computational techniques, or new ideas for consideration. The
cohesion of the cohort is built in part by the regular interchange of
results, approaches, and ideas. Additionally, students commonly
work on their research projects during the computational seminar
time, and will regularly walk around and join with other students
to see what they are doing, and offer help and suggestions. The
atmosphere of the seminar is best described as a market place of
ideas and techniques where faculty present work to build an
atmosphere of interest and respect across widely differing
computational mathematics projects. Seeking common ground,
and finding computational techniques and analyses that extend
across these different applications has been a major goal of the
seminar, and students quickly buy into this interdisciplinary
approach.

3.2 Recruitment
Recruitment of students into the research workshop was initially
through recommendations from instructors in other courses,
especially early calculus courses. A group of three faculty - the PI
and a Co-PI for the NSF grant, as well as the Director of
Consulting & Data Management for the project – formed the
admissions committee. When an instructor identified a promising
student in their class they would talk with one or more members
of the admissions committee who would most commonly
interview the recommend student and ascertain their interests as
well as existing or likely research advisers. When the program had
been running for some semesters it was not uncommon for
students to hear about it by word of mouth and come looking for a
member of the admissions committee to see if the experience was
right for them. Considerable effort was put into recruiting under-
represented minorities in computational science, particularly
women and African-American students.

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 25

3.3 Building a Cohort
The CSUMS program was designed to maximize the opportunities
for peer support and collaboration. To this end, our students
present their work to each other and become involved in each
other’s projects. The reliance on MATLAB, Mathematica,
Python, and Latex requires our students to work together and
collaborate with each other, and the relaxed atmosphere in the
computer classroom encourages the students to talk, ask, answer,
and generally communicate well. Some of our students have done
their best work in pairs. For example in the 2009 Summer
workshop, two students worked together on coordinate metrology,
two on collocation methods, aliasing, and the Runge phenomenon,
with another student joining them for parts that overlapped with
her research interests in wavelets and Fourier analysis. Two
students formed a strong team, centered on their interest in
cryptography, and presented a joint paper at the SIAM annual
meeting. In addition, another student and a graduate student spent
a lot of time on the implementation of MPI and parallel Python on
the computers in the room. We consistently try to match up
students to work on the same or similar topics, but this does not
always match their interests and research style. Students talk to
each other, learn from each other, challenge and advise, write
summaries and code together and debug each other’s work. It is
difficult to describe how we measure success in forming a
cohesive cohort. One indication is the fact that our students decide
to take the same sections of courses, they prefer to stick together
and they discuss their projects outside of the CSUMS
environment. Another indicator of success is the atmosphere in
the computer room. It is a dynamic, exciting, collaborative
atmosphere, which is fun to be in. The faculty like the atmosphere
so much that they often hang out there and have impromptu
meetings and talks.

3.4 Enrolment Numbers
The National Science Foundation supported research training
workshops in computational science began Spring 2009 and will
continue under this funding model until Summer 2013. To date,
70 students have participated in these workshops, several of them
for 3 semesters, and a few returning, unpaid, for another semester.
Table 1, below, lists the enrolment numbers from Spring 2009
through Fall 2012.

Table 1. Research training workshop enrolments

Semester # students Semester # students

Spring 2009 15 Summer
2010

11

Summer
2009

12 Fall 2010 11

Fall 2009 18 Spring 2011 16

Spring 2010 8 Summer
2011

11

Fall 2011 12 Fall 2012 8

Spring 2012 9 Spring 2013 16

Summer
2012

8 Summer
2013

9

3.5 Conference Participation
Funding from the NSF has meant that funded students are able to
travel, at no cost to themselves, to regional and national

conferences and to participate in those conferences as active
participants, presenting posters on their research, or delivering
talks or refereed papers, or as interested observers.

Each April students are strongly encouraged to present posters or
talks at both the Massachusetts Statewide Undergraduate
Research Conference at the University of Massachusetts Amherst,
and at the University of Massachusetts Dartmouth Sigma Xi
Exhibition. Additionally, students participating in the Summer
research workshops are encouraged to attend and, where possible,
participate through poster presentations or talks in the annual
conference of the Society for Industrial and Applied Mathematics
(SIAM). Students were also strongly encouraged to participate in
local, national and international meetings and conferences. Some
details are shown below in Table 2.

Table 2. Number of students attending Summer conferences
Year Summer Conference #students

2009 5th MIT Conference on Computational
Fluid and Solid Mechanics

12

 SIAM Annual Meeting, Denver, CO 4 + 1 grad

2010 Northeast Section of the Mathematical
Association of America, Salve Regina
University, Newport, RI,

8 + 1 grad

2010 SIAM Annual Meeting, Pittsburgh, PA, 9 + 1 grad

2011 NSF-CBMS Radial Basis Function
Conference, UMass Dartmouth, Fall
River, MA

11

 7th International Congress on Industrial
and Applied Mathematics, Vancouver,
BC, Canada

9

2012 SIAM Annual Meeting, Minneapolis,
MN

10

2013 SIAM Annual Meeting, San Diego,
California, USA.

9

3.6 The Summer Experience
The Summer research workshops were more intensive than those
during Fall and Spring semesters. Students meet 12:00 PM – 5:00
PM Monday-Thursday for 10 weeks during the Summer. This
intensive experience has proved most helpful in introducing
students to the research experience and mentoring them in their
first steps in research. The semester classes were held Tuesdays
and Thursdays for 75 minutes per class, for a total of 15 weeks.
Not only were the students in Summer getting 5 times the in-class
research exposure, they were also getting it in more concentrated
form. As a result, we found that students who began research
experiences in computational mathematics in the Summer
generally stuck with their research projects better than students
who began in the Fall or Spring semesters.

3.7 Effect on Students
The question of how an intensive and sustained research
experience for undergraduates affects individual students has been
tackled in several studies. Kardash [1] reports that an
undergraduate research experience can enhance skills
differentially; Seymour et al. [2] report, in a study of
undergraduate science research, that an overwhelming majority of
participants experienced positive gains, including areas such as:
“thinking and working like a scientist; clarification/confirmation

Volume 4, Issue 1 Journal of Computational Science Education

26 ISSN 2153-4136 November 2013

of career plans (including graduate school); and enhanced
career/graduate school preparation (9%)”. Hunter et al. [3] found
that in relation to undergraduate scientific research, faculty
focused on gains related to apprenticeship in scientific research
while students focused more on skills development.

3.7.1 Surveys
A Likert attitude survey was administered to participating students
toward the end of the spring 2009 semester. Significant are the
questions with a high (>1) or low (<-1) z-score. We infer from
answers to questions with a high or low z-score, that students, on
average:

• liked having external speakers;
• found it helpful to be with a group of students from

different backgrounds;
• learned a lot about their chose research topics by being

part of the CSUMS cohort;
• found the faculty who attended the seminar to be helpful

and appreciated the style of interaction;
• learned a lot about computation and programming;
• felt comfortable approaching faculty to advise them;
• found seminar presentations by students to be

important;
• agreed with the emphasis on MATLAB;
• did not want student talks restricted to 10 minutes;
• felt that students with less than high GPAs should also

be recruited to the program;
• were comfortable with giving external presentations;
• did not find presenting stressful;
• appreciated the diversity of interests of student

participants.
This survey provides evidence that the cohort structure of the
program is a beneficial feature.
A 2010 survey of students indicated that students rate giving in-
class presentations positively, scoring 4.35 on a 5 point scale,
ranging from Very Negative to Very Positive, when asked:
“Please rate your overall experience of talking in class. My
overall experience of giving in-class talks is that it has been, for
me personally: [Very Negative through Very Positive] ”
Comments included:

• This greatly improved my confidence in public
speaking.

• I have gained valuable experience for speaking in class.
I have learned from the CSUMS group on how to better
my presentations.

• Great feedback. Excellent direction from Professors and
Students alike.

• Personally, I get very nervous giving talks, but with
each presentation it does seem easier, and when you
know your research well, talks can be a very good way
of getting feedback. Talks also make you rethink and
understand your work better, in order to allow the
audience to understand.

• Although nerve-racking at first, class presentations
helped make in the long run. It improved my public
speaking skills, but also when explaining the material it
really let me know what I needed to re visit to get a
better understanding. Plus it was a good way to see what
everyone else was working on, and learn some new
things.

• For me, all the presentations and talk helped me to
improve my presentation skill for my later profession.
Feedback is always very helpful and a lot of the

questions asked really help me understand my projects
even better.

3.8 Productive Outcomes
A significant effect on participating students has been a
realization that research, unlike course-work, is often messy, with
numerous backtracks and changes of direction. Students have
come to realize that their professors and mentors do not always
know everything and that learning through research is a
partnership. Faculty members, for their part, have been willing to
trust students, even those with relatively modest achievements in
mathematics, to find their way through a research problem with
advice and mentoring. A very telling example of this is a young
man who worked on fitting normal inverse Gaussian distributions
to distributions of percentage obesity by U.S. county for the years
2004-2009. His mathematics achievements prior to this were
modest. Yet, motivated by the research topic he chose, and
mentored and assisted by two faculty members, he learned how to
practically implement maximum likelihood methods for
complicated parametric distributions, and to use those to say
something statistically important about the data. With the two
faculty members, this student is in the process of writing up his
research for publication. Other, more mathematically talented
students have written professional research papers with their
faculty mentors, and others have been stimulated to seek summer
research experiences elsewhere, following their CSUMS-
RESCUE experiences. Some, who went on to quantitative
research environments, have written to us to say how important
were the technical skills they learned during their time in the
computational science research workshops. These skills included
programming skills – MATLAB and Python particularly – data
analysis skills and statistics more generally, linear algebra, writing
in LaTeX and Beamer, and presentation skills.

3.9 Less Productive Outcomes
Not all student experiences in the CSUMS-RESCUE program
were as positive as the faculty would have liked them to be. Some
of the issues that arose over the period the program has been
funded by NSF include:

• Students who, despite being paid, did not engage with
their research topics. Such students were more likely to
have been admitted to the program as part of a group,
and agreed to the project as part of that group, without
being fully motivated to carry out research.

• Students who consistently did not listen carefully to
other student presentations, either working on a
computer or idly staring out a window.

• Some highly mathematically talented students, who see
their mathematical career in teaching, are not amenable
to thinking computationally about mathematical
problems and generally do not like programming.

• Students who, despite heroic efforts on the part of
participating faculty, just were not able to show the
necessary technical ability, skills, or attitude to carry out
computational science research projects.

This last point has several aspects to it, and requires further study
and elucidation, in our view. While all faculty are delighted to
find exceptionally talented students who soar when exposed to a
research environment, we have an educational mission to
productively educate all students, and a belief that undergraduate
research can be empowering for a majority of students, and can
and should be integrated into the undergraduate curriculum, in
line with a 1989 NSF report [4].

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 27

Additionally, one of us (Davis) tried unsuccessfully for several
summers to run computational science training workshops for
local high school teachers. The work of Jacobs et al [5] has
recently come to our attention, and the programs described there
may be helpful in this regard.

4. EFFECT OF THE COMPUTATIONAL
SCIENCE TRAINING GRANT ON THE
DEPARTMENT AND THE UNIVERSITY
4.1 Effect on the Department
4.1.1 New Faculty
The NSF computational science training grant played a significant
role in focusing the entire Department on computational
mathematics and computational science. In the Fall of 2008 two
new appointments were made in numerical analysis at the
Assistant Professor level. This brought to three the number of
active researchers in numerical analysis. Since then new tenure-
track faculty appointments have all been in the area of
computational mathematics, with 3 additional faculty appointed as
of 2012. Additionally, another faculty member changed her
research from commutative algebra to computational applied
mathematics, and obtained promotion to Full Professor on the
basis of her new research.

4.1.2 External Review
An AQAD external review of the Department of Mathematics was
conducted in 2009. The reviewers commented on the CSUMS-
RESCUE program as follows:

“A most notable, very recent development in this area has

been the Research in Scientific Computing in Undergraduate
Education (RESCUE) project … It would be hard to overstate the
positive impact of this activity. The major concrete outcomes have
been a program of undergraduate student research projects and a
seminar course in which students present the results of their
projects. These provide excellent vehicles for obtaining "hands-
on" experience applying modern mathematical and computational
methods to real-world problems and making presentations on the
results. During our visit, we attended a seminar session during
which several students gave presentations about their research
projects. We were very impressed by the timely mathematical
content and societal relevance of the projects presented, as well as
the overall polish of the presentations. In a later meeting with a
group of students, most of whom participated in RESCUE, we
heard strong words of praise and appreciation for the program.
Students liked working on projects that interested them, enjoyed
the close working relationships with faculty advisors, and
appreciated the funding (up to 10 hours of work per week)
provided by the grant to participate in the project. (One student
said that the funding allowed her to quit her second part-time job.)
We also observed that RESCUE appears to involve many faculty
members, including a number who were not originally involved in
the RESCUE grant proposal. Indeed, seven faculty members meet
every other week to work together on this project. Our summary
opinion is that the RESCUE project has become a centerpiece of
the department’s programs that appeals to both students and
faculty and that is helping greatly to add cohesiveness and
relevance to the department’s programs.”

4.1.3 Research Advisers
With only two exceptions, faculty in the Department of
Mathematics, have been research advisers to students in the
computational science program. As faculty increased in numbers,
at least six faculty were actively involved in semester and
Summer workshops – advising students, overseeing their work
and mentoring them through the research process.
Many students were interested in research topics for which the
principal, often sole, adviser was a faculty member in Engineering
or Physics. This had an effect of bringing faculty in Engineering,
Mathematics and Physics with a computational science interest
closer together. Faculty from Engineering Departments and
Physics gave computationally oriented talks to undergraduate
students. Faculty in Mathematics gave talks on software
development to the undergraduate students, to which faculty from
other Departments occasionally attended. Gradually, a spirit of
cooperation over research advising, more general research
projects, and attendance at seminars in other Departments became
common. Undergraduate students in the computational science
program are expected and encouraged to attend research
presentations from speakers from outside the University.
4.1.4 New and Modified Courses
In 2007 one of the authors (Hausknecht) introduced a course on
Scientific Programming as an upper level course. For the early
versions of the course he used Java, Octave and TEMATH [6]. He
learned about Visual Python from an ICTCM talk he attended,
and switched to Python for the following reasons:

• The potential of Visual Python to graphically illustrate
ideas of computational mathematics;

• Many mathematicians and scientists were using Python
as an open source replacement for MATLAB;

• Python can be used for general computing including
gluing together programs written in FORTRAN and C;

• Many people find Python easier to learn than other
languages.

One of the authors was also motivated by the Department's shift to
numerical/applied mathematics, which became more focused with
the advent of the CSUMS-RESCUE program.
After trialing for several semesters at the upper level the course on
Scientific Computing has now been institutionalized as a
sophomore level offering for all mathematics students. The course
description includes:
“Calculus-based programming covering conditionals, loops,
arrays, file I/O, libraries, data types, and operating system
commands. This course provides a project driven introduction to
programming using a selection of mathematics programming
tools, scripting languages, and traditional languages …”
Calculus 2 is a pre-requisite for the Scientific Programming
course, and either Calculus 3, Differential Equations, or Linear
Algebra is a co-requisite. The purpose of these pre- and co-
requisites is to restrict enrolment in this sophomore level course to
students with a strong enough mathematical background, and
continuing study in mathematics, to be able to cope with the
scientific examples used in the course.
To a large degree this course in Scientific Programming fulfills
the mathematics major requirements for a computing course, and
is one that is more clearly directed to mathematics majors.
Recently the Department of Physics has decided to use this course
as a preferred training for students in programming that is more
closely aligned to physics majors.
Additionally, several courses including differential equations,
mathematical modeling, numerical analysis, and mathematical
statistics have been revised to include a computational emphasis.

Volume 4, Issue 1 Journal of Computational Science Education

28 ISSN 2153-4136 November 2013

In Spring 2012 one of us (Heryudono) designed and taught a
graduate level course in High Performance computing, using
MATLAB as a high level language to access a high performance
computer cluster. The experiences of Shiflet & Shiflet [7] indicate
that such a course could also be accessible to undergraduates.

4.2 Effect on the University
The CSUMS-RESCUE solidified ties for faculty particularly in
Engineering Departments, Mathematics, and Physics, with some
input from Biology and Chemistry. Faculty from different
Departments talked more about research, including research plans.
An atmosphere developed in which collaboration seemed not only
possible but genuinely desirable. An issue that had been on the
mind of one of the authors (Gottlieb) for some time now seemed
eminently possible, and so the Scientific Computing Group [8]
was born which led very rapidly to University approval for a
Center for Scientific Computing and Visualization Research, with
very strong support and input from the Dean of Engineering and
Applied Science. A result of this growth is the alignment of the
Department of Mathematics with the University strategic plan in
which computational mathematics and scientific computing more
generally, are a central part of that plan.

5. CONCLUSIONS
An embryonic computational mathematics group was in danger of
slipping away without a plan and vision for the future. Faculty
worked on the CSUMS-RESCUE training grant which, as the
Department’s external reviewers stated: “… has become a
centerpiece of the department’s programs that appeals to both
students and faculty and that is helping greatly to add
cohesiveness and relevance to the department’s programs.” That
cohesiveness and relevance picked up steam through a focused
faculty recruitment plan, the establishment of a Center for
Scientific Computing and Visualization Research, a Ph.D.
program, establishment of a University Office of Undergraduate
Research, developments in Data Science through a proposed
BS/MS, and marked improvement in competitive research and
training grants.
Research and teaching in the Department are now more integrated
than they were four years ago. Students who participate in the
research training program are in regular contact with research
active faculty and graduate students. The number of students
participating in the computational science research program in a
given semester is a relatively small percentage of the total number
of mathematics majors. However, students can participate in the
research program any time from the second semester of their
Freshman year (after completing Calculus 1) up to their Senior
year, students have a total of 10 semesters (including summers) in
which to participate. This means the program has impacted a
significant percentage of mathematics majors to date. Teaching
mathematics, for almost all tenured and tenure/track faculty has
become more focused on computation and on research
opportunities for students.
The computational science research training program is
institutionalized in the Department. How strong student
participation will be once NSF funding is no longer available
remains to be seen. Establishment of an Office of Undergraduate

Research in the University has lead to a fund-raising effort for
undergraduate research in general, and a focus on the importance
of undergraduate research in the curriculum for which the
CSUMS-RESCUE program is an exemplar. The establishment of
a Ph.D. program in Computational Science and Engineering, a
Center for Scientific Computing and Visualization Research, and
a planned Data Science BS/MS program, have all extended and
solidified the opportunities for undergraduate students to become
deeply involved in serious scientific research in computational
science as part of their normal undergraduate experience.
.

6. ACKNOWLEDGMENTS
This work was supported by National Science Foundation grant
DMS- 0802974 “RUI: CSUMS: Research in Scientific Computing
in Undergraduate Education (RESCUE)”. The views and opinions
expressed here are those of the authors and do not reflect or
represent the views of the National Science Foundation.
We acknowledge the strong support of Robert Peck, Dean of
Engineering and Applied Science at the University of
Massachusetts Dartmouth.

7. REFERENCES
[1] Kardash, C.M. 2000. Evaluation of an undergraduate

research experience: Perceptions of undergraduate interns
and their faculty mentors. Journal of Educational
Psychology, 92(1), 191-201.

[2] Seymour, E., Hunter, A., Laursen, S.L. and DeAntoni, T.
2004. Establishing the benefits of research experiences for
undergraduates in the sciences: First findings from a three-
year study. Science Education, 88(4), 493–534.

[3] Hunter, A., Laursen, S.L. and Seymour, E. 2007. Becoming a
scientist: The role of undergraduate research in students'
cognitive, personal, and professional development. Science
Education, 2007, 91(1), 36–74.

[4] National Science Foundation. 1989. Report on the
National Science Foundation disciplinary workshops on
undergraduate education. Washington, DC.

[5] Jacobs, P. and Houchins, J. 2012. Building a project
methodology to provide authentic and appropriate
experiences in computational science for middle and high
school students. Journal of Computational Science
Education, 3(1), 11–18.

[6] Hausknecht, A. O. and Kowalczyk, R. E. TEMATH (Tools
for Exploring Mathematics)
http://www.faculty.umassd.edu/adam.hausknecht/temath

[7] Shiflet, A.B. and Shiflet, G.W. 2010. Testing the waters
with undergraduates (If you lead students to HPC, they will
drink). Journal Of Computational Science Education, 1(1),
33-37.

[8] UMass Dartmouth Scientific Computing Group.
http://umassdcomputing.org

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 29

STUDENT PAPER: Solving the Many-Body Polarization
Problem on GPUs: Application to MOFs

 Brant Tudor Brian Space
 University of South Florida-Tampa University of South Florida-Tampa
 3720 Spectrum Blvd, IDRB 210 3720 Spectrum Blvd, IDRB 210A
 Tampa, FL 33620 USA Tampa, FL 33620 USA

 btudor@mail.usf.edu bspace@mail.usf.edu

ABSTRACT
Massively Parallel Monte Carlo, an in-house computer code

available at http://code.google.com/p/mpmc/, has been

successfully utilized to simulate interactions between gas phase

sorbates and various metal-organic materials. In this regard,

calculations involving polarizability were found to be critical, and

computationally expensive. Although GPGPU routines have

increased the speed of these calculations immensely, in its

original state, the program was only able to leverage a GPU’s

power on small systems. In order to study larger and evermore

complex systems, the program model was modified such that

limitations related to system size were relaxed while performance

was either increased or maintained. In this project, parallel

programming techniques learned from the Blue Waters

Undergraduate Petascale Education Program were employed to

increase the efficiency and expand the utility of this code.

General Terms
Algorithms, Design

Keywords
Blue Waters Undergraduate Petascale Education Program,

CUDA, GPGPU, MOF, Parallel Programming, Polarization

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported

publication of the Shodor Education Foundation Inc.

1. INTRODUCTION
Metal-Organic Frameworks (MOFs) are highly porous, crystalline

materials characterized by inorganic clusters, or nodes, connected

via organic linkers. The linking molecules are roughly linear and

force a relatively high level of space between the inorganic nodes.

Consequently, these materials are remarkable in their high surface

areas, which suggest great opportunities for applications such as

gas storage via physisorptive processes. The ability to selectively

control pore size, polarity and placement of functional groups on

the linkers provides further opportunity for the engineering of

materials suited for specific separations or catalytic activity. In

order to rationally design such materials, it is desirable to

understand how they work on a molecular level. For example, it

would be useful to know how exactly how and why each node,

linker or functional group’s place within the MOF improves or

retards the process of interest. Additionally, the identification of

non-existent MOFs with useful properties, or the identification of

useful, overlooked properties on existent MOFs, is another widely

held aim.

To that end, accurate, efficient simulation of MOF materials is an

area of active research. A program developed in-house, Massively

Parallel Monte Carlo (MPMC), has demonstrated its effectiveness

in MOF-centric and related simulations [1-3]. This program has

been successfully employed to generate sorption isotherms for

MOFs with high fidelity to experiment [1]. Crucial to the

accuracy of such isotherms is a careful accounting of the

polarization energy of the MOF, and, unfortunately, this task has

proven to be a computational bottleneck [4]. Early versions of

MPMC had a limited ability to utilize GPGPUs to perform these

calculations. Although a significant performance boost was

realized, the system size was constrained by the amount of shared

memory on the card, effectively limiting the simulations to

approximately 2000 atoms on the available hardware (a number

only suitable for simulation of smaller MOF systems).

2. BACKGROUND
Polarization calculations in MPMC are conducted using the

Thole-Applequist model [5, 6]. This model assigns each atomic

site a point dipole whose interactions with all the other dipoles of

the system are dictated by many-body polarization equations.

Using a set of training molecules, a 3x3 polarizability tensor is

calculated for each site. Then, in a static electric field, each

dipole, 𝜇 , is thus represented by the product of the calculated

polarizability tensor, α, and the field vector at that point, �⃗⃗�𝑠𝑡𝑎𝑡:

𝜇 = 𝛼�⃗⃗�𝑠𝑡𝑎𝑡 (1)

Volume 4, Issue 1 Journal of Computational Science Education

30 ISSN 2153-4136 November 2013

In this model, the dipole for a molecule is then treated as a

collection of N atomic-point dipoles, which are summed to give

the net dipole for the set [4]:

𝜇𝑚𝑜𝑙 =∑𝜇𝑖

𝑁

𝑖

= ∑𝛼𝑖

𝑁

𝑖

�⃗⃗�𝑖
𝑠𝑡𝑎𝑡 (2)

Here, 𝜇𝑖 is the dipole for an individual site, 𝛼𝑖 is the polarizability

tensor for the site, and �⃗⃗�𝑖
𝑠𝑡𝑎𝑡 is the electrostatic field vector at that

point, for each site, i, in the molecule. The Thole-Applequist

system is then treated as a collection of N dipoles and a dipole

field tensor, 𝑇𝑖𝑗
𝛼𝛽

. The elements of T are the complete set of

tensors describing every induced dipole-dipole interaction in the

system [4]. The product of the dipole field tensor, T, and a system

dipole results in the many-body induced-dipole contribution to the

electric field, �⃗⃗�𝑖𝑛𝑑, at the dipole site. The dipole field tensor was

designed to contain the entire induction contribution, allowing the

assignment of a scalar point polarizability, 𝛼∘ for each site,

instead of the polarizability tensor [4]:

𝛼𝑖 �⃗⃗�𝑖
𝑠𝑡𝑎𝑡 = 𝛼𝑖

∘(�⃗⃗�𝑖
𝑠𝑡𝑎𝑡 + �⃗⃗�𝑖

𝑖𝑛𝑑) (3)

 = 𝛼𝑖
∘ (�⃗⃗�𝑖

𝑠𝑡𝑎𝑡 − 𝑇𝑖𝑗
𝛼𝛽
𝜇𝑗) (4)

If �⃗⃗⃗� is treated as a vector, each entry of which is one of the system

dipoles (each of those a vector), equation (5) is the result. A

similar “super vector” is formed by treating vectors of the static

electric field (at a point in space corresponding to each of the

dipoles) in an identical fashion, the result of which is equation (6).

�⃗⃗⃗� = (

𝜇1
𝜇2
⋮
𝜇𝑁

) (5)

�⃗⃗⃗�𝑠𝑡𝑎𝑡 =

(

�⃗⃗�1
𝑠𝑡𝑎𝑡

�⃗⃗�2
𝑠𝑡𝑎𝑡

⋮

�⃗⃗�𝑁
𝑠𝑡𝑎𝑡
)

 (6)

Additionally, if matrices A and B are defined as

𝐴 = [(𝛼∘)−1 + 𝑇𝑖𝑗
𝛼𝛽
] (7)

𝐵 = 𝐴−1 (8)

the problem is reduced to two compact matrix equations, (9) and

(10). Matrix A is thus constructed such that each element is the

3x3 matrix 𝑇𝑖𝑗. Each element of matrix B is also a 3x3 matrix—

the site polarizability tensor characterizing each site’s response to

an electric field [4].

𝐴�⃗⃗⃗� = �⃗⃗⃗�𝑠𝑡𝑎𝑡 (9)

�⃗⃗⃗� = 𝐵�⃗⃗⃗�𝑠𝑡𝑎𝑡 (10)

The system dipoles can therefore be found by inverting matrix A

(giving B) and solving equation (10) directly. However, the size

of matrices required to model typical MOF systems renders the

computation required for matrix inversion impractical. MPMC

solves these equations by guessing at the value of each point

dipole and solving equation (9) iteratively.

3. MPMC

3.1 Limitations of the Initial Solution
MPMC typically solves for the system dipoles iteratively [7]. The

initial guess for each dipole is simply the product of the scalar

point polarizability and the electrostatic field vector at that point.

Each dipole is considered sequentially, and is marginally

corrected according to the induced contribution calculated using

all the other dipoles in the system. This process is repeated for

each dipole (thus concluding a single iteration), and the whole

process is then repeated for the entire system until convergence to

within a specified tolerance is realized. MPMC also has the ability

to solve this problem through matrix inversion, but, as previously

mentioned, this method is only viable for small systems.

Additionally, the original version of MPMC included support for

finding the system dipoles using a General Purpose Graphics

Processing Unit (GPGPU) device. This algorithm performed the

iterative process previously described with only a few key

differences. First, each step of the calculation updated every

dipole in the system, whereas the serial algorithm incorporated the

Gauss-Seidel numerical iterative technique. In this method, newly

calculated dipole data replaces old dipole data as soon as it

becomes available. The new values are then used in calculating all

the remaining dipoles in the system. This technique can

significantly decrease convergence times, but since, in the parallel

algorithm, all the newly calculated dipoles become available

simultaneously, the Gauss-Seidel technique was not implemented.

A test for convergence of the GPGPU polarization calculation was

not implemented in the original version of MPMC. Hence, the

computation would run for a preset number of iterations and

results were delivered without any way of estimating their

accuracy.

Finally, simulations utilizing the GPGPU device were limited to

2048 atoms due to the manner in which MPMC employed the

GPU’s shared memory system. This constraint renders the

GPGPU algorithm useful only in simulations of relatively small

system size. A MOF simulator should ideally be able to handle

system sizes of 10,000+ atoms in order to be useful for several

MOFs of current and future interest to investigators.

3.2 Updated Program Model
Several changes to improve and expand the functionality of

MPMC were realized.

3.2.1 Maximum System Size Expansion
The 2048 atom cap imposed on simulations was the first

limitation addressed during the course of this project. In the

updated program model, each GPU thread was assigned a single

system dipole. Each thread calculates its dipole’s interaction with

every other dipole in the system, and sums these interactions to

arrive at the dipole vector to be used in the next iteration. Since

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 31

every thread needs access to the vector data of every other dipole,

it only makes sense to load the dipole information into shared

memory so that each thread in the block can access it. This

precludes the need for each of these threads to access the data

individually from global memory (a relatively time consuming

process to be avoided when possible) [8]. However, since shared

memory is fairly limited, it is impossible to fit all the dipole data

in this memory system simultaneously (for moderate to large-

sized systems). This situation is amenable to a tiled model of data

handling such that the complete set of dipole information resides

in global memory and is moved in and out of shared memory as

needed, one block at a time (FIGURE 1). Organizing the data in

this manner shifts the limitation of system size from shared

memory to one of global memory and/or maximum grid size.

Obviously, the global memory of the GPGPU device must be

large enough to hold dipole data for the entire system. However,

since each thread is responsible for a dipole and each thread block

executes a limited number of threads, the maximum grid size

(which dictates the total number of blocks) is ultimately

responsible for determining the maximum number of threads [8],

and therefore the maximum number of dipoles (i.e. atoms).

Fortunately, on current hardware, the system sizes imposed by

these limitations number in the millions of atoms, thus

transforming MPMC’s prohibiting considerations from those of

system size to one of computational duration.

3.2.2 Gauss-Seidel in Parallel
The original GPGPU algorithm did not attempt to implement the

Gauss-Seidel iterative method of using newly calculated dipole

information in the calculations for later dipoles. From outside the

GPU kernel, all the dipoles appear to be updated simultaneously,

so a treatment of this nature simply is not possible. However,

from inside the kernel, once a thread block has completed, it is

possible for each thread to overwrite its value in global memory

with its newly calculated value (FIGURE 2). This treatment will

allow any subsequent calculations to use the latest available

information for their own computations. This technique updates a

block of dipoles at a time, and as such effects a coarse-grained

version of the Gauss-Seidel method. Typically, several thread

blocks will be executing concurrently and these blocks will not be

able to take advantage each other’s updates, thus it is expected

that this modification will only become significant on larger

system sizes where only a small portion of the total number of the

required thread blocks can run concurrently.

3.2.3 Convergence Verification
Prior to this work, MPMC set a fixed number of iterations for the

GPGPU algorithm and the level of convergence obtained after this

number of iterations was what any dependent calculations were

forced to use. After extensive testing, it became apparent that, in

many cases, the set number of iterations was sufficient for a high

level of convergence. However, in some cases it was not. Worse,

the program was unable to tell if a set of dipoles converged, so the

user received no warning that their calculation may be suspect.

From inside the kernel, before each thread updates its data in

global memory (for Gauss-Seidel), modifications were made such

that each thread now copies its original dipole data into a local

register. The difference between the old dipole data and the newly

calculated dipole is squared and stored in an output array which

can then be examined by the function that launched the kernel.

Outside the kernel, in the calling function, the transfer of the

squared-difference data from the GPGPU device to the host

machine can take a significant amount of time compared to a

single iteration. In some cases, the transfer duration can take

longer than a single iteration, more than doubling the length of the

total calculation. To mitigate this effect, the squared dipole

differences are only downloaded and examined after every tenth

iteration.

3.2.4 Energy Calculations in Parallel
The Monte Carlo portion of MPMC aims to identify low-energy

system configurations. As such, the purpose of calculating the

Volume 4, Issue 1 Journal of Computational Science Education

32 ISSN 2153-4136 November 2013

system dipoles is to quantify an energy contribution from

polarization effects. The time required to calculate this energy

tends to vary widely. Kinetic and coulombic energies are also

considered and the combined time required for these calculations,

depending on the duration of the polarization energy, can be

mildly to highly significant by comparison. Finally, MPMC can

calculate an energy contribution due to van der Waals effects.

This computation relies on matrix diagonalization and, when

utilized, invariably takes the longest of any of the calculations.

Using the Open Multi-Processing API (OpenMP), MPMC is now

able to split into three concurrent threads of execution, one of

which is responsible for both the kinetic and coulombic energy

calculation, another of which is responsible for the polarization

energy calculation, and the last of which is responsible for

calculating the van der Waals energy contribution.

3.2.5 Van der Waals Calculations Using MAGMA
The final modification made to MPMC was to utilize the Matrix

Algebra on GPU and Multi-core Architectures library (MAGMA)

in order to compute the van der Waals energy contribution. The

original routine calls for a matrix diagonalization via the

LAPACK routine dsyev_(). It was a simple matter to construct

an alternate routine, to be used in the event that a GPGPU device

was detected. The two routines were practically identical in all

respects except that the new one makes a call to MAGMA’s

magma_dsyevd() instead of to the equivalent LAPACK

function.

4. RESULTS
The updated version of GPGPU portion of MPMC is able to

reproduce the results of the original with perfect fidelity for

system sizes less than or equal to 2048 atoms, in approximately

the same amount of time. For larger systems, no direct

comparison can be made since the older version is unable to

produce a result, although the computation is performed six to

eight times faster on the GPU than the CPU. Comparing GPU

results against data obtained through matrix inversion, presumed

exact, reveals that calculations on typical systems are within five

percent error.

Performance increases due to the multi-threaded, OpenMP

handling of the energy calculations, though present, is difficult to

quantify. The combined calculation time for the kinetic and

coulombic contributions represents roughly 10 to 50 percent of

the total calculation time, and this figure varies widely from

iteration to iteration. Effectively, the total calculation time is now

reduced to the duration of whichever calculation takes the longest

(coulombic/kinetic, polarization, or van der Waals), plus a small

penalty for the overhead required to establish the threads. On test

systems, the net speedup of the multithreaded treatment was

typically around 20 percent.

The use of the MAGMA routine in the calculation of the van der

Waals energies is able to exactly reproduce the LAPACK result.

However, the calculations are completed in approximately half the

time.

5. FUTURE WORK
The accuracy of the GPGPU polarization calculation is lower than

ideal, on the order of three percent error. Different techniques are

being tried in order to increase the accuracy of these results, as

well as to decrease convergence times. Additionally, the version

of MPMC under discussion was designed to simulate a crystalline

material and a single species of sorbate. Currently, efforts are

underway to modify the program such that it can simulate

multiple sorbate species simultaneously introduced into the

material.

6. REFLECTIONS
The summer portion of the Blue Waters Undergraduate Petascale

Education Program (BW-UPEP) provided training and instruction

at the Urbana-Champagne campus of the University of Illinois.

During this program, various technologies and techniques for

scientific coding on parallel and supercomputer architectures were

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 33

discussed and elucidated. Of particular interest to this project was

the training on GPGPU programming through NVIDIA Compute

Unified Device Architecture (CUDA) as well as the Open Multi-

processing API (OpenMP) maintained by the OpenMP

Architecture Review Board. The workshop introduced students to

various algorithmic models, concepts and issues that were

particularly useful to the current project, such as deconstruction of

large repetitious problems into loosely coupled blocks appropriate

for efficient handling by GPGPU devices, concurrent processing

of dissimilar tasks through multi-threading, and, perhaps most

importantly, how to leverage both techniques within a single

program. Resources for learning any one of the technologies

abound, but an area where the program excelled was instruction

on how to effectively harness all these technologies to work

together within a single project.

Through the work started during the BW-UPEP program, I was

able to foster a deep understanding of the architecture sitting

underneath the hood of various high performance computing

systems. Whereas before, I had only superficial experience with

supercomputers, I currently develop scientific software and

perform research computation on my own university’s local

research computing cluster, as well as on many of the computing

systems made available through the NSF’s Extreme Science and

Engineering Discovery Environment (XSEDE) project. Speaking

from personal experience, I believe undergraduates who have an

interest in scientific computing stand to gain a considerable

amount of confidence, experience and expertise by attending such

a program as the BW-UPEP. The abundant knowledge and

support available during the development of various pedagogical

codes, as well as the guidance received regarding submission of

these jobs to actual work environments (research computing

clusters of universities with ties to the program), made it much

easier to “leave the nest” and create and submit my own

computational jobs to world-class research computing facilities

throughout the academic world.

I am currently in the early stages of my Doctoral program in

theoretical and computational chemistry at the University of

South Florida, and the skills and knowledge acquired through the

BW-UPEP program have definitely helped to jumpstart my career

therein. The time saved by not having to start from scratch in

learning the basics of HPC coding (or the ins-and-outs of

interaction with research computing environments) may have

shaved a semester or more off my time in graduate school. In

classes oriented around high performance computation and

scientific coding, I find that while my peers spend much of their

time trying to frame the posed problems in a manner suitable for

parallel computation, the practical experience gained through the

Blue Waters program often allows me to skip this step and

immediately begin to identify opportunities to make the code

more efficient in terms of the low-level hardware, e.g. efficient

use of cache, shared memory systems, coalesced memory

accesses, etc. My association with the BW-UPEP has proven to be

an invaluable advantage in this regard and my ardent gratitude

toward the program remains steadfast.

7. AKNOWLEDGMENTS
Funding for this work was provided by the National Science

Foundation’s Office of CyberInfrastructure through the Blue

Waters Undergraduate Petascale Education Program.

The authors would like to acknowledge the use of the services

provided by Research Computing at the University of South

Florida. Simulations and development were performed on the

University of South Florida’s Research Computing Center,

CIRCE, with additional support received from the Space

Foundation (Basic and Applied Research).

8. REFERENCES
[1] J. L. Belof, et al., "A Predictive Model of Hydrogen

Sorption for Metal−Organic Materials," The Journal of

Physical Chemistry C, vol. 113, pp. 9316-9320, 2009.

[2] An Accurate and Transferable Intermolecular Diatomic

Hydrogen Potential for Condensed Phase Simulation, 4,

2008.

[3] J. L. Belof, et al., "On the Mechanism of Hydrogen

Storage in a Metal−Organic Framework Material,"

Journal of the American Chemical Society, vol. 129, pp.

15202-15210, 2007.

[4] J. L. Belof, Theory and simulation of metal-organic

materials and biomolecules. Tampa: Theses and

Dissertations. Paper 1851.

http://scholarcommons.usf.edu/etd/1851, 2009.

[5] J. Applequist, et al., "An Atom Dipole Interaction

Model for Molecular Polarizability. Application to

Polyatomic Molecules and Determination of Atom

Polarizabilities," Journal of the American Chemical

Society, vol. 94, pp. 2952-2960, 1972.

[6] B. T. Thole, "Molecular polarizabilities calculated with

a modified dipole interaction," Chemical Physics, vol.

59, pp. 341-350, 1981.

[7] J. L. Belof, "Massively Parallel Monte Carlo (MPMC),"

http://code.google.com/p/mpmc/, 2007.

[8] (2012). NVIDIA CUDA C Programming Guide Version

4.2.

Volume 4, Issue 1 Journal of Computational Science Education

34 ISSN 2153-4136 November 2013

Parallelization of the Knapsack Problem as an
Introductory Experience in Parallel Computing

Michael Crawford †
University of Mary Washington

1301 College Avenue
Fredericksburg, VA 22401

+1 518-338-5739
mcrawfor@umw.edu

David Toth
University of Mary Washington

1301 College Avenue
Fredericksburg, VA 22401

+1 540-654-1693
dtoth@umw.edu

ABSTRACT
As part of a parallel computing course where undergraduate
students learned parallel computing techniques and got to run
their programs on a supercomputer, one student designed and
implemented a sequential algorithm and two versions of a parallel
algorithm to solve the knapsack problem. Performance tests of the
programs were conducted on the Ranger supercomputer. The
performance of the sequential and parallel implementations was
compared to determine speedup and efficiency. We observed
82%-86% efficiency for the MPI version and 89% efficiency for
the OpenMP version for sufficiently large inputs to the problem.
Additionally, we discuss both the student and faculty member's
reflections about the experience.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education.

General Terms
Experimentation.

Keywords
Parallel computing, education, performance, knapsack problem.

1. INTRODUCTION
The 0-1 knapsack problem is an optimization problem with the
goal of selecting items with weights and values in order to
maximize the value of the items selected while keeping the total
weight of the items below a set value [1]. In contrast to the
bounded and unbounded variants of the knapsack problem that
allow multiple copies of an item to be placed in the knapsack, in
the 0-1 version of the knapsack problem, an item is either put in
the knapsack or not [1]. The 0-1 knapsack problem is an NP-
complete problem [1].

In an undergraduate parallel computing course, students learned to
develop parallel programs with OpenMP and MPI. Because

the course’s instructor has found that NP-complete problems can
help illustrate a number of concepts that can be useful when
studying parallel computing, students were required to choose an
NP-complete problem to have their programs solve. Students
developed their programs using a multi-core server on campus
and on their own systems and lab systems using the Bootable
Cluster CD software [2]. Once the students had debugged their
programs, they were able to run them on the Ranger
supercomputer at the Texas Advanced Computing Center (TACC)
at the University of Texas at Austin. Ranger, which was just
recently decommissioned after this project was completed,
contained 3,936 distinct compute nodes with 16 general-purpose
CPU cores each, for a total of 62,976 cores [3]. Running on
Ranger allowed the students to compare the performance of the
sequential version of their programs with the performance of
parallel programs with OpenMP using 16 cores and using MPI
with 16, 32, and 48 cores.

It is important to keep in mind that we were not attempting to
devise a better algorithm than existing ones, but were focused on
using the problem as a way of learning to use OpenMP and MPI
and conduct some performance testing. Therefore, our results are
not the important contribution of this paper. What’s important is
the learning that this project facilitated and our reflections about
it. The first author, Michael Crawford, was a student in the second
author’s undergraduate course. This paper is written primarily
from the student’s perspective and describes the student’s
experience completing the course’s final project.

2. RELATED WORK
A significant amount of research has been done on the 0-1
knapsack problem, which has numerous applications in business.
Balas and Zemel developed an algorithm, as did Fayard and
Plateau, and Martello and Toth [4, 5, 6]. Pisinger also developed
algorithms, as have others [7, 8]. More recently, parallel
algorithms have been discussed by a number of people. Loots and
Smith developed a variation of a branch-and-bound algorithm to
solve the problem for large numbers of objects [9]. Chen and Jang
also developed parallel algorithms, as have others [10]. Even
more recently, Pospichal et. al. have developed a parallel genetic
algorithm to solve the 0-1 knapsack problem using GPUs [11].†

† Undergraduate student

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 35

3. METHODOLOGY
3.1 Sequential Algorithm
Since the goal of the project was to become comfortable with
OpenMP and MPI and to conduct some performance testing,
rather than to implement an optimal algorithm, we chose to
implement a brute force algorithm to solve the problem. The brute
force algorithm could be parallelized with OpenMP and MPI with
only minor changes and was easier to parallelize than a more
complicated algorithm. The algorithm generates each possible
permutation using the C++ standard library's next_permutation
function. As each permutation is generated, the items in the
permutation are placed in the knapsack from left to right, as long
as there is space. Once an item in a given permutation is
encountered that does not fit in the knapsack, no further work is
done with that permutation and it receives the score of the items
that did fit in the knapsack. If the score of the permutation is the
largest one so far, the permutation and its score are saved as the
current maximum. Then the next permutation is generated and
scored until all permutations have been generated and scored and
the permutation with the maximum score has been determined. To
ensure reliable and reproducible results, the item sets were pre-
generated and stored in a text file which was used by all three
versions of the program. This allowed for easy testing of the
sequential algorithm to prove it finds the optimal set of items, and
subsequently easier verification of both parallel versions.

3.2 Parallel Algorithm
We created a parallel version of the program with OpenMP and
then another one with MPI. Like the sequential algorithm, both
the OpenMP and MPI algorithms were brute force. The parallel
algorithms divided up the different permutations to test amongst
the available CPU cores, with each core running a thread in the
OpenMP version and each core running an MPI process in the
MPI version. Each thread or MPI process tested an equal share of
the permutations. Our sequential brute force, lexicographic
permutation-dependent algorithm is nontrivial to parallelize, as
each permutation is determined by the permutation before it. In
order to divide the set of distinct orderings into a subset for each
thread or MPI process, the factorial number system, or factoradic,
was used [12, 13].

Factoradic allows one to calculate a specific lexicographic
permutation of a set of numbers without having to generate each
permutation between the first permutation and the one you are
trying to generate. Thus, using the OpenMP thread ID number or
the MPI rank and how many permutations per thread or MPI
process will be computed, it is possible to determine the
lexicographic permutation that any given thread or MPI process
begins on.

The algorithm for OpenMP used factoradic to determine the
starting permutation of each thread. Using the thread ID number
and how many permutations per thread needed to be computed,
each thread determined its own starting permutation and worked
until it finished its assigned chunk of permutations to compute.
Each thread kept its own best combination. After calculating the
best combination from all of its permutations, in a critical section,
each thread would compare its maximum value to the current
global maximum value and update the global maximum if its
value was greater than the current global maximum. The
algorithm for MPI was identical to the OpenMP one, with the
exception that at the end of their calculations, each MPI process
sent its best permutation and corresponding score to the master

process, which, starting with its own best as the default compared
all of them to find the most optimal knapsack items. At the end of
the calculation, the master node printed the result.

4. TECHNICAL RESULTS
When there were fewer than 11 items that could be selected to put
in the knapsack, the sequential version of the program took less
than 1 second. While one might think there is nothing to be
learned from running a parallel version of the program for that
few items, we observed that the MPI version of the program using
48 cores took 1 second which illustrates the overhead associated
with it and shows that for small input sizes, the parallelism can
actually cause slowdown. With 11 or more items, the sequential
version of the program began to take larger quantities of time and
took almost 62 minutes to complete for 14 items. In contrast to
that, the MPI version of the program took less than two minutes
when running on 48 cores on the same computer. The full set of
running times for the sequential, OpenMP, and MPI versions is
shown in Table 1.

Because the times the programs took to run were measured in
seconds, it wasn’t possible to accurately calculate the speedup and
efficiency when there were fewer than 12 items that could be put
in the knapsack. For 12 items, we could not calculate the speedup
or efficiency of the MPI program that used 48 cores. We were
able to put a very coarse lower bound on the speedup and
efficiency. The speedups and efficiencies for the OpenMP version
and the MPI version of the program are shown in Table 2 and
Table 3 respectively. For 13 and 14 items, the speedup observed
with OpenMP is not quite as close to proportional to the number
of cores used as one might expect for an embarrassingly parallel
implementation (0.94 and 0.89 for 13 and 14 items, respectively).
This could have been a result of the algorithm used, which could
result in a number of computations being short-circuited by some
threads while other threads might have fewer computations that
are short circuited. It is also possible that computations that are
short circuited by some threads run further into their process than
the ones short circuited by other threads. This could result in some
threads needing to do more calculations than other threads, thus
resulting in a load that is not balanced perfectly, which might
account for some of why the speedup was not proportional to the
number of cores.

In terms of speedup, the MPI version of the program when run
with 48 cores saw a speedup of almost 40 for both 13 and 14
items. With MPI, using 16, 32, and 48 cores split on 1, 2, and 3
nodes respectively, we observed 86%, 85%, and 83% efficiencies
with 14 items. The lower efficiency as the number of cores
increased may have been due to the additional network traffic
needed by using multiple compute nodes or also due to a
computation imbalance between the nodes or between the cores
on the nodes. We did expect MPI to be slightly less efficient than
OpenMP, however, due to the required network communication.
More interesting was that for the instance where there was only 1
possible item to put in the knapsack, the MPI run using 48 cores
that took longer than the sequential and OpenMP runs and the
MPI runs using fewer nodes (and cores).

With a brute force algorithm in parallel, we expected to observe
linear speedup. To our surprise, our program did not achieve as
close to linear speedup as we expected. However, we believe that
the number of objects that could be put in the knapsack was too
small to produce a good test, which might have caused this.
Increasing the number of items available and the knapsack's
capacity might have resulted in closer to linear speedup. This was

Volume 4, Issue 1 Journal of Computational Science Education

36 ISSN 2153-4136 November 2013

limited due to limits on the amount of hours on the supercomputer
allocated to each student. We noticed that the speedup and

efficiency were better with OpenMP than with MPI, which we

Table 1. Runtime of the Programs (sec)

Items Available
to Put in

Knapsack

Sequential
Version

OpenMP
Version (16

Cores)

MPI Version
1 Node (16

Cores)

MPI Version
2 Nodes (32

Cores)

MPI Version
3 Nodes (48

Cores)

1 0 0 0 0 1
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
11 2 0 0 0 0
12 23 3 2 1 0
13 316 21 23 12 8
14 3716 260 271 137 93

Table 2. Speedup of the Parallel Versions

Items Available to
Put in Knapsack

OpenMP
Version Using

16 Cores

MPI Version
Using 1 Node

(16 Cores)

MPI Version
Using 2 Node

(32 Cores)

MPI Version
Using 3 Nodes

(48 Cores)
12 7.67 11.50 23.00 > 23
13 15.05 13.74 26.33 39.50
14 14.29 13.71 27.12 39.96

Table 3. Efficiency of the Parallel Versions

Items Available to
Put in Knapsack

OpenMP
Version Using

16 Cores

MPI Version
Using 1 Node

(16 Cores)

MPI Version
Using 2 Node

(32 Cores)

MPI Version
Using 3 Nodes

(48 Cores)

12 0.48 0.72 0.72 >0.48
13 0.94 0.86 0.82 0.82
14 0.89 0.86 0.85 0.83

believe was due to the extra network communication required for
the MPI version of the program.

5. FUTURE WORK
There are several ways this work can be extended in the future.
The first task is to create an OpenMP/MPI hybrid version of the
program and conduct performance testing to see how that

compares to the other versions of the program. We note that since
Ranger has been decommissioned, we will need to redo the
performance testing on a new supercomputer, such as Stampede,
which replaced Ranger. The second task that should be done is to
port the algorithm to run on CUDA-enabled GPUs and compare
the performance of that version of the program to the results from
the Stampede performance tests. We note that all the
measurements in the future should be done in msec instead of

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 37

seconds, so more accurate comparisons can be made with small
numbers of items. We would also like to implement different
sequential and parallel algorithms such as branch-and-bound and
dynamic programming algorithms to solve the same problem so
we can see parallel performance comparisons of those algorithms
in comparison to the brute force algorithm.

6. REFLECTIONS
6.1 Student Reflections
From a learning perspective, I think that this exercise was
incredibly fruitful. Over the last couple of years, I have been
exposed to a number of computationally intensive problems
within the domains of theoretical computation and modeling and
simulation. Knowledge on parallel processing is invaluable for the
next generation of both computer scientists and natural scientists.

This exercise introduced me to the challenges and opportunities of
high performance computing. It led me to consider the challenges
of implementing parallel programs to solve problems in a way
more theoretical classes cannot. While I was acquainted with NP-
complete problems from my course on the theoretical foundations
of computer science, this project gave me the opportunity to truly
understand what it means for a problem to be NP-complete. It was
enlightening to write an algorithm to “solve” an NP-complete
problem; actually watching the runtime of the algorithm grow at a
factorial rate with more items is humbling and seeing the
limitations of a supercomputer is profound.

In retrospect, there were a number of changes I would make to
both how I did the project and the course itself.

First, I wish I had paid far more attention to overhead as I coded
my project. My algorithm had the potential to achieve nearly
linear speedup, but I only saw roughly 85 percent efficiency. I
wonder if my algorithm could have been written in such a way as
to decrease the overhead and increase efficiency. In the future
iterations of this class, it would be helpful to see a lesson on
limiting overhead in HPC projects.

Second, we did not write programs that combined MPI with
OpenMP, and I would have liked to have seen the performance of
an MPI & OpenMP hybrid version of my algorithm.

Third, we did not talk about the impacts of using different
compilers and optimizations during the course, so when I
encountered a major performance difference of the same code
running on the same hardware when it was compiled using
different compilers, I was surprised. Previously, my mental model
of compilers had naïvely assumed their equality for practical
purposes. A brief exploration of compiler optimizations would be
an interesting module for the course.

Fourth, each student was only given 3000 hours of CPU time on
the supercomputer to conduct the performance testing. In the
future, increasing this amount of time would provide the
opportunity to test an OpenMP version of the program with 2, 4,
and 8 cores in addition to with 16 cores, which might provide
additional interesting results in terms of speedup.

Lastly, in order to learn the basics of parallel computing libraries
like MPI and OpenMP, we were encouraged to solve our NP-
complete problems using brute force algorithms. However, it
would be interesting to see the difference in speedup and
efficiency that other types of algorithms to solve the same
problem would achieve. For example, what kind of speedup and
efficiency would we see using a branch and bound versus a
dynamic programming algorithm? While it would be impossible
to expect students taking a three credit hour course to test three

versions of each algorithm, each using a different parallel
platform, it would have been a valuable juxtaposition to see
different types of parallel algorithms pitted against each other.

As a student at a small liberal arts university, it was empowering
to run code on one of the fastest computers in the world. The
experience taught me humility in the face of computational
intensity and provided me the tools to think in parallel. It will be a
priceless course for students in the future.

6.2 Instructor Reflections
This course project spanned 8 weeks of a 15-week semester,
making it one of the larger projects students do in our courses.
The idea behind assigning such a large project was to give the
students an opportunity to gain experience with not only the
technical aspects of the material, but also with other important
skills like time management, creating a poster, and giving a talk.
The project was supposed to give students the opportunity to
demonstrate mastery of the basics of OpenMP and MPI, as well as
to perform some performance comparisons and give them
experience running a program on a supercomputer. A side goal
was to introduce the students to a variety of NP-complete
problems.

Although I have taught a parallel computing course twice before,
this was the first time I integrated this project and the use of a
supercomputer into the course. Because of that, I learned a
number of lessons, including that too many students will
procrastinate if they are not given enough intermediate deadlines
for a big project, as was the case with this project. A number of
students were unable to complete the project, only developing an
OpenMP implementation and not completing an MPI
implementation or the performance analysis portion of the project.
In general, the students that did not complete the project did not
lack technical ability, but rather, they simply did not start the
project until the last couple of weeks of the semester. Next time I
teach the course, I will have parts of the projects due every 1-2
weeks.

Each student had to select an NP-complete problem for the
project, but I limited the number of students who could choose the
same problem to 2. This was done to force the students to produce
a variety of posters and talks, so they would not all be the same
and to keep things more interesting, as we as to prevent cheating.
This caused some students to choose harder problems than they
should have chosen. In the future, I will sacrifice the variety of the
posters and talks to make the students more successful.

Students were supposed to develop a sequential program to solve
their problem for small instances and then run the program to see
how large an instance their program could solve in 24 hours. This
instance of the problem was then supposed to be used as the
baseline for their performance comparisons. Because the instance
was supposed to take close to 24 hours to solve, I did not tell the
students to do their timing in milliseconds because that granularity
should not have been required for the performance comparison.
However, some students benchmarked their code on systems other
than the supercomputer and that led to them running their code for
instances of the problems that were too small for the timing
granularity of seconds to be as useful as needed. Because many
students didn’t run their program on the supercomputer until right
before the project was due, they did not have time to test the
programs with larger instances if the problem instances they used
were too small. In the future, I will make sure that the students do
their timing in msec instead of seconds.

Volume 4, Issue 1 Journal of Computational Science Education

38 ISSN 2153-4136 November 2013

The students were told that they each had 3000 hours to use on the
supercomputer for the projects. At the end of the semester, a
couple students said they wished they could have had more time
on the supercomputer. After the projects were completed, those
student were told they could use the remaining time from the
educational grant that had not been used by others, but that was
during finals week and the students didn’t get around to using the
extra time. Because students were supposed to have a program
that ran for almost 24 hours sequentially and Ranger had 16 cores
per node, doing that would have used 384 of the students 3000
hours. Since the students were supposed to run the program with
OpenMP on one node and MPI on 1, 2, and 3 nodes, if they had
no speedup, they would have consumed 3072 hours. I expected
they would get significant speedup, but that there would also be
problems and students would need to run their programs more
than once to complete the project. Therefore, 3000 hours per
student seemed reasonable. In the future, I want to rethink that.

6.3 Suggestions For Instructors
Our recommendations to a faculty member who adopts this
project for their course are:

1. Have the entire class do the same NP-complete problem or
half of the class do one and the other half of the class do
another. We recommend the 0-1 knapsack problem and the
traveling salesman problem.

2. Have the students who did one problems compare their
speedups and efficiencies for their implementations and
discuss the reasons for any differences.

3. Have prebuilt implementations of the problem(s) with data
set(s) that students can run their algorithm on and compare
their algorithm's solutions to the known correct solution.

4. Do not bother with presentations, which took time that might
be better spent on other tasks. In particular, teaching the
basics of CUDA would be helpful. However, having the
students create a poster might still be useful.

5. Ensure that the compiler used on the supercomputer is
available to the students on the local computer where they
develop their solutions to ensure consistency. Discuss the
different optimization levels for the compiler and ensure all
the students use the same level.

6. Ensure students conduct timing in msec rather than seconds.

7. Have intermediate deadlines so that students do not get
behind and are all ready to run their code on the
supercomputer before the end of the course.

8. Request twice as much time on the supercomputer as you
think the students will need to conduct the performance
comparisons to ensure that even with mistakes, students have
adequate time to test their implementations.

7. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
through XSEDE resources with grant ASC120039: "Introducing
Computer Science Students to Supercomputing in a Parallel
Computing Course" and by the Texas Advanced Computing
Center (TACC), where the supercomputer we used was located.
We wish to thank XSEDE and TACC for their support.

8. REFERENCES
[1] Knapsack Problems: Algorithms and Computer

Implementations, Silvano Martello, Paolo Toth, 1990. J.
Wiley & Sons.

[2] BCCD | Bootable Cluster CD. http://bccd.net/.

[3] Texas Advanced Computing Center – Ranger-User-Guide.
http://www.tacc.utexas.edu/user-services/user-guides/ranger-
user-guide. Updated 10/30/12.

[4] Balas, E. and Zemel, E. An algorithm for large zero-one
knapsack problems. Operations Research. 28 (1980).

[5] Fayard, D. and Plateau, G. An algorithm for the solution of
the 0-1 knapsack problem. Computing. 28 (1982), 269-287.

[6] Martello, S. and Toth, P. A new algorithm for the 0-1
knapsack problem. Management Science. 34 (1988).

[7] Pisinger, D. A minimal algorithm for the 0-1 Knapsack
Problem. Operations Research. 45 (1994), 758-767.

[8] Pisinger, D. An expanding-core algorithm for the exact 0-1
Knapsack Problem. European Journal of Operations
Research. 87 (1993), 175-187.

[9] Loots, W. and Smith, T. H. C. A parallel algorithm for the 0-
1 knapsack problem. International Journal of Parallel
Programming. 21:5 (Oct. 1992), 349-362.

[10] Chen, G. and Jang, J. An improved parallel algorithm for 0/1
knapsack problem. Parallel Computing. 18:7 (July, 1992),
811-821. DOI=http://dx.doi.org/10.1016/0167-
8191(92)90047-B.

[11] Pospichal, P., Schwarz J., and Jaros, J. Parallel Gneetic
Algorithm Solving 0/1 Knapsack Problem Running on the
GPU. Proceedings of the 16th International Conference on
Soft Computing MENDEL (Brno, Czech Republic, June 23-
25, 2010), 64–70.

[12] Irene's coding blog: Factorial base numbers and
permutations. http://irenes-coding-
blog.blogspot.com/2012/07/factorial-base-numbers-and-
permutations.html. Updated July 22, 2012.

[13] Factorial number system - Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Factorial_number_system.

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 39

Volume 4 Issue 1

November 2013

1

2

11

16

24

30

3535

	yasar_2013
	shiflet_2013
	Magana_2013
	Chen_2013
	tudor_2012
	crawford_2013
	Blank Page
	Blank Page
	Blank Page
	Blank Page

