
STUDENT PAPER: Solving the Many-Body Polarization
Problem on GPUs: Application to MOFs

 Brant Tudor Brian Space
 University of South Florida-Tampa University of South Florida-Tampa
 3720 Spectrum Blvd, IDRB 210 3720 Spectrum Blvd, IDRB 210A
 Tampa, FL 33620 USA Tampa, FL 33620 USA

 btudor@mail.usf.edu bspace@mail.usf.edu

ABSTRACT
Massively Parallel Monte Carlo, an in-house computer code

available at http://code.google.com/p/mpmc/, has been

successfully utilized to simulate interactions between gas phase

sorbates and various metal-organic materials. In this regard,

calculations involving polarizability were found to be critical, and

computationally expensive. Although GPGPU routines have

increased the speed of these calculations immensely, in its

original state, the program was only able to leverage a GPU’s

power on small systems. In order to study larger and evermore

complex systems, the program model was modified such that

limitations related to system size were relaxed while performance

was either increased or maintained. In this project, parallel

programming techniques learned from the Blue Waters

Undergraduate Petascale Education Program were employed to

increase the efficiency and expand the utility of this code.

General Terms
Algorithms, Design

Keywords
Blue Waters Undergraduate Petascale Education Program,

CUDA, GPGPU, MOF, Parallel Programming, Polarization

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported

publication of the Shodor Education Foundation Inc.

1. INTRODUCTION
Metal-Organic Frameworks (MOFs) are highly porous, crystalline

materials characterized by inorganic clusters, or nodes, connected

via organic linkers. The linking molecules are roughly linear and

force a relatively high level of space between the inorganic nodes.

Consequently, these materials are remarkable in their high surface

areas, which suggest great opportunities for applications such as

gas storage via physisorptive processes. The ability to selectively

control pore size, polarity and placement of functional groups on

the linkers provides further opportunity for the engineering of

materials suited for specific separations or catalytic activity. In

order to rationally design such materials, it is desirable to

understand how they work on a molecular level. For example, it

would be useful to know how exactly how and why each node,

linker or functional group’s place within the MOF improves or

retards the process of interest. Additionally, the identification of

non-existent MOFs with useful properties, or the identification of

useful, overlooked properties on existent MOFs, is another widely

held aim.

To that end, accurate, efficient simulation of MOF materials is an

area of active research. A program developed in-house, Massively

Parallel Monte Carlo (MPMC), has demonstrated its effectiveness

in MOF-centric and related simulations [1-3]. This program has

been successfully employed to generate sorption isotherms for

MOFs with high fidelity to experiment [1]. Crucial to the

accuracy of such isotherms is a careful accounting of the

polarization energy of the MOF, and, unfortunately, this task has

proven to be a computational bottleneck [4]. Early versions of

MPMC had a limited ability to utilize GPGPUs to perform these

calculations. Although a significant performance boost was

realized, the system size was constrained by the amount of shared

memory on the card, effectively limiting the simulations to

approximately 2000 atoms on the available hardware (a number

only suitable for simulation of smaller MOF systems).

2. BACKGROUND
Polarization calculations in MPMC are conducted using the

Thole-Applequist model [5, 6]. This model assigns each atomic

site a point dipole whose interactions with all the other dipoles of

the system are dictated by many-body polarization equations.

Using a set of training molecules, a 3x3 polarizability tensor is

calculated for each site. Then, in a static electric field, each

dipole, 𝜇 , is thus represented by the product of the calculated

polarizability tensor, α, and the field vector at that point, �⃗⃗�𝑠𝑡𝑎𝑡:

𝜇 = 𝛼�⃗⃗�𝑠𝑡𝑎𝑡 (1)

Volume 4, Issue 1 Journal of Computational Science Education

30 ISSN 2153-4136 November 2013

In this model, the dipole for a molecule is then treated as a

collection of N atomic-point dipoles, which are summed to give

the net dipole for the set [4]:

𝜇𝑚𝑜𝑙 =∑𝜇𝑖

𝑁

𝑖

= ∑𝛼𝑖

𝑁

𝑖

�⃗⃗�𝑖
𝑠𝑡𝑎𝑡 (2)

Here, 𝜇𝑖 is the dipole for an individual site, 𝛼𝑖 is the polarizability

tensor for the site, and �⃗⃗�𝑖
𝑠𝑡𝑎𝑡 is the electrostatic field vector at that

point, for each site, i, in the molecule. The Thole-Applequist

system is then treated as a collection of N dipoles and a dipole

field tensor, 𝑇𝑖𝑗
𝛼𝛽

. The elements of T are the complete set of

tensors describing every induced dipole-dipole interaction in the

system [4]. The product of the dipole field tensor, T, and a system

dipole results in the many-body induced-dipole contribution to the

electric field, �⃗⃗�𝑖𝑛𝑑, at the dipole site. The dipole field tensor was

designed to contain the entire induction contribution, allowing the

assignment of a scalar point polarizability, 𝛼∘ for each site,

instead of the polarizability tensor [4]:

𝛼𝑖 �⃗⃗�𝑖
𝑠𝑡𝑎𝑡 = 𝛼𝑖

∘(�⃗⃗�𝑖
𝑠𝑡𝑎𝑡 + �⃗⃗�𝑖

𝑖𝑛𝑑) (3)

 = 𝛼𝑖
∘ (�⃗⃗�𝑖

𝑠𝑡𝑎𝑡 − 𝑇𝑖𝑗
𝛼𝛽
𝜇𝑗) (4)

If �⃗⃗⃗� is treated as a vector, each entry of which is one of the system

dipoles (each of those a vector), equation (5) is the result. A

similar “super vector” is formed by treating vectors of the static

electric field (at a point in space corresponding to each of the

dipoles) in an identical fashion, the result of which is equation (6).

�⃗⃗⃗� = (

𝜇1
𝜇2
⋮
𝜇𝑁

) (5)

�⃗⃗⃗�𝑠𝑡𝑎𝑡 =

(

�⃗⃗�1
𝑠𝑡𝑎𝑡

�⃗⃗�2
𝑠𝑡𝑎𝑡

⋮

�⃗⃗�𝑁
𝑠𝑡𝑎𝑡
)

 (6)

Additionally, if matrices A and B are defined as

𝐴 = [(𝛼∘)−1 + 𝑇𝑖𝑗
𝛼𝛽
] (7)

𝐵 = 𝐴−1 (8)

the problem is reduced to two compact matrix equations, (9) and

(10). Matrix A is thus constructed such that each element is the

3x3 matrix 𝑇𝑖𝑗. Each element of matrix B is also a 3x3 matrix—

the site polarizability tensor characterizing each site’s response to

an electric field [4].

𝐴�⃗⃗⃗� = �⃗⃗⃗�𝑠𝑡𝑎𝑡 (9)

�⃗⃗⃗� = 𝐵�⃗⃗⃗�𝑠𝑡𝑎𝑡 (10)

The system dipoles can therefore be found by inverting matrix A

(giving B) and solving equation (10) directly. However, the size

of matrices required to model typical MOF systems renders the

computation required for matrix inversion impractical. MPMC

solves these equations by guessing at the value of each point

dipole and solving equation (9) iteratively.

3. MPMC

3.1 Limitations of the Initial Solution
MPMC typically solves for the system dipoles iteratively [7]. The

initial guess for each dipole is simply the product of the scalar

point polarizability and the electrostatic field vector at that point.

Each dipole is considered sequentially, and is marginally

corrected according to the induced contribution calculated using

all the other dipoles in the system. This process is repeated for

each dipole (thus concluding a single iteration), and the whole

process is then repeated for the entire system until convergence to

within a specified tolerance is realized. MPMC also has the ability

to solve this problem through matrix inversion, but, as previously

mentioned, this method is only viable for small systems.

Additionally, the original version of MPMC included support for

finding the system dipoles using a General Purpose Graphics

Processing Unit (GPGPU) device. This algorithm performed the

iterative process previously described with only a few key

differences. First, each step of the calculation updated every

dipole in the system, whereas the serial algorithm incorporated the

Gauss-Seidel numerical iterative technique. In this method, newly

calculated dipole data replaces old dipole data as soon as it

becomes available. The new values are then used in calculating all

the remaining dipoles in the system. This technique can

significantly decrease convergence times, but since, in the parallel

algorithm, all the newly calculated dipoles become available

simultaneously, the Gauss-Seidel technique was not implemented.

A test for convergence of the GPGPU polarization calculation was

not implemented in the original version of MPMC. Hence, the

computation would run for a preset number of iterations and

results were delivered without any way of estimating their

accuracy.

Finally, simulations utilizing the GPGPU device were limited to

2048 atoms due to the manner in which MPMC employed the

GPU’s shared memory system. This constraint renders the

GPGPU algorithm useful only in simulations of relatively small

system size. A MOF simulator should ideally be able to handle

system sizes of 10,000+ atoms in order to be useful for several

MOFs of current and future interest to investigators.

3.2 Updated Program Model
Several changes to improve and expand the functionality of

MPMC were realized.

3.2.1 Maximum System Size Expansion
The 2048 atom cap imposed on simulations was the first

limitation addressed during the course of this project. In the

updated program model, each GPU thread was assigned a single

system dipole. Each thread calculates its dipole’s interaction with

every other dipole in the system, and sums these interactions to

arrive at the dipole vector to be used in the next iteration. Since

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 31

every thread needs access to the vector data of every other dipole,

it only makes sense to load the dipole information into shared

memory so that each thread in the block can access it. This

precludes the need for each of these threads to access the data

individually from global memory (a relatively time consuming

process to be avoided when possible) [8]. However, since shared

memory is fairly limited, it is impossible to fit all the dipole data

in this memory system simultaneously (for moderate to large-

sized systems). This situation is amenable to a tiled model of data

handling such that the complete set of dipole information resides

in global memory and is moved in and out of shared memory as

needed, one block at a time (FIGURE 1). Organizing the data in

this manner shifts the limitation of system size from shared

memory to one of global memory and/or maximum grid size.

Obviously, the global memory of the GPGPU device must be

large enough to hold dipole data for the entire system. However,

since each thread is responsible for a dipole and each thread block

executes a limited number of threads, the maximum grid size

(which dictates the total number of blocks) is ultimately

responsible for determining the maximum number of threads [8],

and therefore the maximum number of dipoles (i.e. atoms).

Fortunately, on current hardware, the system sizes imposed by

these limitations number in the millions of atoms, thus

transforming MPMC’s prohibiting considerations from those of

system size to one of computational duration.

3.2.2 Gauss-Seidel in Parallel
The original GPGPU algorithm did not attempt to implement the

Gauss-Seidel iterative method of using newly calculated dipole

information in the calculations for later dipoles. From outside the

GPU kernel, all the dipoles appear to be updated simultaneously,

so a treatment of this nature simply is not possible. However,

from inside the kernel, once a thread block has completed, it is

possible for each thread to overwrite its value in global memory

with its newly calculated value (FIGURE 2). This treatment will

allow any subsequent calculations to use the latest available

information for their own computations. This technique updates a

block of dipoles at a time, and as such effects a coarse-grained

version of the Gauss-Seidel method. Typically, several thread

blocks will be executing concurrently and these blocks will not be

able to take advantage each other’s updates, thus it is expected

that this modification will only become significant on larger

system sizes where only a small portion of the total number of the

required thread blocks can run concurrently.

3.2.3 Convergence Verification
Prior to this work, MPMC set a fixed number of iterations for the

GPGPU algorithm and the level of convergence obtained after this

number of iterations was what any dependent calculations were

forced to use. After extensive testing, it became apparent that, in

many cases, the set number of iterations was sufficient for a high

level of convergence. However, in some cases it was not. Worse,

the program was unable to tell if a set of dipoles converged, so the

user received no warning that their calculation may be suspect.

From inside the kernel, before each thread updates its data in

global memory (for Gauss-Seidel), modifications were made such

that each thread now copies its original dipole data into a local

register. The difference between the old dipole data and the newly

calculated dipole is squared and stored in an output array which

can then be examined by the function that launched the kernel.

Outside the kernel, in the calling function, the transfer of the

squared-difference data from the GPGPU device to the host

machine can take a significant amount of time compared to a

single iteration. In some cases, the transfer duration can take

longer than a single iteration, more than doubling the length of the

total calculation. To mitigate this effect, the squared dipole

differences are only downloaded and examined after every tenth

iteration.

3.2.4 Energy Calculations in Parallel
The Monte Carlo portion of MPMC aims to identify low-energy

system configurations. As such, the purpose of calculating the

Volume 4, Issue 1 Journal of Computational Science Education

32 ISSN 2153-4136 November 2013

system dipoles is to quantify an energy contribution from

polarization effects. The time required to calculate this energy

tends to vary widely. Kinetic and coulombic energies are also

considered and the combined time required for these calculations,

depending on the duration of the polarization energy, can be

mildly to highly significant by comparison. Finally, MPMC can

calculate an energy contribution due to van der Waals effects.

This computation relies on matrix diagonalization and, when

utilized, invariably takes the longest of any of the calculations.

Using the Open Multi-Processing API (OpenMP), MPMC is now

able to split into three concurrent threads of execution, one of

which is responsible for both the kinetic and coulombic energy

calculation, another of which is responsible for the polarization

energy calculation, and the last of which is responsible for

calculating the van der Waals energy contribution.

3.2.5 Van der Waals Calculations Using MAGMA
The final modification made to MPMC was to utilize the Matrix

Algebra on GPU and Multi-core Architectures library (MAGMA)

in order to compute the van der Waals energy contribution. The

original routine calls for a matrix diagonalization via the

LAPACK routine dsyev_(). It was a simple matter to construct

an alternate routine, to be used in the event that a GPGPU device

was detected. The two routines were practically identical in all

respects except that the new one makes a call to MAGMA’s

magma_dsyevd() instead of to the equivalent LAPACK

function.

4. RESULTS
The updated version of GPGPU portion of MPMC is able to

reproduce the results of the original with perfect fidelity for

system sizes less than or equal to 2048 atoms, in approximately

the same amount of time. For larger systems, no direct

comparison can be made since the older version is unable to

produce a result, although the computation is performed six to

eight times faster on the GPU than the CPU. Comparing GPU

results against data obtained through matrix inversion, presumed

exact, reveals that calculations on typical systems are within five

percent error.

Performance increases due to the multi-threaded, OpenMP

handling of the energy calculations, though present, is difficult to

quantify. The combined calculation time for the kinetic and

coulombic contributions represents roughly 10 to 50 percent of

the total calculation time, and this figure varies widely from

iteration to iteration. Effectively, the total calculation time is now

reduced to the duration of whichever calculation takes the longest

(coulombic/kinetic, polarization, or van der Waals), plus a small

penalty for the overhead required to establish the threads. On test

systems, the net speedup of the multithreaded treatment was

typically around 20 percent.

The use of the MAGMA routine in the calculation of the van der

Waals energies is able to exactly reproduce the LAPACK result.

However, the calculations are completed in approximately half the

time.

5. FUTURE WORK
The accuracy of the GPGPU polarization calculation is lower than

ideal, on the order of three percent error. Different techniques are

being tried in order to increase the accuracy of these results, as

well as to decrease convergence times. Additionally, the version

of MPMC under discussion was designed to simulate a crystalline

material and a single species of sorbate. Currently, efforts are

underway to modify the program such that it can simulate

multiple sorbate species simultaneously introduced into the

material.

6. REFLECTIONS
The summer portion of the Blue Waters Undergraduate Petascale

Education Program (BW-UPEP) provided training and instruction

at the Urbana-Champagne campus of the University of Illinois.

During this program, various technologies and techniques for

scientific coding on parallel and supercomputer architectures were

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 33

discussed and elucidated. Of particular interest to this project was

the training on GPGPU programming through NVIDIA Compute

Unified Device Architecture (CUDA) as well as the Open Multi-

processing API (OpenMP) maintained by the OpenMP

Architecture Review Board. The workshop introduced students to

various algorithmic models, concepts and issues that were

particularly useful to the current project, such as deconstruction of

large repetitious problems into loosely coupled blocks appropriate

for efficient handling by GPGPU devices, concurrent processing

of dissimilar tasks through multi-threading, and, perhaps most

importantly, how to leverage both techniques within a single

program. Resources for learning any one of the technologies

abound, but an area where the program excelled was instruction

on how to effectively harness all these technologies to work

together within a single project.

Through the work started during the BW-UPEP program, I was

able to foster a deep understanding of the architecture sitting

underneath the hood of various high performance computing

systems. Whereas before, I had only superficial experience with

supercomputers, I currently develop scientific software and

perform research computation on my own university’s local

research computing cluster, as well as on many of the computing

systems made available through the NSF’s Extreme Science and

Engineering Discovery Environment (XSEDE) project. Speaking

from personal experience, I believe undergraduates who have an

interest in scientific computing stand to gain a considerable

amount of confidence, experience and expertise by attending such

a program as the BW-UPEP. The abundant knowledge and

support available during the development of various pedagogical

codes, as well as the guidance received regarding submission of

these jobs to actual work environments (research computing

clusters of universities with ties to the program), made it much

easier to “leave the nest” and create and submit my own

computational jobs to world-class research computing facilities

throughout the academic world.

I am currently in the early stages of my Doctoral program in

theoretical and computational chemistry at the University of

South Florida, and the skills and knowledge acquired through the

BW-UPEP program have definitely helped to jumpstart my career

therein. The time saved by not having to start from scratch in

learning the basics of HPC coding (or the ins-and-outs of

interaction with research computing environments) may have

shaved a semester or more off my time in graduate school. In

classes oriented around high performance computation and

scientific coding, I find that while my peers spend much of their

time trying to frame the posed problems in a manner suitable for

parallel computation, the practical experience gained through the

Blue Waters program often allows me to skip this step and

immediately begin to identify opportunities to make the code

more efficient in terms of the low-level hardware, e.g. efficient

use of cache, shared memory systems, coalesced memory

accesses, etc. My association with the BW-UPEP has proven to be

an invaluable advantage in this regard and my ardent gratitude

toward the program remains steadfast.

7. AKNOWLEDGMENTS
Funding for this work was provided by the National Science

Foundation’s Office of CyberInfrastructure through the Blue

Waters Undergraduate Petascale Education Program.

The authors would like to acknowledge the use of the services

provided by Research Computing at the University of South

Florida. Simulations and development were performed on the

University of South Florida’s Research Computing Center,

CIRCE, with additional support received from the Space

Foundation (Basic and Applied Research).

8. REFERENCES
[1] J. L. Belof, et al., "A Predictive Model of Hydrogen

Sorption for Metal−Organic Materials," The Journal of

Physical Chemistry C, vol. 113, pp. 9316-9320, 2009.

[2] An Accurate and Transferable Intermolecular Diatomic

Hydrogen Potential for Condensed Phase Simulation, 4,

2008.

[3] J. L. Belof, et al., "On the Mechanism of Hydrogen

Storage in a Metal−Organic Framework Material,"

Journal of the American Chemical Society, vol. 129, pp.

15202-15210, 2007.

[4] J. L. Belof, Theory and simulation of metal-organic

materials and biomolecules. Tampa: Theses and

Dissertations. Paper 1851.

http://scholarcommons.usf.edu/etd/1851, 2009.

[5] J. Applequist, et al., "An Atom Dipole Interaction

Model for Molecular Polarizability. Application to

Polyatomic Molecules and Determination of Atom

Polarizabilities," Journal of the American Chemical

Society, vol. 94, pp. 2952-2960, 1972.

[6] B. T. Thole, "Molecular polarizabilities calculated with

a modified dipole interaction," Chemical Physics, vol.

59, pp. 341-350, 1981.

[7] J. L. Belof, "Massively Parallel Monte Carlo (MPMC),"

http://code.google.com/p/mpmc/, 2007.

[8] (2012). NVIDIA CUDA C Programming Guide Version

4.2.

Volume 4, Issue 1 Journal of Computational Science Education

34 ISSN 2153-4136 November 2013

