
Computational Math, Science, and Technology (C-MST)
Approach to General Education Courses

Osman Yaşar

The College at Brockport
State University of New York

Brockport, NY 14420
Tel: +1 (585) 395-2595

oyasar@brockport.edu

ABSTRACT
In this paper, we present a computational approach to teaching
general education courses that expose students to science and
computing principles in engaging contexts, including modeling
and simulation, games, and history. The courses use scalable
curriculum modules organized in layers of increasing difficulties
in order to balance learning challenges and student abilities. We
describe the computational pedagogy followed in these modules
and courses, with particular attention to the simulation-based
course, namely introduction to computational science, to present a
case study for those considering similar initiatives.

General Terms
General Education, Pedagogy, Games, History, Natural Sciences

Keywords
Modeling and Simulation, Abstraction, Computational Thinking

1. INTRODUCTION
Recent increases in power, access and affordability of digital
technology have impacted scientific research, industrial design,
and education. Educators stated at the turn of the century that,
when used in the context of applications, technology would
support higher-order thinking by engaging students in authentic,
complex tasks within collaborative learning contexts [26]. More
recently, the National Science Teachers Association (NSTA)
described computation as a “third pillar” of scientific inquiry,
accompanying experiment and theory [19]. It cited a growing
body of evidence that using models and simulations, students
learn better since they are actively engaged in “doing,” rather than
passively engaged in “receiving” knowledge. Within the scientific
computing community, the role of computation had long been
recognized and brought to the classroom through training by
many organizations such as Shodor Foundation, and through
formal degrees and courses by other institutions [15, 23],
including ours [28-33]. However, now that we have help from
educators and pedagogy experts to promote computational science
education in more fundamental ways, we get a second chance to
address some of the challenges we have faced.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee. Copyright ©JOCSE, a supported publication of the Shodor
Education Foundation Inc.

While recruitment challenges can be linked to a general lack of
interest and preparation by nation’s high school students [2, 5-6,
9, 11, 16-17], computational science education requires additional
preparation in multiple domains (math, programming, and
sciences) that not every college student is willing to undertake. A
fundamental (pedagogical) approach, including a focus on
computational thinking skills [27], could bring all stakeholders
together in a way not only to reform the computing education but
also push scientific thinking into mainstream to address
underlying causes of the rising category-5 storm in nation’s K-12
education [16-17].
The importance of math and computational skills for STEM
workforce has been noted in many reports; including the
projections by the Bureau of Labor Statistics [3], National Science
Board statistics [21], and surveys by the American Institute of
Physics [1]. AIP surveys taken at regular intervals (in 1999 and
2010) of physics majors, 5+ years after finishing an undergraduate
degree, indicate that some of the important job skills continue to
be scientific problem solving, teamwork, computer programming,
design and development, simulation and modeling, math skills,
and technical writing (See Fig. 1).

Figure 1: Results of the most recent AIP survey in 2010 [1].

Volume 4, Issue 1 Journal of Computational Science Education

2 ISSN 2153-4136 November 2013

While the demand for computationally competent science,
technology, engineering, and mathematics (STEM) workers is an
unprecedented opportunity, enrollments have gone down steadily
in recent years. The pipeline between institutions of higher
education (IHE) and K-12 seems to be broken [2, 5-6, 9, 11, 16-
17]. The issue of why science is not as engaging as other subjects
is complex, but according to the Relevance of Science Education
(ROSE) study, student attitudes towards STEM become
increasingly negative as a country advances economically, which
suggests this phenomenon to be deeply cultural [22]. Learning
science is demanding and it requires application, discipline and
delayed gratification; values that contemporary culture does not
seem to encourage. So, innovative and engaging ways of teaching
science and computing are necessary.

2. COMPUTATIONAL SCIENCE
EDUCATION AT BROCKPORT
Established in 1998, the computational science degree (BS and
MS) program at Brockport attracted high parameter students and
promoted research experience in an undergraduate institution [28-
33]. Success stories from alumni hired by the software industry
include multiple offers from the same company, offers for
significant others as incentives, promotion to senior positions
upon hiring, and many more. Those hired as teachers could teach
multiple subjects (math, programming, and general science) due
to their diverse background. These examples all point out to the
benefits of a broad education to improve one’s marketability and
job orientation at a time when the likelihood of working at a job
not related to one’s field of study is greater than 50% [21].

While the computational science (CPS) program has attracted to
Brockport students who normally would go to a higher tier school,
it has graduated only a handful (~5) of students annually.
Concerns over the number of freshmen entering the program led
to an outreach effort by the program in 2003 to address the IHE-
K12 pipeline issue as described earlier. An institute was formed in
partnership with local school districts (Rochester City SD and
Brighton Central SD) and national organizations (Shodor
Foundation, Krell Institute, and Texas Instruments) to train
secondary school teachers on the computational approach to math,
science, and technology (C-MST). Improved teacher retention and
student achievement reported by partnering districts drew national
attention to this initiative, including testimony before the U.S.
Congress. Over the past decade, institute staff and participants
(faculty and teachers) created a large inventory of curriculum
modules and lesson plans that are currently being used in the
introductory-level general science courses described here.

While the computational approach to STEM education has been
recognized a novel strategy to improve the technical workforce,
curricular and recruitment challenges have slowed its growth.
Brockport has revised its degree programs and courses several
times to update and diversify its curriculum in several fronts,
including: a) science of computing (simulation tools,
programming, parallel computing, numerical and statistical
methods, visualization, technical writing, and computing
principles), b) science done computationally in application
domains, and c) education done computationally (pedagogy,
teacher training and K-12 student outreach). While some of the
application courses such as computational-x (x: biology, physics,
etc.) and teacher education courses cover deep (x) content to
support STEM majors, others include service courses, such as
those described here, under general education category to spread
the benefits to all college freshmen across the spectrum. What

follows in the next section is the computational pedagogy we used
in these courses, particularly in CPS 101, to draw both STEM and
non-STEM majors into learning about computing and sciences.
We believe that this pedagogical approach is also relevant to a
recent initiative by the College Board to implement a new AP
course on computational thinking [25]. The impact on the nation’s
STEM education can be significant.

3. C-MST PEDAGOGY
While ‘attention to details’ is important to master a skill, we all
have a limited memory to store information. The most pervasive
strategy to improve memory performance (and information
retrieval for problem solving) is organizing disparate pieces of
information into meaningful units [14]. Abstraction skills can help
with that by simplifying, categorizing, and registering key
information and knowledge for quicker retrieval and processing.
The act of abstraction is an inductive process by which we sort out
details and connect the dots to arrive at more general patterns and
conclusions [24]. While abstraction is essential for cognition,
there are other benefits all around us. Since the nature itself
employs abstraction by hiding the atomic-level motion and the
cellular phenomena, we get the benefit of seeing the bigger
picture. Computer scientists use abstraction to write large-scale
complex codes (such as operating systems, compilers, and
networking) where the complexity is distributed into seemingly
independent layers and protocols of the code in such a way to hide
the details of how each layer does the requested service. We all
use abstraction in our daily lives. For example, when we go to a
restaurant, we order our meal and not worry about how they
cooked it in the kitchen. Those who worry and check it out once
or twice cannot possibly afford doing it all the time. Abstraction
skills can be improved beyond what was inherited, through
training, education, additional knowledge and experience.

Abstract

Body of Details
Figure 2: Illustration of the informational organization and
the resulting deductive/inductive instructional pedagogies.

Computational modeling uses abstraction by its simplification of
the reality. Such simplification helps scientists eliminate certain
parameters and focus on what is being studied. Another benefit of
computational modeling is that it supports deductive learning.
Modeling enables the learner to grasp important facts surrounding
a topic before revealing the underlying details. In a sense it helps
to do a reverse engineering by gradually leading the learner to the
details that support the abstracted knowledge (See Fig 2 for a
schematic view of inductive and deductive processes). Simulation

	

Deduc&ve	

Induc&ve	

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 3

adds another level of benefit by providing a dynamic medium for
the learner to conduct scientific experiments in a friendly, playful,
predictive, eventful, and interactive way to test hypothetical
scenarios without having to initially know the underlying science
concepts. Together, both computational modeling and simulation
lead to a deductive pedagogy by first introducing a topic from a
simplistic framework and then moving deeper into details after
learners gain a level of interest to help them endure the hardships
and frustration of deeper learning. Such a stepwise progression in
learning is consistent with the pedagogical framework Flow [8]
and scaffolding strategy to balance skills with challenges as
illustrated in Fig. 3.

According to a national report [18], at early stages computational
modeling approach to STEM education should involve easy
experimentation (learners must be able to quickly set up and run a
model using an intuitive user interface, with no knowledge of
programming or system commands) and high interactivity
(models need to evolve quickly and include smooth visualizations
for providing interactions and feedback to users). Using existing
computational models, instructors can start general science
education via games and simulations without exposing them to
STEM principles right away. Students can get to modify an
existing model, or create one from scratch. Tools such as
Interactive Physics (IP) and AgentSheets (AS) can be used to
create many fun things that could engage students into science
experimentation. They also provide easily discoverable links (i.e.,
buttons for controlling the run-time and accuracy) to underlying
principles of computational and scientific modeling.

After initial experimentation with modeling in the context of a
game or science topic, students can be introduced to a simple
principle of mathematical modeling (new = old + change) which
eventually (and quickly) leads the learner into understanding
several aspects of computational thinking [27], including
decomposing a problem into smaller chunks, computational cost
for more accuracy, and the need to use a programming language
in order to handle complexity and increasing number of data
points (due to decomposing the problem into much smaller
chunks). The mathematical foundation of modeling and
simulation can be taught in terms of building functional
relationships (such as y=f(x)) using the rate of change equations
and the above algebraic equation (ynew = yold + dy) where ynew and
yold are new and old values of y, and dy is the change from the old
to the new.

As an example, consider finding a direct relationship, y=f(x),
based on the rate of change (derivative) dy/dx= 2x, and the initial
condition y=0 when x=0. The analytic answer to this
mathematical integration is y = x2. However, students can be led
to find an answer through numerical integration instead, by
constructing a table of (x, y) data points starting from (0, 0) for
different choices of increment in x values (dx= 1, 0.5, 0.1, and so
on). When the numerical results are compared to the analytic
solution (y= x2) for these cases, students could be led to discover
the correlation between the step size (dx) and the accuracy of the
numerical results: such as the smaller the dx, the more accurate
the answer. While a human can calculate a few data points by
hand when dx is 1, or 0.5, the need for automation (and accuracy)
becomes obvious for smaller dx values such as 0.1 or 0.05. Excel
can be used to automate the calculation and graph the y=f(x)
curves, but for much smaller step sizes (dx), such as 0.001,
0.0001, or 0.0000001, students might discover that even Excel
cannot be of help in those computationally intensive cases. The
need for finer and faster automation, via computer programming
(example shown in later sections), becomes evident as the only
way to obtain highly accurate results.

In an after-school project, several 9th graders from Brighton High
School (NY) were able to replicate IP results for the harmonic
motion (Fig. 4) by first applying Excel (Table 1) and then Python
(programming language) to algebraic formulas for the position
(xnew = xold + dx) and velocity (vnew= vold + dv) of the spring-
driven object at times (tnew = told + dt) separated by interval dt.
Here, time (t) is an independent variable and change in x and v
are: dx= v · dt and dv= a· dt, where acceleration (a) is
Force/mass. The force applied by a spring unto an attached box is
F= - k · x, where k is the stiffness coefficient of the spring and x is
the displacement of the box from the equilibrium position (x=0).
The following year, these students modeled orbital motion of
planets when the formula for the force, causing the change, was
given to them (F=G·M·m/x2; where G is a Universal Constant, M
and m are masses of the Sun and planet separated by distance x).

Figure 4: Simple harmonic motion using Interactive Physics.

Figure 3: Illustration of Optimal Flow in learning [8].

Volume 4, Issue 1 Journal of Computational Science Education

4 ISSN 2153-4136 November 2013

Table 1: Simple harmonic motion using Excel (dt= 0.125).
t(s) v(m/s) x(m) t(s) v(m/s) x(m)

0.000 10.00 0.0 1.250 -8.97 1.49
0.125 10.00 1.25 1.375 -9.90 0.26
0.250 9.22 2.40 1.500 -10.06 -1.00
0.375 7.72 3.37 1.625 -9.44 -2.18
0.500 5.61 4.07 1.750 -8.08 -3.19
0.625 3.07 4.45 1.875 -6.08 -3.95
0.750 0.29 4.49 2.000 -3.61 -4.40
0.875 -2.52 4.17 2.125 -0.86 -4.51
1.000 -5.13 3.53 2.250 1.96 -4.26
1.125 -7.33 2.62 2.375 4.62 -3.69

While these high school students were exceptions, this (deductive
+ inductive) pedagogical approach [13] does show a path that can
be promoted in both IHE and K-12 classrooms. It starts with a
deductive approach by using modeling to introduce the learner to
important facts surrounding a topic. Then, by running hypothetical
scenarios and investigative projects through simulations, they are
encouraged to discover relevant principles of computing and
sciences in an inductive fashion. We call the above approach ‘C-
MST pedagogy’ because of the local context; others may call it
differently (i.e., Project-First, then Principles just-in-time [11,
20]). Pros and cons of deductive and inductive learning have been
a topic for many years in language training. Many contemporary
programs use a combination to get double benefit [13].

The computational approach to STEM education encourages
inquiry, involves projects, and facilitates team-based instruction.
It puts the learner at the center of a constructivist experience.
While it uses a deductive approach to engage learners into a
STEM topic, it emphasizes the importance of abstraction skills to
support inductive learning. By linking computing to science
through the computation of change, it provides a motivation for
science majors to learn programming and for computing majors to
learn more about science. Its motivational and deductive/inductive
cycle can be used to broaden participation in computing and
sciences among female students [11, 20].

Table 2: Gen-Ed Computing courses and their enrollments

4. GEN-ED COMPUTING COURSES
We have developed and taught three computing-based general
science courses, including CPS 101 Introduction to Computational
Science, CPS 105 Games in Sciences, and CPS 302 History of
Science and Technology. While the primary topic of this article is
CPS 101, we want to give a brief overview of all these 3 courses.
Launched in 1998, CPS 101 was taught by the author in full
capacity (25 students per semester) until 2007 when a new faculty
was assigned to teach it. The new instructor’s tendency to teach it
merely as a programming course with high level mathematics
brought the course down to extinction. Through support from an
NSF Course Development grant in 2010, the content of CPS 101
was shifted back from ‘differential equations and computer
programming’ to its original content of problem solving at a more
fundamental level as described later. This modification brought
the course back to life again (see Table 2 for enrollments),
vindicating the fundamental computational thinking approach to
introductory computing [27] and computational science education

[29]. Currently, CPS 101 uses simulation tools such as IP to teach
students basic science concepts without having to require a deep
level of mathematics and knowledge of the natural laws. The CPS
105 uses AgentSheets (AS; an agent-based modeling tool) to
demonstrate science applications in the context of games and
environmental issues. The CPS 302 uses an introduction to
science and computing in the context of history, again supported
by demonstrations using tools such as IP and AS.

Table 3: External/Internal factors affecting enrollments.
How did you hear about this course?

CPS
 ↓

Friend Advisor Department Other

2011 2012 2011 2012 2011 2012 2011 2012

101 7% 10% 40% 25% 7% 0% 46% 65%

105 34% 34% 18% 4% 2% 0% 46% 60%

302 17% 12% 44% 20% 16% 0% 23% 66%

To meet the needs of students with various backgrounds, a
contextual learning is critical for students’ success and it improves
interest in technology while generating enthusiasm towards
sciences [12]. Surveys reveal interesting observations on student
attitude vs. the context (in which science topics were taught in
these courses). They all had a broad appeal; drawing students
from 28 departments, including non-science majors. In fall 2010,
the College approved these as General Education courses in
natural sciences. To meet the Gen-Ed designation in natural
sciences, more general science content had to be added to the
original syllabus. These modifications seem to have triggered an
increase in the enrollment, as shown in Table 2. Interest by non-
STEM majors increased. More than 60% of currently enrolled
students in these courses are non-STEM majors, while this ratio
was about 35% before these modifications when the main focus
was on computing and mathematics.

According to the course surveys, the games-based course (CPS
105) was the most popular; 34% of enrollments in this course
came from the word of mouth among friends. The evolving self-
interest also seems to be high as about 80% of students in this
course wanted to take another course on the same topic (See
section on Results and Discussion). The simulation-based course
(101) and the history-based course (302) were often recommended
by student advisors. The Gen-Ed status contributed significantly
to enrollments as can be seen from the ‘Other’ category in Table
3. As we moved from 2011 to 2012, even more students enrolled
under ‘Other’ category as a consequence of either easiness of
online scheduling or popularity of Gen-Ed designation; or both.
The 2012 data shows a significant increase in students’ self
interest and a decrease in advisement by faculty and department.

4.1 Course Description: CPS 101
The weekly schedule for CPS 101 is shown in Table 4. Course
materials include class notes and user manuals for software tools
(such as IP) and the online C-MST curriculum modules open to
public at www.brockport.edu/cmst. IP is used to model, simulate,
and explore a wide range of physical phenomena, including
harmonic motion (springs and pendulum), falling objects,
trajectory of projectile, energy conservation, orbital motion,
Kepler’s Laws, Newton’s second law of motion, and electrostatic
oscillator. Through IP, students are able to build projects, conduct
digital experiments, and investigate physical events without
deeply knowing or memorizing the laws of physics. Users are
allowed to set up their own physical world, choose physical

 2010 2011 2012 Total
101 Intro to Computational Sci. 12 20 38 70
105 Games in Sciences 18 52 55 125
302 History of Sci. & Tech. 6 22 25 53

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 5

parameters, monitor the position, velocity, energy, and elapsed
time and also create control buttons to facilitate simulation.
Visuals images and data from IP can be transferred to geometrical
software (such as Geometer’s Sketchpad, GSP) to measure angles,
distances, and areas needed for proofs or other calculations. IP
simulation data can also be transferred in numerical format to
Excel for further analysis.

A big advantage of the IP is what you see is what you get. It is
interactive and it greatly enhances instruction and helps students
build their confidence and success in learning. The use of IP tool
is straightforward, and students are able to build their own
projects after a couple of weeks training. A screen shot of
simulating orbital motion is shown in Fig. 5, where the planets are
represented with small circles and corresponding masses. For
example, the earth (of mass 5.9 x 1024 kg and orbital velocity of
6.65x104 mph) is placed at 150x106 km from the Sun (mass of
1.89 x 1030 kg). The IP images can be transferred to GSP to
measure the distances and areas to prove Kepler’s laws. For
example, Fig. 5 shows the proof of the 3rd law, which states that
for each planet the square of its period (T2) is proportional to its
semi-major R3; or (T1/T2)2 = (R1/R2)3 for any two planets.

Table 4. Weekly schedule for CPS 101

Week 1: Conduct surveys to examine math and CS skills.
Discuss survey results. Show videos on the role of
computational modeling & simulations in science & industry.
Week 2: Discuss the role of modeling in scientific inquiry and
industrial design (show examples). HW #1: Short essay on the
‘role of modeling’ in research, industry, and education.
Computer Lab: Introduce Interactive Physics with examples
Week 3: Computer Lab: Continue Interactive Physics (IP)
training. HW #2: Design an IP project that demonstrates
students’ comfort level with IP.
Week 4: IP Labs: a) Simple harmonic motion: Generate
position and velocity plots of a moving object attached to a
spring; b) Pendulum: Examine the time it takes for a complete
swing vs. initial velocity. c) Falling objects: Examine motion
under different gravitational forces on the Earth and the Moon.
HW #3: Report effects of elasticity, friction, and air resistance
on motion in one of these labs.
Week 5: Discuss principle of mathematical and computational
modeling: new=old+change. Discuss functional (i.e., y= x2)
and behavioral (i.e., dy= 2x · dx) relationships in tabular,
formulated, and graphical forms. Discuss the Rate of Change
(ROC) and the difference between Average & Instantaneous
ROC. Test #1 (functions, ROC, and forms of representation).
Week 6: Continue numerical integration with examples by
hand first and later with Excel. Discuss the role of integration
step in reducing error and the role of computational power to
afford smaller steps. HW #4: numerical integration by hand.
Week 7: Discuss the role of hardware (storage, processing, and
communication) and software (data locality, memory usage,
system software, and programming style) on performance and
accuracy needed for problem solving. Introduce programming
concepts using Python language. Conduct a midterm exam.
Week 8: Break
Week 9: Continue programming discussion with examples in
Python. Hands-on experience on programming in a computer
lab. Test #2 (factors affecting computational performance).
HW #5 (on computer programming).

Week 10: Review use of multiple tools (IP, Excel, and Python)
for modeling. Lab: Redo harmonic motion using new = old +
change computations via Excel and Python. Learn about
Newton’s law of motion (F=m⋅ dv/dt) as a cause of change in
velocity & position. Compare IP, Excel & Python results.
Week 11: Lab: Trajectory of Projectile: Use IP & Excel to
study 2-dimensional motion. HW #6: Write a Python program
that computes the trajectory of a rock thrown up at an angle.
Week 12: Lab: Conservation of Energy & Momentum.
Discuss potential & kinetic energy of earlier examples. Use IP
to graph potential and kinetic energies of objects. Examine
effects of friction and air resistance.
Week 13: Lab: Orbital motion: Watch videos on orbital motion
and space explorations. Learn about gravitational force
F=G·M·m/r2 as a cause of change in position of planets.
Simulate orbital motion in 2-D using Excel and then Python.
Week 14: Discuss Kepler’s laws and use IP to simulate
multiple planets around the Sun. Lab: HW #7 (team project:
proof of Kepler’s Laws). Introduce agent-based modeling
using AgentSheets (AS).
Week 15: AS Lab: Model collective behavior of agents.
HW#8: Design an AS project. Re-visit HW #1 to improve the
essay on ‘role of computation’. Review for Final Exam:
Discuss and review scientific concepts learned.

Figure 5: Orbital motion of several planets around the Sun.
Orbits and periods are shown to prove Kepler’s 3rd Law.

4.1.1 Programming with Excel
While IP is a good tool to expose students to many physical
concepts, computational STEM education needs to move beyond
just using tools. Our previous experience indicates that students
need to eventually understand the underlying mechanism of
simulation and modeling and to flexibly master and apply
acquired knowledge rather than practice rote memorization of
scientific laws. In CPS 101, students are required to model a
physics phenomenon by computer simulation using IP, and then
solve the same problem via Excel and later by writing a computer
code using a language such as Python.

To use Excel for generating position and velocity values of an
object that is subject to an external force, students need to
designate three columns in an Excel worksheet to these variables
as shown in Table 1. The columns were cut into half and put side
by side for the purpose of fitting the data into a frame for this

E

Volume 4, Issue 1 Journal of Computational Science Education

6 ISSN 2153-4136 November 2013

article. The first row in each column holds variable names and the
2nd holds initial values (t=0 sec, v = 10 meters/s and x= 0 meters)
and constants (m= 1 kg and k= 5 Newton/meters). The 3rd row
holds expressions computed in the following order: t + dt à v +
(-k⋅x/m)⋅dt à x + v⋅dt where t, v, and x are linked to their own
values on the previous row; except that the value for “v” in the x
+ v⋅dt expression is linked to the newly computed value of v (on
the same row) in order to move forward updated information. The
expressions in the 3rd row can be copied and pasted to the rest of
the rows below until t reaches maximum time (T) desired. This is
where the limitations of Excel come into play. The visible and
scrollable screen might not accommodate the whole simulation
range when the integration time step (dt) is very small. If one
chooses dt to be 0.000001 sec, then one needs 1,000,000 rows to
do an Excel computation for just only 1 second.

In two-dimensions, the above equations need to be expanded to
include position, velocity, and acceleration in additional
dimensions:

xnew = xold + vx·dt; vxnew= vxold + ax·dt; where ax = (x/r) · a,

ynew = yold + vy·dt; vynew= vyold + ay·dt; where ay = (y/r) · a,

and

r2 = x2 + y2 and v2 =(vx)2 + (vy)2

Using these algebraic equations along with interplanetary
acceleration between Earth and the Sun (a =F/m = G·M/r2
=1.26x1014 N·km2/kg · 1/r2; where G is a Universal Constant and
M and m are masses of Sun and Earth), we get the orbital track
seen in Fig. 6. At t=0, we assumed that the Earth’s orbital velocity
was given by vx=0 and vy= 29.79 km/s and its position was given
by y=0 and x= 1.50x108 km. What is shown in Fig.6 may not be
the most accurate track, but qualitatively it is representative of a
planet’s orbit. Some planets have more elliptically looking orbits.
The above calculations are given for dt = 5 days, however smaller
time steps (i.e., dt=1 day) could produce more accurate tracks.
Again, that is where the limitations of Excel come into play, just
like the million data points mentioned above. With computer
programming, these limitations can be overcome. Computations
with higher resolution and automation need use of programming.

Figure 6: Orbital tracking of the Earth using Excel.

4.1.2 Programming with Python
In the past we used Fortran and C but we have recently switched
to Python. The switch to Python was based on three major
reasons, including relative easiness and quickness with learning of
Python as a computer language, its simple and short constructs,
and less error-prone coding. Python is a general-purpose, object-
oriented, high-level programming language, which comes with
extensive standard libraries and supports the integration with other
languages and tools. It is increasingly used in scientific
computing, web development, and database operations. Python
can be learned in a couple of weeks for basic operations; it is
open-source and platform-independent, and it can be installed on
almost any computers free of charge. An introduction to basic
syntax, input/output functions, repetition structures (loops), and
algorithmic thinking is adequate to carry out programming
assignments necessary for computing a mathematical or logical
expression repetitively, recursively, or iteratively. Students can
write simple loops to compute and generate data points for a
number of problems listed in the course syllabus including falling
objects, trajectory of projectile, harmonic motion, and orbital
motion. Below is a sample algorithm for one-dimensional
Newtonian motion that can be easily extended to two- and three-
dimensions.

Input initial position (x), velocity (v), and time (t)
Input time step (dt), maximum time (T), mass (m)
While t <=T:
 Output position (x), velocity (v), and time (t)
 Compute force F & acceleration a = F/m
 Compute velocity in x direction v = v + a × dt
 Compute position in x direction x = x + v × dt
 Update the time t = t + dt
End of While Loop

5. RESULTS AND DISCUSSION
We have used a mix-methods approach [7] to examine the
context, pedagogy, and the tool set used in computational gen-
education courses. Table 5 and 6 show some of the statistics from
student surveys. The tables show a multi-year data for each
course. To examine whether there is any statistical difference
between 2011 and 2012 responses (due to different instructors,
pedagogies, or software tools), we computed z-scores assuming a
normal distribution approximation to these binomial surveys [4].
The column p indicates the confidence level that results in each
row may be different due to a nonrandom effect. Normally, any
confidence level below 90% is less than significant. Plus, it is
difficult to infer meaningful results from our research due to small
sample sizes (20-25 students per sample). However, by
triangulating these survey results with instructors’ classroom
observations and student grades, and with experimentation of a
similar approach with other audiences (K-12 teachers and
students), we would like to make a few preliminary conclusions.

Almost all students in the three gen-education courses liked
project-based learning, which involved design of a game or a
science experiment. More than 95% of them recommend others to
take these courses. A significant portion of students (60%-80%)
thought that modeling improved their understanding of science
concepts and motivated them to pursue additional courses in
computing and sciences. Although there are challenges of learning
multiple fields in a single course, student skills can grow along
with challenges to provide them an optimum Flow experience
(Fig. 3). While a sizable number of students thought they did not
initially have necessary background and skills, they eventually

Orbital tracking with Excel

-2
00
.0
-1
50
.0
-1
00
.0

-5
0.
0

0.
0

50
.0

10
0.
0
15
0.
0
20
0.
0

-200.0 -150.0 -100.0 -50.0 0.0 50.0 100.0 150.0 200.0

M
ill

io
ns

Millions

x (km)

y
(k

m
)

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 7

overcame these difficulties through professor’s help, practice,
project-based learning, and scaffolding. The level of frustration
has gone down in all courses and this may be due to several
factors, including the use of more friendly tools, change of
instructor in CPS 101, and improvements in the way we teach
them. In 2011, the level of frustration was as high as 32% in CPS
101 (due to mathematics and programming), yet the percentage of
students who thought that the new skills and knowledge would
help them in future courses was also very high. With the change
from heavy programming and mathematics to the use of more
friendly tools such as IP and AS, students felt more engaged and
confident but they did not see a high prospect of using the new
toolset and interdisciplinary approach in other classes (down from
96% to 56%). This may be cultural and time needs to pass before
it settles like the other two courses where the level of frustration is
low (<10%), desire to take another course on the topic is high
(70%-80%), and confidence in the later usage of newly learned
skills is also high (74%-80%).

Table 5: Survey results from CPS 101. The last column (p)
shows statistically the confidence level that there is any
difference between responses in 2011 and 2012 for each row.
The z scores are calculated based on two proportions [4].

Survey Questions (Q)
Responses are in percentages (%).

Y E S Difference?
2011 2012 z p (%)

1. Recommend this course? 97 94 0.46 35
2. Like to take another course? 44 63 1.20 78
3.Modeling improve science learning? 68 82 1.02 70
4. Like project-based learning? 90 94 0.47 36
5. Had necessary background? 60 75 1.01 70
6. Your skills a match for challenges? 78 82 0.32 26
7. Ever felt frustrated? 32 25 0.49 38
8.Skills may help you in later classes? 96 56 2.96 99
9. Changed your major after? 10 13 0.30 24

Table 6: Survey results for CPS 105 and 302.

Q CPS105 CPS302
Y E S (%) Difference? Y E S (%) Difference?

2011 2012 z p(%) 2011 2012 z p (%)
Q1 100 100 0 0 100 96 1.01 68
Q2 85 80 0.47 36 50 70 1.44 85
Q3 78 70 0.64 48 61 83 1.73 92
Q4 98 100 0.71 52 95 90 0.67 50
Q5 69 91 1.94 95 88 80 0.77 56
Q6 80 91 1.10 73 100 92 1.44 85
Q7 26 7 1.81 93 20 5 1.60 90
Q8 85 74 0.96 66 89 80 0.88 62
Q9 6 9 0.40 31 0 4 1.01 69

Classroom observations and attendance records from instructors
indicate a significant improvement in student behavior and
participation in hands-on lab activities. While the attendance rate
in the lecture session in classroom was around 70%, it jumped to
90% in the computer lab. They seem highly engaged in lab
activities and involved in practicing different computational tools.
A different instructor taught the CPS 101 in 2012, and this may
have impacted the course dynamics. Other more systematic
changes mentioned before (shift away from programming and
differential equations) took place before the change of instructors,
however, we should note that the new instructor (Sounthone
Vattana; MS in Computational Science-Brockport; and MS in
Educational Technology-Robert Wesleyan) is a former K-12
teacher and appears to have pedagogical skills with deep content

knowledge in mathematics, programming and general science. He
also teaches the other two gen-education courses.

Beyond its college-level use as reported above, the C-MST
approach has been introduced, through teacher training, into
secondary school classrooms in two partnering school districts
(Rochester City SD and Brighton Central SD). The content of
teacher training and its overall impact on teacher retention and
student achievement are being documented in other publications,
but here we will briefly mention the surveys on student
engagement. Majority of the 200 trained teachers agreed that
using modeling tools (IP, AS, Excel, and GSP) in their classrooms
increased student engagement. 100% of science and 97% of math
teachers agreed that C-MST initiative made math and science
concepts more comprehensible to students. Student reaction to
modeling (versus traditional techniques) was found to be 97%
favorable in math and 77% in science classes. 100% of
technology, 72% of math, and 31% of science teachers reported
observed improvement in problem solving skills. This order may
be linked to low reliance and utilization of mathematical and
computational skills in science courses as a result of limited
access to computers and possibly lack of available science-related
modeling examples. However, while science classes utilized
technology less, in instances where it was utilized, it led to a
deeper understanding of science topics than it did for math topics
(83% in science and 76% in math).

While computational modeling has been shown as an effective
pedagogy to expose students to science concepts in an incremental
fashion, by using tools that hide the underlying mathematics and
science involved in the simulations, it can also motivate them to
learn computer programming. By using multiple tools (IP, Excel,
and Python) to solve the same problem, students had a chance to
weigh advantages of each tool and conclude first-hand that more
accurate and faster computation of new =old + change for a large
number of data points will require computer programming.
Additionally, various programming concepts (variables, loops,
memory hierarchy, and data types, etc.) are learned in the process.
For example, to simulate the orbital motion of an object with
Python, a number of variables are needed to store elapsed time,
time increment, acceleration, velocity, and position. To predict the
velocity and position at the next time step, mathematical
operations are used based on the relationships among acceleration,
velocity, and position. To find the relations of velocity or position
with respect to time, a loop is used to perform repeated
calculations. To ensure correctness, the calculations of
acceleration, velocity, and position have to be put in sequential
while logically right order. Finally, in the context of applications,
it is easy for students to understand why and how to learn
computer programming. They show more willingness to learn
computer programming in order to tackle real-world applications.

A strong link is established between computing and natural
sciences through the computation of change. For example, change
in position and in velocity requires computation of acceleration,
which requires knowledge of the Force. This not only links
mathematical, computational, and scientific inquiry, it also
reinforces in an inductive way the ‘learning the fundamentals of
laws of nature’ and it simplifies the great complexity of the
universe into a handful of natural laws (gravity, electromagnetism,
and nuclear interactions) that one can learn in a general science
course. At the same time, a link between mathematics (numerical
integration) and science applications is established, which can be
used both in math courses (in the context of rate of change,
building functions, and modeling) and in science courses (in the

Volume 4, Issue 1 Journal of Computational Science Education

8 ISSN 2153-4136 November 2013

context of computational thinking (CT) as a method of science
inquiry). The new K-12 learning standards support teaching of CT
skills as early as the 5th grade (See http://www.corestandards.org/
for math and http://www.nextgenscience.org/ for science
standards).

6. CONCLUSION
The practice of teaching introductory computing courses in the
context of natural sciences (or vice versa) is a promising means of
enhancing both General Education and the STEM education.
When computational tools are used, students seem more engaged
in the class, and their attitude toward learning is more active.
While science majors get to use simulation tools and computer
programming to solve science problems, math and computer
science majors get to establish a link to natural sciences at an
abstract level, through computation of change caused by natural
laws, which projects science in a universal and simplistic
framework. Those with curiosity could then acquire a deeper
knowledge and pursue additional courses or even a career either in
mathematics, computing, or natural sciences. About 50% of non-
STEM majors in these reported courses have shown an orientation
to add STEM to their education; some (40%) through additional
courses and some (10%) through a degree. We believe that
solving real world problems by writing computer programs urges
students to acquire knowledge through scientific inquiry beyond
memorizing laws of science, encourages them to spawn ideas of
computational thinking, and fosters them to develop habits of
scientific thinking.

A major contribution of computational approach to STEM
education is that it integrates math, science and computing in a
single unit, exposes and trains students with multiple skills, which
are useful in their future careers. While we suggest inclusion of
computationally oriented general education science courses for all
college freshmen [11-12], attention to a more fundamental
concept, computational thinking (CT) at secondary school level is
also needed as a long-term strategy [25]. A focus on CT could not
only help improve science and computing education at college
level but it might also push scientific thinking into mainstream to
address underlying causes of the rising Category-5 storm in
nation’s K-12 education [25, 16-17]. Since abstraction is part of a
CT skillset, through modeling and simulations, students can learn
not only abstraction skills but also a whole set of other CT skills
such as algorithmic thinking, decomposing a problem into smaller
chunks, understanding the computational cost for more accuracy,
and realizing the need to use a programming language in order to
handle complexity and increasing number of data points.

The findings presented here cannot be generalized due to small
sample size, limited audience, and lack of reliable and valid
instrumentation to assess knowledge, attitudes, and skills. The
education research in computing is very new, unlike physics,
mathematics, and statistics [10]. We need to pay more attention to
findings of learning science. As outlined in [14], we need to: a)
draw out and work with the preconceptions and misconceptions of
learners; b) help them take control of their learning in a
constructivist environment; c) teach subject matter in depth with
many examples, and d) employ pedagogical approaches such as
metacognition, scaffolding, and project-based learning. The roles
for assessment need to be expanded beyond traditional testing to
use frequent formative assessment that would help make students’
thinking visible to themselves, their peers, and instructors.

7. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
(NSF) funds via Grant #0942569. We would like to thank to
faculty and teachers whose efforts contributed to the development,
teaching, and assessment of the reported courses and materials.

8. REFERENCES
[1] AIP Survey. Important Knowledge & Skills Used on the Job.

American Institute of Physics. http://www.aip.org/
statistics/trends/highlite/; 1999: /bachplus5/figure2.htm.
2010: /emp3/figure4b.htm.

[2] Augustine, N. 2007. Is America Falling Off the Flat Earth?
Washington, D.C.: The National Academic Press.

[3] BLS Report. 2010. The Bureau of Labor Statistics.
Occupational Employment Statistics.
http://www.bls.gov/oes/2010/may/stem.htm.

[4] Brase, C. H. and Brase, C. P. 2012. Understandable
Statistics. 10th Edition. ISBN: 0840048386. Also, see Stat
Trek web site on Hypothesis Test: Difference Between
Proportions. http://stattrek.com/hypothesis-test/difference-in-
proportions.aspx.

[5] Congressional Research Service (CRS) Report. 2008. STEM
education: Background, Federal Policy, and Legislative
Action. http://fas.org/sgp/crs/misc/RL33434.pdf.

[6] Computing Curricula 2005: The Overview Report. A
Cooperative Project of the Association for Computing
Machinery (ACM), the Association for Information Sciences
(AIS), and the IEEE Computer Society (IEEE-CS).

[7] Creswell, J. W. 2012 Educational Research: Planning,
Conducting and Evaluating Quantitative and Qualitative
Research. 4th Edition. Pearson Education, Inc.

[8] Csikszentmihalyi, M. 1990. Flow: The Psychology of
Optimal Experience. New York: Harper Collins.

[9] Cuny, J. 2011. Transforming Computer Science Education in
High School. IEEE Computer, June 2011, 107-109.

[10] Fincher, S. and Petre, M. 2005. Computer Science Education
Research. Taylor&Francis e-Library: London and New York.

[11] Goode, J. and Margolis, J. 2011. Exploring computer
science: A case study of school reform. Transactions on
Computing Education. 11(2).

[12] Guzdial, Mark. 2009. Teaching computing to everyone.
Communications of the ACM 52: 31.

[13] Haight, C. E., Herron, C., and Cole, S. P. 2007. The Effects
of Deductive and Guided Inductive Instructional Approaches
on the Learning of Grammar in the Elementary Foreign
Language College Classroom. Foreign Language Annals, 40
(20), 288-301.

[14] How People Learn: Brain, Mind, and School. 2000. The
National Academies Press. Wash., D.C. http://www.nap.edu.

[15] Landau, R. 2006. Computational Physics: A Better Model for
Physics Education? IEEE Comp. in Sci & Eng., 8 (5), 22-30.

[16] NAP Report. 2007. Rising Above The Gathering Storm.
Washington, D.C.: The National Academy Press.
http://www.nap.edu/catalog/11463.html.

[17] NAP Report. 2010. Rising Above The Gathering Storm,
Revisited: Washington, D.C.: The National Academy Press.
http://www.uic.edu/home/Chancellor/risingabove.pdf.

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 9

[18] NSF Report on Cyberlearning. 2008. Fostering Learning in
the Networked World. National Science Foundation.
http://www.nsf.gov/pubs/2008/nsf08204/nsf08204.pdf.

[19] NSTA (National Science Teachers Association). 2008.
Technology in the Secondary Science Classroom. (Eds) Bell,
L. R., Gess-Newsome, J., and Luft, J. Washington, DC.

[20] Repenning, A. 2012. Programming Goes Back to School.
Communications of the ACM, 55 (5), 35-37.

[21] Science and Engineering Indicators. 2010. National Science
Board. http://www.nsf.gov/statistics/seind10/c2/c2s2.htm.

[22] Sjøberg, S. and Schreiner, C. 2005. How do learners in
different cultures relate to science and technology? Results
and perspectives from the project ROSE
(http://roseproject.no). Asia Pacific Forum on Science
Learning & Teaching, 6, 1-16.

[23] Swanson Survey. 2010. A Survey of Computational Science
Education. By C. Swanson. The Krell Institute,
http://www2.krellinst.org/services/technology/CSE_survey/.

[24] Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N.
D. 2011. How to Grow a Mind: Statistics, Structure, and
Abstraction. Science, 331, 1279-1285.

[25] The College Board. 2011. AP CS Principles Course.
http://www.csprinciples.org. Also see June 2012 ACM
Inroads.

[26] Wenglinsky, H. 2005. Using Technology Wisely: The Keys to
Success in Schools. New York: Teachers College Press.

[27] Wing, J. M. 2006. Computational Thinking, Communications
of the ACM, Vol. 49, No. 3, 33-35.

[28] Yaşar, O., Rajasethupathy, K., Tuzun, R., McCoy, A. and
Harkin, J. 2000. A New Perspective on Computational
Science Education, IEEE Comp. in Sci & Eng, 5 (2), 74-79.

[29] Yaşar, O. 2001. Computational Science Education:
Standards, Learning Outcomes and Assessment. Lecture
Notes in Computer Science, 2073, 1159-1169.

[30] Yaşar, O. and Landau, R. 2003. Elements of Computational
Science & Eng. Education, SIAM Review, 45, 787-805.

[31] Yaşar, O. 2004. C-MST Pedagogical Approach to Math and
Science Education. Lect Notes in Comp Sci, 3045, 807-816.

[32] Yaşar, O., Little, L., Tuzun, R. Rajasethupathy, K., Maliekal,
J. and Tahar, M. 2006. Computational Math, Science, and
Technology, Lecture Notes in Comp Science, 3992, 169-176.

[33] Yaşar, O., Maliekal, J., Little, L. J. and Jones, D. 2006.
Computational Technology Approach to Math and Science
Education. IEEE Comp. in Sci & Eng., 8 (3), 76-81.

Volume 4, Issue 1 Journal of Computational Science Education

10 ISSN 2153-4136 November 2013

