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ABSTRACT 
In this paper, we present a computational approach to teaching 
general education courses that expose students to science and 
computing principles in engaging contexts, including modeling 
and simulation, games, and history. The courses use scalable 
curriculum modules organized in layers of increasing difficulties 
in order to balance learning challenges and student abilities. We 
describe the computational pedagogy followed in these modules 
and courses, with particular attention to the simulation-based 
course, namely introduction to computational science, to present a 
case study for those considering similar initiatives.   
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1. INTRODUCTION 
Recent increases in power, access and affordability of digital 
technology have impacted scientific research, industrial design, 
and education. Educators stated at the turn of the century that, 
when used in the context of applications, technology would 
support higher-order thinking by engaging students in authentic, 
complex tasks within collaborative learning contexts [26]. More 
recently, the National Science Teachers Association (NSTA) 
described computation as a “third pillar” of scientific inquiry, 
accompanying experiment and theory [19]. It cited a growing 
body of evidence that using models and simulations, students 
learn better since they are actively engaged in “doing,” rather than 
passively engaged in “receiving” knowledge. Within the scientific 
computing community, the role of computation had long been 
recognized and brought to the classroom through training by 
many organizations such as Shodor Foundation, and through 
formal degrees and courses by other institutions [15, 23], 
including ours [28-33]. However, now that we have help from 
educators and pedagogy experts to promote computational science 
education in more fundamental ways, we get a second chance to 
address some of the challenges we have faced.  
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While recruitment challenges can be linked to a general lack of 
interest and preparation by nation’s high school students [2, 5-6, 
9, 11, 16-17], computational science education requires additional 
preparation in multiple domains (math, programming, and 
sciences) that not every college student is willing to undertake. A 
fundamental (pedagogical) approach, including a focus on 
computational thinking skills [27], could bring all stakeholders 
together in a way not only to reform the computing education but 
also push scientific thinking into mainstream to address 
underlying causes of the rising category-5 storm in nation’s K-12 
education [16-17].    
The importance of math and computational skills for STEM 
workforce has been noted in many reports; including the 
projections by the Bureau of Labor Statistics [3], National Science 
Board statistics [21], and surveys by the American Institute of 
Physics [1]. AIP surveys taken at regular intervals (in 1999 and 
2010) of physics majors, 5+ years after finishing an undergraduate 
degree, indicate that some of the important job skills continue to 
be scientific problem solving, teamwork, computer programming, 
design and development, simulation and modeling, math skills, 
and technical writing (See Fig. 1).  

 

Figure 1: Results of the most recent AIP survey in 2010 [1]. 
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While the demand for computationally competent science, 
technology, engineering, and mathematics (STEM) workers is an 
unprecedented opportunity, enrollments have gone down steadily 
in recent years. The pipeline between institutions of higher 
education (IHE) and K-12 seems to be broken [2, 5-6, 9, 11, 16-
17]. The issue of why science is not as engaging as other subjects 
is complex, but according to the Relevance of Science Education 
(ROSE) study, student attitudes towards STEM become 
increasingly negative as a country advances economically, which 
suggests this phenomenon to be deeply cultural [22]. Learning 
science is demanding and it requires application, discipline and 
delayed gratification; values that contemporary culture does not 
seem to encourage. So, innovative and engaging ways of teaching 
science and computing are necessary. 

2. COMPUTATIONAL SCIENCE 
EDUCATION AT BROCKPORT 
Established in 1998, the computational science degree (BS and 
MS) program at Brockport attracted high parameter students and 
promoted research experience in an undergraduate institution [28-
33]. Success stories from alumni hired by the software industry 
include multiple offers from the same company, offers for 
significant others as incentives, promotion to senior positions 
upon hiring, and many more. Those hired as teachers could teach 
multiple subjects (math, programming, and general science) due 
to their diverse background. These examples all point out to the 
benefits of a broad education to improve one’s marketability and 
job orientation at a time when the likelihood of working at a job 
not related to one’s field of study is greater than 50% [21]. 

While the computational science (CPS) program has attracted to 
Brockport students who normally would go to a higher tier school, 
it has graduated only a handful (~5) of students annually. 
Concerns over the number of freshmen entering the program led 
to an outreach effort by the program in 2003 to address the IHE-
K12 pipeline issue as described earlier. An institute was formed in 
partnership with local school districts (Rochester City SD and 
Brighton Central SD) and national organizations (Shodor 
Foundation, Krell Institute, and Texas Instruments) to train 
secondary school teachers on the computational approach to math, 
science, and technology (C-MST). Improved teacher retention and 
student achievement reported by partnering districts drew national 
attention to this initiative, including testimony before the U.S. 
Congress. Over the past decade, institute staff and participants 
(faculty and teachers) created a large inventory of curriculum 
modules and lesson plans that are currently being used in the 
introductory-level general science courses described here. 

While the computational approach to STEM education has been 
recognized a novel strategy to improve the technical workforce, 
curricular and recruitment challenges have slowed its growth. 
Brockport has revised its degree programs and courses several 
times to update and diversify its curriculum in several fronts, 
including: a) science of computing (simulation tools, 
programming, parallel computing, numerical and statistical 
methods, visualization, technical writing, and computing 
principles), b) science done computationally in application 
domains, and c) education done computationally (pedagogy, 
teacher training and K-12 student outreach). While some of the 
application courses such as computational-x (x: biology, physics, 
etc.) and teacher education courses cover deep (x) content to 
support STEM majors, others include service courses, such as 
those described here, under general education category to spread 
the benefits to all college freshmen across the spectrum. What 

follows in the next section is the computational pedagogy we used 
in these courses, particularly in CPS 101, to draw both STEM and 
non-STEM majors into learning about computing and sciences. 
We believe that this pedagogical approach is also relevant to a 
recent initiative by the College Board to implement a new AP 
course on computational thinking [25]. The impact on the nation’s 
STEM education can be significant. 

3. C-MST PEDAGOGY 
While ‘attention to details’ is important to master a skill, we all 
have a limited memory to store information. The most pervasive 
strategy to improve memory performance (and information 
retrieval for problem solving) is organizing disparate pieces of 
information into meaningful units [14]. Abstraction skills can help 
with that by simplifying, categorizing, and registering key 
information and knowledge for quicker retrieval and processing. 
The act of abstraction is an inductive process by which we sort out 
details and connect the dots to arrive at more general patterns and 
conclusions [24]. While abstraction is essential for cognition, 
there are other benefits all around us. Since the nature itself 
employs abstraction by hiding the atomic-level motion and the 
cellular phenomena, we get the benefit of seeing the bigger 
picture. Computer scientists use abstraction to write large-scale 
complex codes (such as operating systems, compilers, and 
networking) where the complexity is distributed into seemingly 
independent layers and protocols of the code in such a way to hide 
the details of how each layer does the requested service. We all 
use abstraction in our daily lives. For example, when we go to a 
restaurant, we order our meal and not worry about how they 
cooked it in the kitchen. Those who worry and check it out once 
or twice cannot possibly afford doing it all the time. Abstraction 
skills can be improved beyond what was inherited, through 
training, education, additional knowledge and experience.  

Abstract 

 

Body of Details 
Figure 2: Illustration of the informational organization and 
the resulting deductive/inductive instructional pedagogies. 

Computational modeling uses abstraction by its simplification of 
the reality. Such simplification helps scientists eliminate certain 
parameters and focus on what is being studied. Another benefit of 
computational modeling is that it supports deductive learning. 
Modeling enables the learner to grasp important facts surrounding 
a topic before revealing the underlying details. In a sense it helps 
to do a reverse engineering by gradually leading the learner to the 
details that support the abstracted knowledge (See Fig 2 for a 
schematic view of inductive and deductive processes). Simulation 
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adds another level of benefit by providing a dynamic medium for 
the learner to conduct scientific experiments in a friendly, playful, 
predictive, eventful, and interactive way to test hypothetical 
scenarios without having to initially know the underlying science 
concepts. Together, both computational modeling and simulation 
lead to a deductive pedagogy by first introducing a topic from a 
simplistic framework and then moving deeper into details after 
learners gain a level of interest to help them endure the hardships 
and frustration of deeper learning. Such a stepwise progression in 
learning is consistent with the pedagogical framework Flow [8] 
and scaffolding strategy to balance skills with challenges as 
illustrated in Fig. 3.  

According to a national report [18], at early stages computational 
modeling approach to STEM education should involve easy 
experimentation (learners must be able to quickly set up and run a 
model using an intuitive user interface, with no knowledge of 
programming or system commands) and high interactivity 
(models need to evolve quickly and include smooth visualizations 
for providing interactions and feedback to users). Using existing 
computational models, instructors can start general science 
education via games and simulations without exposing them to 
STEM principles right away. Students can get to modify an 
existing model, or create one from scratch. Tools such as 
Interactive Physics (IP) and AgentSheets (AS) can be used to 
create many fun things that could engage students into science 
experimentation. They also provide easily discoverable links (i.e., 
buttons for controlling the run-time and accuracy) to underlying 
principles of computational and scientific modeling.  

After initial experimentation with modeling in the context of a 
game or science topic, students can be introduced to a simple 
principle of mathematical modeling (new = old + change) which 
eventually (and quickly) leads the learner into understanding 
several aspects of computational thinking [27], including 
decomposing a problem into smaller chunks, computational cost 
for more accuracy, and the need to use a programming language 
in order to handle complexity and increasing number of data 
points (due to decomposing the problem into much smaller 
chunks). The mathematical foundation of modeling and 
simulation can be taught in terms of building functional 
relationships (such as y=f(x)) using the rate of change equations 
and the above algebraic equation (ynew = yold + dy) where ynew and 
yold are new and old values of y, and dy is the change from the old 
to the new.  

As an example, consider finding a direct relationship, y=f(x), 
based on the rate of change (derivative) dy/dx= 2x, and the initial 
condition y=0 when x=0. The analytic answer to this 
mathematical integration is y = x2. However, students can be led 
to find an answer through numerical integration instead, by 
constructing a table of (x, y) data points starting from (0, 0) for 
different choices of increment in x values (dx= 1, 0.5, 0.1, and so 
on). When the numerical results are compared to the analytic 
solution (y= x2) for these cases, students could be led to discover 
the correlation between the step size (dx) and the accuracy of the 
numerical results: such as the smaller the dx, the more accurate 
the answer. While a human can calculate a few data points by 
hand when dx is 1, or 0.5, the need for automation (and accuracy) 
becomes obvious for smaller dx values such as 0.1 or 0.05. Excel 
can be used to automate the calculation and graph the y=f(x) 
curves, but for much smaller step sizes (dx), such as 0.001, 
0.0001, or 0.0000001, students might discover that even Excel 
cannot be of help in those computationally intensive cases. The 
need for finer and faster automation, via computer programming 
(example shown in later sections), becomes evident as the only 
way to obtain highly accurate results.  

In an after-school project, several 9th graders from Brighton High 
School (NY) were able to replicate IP results for the harmonic 
motion (Fig. 4) by first applying Excel (Table 1) and then Python 
(programming language) to algebraic formulas for the position 
(xnew = xold + dx) and velocity (vnew= vold + dv) of the spring-
driven object at times (tnew = told + dt) separated by interval dt. 
Here, time (t) is an independent variable and change in x and v 
are: dx= v · dt and dv= a· dt, where acceleration (a) is 
Force/mass. The force applied by a spring unto an attached box is 
F= - k · x, where k is the stiffness coefficient of the spring and x is 
the displacement of the box from the equilibrium position (x=0). 
The following year, these students modeled orbital motion of 
planets when the formula for the force, causing the change, was 
given to them (F=G·M·m/x2; where G is a Universal Constant, M 
and m are masses of the Sun and planet separated by distance x).  
 

 

Figure 4: Simple harmonic motion using Interactive Physics. 

 

 

Figure 3: Illustration of Optimal Flow in learning [8]. 
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Table 1: Simple harmonic motion using Excel (dt= 0.125). 
t(s) v(m/s) x(m) t(s) v(m/s) x(m) 

0.000 10.00 0.0 1.250 -8.97 1.49 
0.125 10.00 1.25 1.375 -9.90 0.26 
0.250 9.22 2.40 1.500 -10.06 -1.00 
0.375 7.72 3.37 1.625 -9.44 -2.18 
0.500 5.61 4.07 1.750 -8.08 -3.19 
0.625 3.07 4.45 1.875 -6.08 -3.95 
0.750 0.29 4.49 2.000 -3.61 -4.40 
0.875 -2.52 4.17 2.125 -0.86 -4.51 
1.000 -5.13 3.53 2.250 1.96 -4.26 
1.125 -7.33 2.62 2.375 4.62 -3.69 

 
While these high school students were exceptions, this (deductive 
+ inductive) pedagogical approach [13] does show a path that can 
be promoted in both IHE and K-12 classrooms. It starts with a 
deductive approach by using modeling to introduce the learner to 
important facts surrounding a topic. Then, by running hypothetical 
scenarios and investigative projects through simulations, they are 
encouraged to discover relevant principles of computing and 
sciences in an inductive fashion. We call the above approach ‘C-
MST pedagogy’ because of the local context; others may call it 
differently (i.e., Project-First, then Principles just-in-time [11, 
20]). Pros and cons of deductive and inductive learning have been 
a topic for many years in language training. Many contemporary 
programs use a combination to get double benefit [13].  

The computational approach to STEM education encourages 
inquiry, involves projects, and facilitates team-based instruction. 
It puts the learner at the center of a constructivist experience. 
While it uses a deductive approach to engage learners into a 
STEM topic, it emphasizes the importance of abstraction skills to 
support inductive learning. By linking computing to science 
through the computation of change, it provides a motivation for 
science majors to learn programming and for computing majors to 
learn more about science. Its motivational and deductive/inductive 
cycle can be used to broaden participation in computing and 
sciences among female students [11, 20]. 

Table 2: Gen-Ed Computing courses and their enrollments 

 

4. GEN-ED COMPUTING COURSES 
We have developed and taught three computing-based general 
science courses, including CPS 101 Introduction to Computational 
Science, CPS 105 Games in Sciences, and CPS 302 History of 
Science and Technology. While the primary topic of this article is 
CPS 101, we want to give a brief overview of all these 3 courses. 
Launched in 1998, CPS 101 was taught by the author in full 
capacity (25 students per semester) until 2007 when a new faculty 
was assigned to teach it. The new instructor’s tendency to teach it 
merely as a programming course with high level mathematics 
brought the course down to extinction. Through support from an 
NSF Course Development grant in 2010, the content of CPS 101 
was shifted back from ‘differential equations and computer 
programming’ to its original content of problem solving at a more 
fundamental level as described later. This modification brought 
the course back to life again (see Table 2 for enrollments), 
vindicating the fundamental computational thinking approach to 
introductory computing [27] and computational science education 

[29]. Currently, CPS 101 uses simulation tools such as IP to teach 
students basic science concepts without having to require a deep 
level of mathematics and knowledge of the natural laws. The CPS 
105 uses AgentSheets (AS; an agent-based modeling tool) to 
demonstrate science applications in the context of games and 
environmental issues. The CPS 302 uses an introduction to 
science and computing in the context of history, again supported 
by demonstrations using tools such as IP and AS.  

Table 3: External/Internal factors affecting enrollments. 
How did you hear about this course? 

CPS 
   ↓ 

Friend Advisor Department Other 

2011 2012 2011 2012 2011 2012 2011 2012 

101 7% 10% 40% 25% 7% 0% 46% 65% 

105 34% 34% 18% 4% 2% 0% 46% 60% 

302 17% 12% 44% 20% 16% 0% 23% 66% 
 

To meet the needs of students with various backgrounds, a 
contextual learning is critical for students’ success and it improves 
interest in technology while generating enthusiasm towards 
sciences [12]. Surveys reveal interesting observations on student 
attitude vs. the context (in which science topics were taught in 
these courses). They all had a broad appeal; drawing students 
from 28 departments, including non-science majors. In fall 2010, 
the College approved these as General Education courses in 
natural sciences. To meet the Gen-Ed designation in natural 
sciences, more general science content had to be added to the 
original syllabus. These modifications seem to have triggered an 
increase in the enrollment, as shown in Table 2. Interest by non-
STEM majors increased. More than 60% of currently enrolled 
students in these courses are non-STEM majors, while this ratio 
was about 35% before these modifications when the main focus 
was on computing and mathematics.  

According to the course surveys, the games-based course (CPS 
105) was the most popular; 34% of enrollments in this course 
came from the word of mouth among friends. The evolving self-
interest also seems to be high as about 80% of students in this 
course wanted to take another course on the same topic (See 
section on Results and Discussion). The simulation-based course 
(101) and the history-based course (302) were often recommended 
by student advisors. The Gen-Ed status contributed significantly 
to enrollments as can be seen from the ‘Other’ category in Table 
3. As we moved from 2011 to 2012, even more students enrolled 
under ‘Other’ category as a consequence of either easiness of 
online scheduling or popularity of Gen-Ed designation; or both. 
The 2012 data shows a significant increase in students’ self 
interest and a decrease in advisement by faculty and department.  

4.1 Course Description: CPS 101 
The weekly schedule for CPS 101 is shown in Table 4. Course 
materials include class notes and user manuals for software tools 
(such as IP) and the online C-MST curriculum modules open to 
public at www.brockport.edu/cmst. IP is used to model, simulate, 
and explore a wide range of physical phenomena, including 
harmonic motion (springs and pendulum), falling objects, 
trajectory of projectile, energy conservation, orbital motion, 
Kepler’s Laws, Newton’s second law of motion, and electrostatic 
oscillator. Through IP, students are able to build projects, conduct 
digital experiments, and investigate physical events without 
deeply knowing or memorizing the laws of physics. Users are 
allowed to set up their own physical world, choose physical 

 2010 2011 2012 Total 
101 Intro to Computational Sci. 12 20 38 70 
105 Games in Sciences 18 52 55 125 
302 History of Sci. & Tech. 6 22 25 53 
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parameters, monitor the position, velocity, energy, and elapsed 
time and also create control buttons to facilitate simulation. 
Visuals images and data from IP can be transferred to geometrical 
software (such as Geometer’s Sketchpad, GSP) to measure angles, 
distances, and areas needed for proofs or other calculations. IP 
simulation data can also be transferred in numerical format to 
Excel for further analysis.  

A big advantage of the IP is what you see is what you get. It is 
interactive and it greatly enhances instruction and helps students 
build their confidence and success in learning. The use of IP tool 
is straightforward, and students are able to build their own 
projects after a couple of weeks training. A screen shot of 
simulating orbital motion is shown in Fig. 5, where the planets are 
represented with small circles and corresponding masses. For 
example, the earth (of mass 5.9 x 1024 kg and orbital velocity of 
6.65x104 mph) is placed at 150x106 km from the Sun (mass of 
1.89 x 1030 kg). The IP images can be transferred to GSP to 
measure the distances and areas to prove Kepler’s laws. For 
example, Fig. 5 shows the proof of the 3rd law, which states that 
for each planet the square of its period (T2) is proportional to its 
semi-major R3; or (T1/T2)2 = (R1/R2)3 for any two planets. 

Table 4. Weekly schedule for CPS 101 

Week 1: Conduct surveys to examine math and CS skills. 
Discuss survey results. Show videos on the role of 
computational modeling & simulations in science & industry. 
Week 2: Discuss the role of modeling in scientific inquiry and 
industrial design (show examples). HW #1: Short essay on the 
‘role of modeling’ in research, industry, and education. 
Computer Lab: Introduce Interactive Physics with examples 
Week 3: Computer Lab: Continue Interactive Physics (IP) 
training. HW #2: Design an IP project that demonstrates 
students’ comfort level with IP. 
Week 4: IP Labs: a) Simple harmonic motion: Generate 
position and velocity plots of a moving object attached to a 
spring; b) Pendulum: Examine the time it takes for a complete 
swing vs. initial velocity. c) Falling objects: Examine motion 
under different gravitational forces on the Earth and the Moon. 
HW #3: Report effects of elasticity, friction, and air resistance 
on motion in one of these labs. 
Week 5: Discuss principle of mathematical and computational 
modeling: new=old+change. Discuss functional (i.e., y= x2) 
and behavioral (i.e., dy= 2x · dx) relationships in tabular, 
formulated, and graphical forms. Discuss the Rate of Change 
(ROC) and the difference between Average & Instantaneous 
ROC. Test #1 (functions, ROC, and forms of representation). 
Week 6: Continue numerical integration with examples by 
hand first and later with Excel. Discuss the role of integration 
step in reducing error and the role of computational power to 
afford smaller steps. HW #4: numerical integration by hand.  
Week 7: Discuss the role of hardware (storage, processing, and 
communication) and software (data locality, memory usage, 
system software, and programming style) on performance and 
accuracy needed for problem solving. Introduce programming 
concepts using Python language. Conduct a midterm exam. 
Week 8: Break 
Week 9: Continue programming discussion with examples in 
Python. Hands-on experience on programming in a computer 
lab. Test #2 (factors affecting computational performance). 
HW #5 (on computer programming).  

Week 10: Review use of multiple tools (IP, Excel, and Python) 
for modeling. Lab: Redo harmonic motion using new = old + 
change computations via Excel and Python. Learn about 
Newton’s law of motion (F=m⋅ dv/dt) as a cause of change in 
velocity & position. Compare IP, Excel & Python results.  
Week 11: Lab: Trajectory of Projectile: Use IP & Excel to 
study 2-dimensional motion. HW #6: Write a Python program 
that computes the trajectory of a rock thrown up at an angle.  
Week 12: Lab: Conservation of Energy & Momentum. 
Discuss potential & kinetic energy of earlier examples. Use IP 
to graph potential and kinetic energies of objects. Examine 
effects of friction and air resistance. 
Week 13: Lab: Orbital motion: Watch videos on orbital motion 
and space explorations. Learn about gravitational force 
F=G·M·m/r2 as a cause of change in position of planets. 
Simulate orbital motion in 2-D using Excel and then Python. 
Week 14: Discuss Kepler’s laws and use IP to simulate 
multiple planets around the Sun. Lab: HW #7 (team project: 
proof of Kepler’s Laws). Introduce agent-based modeling 
using AgentSheets (AS). 
Week 15: AS Lab: Model collective behavior of agents. 
HW#8: Design an AS project. Re-visit HW #1 to improve the 
essay on ‘role of computation’. Review for Final Exam: 
Discuss and review scientific concepts learned. 

 

 

Figure 5: Orbital motion of several planets around the Sun. 
Orbits and periods are shown to prove Kepler’s 3rd Law.  

4.1.1 Programming with Excel 
While IP is a good tool to expose students to many physical 
concepts, computational STEM education needs to move beyond 
just using tools. Our previous experience indicates that students 
need to eventually understand the underlying mechanism of 
simulation and modeling and to flexibly master and apply 
acquired knowledge rather than practice rote memorization of 
scientific laws. In CPS 101, students are required to model a 
physics phenomenon by computer simulation using IP, and then 
solve the same problem via Excel and later by writing a computer 
code using a language such as Python.  

To use Excel for generating position and velocity values of an 
object that is subject to an external force, students need to 
designate three columns in an Excel worksheet to these variables 
as shown in Table 1. The columns were cut into half and put side 
by side for the purpose of fitting the data into a frame for this 

E 
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article. The first row in each column holds variable names and the 
2nd holds initial values (t=0 sec, v = 10 meters/s and x= 0 meters) 
and constants (m= 1 kg and k= 5 Newton/meters). The 3rd row 
holds expressions computed in the following order: t + dt à v + 
(-k⋅x/m)⋅dt à x + v⋅dt where t, v, and x are linked to their own 
values on the previous row; except that the value for “v” in the x 
+ v⋅dt expression is linked to the newly computed value of v (on 
the same row) in order to move forward updated information. The 
expressions in the 3rd row can be copied and pasted to the rest of 
the rows below until t reaches maximum time (T) desired. This is 
where the limitations of Excel come into play. The visible and 
scrollable screen might not accommodate the whole simulation 
range when the integration time step (dt) is very small. If one 
chooses dt to be 0.000001 sec, then one needs 1,000,000 rows to 
do an Excel computation for just only 1 second.  

In two-dimensions, the above equations need to be expanded to 
include position, velocity, and acceleration in additional 
dimensions:  

xnew = xold + vx·dt;     vxnew= vxold + ax·dt; where ax = (x/r) · a,  

ynew = yold + vy·dt;      vynew= vyold + ay·dt; where ay = (y/r) · a, 

and  

r2 = x2 + y2    and v2 =(vx)2 + (vy)2 

Using these algebraic equations along with interplanetary 
acceleration between Earth and the Sun (a =F/m = G·M/r2 
=1.26x1014 N·km2/kg · 1/r2; where G is a Universal Constant and 
M and m are masses of Sun and Earth), we get the orbital track 
seen in Fig. 6. At t=0, we assumed that the Earth’s orbital velocity 
was given by vx=0 and vy= 29.79 km/s and its position was given 
by y=0 and x= 1.50x108 km. What is shown in Fig.6 may not be 
the most accurate track, but qualitatively it is representative of a 
planet’s orbit. Some planets have more elliptically looking orbits. 
The above calculations are given for dt = 5 days, however smaller 
time steps (i.e., dt=1 day) could produce more accurate tracks. 
Again, that is where the limitations of Excel come into play, just 
like the million data points mentioned above. With computer 
programming, these limitations can be overcome. Computations 
with higher resolution and automation need use of programming. 

Figure 6: Orbital tracking of the Earth using Excel. 

4.1.2 Programming with Python 
In the past we used Fortran and C but we have recently switched 
to Python. The switch to Python was based on three major 
reasons, including relative easiness and quickness with learning of 
Python as a computer language, its simple and short constructs, 
and less error-prone coding. Python is a general-purpose, object-
oriented, high-level programming language, which comes with 
extensive standard libraries and supports the integration with other 
languages and tools. It is increasingly used in scientific 
computing, web development, and database operations. Python 
can be learned in a couple of weeks for basic operations; it is 
open-source and platform-independent, and it can be installed on 
almost any computers free of charge. An introduction to basic 
syntax, input/output functions, repetition structures (loops), and 
algorithmic thinking is adequate to carry out programming 
assignments necessary for computing a mathematical or logical 
expression repetitively, recursively, or iteratively. Students can 
write simple loops to compute and generate data points for a 
number of problems listed in the course syllabus including falling 
objects, trajectory of projectile, harmonic motion, and orbital 
motion. Below is a sample algorithm for one-dimensional 
Newtonian motion that can be easily extended to two- and three-
dimensions.  

Input initial position (x), velocity (v), and time (t) 
Input time step (dt), maximum time (T), mass (m) 
While t <=T: 
 Output position (x), velocity (v), and time (t) 
 Compute force F & acceleration a = F/m 
 Compute velocity in x direction v = v + a × dt 
 Compute position in x direction x = x + v × dt  
 Update the time t = t + dt  
End of While Loop 
 

5. RESULTS AND DISCUSSION 
We have used a mix-methods approach [7] to examine the 
context, pedagogy, and the tool set used in computational gen-
education courses. Table 5 and 6 show some of the statistics from 
student surveys. The tables show a multi-year data for each 
course. To examine whether there is any statistical difference 
between 2011 and 2012 responses (due to different instructors, 
pedagogies, or software tools), we computed z-scores assuming a 
normal distribution approximation to these binomial surveys [4]. 
The column p indicates the confidence level that results in each 
row may be different due to a nonrandom effect. Normally, any 
confidence level below 90% is less than significant. Plus, it is 
difficult to infer meaningful results from our research due to small 
sample sizes (20-25 students per sample). However, by 
triangulating these survey results with instructors’ classroom 
observations and student grades, and with experimentation of a 
similar approach with other audiences (K-12 teachers and 
students), we would like to make a few preliminary conclusions.  

Almost all students in the three gen-education courses liked 
project-based learning, which involved design of a game or a 
science experiment. More than 95% of them recommend others to 
take these courses. A significant portion of students (60%-80%) 
thought that modeling improved their understanding of science 
concepts and motivated them to pursue additional courses in 
computing and sciences. Although there are challenges of learning 
multiple fields in a single course, student skills can grow along 
with challenges to provide them an optimum Flow experience 
(Fig. 3). While a sizable number of students thought they did not 
initially have necessary background and skills, they eventually 
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overcame these difficulties through professor’s help, practice, 
project-based learning, and scaffolding. The level of frustration 
has gone down in all courses and this may be due to several 
factors, including the use of more friendly tools, change of 
instructor in CPS 101, and improvements in the way we teach 
them. In 2011, the level of frustration was as high as 32% in CPS 
101 (due to mathematics and programming), yet the percentage of 
students who thought that the new skills and knowledge would 
help them in future courses was also very high. With the change 
from heavy programming and mathematics to the use of more 
friendly tools such as IP and AS, students felt more engaged and 
confident but they did not see a high prospect of using the new 
toolset and interdisciplinary approach in other classes (down from 
96% to 56%). This may be cultural and time needs to pass before 
it settles like the other two courses where the level of frustration is 
low (<10%), desire to take another course on the topic is high 
(70%-80%), and confidence in the later usage of newly learned 
skills is also high (74%-80%).  

Table 5: Survey results from CPS 101. The last column (p) 
shows statistically the confidence level that there is any 
difference between responses in 2011 and 2012 for each row. 
The z scores are calculated based on two proportions [4]. 

Survey Questions (Q) 
Responses are in percentages (%). 

Y E S Difference? 
2011 2012 z p (%) 

1. Recommend this course? 97 94 0.46 35 
2. Like to take another course? 44 63 1.20 78 
3.Modeling improve science learning? 68 82 1.02 70 
4. Like project-based learning? 90 94 0.47 36 
5. Had necessary background? 60 75 1.01 70 
6. Your skills a match for challenges? 78 82 0.32 26 
7. Ever felt frustrated? 32 25 0.49 38 
8.Skills may help you in later classes? 96 56 2.96 99 
9. Changed your major after? 10 13 0.30 24 
 
Table 6: Survey results for CPS 105 and 302. 

Q CPS105 CPS302 
Y E S (%) Difference? Y E S (%) Difference? 

2011 2012 z p(%) 2011 2012 z p (%) 
Q1 100  100 0 0 100 96 1.01 68 
Q2 85 80 0.47 36 50 70 1.44 85 
Q3 78 70 0.64 48 61 83 1.73 92 
Q4 98 100 0.71 52 95 90 0.67 50 
Q5 69 91 1.94 95 88 80 0.77 56 
Q6 80 91 1.10 73 100 92 1.44 85 
Q7 26 7 1.81 93 20 5 1.60 90 
Q8 85 74 0.96 66 89 80 0.88 62 
Q9 6 9 0.40 31 0 4 1.01 69 

 
Classroom observations and attendance records from instructors 
indicate a significant improvement in student behavior and 
participation in hands-on lab activities. While the attendance rate 
in the lecture session in classroom was around 70%, it jumped to 
90% in the computer lab. They seem highly engaged in lab 
activities and involved in practicing different computational tools. 
A different instructor taught the CPS 101 in 2012, and this may 
have impacted the course dynamics. Other more systematic 
changes mentioned before (shift away from programming and 
differential equations) took place before the change of instructors, 
however, we should note that the new instructor (Sounthone 
Vattana; MS in Computational Science-Brockport; and MS in 
Educational Technology-Robert Wesleyan) is a former K-12 
teacher and appears to have pedagogical skills with deep content 

knowledge in mathematics, programming and general science. He 
also teaches the other two gen-education courses. 

Beyond its college-level use as reported above, the C-MST 
approach has been introduced, through teacher training, into 
secondary school classrooms in two partnering school districts 
(Rochester City SD and Brighton Central SD). The content of 
teacher training and its overall impact on teacher retention and 
student achievement are being documented in other publications, 
but here we will briefly mention the surveys on student 
engagement. Majority of the 200 trained teachers agreed that 
using modeling tools (IP, AS, Excel, and GSP) in their classrooms 
increased student engagement. 100% of science and 97% of math 
teachers agreed that C-MST initiative made math and science 
concepts more comprehensible to students. Student reaction to 
modeling (versus traditional techniques) was found to be 97% 
favorable in math and 77% in science classes. 100% of 
technology, 72% of math, and 31% of science teachers reported 
observed improvement in problem solving skills. This order may 
be linked to low reliance and utilization of mathematical and 
computational skills in science courses as a result of limited 
access to computers and possibly lack of available science-related 
modeling examples. However, while science classes utilized 
technology less, in instances where it was utilized, it led to a 
deeper understanding of science topics than it did for math topics 
(83% in science and 76% in math). 

While computational modeling has been shown as an effective 
pedagogy to expose students to science concepts in an incremental 
fashion, by using tools that hide the underlying mathematics and 
science involved in the simulations, it can also motivate them to 
learn computer programming. By using multiple tools (IP, Excel, 
and Python) to solve the same problem, students had a chance to 
weigh advantages of each tool and conclude first-hand that more 
accurate and faster computation of new =old + change for a large 
number of data points will require computer programming. 
Additionally, various programming concepts (variables, loops, 
memory hierarchy, and data types, etc.) are learned in the process. 
For example, to simulate the orbital motion of an object with 
Python, a number of variables are needed to store elapsed time, 
time increment, acceleration, velocity, and position. To predict the 
velocity and position at the next time step, mathematical 
operations are used based on the relationships among acceleration, 
velocity, and position. To find the relations of velocity or position 
with respect to time, a loop is used to perform repeated 
calculations. To ensure correctness, the calculations of 
acceleration, velocity, and position have to be put in sequential 
while logically right order. Finally, in the context of applications, 
it is easy for students to understand why and how to learn 
computer programming. They show more willingness to learn 
computer programming in order to tackle real-world applications.  

A strong link is established between computing and natural 
sciences through the computation of change. For example, change 
in position and in velocity requires computation of acceleration, 
which requires knowledge of the Force. This not only links 
mathematical, computational, and scientific inquiry, it also 
reinforces in an inductive way the ‘learning the fundamentals of 
laws of nature’ and it simplifies the great complexity of the 
universe into a handful of natural laws (gravity, electromagnetism, 
and nuclear interactions) that one can learn in a general science 
course. At the same time, a link between mathematics (numerical 
integration) and science applications is established, which can be 
used both in math courses (in the context of rate of change, 
building functions, and modeling) and in science courses (in the 
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context of computational thinking (CT) as a method of science 
inquiry). The new K-12 learning standards support teaching of CT 
skills as early as the 5th grade (See http://www.corestandards.org/ 
for math and http://www.nextgenscience.org/ for science 
standards). 

6. CONCLUSION 
The practice of teaching introductory computing courses in the 
context of natural sciences (or vice versa) is a promising means of 
enhancing both General Education and the STEM education. 
When computational tools are used, students seem more engaged 
in the class, and their attitude toward learning is more active. 
While science majors get to use simulation tools and computer 
programming to solve science problems, math and computer 
science majors get to establish a link to natural sciences at an 
abstract level, through computation of change caused by natural 
laws, which projects science in a universal and simplistic 
framework. Those with curiosity could then acquire a deeper 
knowledge and pursue additional courses or even a career either in 
mathematics, computing, or natural sciences. About 50% of non-
STEM majors in these reported courses have shown an orientation 
to add STEM to their education; some (40%) through additional 
courses and some (10%) through a degree. We believe that 
solving real world problems by writing computer programs urges 
students to acquire knowledge through scientific inquiry beyond 
memorizing laws of science, encourages them to spawn ideas of 
computational thinking, and fosters them to develop habits of 
scientific thinking.  

A major contribution of computational approach to STEM 
education is that it integrates math, science and computing in a 
single unit, exposes and trains students with multiple skills, which 
are useful in their future careers. While we suggest inclusion of 
computationally oriented general education science courses for all 
college freshmen [11-12], attention to a more fundamental 
concept, computational thinking (CT) at secondary school level is 
also needed as a long-term strategy [25]. A focus on CT could not 
only help improve science and computing education at college 
level but it might also push scientific thinking into mainstream to 
address underlying causes of the rising Category-5 storm in 
nation’s K-12 education [25, 16-17]. Since abstraction is part of a 
CT skillset, through modeling and simulations, students can learn 
not only abstraction skills but also a whole set of other CT skills 
such as algorithmic thinking, decomposing a problem into smaller 
chunks, understanding the computational cost for more accuracy, 
and realizing the need to use a programming language in order to 
handle complexity and increasing number of data points. 

The findings presented here cannot be generalized due to small 
sample size, limited audience, and lack of reliable and valid 
instrumentation to assess knowledge, attitudes, and skills. The 
education research in computing is very new, unlike physics, 
mathematics, and statistics [10]. We need to pay more attention to 
findings of learning science. As outlined in [14], we need to: a) 
draw out and work with the preconceptions and misconceptions of 
learners; b) help them take control of their learning in a 
constructivist environment; c) teach subject matter in depth with 
many examples, and d) employ pedagogical approaches such as 
metacognition, scaffolding, and project-based learning. The roles 
for assessment need to be expanded beyond traditional testing to 
use frequent formative assessment that would help make students’ 
thinking visible to themselves, their peers, and instructors. 
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