
Parallelization of the Knapsack Problem as an
Introductory Experience in Parallel Computing

Michael Crawford †
University of Mary Washington

1301 College Avenue
Fredericksburg, VA 22401

+1 518-338-5739
mcrawfor@umw.edu

David Toth
University of Mary Washington

1301 College Avenue
Fredericksburg, VA 22401

+1 540-654-1693
dtoth@umw.edu

ABSTRACT
As part of a parallel computing course where undergraduate
students learned parallel computing techniques and got to run
their programs on a supercomputer, one student designed and
implemented a sequential algorithm and two versions of a parallel
algorithm to solve the knapsack problem. Performance tests of the
programs were conducted on the Ranger supercomputer. The
performance of the sequential and parallel implementations was
compared to determine speedup and efficiency. We observed
82%-86% efficiency for the MPI version and 89% efficiency for
the OpenMP version for sufficiently large inputs to the problem.
Additionally, we discuss both the student and faculty member's
reflections about the experience.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education.

General Terms
Experimentation.

Keywords
Parallel computing, education, performance, knapsack problem.

1. INTRODUCTION
The 0-1 knapsack problem is an optimization problem with the
goal of selecting items with weights and values in order to
maximize the value of the items selected while keeping the total
weight of the items below a set value [1]. In contrast to the
bounded and unbounded variants of the knapsack problem that
allow multiple copies of an item to be placed in the knapsack, in
the 0-1 version of the knapsack problem, an item is either put in
the knapsack or not [1]. The 0-1 knapsack problem is an NP-
complete problem [1].

In an undergraduate parallel computing course, students learned to
develop parallel programs with OpenMP and MPI. Because

the course’s instructor has found that NP-complete problems can
help illustrate a number of concepts that can be useful when
studying parallel computing, students were required to choose an
NP-complete problem to have their programs solve. Students
developed their programs using a multi-core server on campus
and on their own systems and lab systems using the Bootable
Cluster CD software [2]. Once the students had debugged their
programs, they were able to run them on the Ranger
supercomputer at the Texas Advanced Computing Center (TACC)
at the University of Texas at Austin. Ranger, which was just
recently decommissioned after this project was completed,
contained 3,936 distinct compute nodes with 16 general-purpose
CPU cores each, for a total of 62,976 cores [3]. Running on
Ranger allowed the students to compare the performance of the
sequential version of their programs with the performance of
parallel programs with OpenMP using 16 cores and using MPI
with 16, 32, and 48 cores.

It is important to keep in mind that we were not attempting to
devise a better algorithm than existing ones, but were focused on
using the problem as a way of learning to use OpenMP and MPI
and conduct some performance testing. Therefore, our results are
not the important contribution of this paper. What’s important is
the learning that this project facilitated and our reflections about
it. The first author, Michael Crawford, was a student in the second
author’s undergraduate course. This paper is written primarily
from the student’s perspective and describes the student’s
experience completing the course’s final project.

2. RELATED WORK
A significant amount of research has been done on the 0-1
knapsack problem, which has numerous applications in business.
Balas and Zemel developed an algorithm, as did Fayard and
Plateau, and Martello and Toth [4, 5, 6]. Pisinger also developed
algorithms, as have others [7, 8]. More recently, parallel
algorithms have been discussed by a number of people. Loots and
Smith developed a variation of a branch-and-bound algorithm to
solve the problem for large numbers of objects [9]. Chen and Jang
also developed parallel algorithms, as have others [10]. Even
more recently, Pospichal et. al. have developed a parallel genetic
algorithm to solve the 0-1 knapsack problem using GPUs [11].†

† Undergraduate student

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 35

3. METHODOLOGY
3.1 Sequential Algorithm
Since the goal of the project was to become comfortable with
OpenMP and MPI and to conduct some performance testing,
rather than to implement an optimal algorithm, we chose to
implement a brute force algorithm to solve the problem. The brute
force algorithm could be parallelized with OpenMP and MPI with
only minor changes and was easier to parallelize than a more
complicated algorithm. The algorithm generates each possible
permutation using the C++ standard library's next_permutation
function. As each permutation is generated, the items in the
permutation are placed in the knapsack from left to right, as long
as there is space. Once an item in a given permutation is
encountered that does not fit in the knapsack, no further work is
done with that permutation and it receives the score of the items
that did fit in the knapsack. If the score of the permutation is the
largest one so far, the permutation and its score are saved as the
current maximum. Then the next permutation is generated and
scored until all permutations have been generated and scored and
the permutation with the maximum score has been determined. To
ensure reliable and reproducible results, the item sets were pre-
generated and stored in a text file which was used by all three
versions of the program. This allowed for easy testing of the
sequential algorithm to prove it finds the optimal set of items, and
subsequently easier verification of both parallel versions.

3.2 Parallel Algorithm
We created a parallel version of the program with OpenMP and
then another one with MPI. Like the sequential algorithm, both
the OpenMP and MPI algorithms were brute force. The parallel
algorithms divided up the different permutations to test amongst
the available CPU cores, with each core running a thread in the
OpenMP version and each core running an MPI process in the
MPI version. Each thread or MPI process tested an equal share of
the permutations. Our sequential brute force, lexicographic
permutation-dependent algorithm is nontrivial to parallelize, as
each permutation is determined by the permutation before it. In
order to divide the set of distinct orderings into a subset for each
thread or MPI process, the factorial number system, or factoradic,
was used [12, 13].

Factoradic allows one to calculate a specific lexicographic
permutation of a set of numbers without having to generate each
permutation between the first permutation and the one you are
trying to generate. Thus, using the OpenMP thread ID number or
the MPI rank and how many permutations per thread or MPI
process will be computed, it is possible to determine the
lexicographic permutation that any given thread or MPI process
begins on.

The algorithm for OpenMP used factoradic to determine the
starting permutation of each thread. Using the thread ID number
and how many permutations per thread needed to be computed,
each thread determined its own starting permutation and worked
until it finished its assigned chunk of permutations to compute.
Each thread kept its own best combination. After calculating the
best combination from all of its permutations, in a critical section,
each thread would compare its maximum value to the current
global maximum value and update the global maximum if its
value was greater than the current global maximum. The
algorithm for MPI was identical to the OpenMP one, with the
exception that at the end of their calculations, each MPI process
sent its best permutation and corresponding score to the master

process, which, starting with its own best as the default compared
all of them to find the most optimal knapsack items. At the end of
the calculation, the master node printed the result.

4. TECHNICAL RESULTS
When there were fewer than 11 items that could be selected to put
in the knapsack, the sequential version of the program took less
than 1 second. While one might think there is nothing to be
learned from running a parallel version of the program for that
few items, we observed that the MPI version of the program using
48 cores took 1 second which illustrates the overhead associated
with it and shows that for small input sizes, the parallelism can
actually cause slowdown. With 11 or more items, the sequential
version of the program began to take larger quantities of time and
took almost 62 minutes to complete for 14 items. In contrast to
that, the MPI version of the program took less than two minutes
when running on 48 cores on the same computer. The full set of
running times for the sequential, OpenMP, and MPI versions is
shown in Table 1.

Because the times the programs took to run were measured in
seconds, it wasn’t possible to accurately calculate the speedup and
efficiency when there were fewer than 12 items that could be put
in the knapsack. For 12 items, we could not calculate the speedup
or efficiency of the MPI program that used 48 cores. We were
able to put a very coarse lower bound on the speedup and
efficiency. The speedups and efficiencies for the OpenMP version
and the MPI version of the program are shown in Table 2 and
Table 3 respectively. For 13 and 14 items, the speedup observed
with OpenMP is not quite as close to proportional to the number
of cores used as one might expect for an embarrassingly parallel
implementation (0.94 and 0.89 for 13 and 14 items, respectively).
This could have been a result of the algorithm used, which could
result in a number of computations being short-circuited by some
threads while other threads might have fewer computations that
are short circuited. It is also possible that computations that are
short circuited by some threads run further into their process than
the ones short circuited by other threads. This could result in some
threads needing to do more calculations than other threads, thus
resulting in a load that is not balanced perfectly, which might
account for some of why the speedup was not proportional to the
number of cores.

In terms of speedup, the MPI version of the program when run
with 48 cores saw a speedup of almost 40 for both 13 and 14
items. With MPI, using 16, 32, and 48 cores split on 1, 2, and 3
nodes respectively, we observed 86%, 85%, and 83% efficiencies
with 14 items. The lower efficiency as the number of cores
increased may have been due to the additional network traffic
needed by using multiple compute nodes or also due to a
computation imbalance between the nodes or between the cores
on the nodes. We did expect MPI to be slightly less efficient than
OpenMP, however, due to the required network communication.
More interesting was that for the instance where there was only 1
possible item to put in the knapsack, the MPI run using 48 cores
that took longer than the sequential and OpenMP runs and the
MPI runs using fewer nodes (and cores).

With a brute force algorithm in parallel, we expected to observe
linear speedup. To our surprise, our program did not achieve as
close to linear speedup as we expected. However, we believe that
the number of objects that could be put in the knapsack was too
small to produce a good test, which might have caused this.
Increasing the number of items available and the knapsack's
capacity might have resulted in closer to linear speedup. This was

Volume 4, Issue 1 Journal of Computational Science Education

36 ISSN 2153-4136 November 2013

limited due to limits on the amount of hours on the supercomputer
allocated to each student. We noticed that the speedup and

efficiency were better with OpenMP than with MPI, which we

Table 1. Runtime of the Programs (sec)

Items Available
to Put in

Knapsack

Sequential
Version

OpenMP
Version (16

Cores)

MPI Version
1 Node (16

Cores)

MPI Version
2 Nodes (32

Cores)

MPI Version
3 Nodes (48

Cores)

1 0 0 0 0 1
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
11 2 0 0 0 0
12 23 3 2 1 0
13 316 21 23 12 8
14 3716 260 271 137 93

Table 2. Speedup of the Parallel Versions

Items Available to
Put in Knapsack

OpenMP
Version Using

16 Cores

MPI Version
Using 1 Node

(16 Cores)

MPI Version
Using 2 Node

(32 Cores)

MPI Version
Using 3 Nodes

(48 Cores)
12 7.67 11.50 23.00 > 23
13 15.05 13.74 26.33 39.50
14 14.29 13.71 27.12 39.96

Table 3. Efficiency of the Parallel Versions

Items Available to
Put in Knapsack

OpenMP
Version Using

16 Cores

MPI Version
Using 1 Node

(16 Cores)

MPI Version
Using 2 Node

(32 Cores)

MPI Version
Using 3 Nodes

(48 Cores)

12 0.48 0.72 0.72 >0.48
13 0.94 0.86 0.82 0.82
14 0.89 0.86 0.85 0.83

believe was due to the extra network communication required for
the MPI version of the program.

5. FUTURE WORK
There are several ways this work can be extended in the future.
The first task is to create an OpenMP/MPI hybrid version of the
program and conduct performance testing to see how that

compares to the other versions of the program. We note that since
Ranger has been decommissioned, we will need to redo the
performance testing on a new supercomputer, such as Stampede,
which replaced Ranger. The second task that should be done is to
port the algorithm to run on CUDA-enabled GPUs and compare
the performance of that version of the program to the results from
the Stampede performance tests. We note that all the
measurements in the future should be done in msec instead of

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 37

seconds, so more accurate comparisons can be made with small
numbers of items. We would also like to implement different
sequential and parallel algorithms such as branch-and-bound and
dynamic programming algorithms to solve the same problem so
we can see parallel performance comparisons of those algorithms
in comparison to the brute force algorithm.

6. REFLECTIONS
6.1 Student Reflections
From a learning perspective, I think that this exercise was
incredibly fruitful. Over the last couple of years, I have been
exposed to a number of computationally intensive problems
within the domains of theoretical computation and modeling and
simulation. Knowledge on parallel processing is invaluable for the
next generation of both computer scientists and natural scientists.

This exercise introduced me to the challenges and opportunities of
high performance computing. It led me to consider the challenges
of implementing parallel programs to solve problems in a way
more theoretical classes cannot. While I was acquainted with NP-
complete problems from my course on the theoretical foundations
of computer science, this project gave me the opportunity to truly
understand what it means for a problem to be NP-complete. It was
enlightening to write an algorithm to “solve” an NP-complete
problem; actually watching the runtime of the algorithm grow at a
factorial rate with more items is humbling and seeing the
limitations of a supercomputer is profound.

In retrospect, there were a number of changes I would make to
both how I did the project and the course itself.

First, I wish I had paid far more attention to overhead as I coded
my project. My algorithm had the potential to achieve nearly
linear speedup, but I only saw roughly 85 percent efficiency. I
wonder if my algorithm could have been written in such a way as
to decrease the overhead and increase efficiency. In the future
iterations of this class, it would be helpful to see a lesson on
limiting overhead in HPC projects.

Second, we did not write programs that combined MPI with
OpenMP, and I would have liked to have seen the performance of
an MPI & OpenMP hybrid version of my algorithm.

Third, we did not talk about the impacts of using different
compilers and optimizations during the course, so when I
encountered a major performance difference of the same code
running on the same hardware when it was compiled using
different compilers, I was surprised. Previously, my mental model
of compilers had naïvely assumed their equality for practical
purposes. A brief exploration of compiler optimizations would be
an interesting module for the course.

Fourth, each student was only given 3000 hours of CPU time on
the supercomputer to conduct the performance testing. In the
future, increasing this amount of time would provide the
opportunity to test an OpenMP version of the program with 2, 4,
and 8 cores in addition to with 16 cores, which might provide
additional interesting results in terms of speedup.

Lastly, in order to learn the basics of parallel computing libraries
like MPI and OpenMP, we were encouraged to solve our NP-
complete problems using brute force algorithms. However, it
would be interesting to see the difference in speedup and
efficiency that other types of algorithms to solve the same
problem would achieve. For example, what kind of speedup and
efficiency would we see using a branch and bound versus a
dynamic programming algorithm? While it would be impossible
to expect students taking a three credit hour course to test three

versions of each algorithm, each using a different parallel
platform, it would have been a valuable juxtaposition to see
different types of parallel algorithms pitted against each other.

As a student at a small liberal arts university, it was empowering
to run code on one of the fastest computers in the world. The
experience taught me humility in the face of computational
intensity and provided me the tools to think in parallel. It will be a
priceless course for students in the future.

6.2 Instructor Reflections
This course project spanned 8 weeks of a 15-week semester,
making it one of the larger projects students do in our courses.
The idea behind assigning such a large project was to give the
students an opportunity to gain experience with not only the
technical aspects of the material, but also with other important
skills like time management, creating a poster, and giving a talk.
The project was supposed to give students the opportunity to
demonstrate mastery of the basics of OpenMP and MPI, as well as
to perform some performance comparisons and give them
experience running a program on a supercomputer. A side goal
was to introduce the students to a variety of NP-complete
problems.

Although I have taught a parallel computing course twice before,
this was the first time I integrated this project and the use of a
supercomputer into the course. Because of that, I learned a
number of lessons, including that too many students will
procrastinate if they are not given enough intermediate deadlines
for a big project, as was the case with this project. A number of
students were unable to complete the project, only developing an
OpenMP implementation and not completing an MPI
implementation or the performance analysis portion of the project.
In general, the students that did not complete the project did not
lack technical ability, but rather, they simply did not start the
project until the last couple of weeks of the semester. Next time I
teach the course, I will have parts of the projects due every 1-2
weeks.

Each student had to select an NP-complete problem for the
project, but I limited the number of students who could choose the
same problem to 2. This was done to force the students to produce
a variety of posters and talks, so they would not all be the same
and to keep things more interesting, as we as to prevent cheating.
This caused some students to choose harder problems than they
should have chosen. In the future, I will sacrifice the variety of the
posters and talks to make the students more successful.

Students were supposed to develop a sequential program to solve
their problem for small instances and then run the program to see
how large an instance their program could solve in 24 hours. This
instance of the problem was then supposed to be used as the
baseline for their performance comparisons. Because the instance
was supposed to take close to 24 hours to solve, I did not tell the
students to do their timing in milliseconds because that granularity
should not have been required for the performance comparison.
However, some students benchmarked their code on systems other
than the supercomputer and that led to them running their code for
instances of the problems that were too small for the timing
granularity of seconds to be as useful as needed. Because many
students didn’t run their program on the supercomputer until right
before the project was due, they did not have time to test the
programs with larger instances if the problem instances they used
were too small. In the future, I will make sure that the students do
their timing in msec instead of seconds.

Volume 4, Issue 1 Journal of Computational Science Education

38 ISSN 2153-4136 November 2013

The students were told that they each had 3000 hours to use on the
supercomputer for the projects. At the end of the semester, a
couple students said they wished they could have had more time
on the supercomputer. After the projects were completed, those
student were told they could use the remaining time from the
educational grant that had not been used by others, but that was
during finals week and the students didn’t get around to using the
extra time. Because students were supposed to have a program
that ran for almost 24 hours sequentially and Ranger had 16 cores
per node, doing that would have used 384 of the students 3000
hours. Since the students were supposed to run the program with
OpenMP on one node and MPI on 1, 2, and 3 nodes, if they had
no speedup, they would have consumed 3072 hours. I expected
they would get significant speedup, but that there would also be
problems and students would need to run their programs more
than once to complete the project. Therefore, 3000 hours per
student seemed reasonable. In the future, I want to rethink that.

6.3 Suggestions For Instructors
Our recommendations to a faculty member who adopts this
project for their course are:

1. Have the entire class do the same NP-complete problem or
half of the class do one and the other half of the class do
another. We recommend the 0-1 knapsack problem and the
traveling salesman problem.

2. Have the students who did one problems compare their
speedups and efficiencies for their implementations and
discuss the reasons for any differences.

3. Have prebuilt implementations of the problem(s) with data
set(s) that students can run their algorithm on and compare
their algorithm's solutions to the known correct solution.

4. Do not bother with presentations, which took time that might
be better spent on other tasks. In particular, teaching the
basics of CUDA would be helpful. However, having the
students create a poster might still be useful.

5. Ensure that the compiler used on the supercomputer is
available to the students on the local computer where they
develop their solutions to ensure consistency. Discuss the
different optimization levels for the compiler and ensure all
the students use the same level.

6. Ensure students conduct timing in msec rather than seconds.

7. Have intermediate deadlines so that students do not get
behind and are all ready to run their code on the
supercomputer before the end of the course.

8. Request twice as much time on the supercomputer as you
think the students will need to conduct the performance
comparisons to ensure that even with mistakes, students have
adequate time to test their implementations.

7. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
through XSEDE resources with grant ASC120039: "Introducing
Computer Science Students to Supercomputing in a Parallel
Computing Course" and by the Texas Advanced Computing
Center (TACC), where the supercomputer we used was located.
We wish to thank XSEDE and TACC for their support.

8. REFERENCES
[1] Knapsack Problems: Algorithms and Computer

Implementations, Silvano Martello, Paolo Toth, 1990. J.
Wiley & Sons.

[2] BCCD | Bootable Cluster CD. http://bccd.net/.

[3] Texas Advanced Computing Center – Ranger-User-Guide.
http://www.tacc.utexas.edu/user-services/user-guides/ranger-
user-guide. Updated 10/30/12.

[4] Balas, E. and Zemel, E. An algorithm for large zero-one
knapsack problems. Operations Research. 28 (1980).

[5] Fayard, D. and Plateau, G. An algorithm for the solution of
the 0-1 knapsack problem. Computing. 28 (1982), 269-287.

[6] Martello, S. and Toth, P. A new algorithm for the 0-1
knapsack problem. Management Science. 34 (1988).

[7] Pisinger, D. A minimal algorithm for the 0-1 Knapsack
Problem. Operations Research. 45 (1994), 758-767.

[8] Pisinger, D. An expanding-core algorithm for the exact 0-1
Knapsack Problem. European Journal of Operations
Research. 87 (1993), 175-187.

[9] Loots, W. and Smith, T. H. C. A parallel algorithm for the 0-
1 knapsack problem. International Journal of Parallel
Programming. 21:5 (Oct. 1992), 349-362.

[10] Chen, G. and Jang, J. An improved parallel algorithm for 0/1
knapsack problem. Parallel Computing. 18:7 (July, 1992),
811-821. DOI=http://dx.doi.org/10.1016/0167-
8191(92)90047-B.

[11] Pospichal, P., Schwarz J., and Jaros, J. Parallel Gneetic
Algorithm Solving 0/1 Knapsack Problem Running on the
GPU. Proceedings of the 16th International Conference on
Soft Computing MENDEL (Brno, Czech Republic, June 23-
25, 2010), 64–70.

[12] Irene's coding blog: Factorial base numbers and
permutations. http://irenes-coding-
blog.blogspot.com/2012/07/factorial-base-numbers-and-
permutations.html. Updated July 22, 2012.

[13] Factorial number system - Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Factorial_number_system.

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 39

