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ABSTRACT 
As part of a parallel computing course where undergraduate 
students learned parallel computing techniques and got to run 
their programs on a supercomputer, one student designed and 
implemented a sequential algorithm and two versions of a parallel 
algorithm to solve the knapsack problem. Performance tests of the 
programs were conducted on the Ranger supercomputer. The 
performance of the sequential and parallel implementations was 
compared to determine speedup and efficiency. We observed 
82%-86% efficiency for the MPI version and 89% efficiency for 
the OpenMP version for sufficiently large inputs to the problem. 
Additionally, we discuss both the student and faculty member's 
reflections about the experience.   

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 
Computer science education.  

General Terms 
Experimentation. 

Keywords 
Parallel computing, education, performance, knapsack problem. 

1. INTRODUCTION 
The 0-1 knapsack problem is an optimization problem with the 
goal of selecting items with weights and values in order to 
maximize the value of the items selected while keeping the total 
weight of the items below a set value [1]. In contrast to the 
bounded and unbounded variants of the knapsack problem that 
allow multiple copies of an item to be placed in the knapsack, in 
the 0-1 version of the knapsack problem, an item is either put in 
the knapsack or not [1]. The 0-1 knapsack problem is an NP-
complete problem [1]. 

In an undergraduate parallel computing course, students learned to 
develop parallel programs with OpenMP and MPI. Because 

the course’s instructor has found that NP-complete problems can 
help illustrate a number of concepts that can be useful when 
studying parallel computing, students were required to choose an 
NP-complete problem to have their programs solve. Students 
developed their programs using a multi-core server on campus 
and on their own systems and lab systems using the Bootable 
Cluster CD software [2]. Once the students had debugged their 
programs, they were able to run them on the Ranger 
supercomputer at the Texas Advanced Computing Center (TACC) 
at the University of Texas at Austin. Ranger, which was just 
recently decommissioned after this project was completed, 
contained 3,936 distinct compute nodes with 16 general-purpose 
CPU cores each, for a total of 62,976 cores [3]. Running on 
Ranger allowed the students to compare the performance of the 
sequential version of their programs with the performance of 
parallel programs with OpenMP using 16 cores and using MPI 
with 16, 32, and 48 cores. 

It is important to keep in mind that we were not attempting to 
devise a better algorithm than existing ones, but were focused on 
using the problem as a way of learning to use OpenMP and MPI 
and conduct some performance testing. Therefore, our results are 
not the important contribution of this paper. What’s important is 
the learning that this project facilitated and our reflections about 
it. The first author, Michael Crawford, was a student in the second 
author’s undergraduate course. This paper is written primarily 
from the student’s perspective and describes the student’s 
experience completing the course’s final project. 

2. RELATED WORK 
A significant amount of research has been done on the 0-1 
knapsack problem, which has numerous applications in business. 
Balas and Zemel developed an algorithm, as did Fayard and 
Plateau, and Martello and Toth [4, 5, 6]. Pisinger also developed 
algorithms, as have others [7, 8]. More recently, parallel 
algorithms have been discussed by a number of people. Loots and 
Smith developed a variation of a branch-and-bound algorithm to 
solve the problem for large numbers of objects [9]. Chen and Jang 
also developed parallel algorithms, as have others [10]. Even 
more recently, Pospichal et. al. have developed a parallel genetic 
algorithm to solve the 0-1 knapsack problem using GPUs [11].† 
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3. METHODOLOGY 
3.1 Sequential Algorithm 
Since the goal of the project was to become comfortable with 
OpenMP and MPI and to conduct some performance testing, 
rather than to implement an optimal algorithm, we chose to 
implement a brute force algorithm to solve the problem. The brute 
force algorithm could be parallelized with OpenMP and MPI with 
only minor changes and was easier to parallelize than a more 
complicated algorithm. The algorithm generates each possible 
permutation using the C++ standard library's next_permutation 
function. As each permutation is generated, the items in the 
permutation are placed in the knapsack from left to right, as long 
as there is space. Once an item in a given permutation is 
encountered that does not fit in the knapsack, no further work is 
done with that permutation and it receives the score of the items 
that did fit in the knapsack. If the score of the permutation is the 
largest one so far, the permutation and its score are saved as the 
current maximum. Then the next permutation is generated and 
scored until all permutations have been generated and scored and 
the permutation with the maximum score has been determined. To 
ensure reliable and reproducible results, the item sets were pre-
generated and stored in a text file which was used by all three 
versions of the program. This allowed for easy testing of the 
sequential algorithm to prove it finds the optimal set of items, and 
subsequently easier verification of both parallel versions.  

3.2 Parallel Algorithm 
We created a parallel version of the program with OpenMP and 
then another one with MPI. Like the sequential algorithm, both 
the OpenMP and MPI algorithms were brute force. The parallel 
algorithms divided up the different permutations to test amongst 
the available CPU cores, with each core running a thread in the 
OpenMP version and each core running an MPI process in the 
MPI version. Each thread or MPI process tested an equal share of 
the permutations. Our sequential brute force, lexicographic 
permutation-dependent algorithm is nontrivial to parallelize, as 
each permutation is determined by the permutation before it. In 
order to divide the set of distinct orderings into a subset for each 
thread or MPI process, the factorial number system, or factoradic, 
was used [12, 13]. 

Factoradic allows one to calculate a specific lexicographic 
permutation of a set of numbers without having to generate each 
permutation between the first permutation and the one you are 
trying to generate. Thus, using the OpenMP thread ID number or 
the MPI rank and how many permutations per thread or MPI 
process will be computed, it is possible to determine the 
lexicographic permutation that any given thread or MPI process 
begins on. 

The algorithm for OpenMP used factoradic to determine the 
starting permutation of each thread. Using the thread ID number 
and how many permutations per thread needed to be computed, 
each thread determined its own starting permutation and worked 
until it finished its assigned chunk of permutations to compute. 
Each thread kept its own best combination. After calculating the 
best combination from all of its permutations, in a critical section, 
each thread would compare its maximum value to the current 
global maximum value and update the global maximum if its 
value was greater than the current global maximum. The 
algorithm for MPI was identical to the OpenMP one, with the 
exception that at the end of their calculations, each MPI process 
sent its best permutation and corresponding score to the master 

process, which, starting with its own best as the default compared 
all of them to find the most optimal knapsack items. At the end of 
the calculation, the master node printed the result. 

4. TECHNICAL RESULTS 
When there were fewer than 11 items that could be selected to put 
in the knapsack, the sequential version of the program took less 
than 1 second. While one might think there is nothing to be 
learned from running a parallel version of the program for that 
few items, we observed that the MPI version of the program using 
48 cores took 1 second which illustrates the overhead associated 
with it and shows that for small input sizes, the parallelism can 
actually cause slowdown. With 11 or more items, the sequential 
version of the program began to take larger quantities of time and 
took almost 62 minutes to complete for 14 items. In contrast to 
that, the MPI version of the program took less than two minutes 
when running on 48 cores on the same computer. The full set of 
running times for the sequential, OpenMP, and MPI versions is 
shown in Table 1. 

Because the times the programs took to run were measured in 
seconds, it wasn’t possible to accurately calculate the speedup and 
efficiency when there were fewer than 12 items that could be put 
in the knapsack. For 12 items, we could not calculate the speedup 
or efficiency of the MPI program that used 48 cores. We were 
able to put a very coarse lower bound on the speedup and 
efficiency. The speedups and efficiencies for the OpenMP version 
and the MPI version of the program are shown in Table 2 and 
Table 3 respectively. For 13 and 14 items, the speedup observed 
with OpenMP is not quite as close to proportional to the number 
of cores used as one might expect for an embarrassingly parallel 
implementation (0.94 and 0.89 for 13 and 14 items, respectively). 
This could have been a result of the algorithm used, which could 
result in a number of computations being short-circuited by some 
threads while other threads might have fewer computations that 
are short circuited. It is also possible that computations that are 
short circuited by some threads run further into their process than 
the ones short circuited by other threads. This could result in some 
threads needing to do more calculations than other threads, thus 
resulting in a load that is not balanced perfectly, which might 
account for some of why the speedup was not proportional to the 
number of cores. 

In terms of speedup, the MPI version of the program when run 
with 48 cores saw a speedup of almost 40 for both 13 and 14 
items. With MPI, using 16, 32, and 48 cores split on 1, 2, and 3 
nodes respectively, we observed 86%, 85%, and 83% efficiencies 
with 14 items. The lower efficiency as the number of cores 
increased may have been due to the additional network traffic 
needed by using multiple compute nodes or also due to a 
computation imbalance between the nodes or between the cores 
on the nodes. We did expect MPI to be slightly less efficient than 
OpenMP, however, due to the required network communication. 
More interesting was that for the instance where there was only 1 
possible item to put in the knapsack, the MPI run using 48 cores 
that took longer than the sequential and OpenMP runs and the 
MPI runs using fewer nodes (and cores).   

With a brute force algorithm in parallel, we expected to observe 
linear speedup. To our surprise, our program did not achieve as 
close to linear speedup as we expected. However, we believe that 
the number of objects that could be put in the knapsack was too 
small to produce a good test, which might have caused this. 
Increasing the number of items available and the knapsack's 
capacity might have resulted in closer to linear speedup. This was 
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limited due to limits on the amount of hours on the supercomputer 
allocated to each student. We noticed that the speedup and 

efficiency were better with OpenMP than with MPI, which we

Table 1. Runtime of the Programs (sec) 

Items Available 
to Put in 

Knapsack 

Sequential 
Version 

OpenMP 
Version (16 

Cores) 

MPI Version 
1 Node (16 

Cores) 

MPI Version 
2 Nodes (32 

Cores) 

MPI Version 
3 Nodes (48 

Cores) 

1 0 0 0 0 1 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 0 0 
6 0 0 0 0 0 
7 0 0 0 0 0 
8 0 0 0 0 0 
9 0 0 0 0 0 
10 0 0 0 0 0 
11 2 0 0 0 0 
12 23 3 2 1 0 
13 316 21 23 12 8 
14 3716 260 271 137 93 

 

Table 2. Speedup of the Parallel Versions 

Items Available to 
Put in Knapsack 

OpenMP 
Version Using 

16 Cores 

MPI Version 
Using 1 Node 

(16 Cores) 

MPI Version 
Using 2 Node 

(32 Cores) 

MPI Version 
Using 3 Nodes 

(48 Cores) 
12 7.67 11.50 23.00 > 23 
13 15.05 13.74 26.33 39.50 
14 14.29 13.71 27.12 39.96 

 

Table 3. Efficiency of the Parallel Versions 

Items Available to 
Put in Knapsack 

OpenMP 
Version Using 

16 Cores 

MPI Version 
Using 1 Node 

(16 Cores) 

MPI Version 
Using 2 Node 

(32 Cores) 

MPI Version 
Using 3 Nodes 

(48 Cores) 

12 0.48 0.72 0.72 >0.48 
13 0.94 0.86 0.82 0.82 
14 0.89 0.86 0.85 0.83 

 

believe was due to the extra network communication required for 
the MPI version of the program. 

5. FUTURE WORK 
There are several ways this work can be extended in the future. 
The first task is to create an OpenMP/MPI hybrid version of the 
program and conduct performance testing to see how that 

compares to the other versions of the program. We note that since 
Ranger has been decommissioned, we will need to redo the 
performance testing on a new supercomputer, such as Stampede, 
which replaced Ranger. The second task that should be done is to 
port the algorithm to run on CUDA-enabled GPUs and compare 
the performance of that version of the program to the results from 
the Stampede performance tests. We note that all the 
measurements in the future should be done in msec instead of 
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seconds, so more accurate comparisons can be made with small 
numbers of items. We would also like to implement different 
sequential and parallel algorithms such as branch-and-bound and 
dynamic programming algorithms to solve the same problem so 
we can see parallel performance comparisons of those algorithms 
in comparison to the brute force algorithm. 

6. REFLECTIONS 
6.1 Student Reflections 
From a learning perspective, I think that this exercise was 
incredibly fruitful. Over the last couple of years, I have been 
exposed to a number of computationally intensive problems 
within the domains of theoretical computation and modeling and 
simulation. Knowledge on parallel processing is invaluable for the 
next generation of both computer scientists and natural scientists.  

This exercise introduced me to the challenges and opportunities of 
high performance computing. It led me to consider the challenges 
of implementing parallel programs to solve problems in a way 
more theoretical classes cannot. While I was acquainted with NP-
complete problems from my course on the theoretical foundations 
of computer science, this project gave me the opportunity to truly 
understand what it means for a problem to be NP-complete. It was 
enlightening to write an algorithm to “solve” an NP-complete 
problem; actually watching the runtime of the algorithm grow at a 
factorial rate with more items is humbling and seeing the 
limitations of a supercomputer is profound. 

In retrospect, there were a number of changes I would make to 
both how I did the project and the course itself.  

First, I wish I had paid far more attention to overhead as I coded 
my project. My algorithm had the potential to achieve nearly 
linear speedup, but I only saw roughly 85 percent efficiency. I 
wonder if my algorithm could have been written in such a way as 
to decrease the overhead and increase efficiency. In the future 
iterations of this class, it would be helpful to see a lesson on 
limiting overhead in HPC projects.  

Second, we did not write programs that combined MPI with 
OpenMP, and I would have liked to have seen the performance of 
an MPI & OpenMP hybrid version of my algorithm.  

Third, we did not talk about the impacts of using different 
compilers and optimizations during the course, so when I 
encountered a major performance difference of the same code 
running on the same hardware when it was compiled using 
different compilers, I was surprised. Previously, my mental model 
of compilers had naïvely assumed their equality for practical 
purposes. A brief exploration of compiler optimizations would be 
an interesting module for the course.  

Fourth, each student was only given 3000 hours of CPU time on 
the supercomputer to conduct the performance testing. In the 
future, increasing this amount of time would provide the 
opportunity to test an OpenMP version of the program with 2, 4, 
and 8 cores in addition to with 16 cores, which might provide 
additional interesting results in terms of speedup. 

Lastly, in order to learn the basics of parallel computing libraries 
like MPI and OpenMP, we were encouraged to solve our NP-
complete problems using brute force algorithms. However, it 
would be interesting to see the difference in speedup and 
efficiency that other types of algorithms to solve the same 
problem would achieve. For example, what kind of speedup and 
efficiency would we see using a branch and bound versus a 
dynamic programming algorithm? While it would be impossible 
to expect students taking a three credit hour course to test three 

versions of each algorithm, each using a different parallel 
platform, it would have been a valuable juxtaposition to see 
different types of parallel algorithms pitted against each other. 

As a student at a small liberal arts university, it was empowering 
to run code on one of the fastest computers in the world. The 
experience taught me humility in the face of computational 
intensity and provided me the tools to think in parallel. It will be a 
priceless course for students in the future. 

6.2 Instructor Reflections 
This course project spanned 8 weeks of a 15-week semester, 
making it one of the larger projects students do in our courses. 
The idea behind assigning such a large project was to give the 
students an opportunity to gain experience with not only the 
technical aspects of the material, but also with other important 
skills like time management, creating a poster, and giving a talk. 
The project was supposed to give students the opportunity to 
demonstrate mastery of the basics of OpenMP and MPI, as well as 
to perform some performance comparisons and give them 
experience running a program on a supercomputer. A side goal 
was to introduce the students to a variety of NP-complete 
problems. 

Although I have taught a parallel computing course twice before, 
this was the first time I integrated this project and the use of a 
supercomputer into the course. Because of that, I learned a 
number of lessons, including that too many students will 
procrastinate if they are not given enough intermediate deadlines 
for a big project, as was the case with this project. A number of 
students were unable to complete the project, only developing an 
OpenMP implementation and not completing an MPI 
implementation or the performance analysis portion of the project. 
In general, the students that did not complete the project did not 
lack technical ability, but rather, they simply did not start the 
project until the last couple of weeks of the semester. Next time I 
teach the course, I will have parts of the projects due every 1-2 
weeks. 

Each student had to select an NP-complete problem for the 
project, but I limited the number of students who could choose the 
same problem to 2. This was done to force the students to produce 
a variety of posters and talks, so they would not all be the same 
and to keep things more interesting, as we as to prevent cheating. 
This caused some students to choose harder problems than they 
should have chosen. In the future, I will sacrifice the variety of the 
posters and talks to make the students more successful. 

Students were supposed to develop a sequential program to solve 
their problem for small instances and then run the program to see 
how large an instance their program could solve in 24 hours. This 
instance of the problem was then supposed to be used as the 
baseline for their performance comparisons. Because the instance 
was supposed to take close to 24 hours to solve, I did not tell the 
students to do their timing in milliseconds because that granularity 
should not have been required for the performance comparison. 
However, some students benchmarked their code on systems other 
than the supercomputer and that led to them running their code for 
instances of the problems that were too small for the timing 
granularity of seconds to be as useful as needed. Because many 
students didn’t run their program on the supercomputer until right 
before the project was due, they did not have time to test the 
programs with larger instances if the problem instances they used 
were too small. In the future, I will make sure that the students do 
their timing in msec instead of seconds. 
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The students were told that they each had 3000 hours to use on the 
supercomputer for the projects. At the end of the semester, a 
couple students said they wished they could have had more time 
on the supercomputer. After the projects were completed, those 
student were told they could use the remaining time from the 
educational grant that had not been used by others, but that was 
during finals week and the students didn’t get around to using the 
extra time. Because students were supposed to have a program 
that ran for almost 24 hours sequentially and Ranger had 16 cores 
per node, doing that would have used 384 of the students 3000 
hours. Since the students were supposed to run the program with 
OpenMP on one node and MPI on 1, 2, and 3 nodes, if they had 
no speedup, they would have consumed 3072 hours. I expected 
they would get significant speedup, but that there would also be 
problems and students would need to run their programs more 
than once to complete the project. Therefore, 3000 hours per 
student seemed reasonable. In the future, I want to rethink that. 

6.3 Suggestions For Instructors  
Our recommendations to a faculty member who adopts this 
project for their course are: 
 

1. Have the entire class do the same NP-complete problem or 
half of the class do one and the other half of the class do 
another. We recommend the 0-1 knapsack problem and the 
traveling salesman problem. 

2. Have the students who did one problems compare their 
speedups and efficiencies for their implementations and 
discuss the reasons for any differences. 

3. Have prebuilt implementations of the problem(s) with data 
set(s) that students can run their algorithm on and compare 
their algorithm's solutions to the known correct solution. 

4. Do not bother with presentations, which took time that might 
be better spent on other tasks. In particular, teaching the 
basics of CUDA would be helpful. However, having the 
students create a poster might still be useful. 

5. Ensure that the compiler used on the supercomputer is 
available to the students on the local computer where they 
develop their solutions to ensure consistency. Discuss the 
different optimization levels for the compiler and ensure all 
the students use the same level. 

6. Ensure students conduct timing in msec rather than seconds. 

7. Have intermediate deadlines so that students do not get 
behind and are all ready to run their code on the 
supercomputer before the end of the course. 

8. Request twice as much time on the supercomputer as you 
think the students will need to conduct the performance 
comparisons to ensure that even with mistakes, students have 
adequate time to test their implementations. 
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