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Introduction to Volume 3 Issue 2

Steven I. Gordon
Editor

Ohio Supercomputer Center
Columbus, OH

sgordon@osc.edu

Forward
This issue of JOCSE provides a diverse set of approaches
to computational science education along with several very
sophisticated student projects. Kim et al describe a com-
prehensive framework for learning about sustainable design
through a series of steps to design a bicycle pedal and to
evaluate the impacts of production on several sustainabil-
ity measures. They have developed a Sustainable Product
Development Collaboratory that allows students to make
changes in the product design and to then see its impacts
on energy use and the carbon footprint of the production
process.

Gadepally et al use a combination of an analogous physi-
cal system and simulation environment to demonstrate the
principles of building autonomous vehicles. Students in a
summer workshop use a programmable Roomba and pro-
gram it to avoid obstacles on a physical course setup to
represent city streets. This is augmented by a related simu-
lation environment where various commands can be tested.
In that process, they learn the mathematical concepts, pro-
gramming tools, and modeling processes that are used by
engineers creating and testing such systems.

Toth and Franco present a virtual lab focused on the screen-
ing of drugs as part of a medicinal chemistry course. Stu-
dents are introduced to the process of screening drugs using
a supercomputer program to identify inhibitors for a number
of diseases. Students used a typical workflow that included
identifying a protein that has been found to be a good drug
target, discovering whether its 3D structure has been solved,
using a docking program to screen potential compounds, and
generating a visualization of the final docking results.

The student papers in this issue demonstrate the diverse
skills that students have acquired through internship experi-
ences. Those include the generation of metadata that allows
annotation of scientific datasets, the porting and testing of a
parallel version of a computational chemistry code, and test-

ing the speedup of codes using GPUs. Each of those projects
has made a significant impact on the academic careers and
future career goals of the participating students.

We hope the issue provides insights that you can use in
your classrooms. Make sure you also encourage others to
start reading and contributing to JOCSE so that we broadly
share our experiences in computational science education.
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ABSTRACT 
Educators from across the educational spectrum are faced with 

challenges in delivering curricula that address sustainability issues. 

This article introduces a cyber-based interactive e-learning 

platform, entitled the Sustainable Product Development 

Collaboratory, which is focused on addressing this need.  This 

collaboratory aims to educate a wide spectrum of learners in the 

concepts of sustainable design and manufacturing by 

demonstrating the effects of product design on supply chain costs 

and environmental impacts. In this paper, we discuss the overall 

conceptual framework of this collaboratory along with 

pedagogical and instructional methodologies related to 

collaboratory-based sustainable design education. Finally, a 

sample learning module is presented along with methods for 

assessment of student learning and experiences with the 

collaboratory.   

Keywords 

Sustainable design education; sustainable product development 

collaboratory; constructivist learning theory; manufacturing 

analysis 

1. INTRODUCTION 
This paper introduces an NSF CI-TEAM Demonstration Project, 

entitled A Sustainable Product Development Collaboratory, 

which aims to develop and test a collaborative e-learning 

laboratory for sustainable design and manufacturing. This article 

discusses the collaboratory framework development and a sample 

learning module from the project.  

Due to challenges of existing science and engineering curricula in 

addressing technical solutions from a holistic perspective that 

considers economic, environmental, and social aspects (e.g., 

availability of instructional materials with the requisite 

multidisciplinary focus), engineers within modern manufacturing 

companies often undertake ad hoc approaches to sustainable 

product and process development; often without proper tools or 

training to do so. One other contributing factor challenging the 

proliferation of sustainable science and engineering in industry is 

the focus on recruiting new graduates who demonstrate the 

potential to make an immediate contribution to technical 

corporate goals based on their experience [12, 24, 25]. Such 

practices do not necessarily promote a preference for individuals 

with a broader knowledge set blending two or more disciplines, a 

need for adequately addressing sustainability goals.  

Researchers and practitioners alike recognize that a vast majority 

of product cost, quality, and overall sustainability is decided 

during early design. Despite this fact, sustainable design and 

manufacturing education remains in its infancy, although Allen et 

al. [1] described the significant, emerging levels of “grassroots” 

activities for sustainable design and manufacturing. At the same 

time, an NSF MT21 Study [19] highlighted the need to improve 

K-12 student interest in STEM (Science, Technology, 

Engineering, and Mathematics) disciplines, which is in a “State of 

Emergency.” By coupling traditional engineering skills with a 

broader sustainability perspective, it is posited that the next 

generation will be more effectively attracted to careers in 

engineering.  

The collaboratory developed as part of this project will provide a 

much needed cyber-based tool in support of K-12 online learning. 

In the United States, the first K-12 schools to begin using online 

learning included a private school and several public school 

districts in California, in the early 1990s [4]. This adoption was 

followed by the introduction of statewide and intra-state virtual 

schools in Utah, Florida, and New England in the middle of the 

1990s [3, 11]. Watson et al. [28] reported that online learning 

activity is surging in all 50 states and the District of Columbia 

today. During the 2000-01 school year, Clark [10] estimated that 

there were between 40,000 and 50,000 K-12 students enrolled in 

one or more distance education courses. Estimates for the 2010-11 

school year placed K-12 online learning enrollment at around 
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4,000,000 students [2]. In 2006, Michigan became the first state 

to require that all students complete some form of online learning 

in order to graduate from high school (other states, such as New 

Mexico, Alabama, Florida, and Idaho, as well as a number of 

individual school districts elsewhere, have followed Michigan’s 

lead). Some experts have even predicted the majority of K-12 

education will be delivered using some kind of online learning by 

the year 2020 [9]. 

Despite these recent advances however, Barbour and Reeves [5] 

wrote, “[T]here has been a deficit of rigorous reviews of the 

literature related to virtual schools” (p. 402). Similarly, 

Cavanaugh et al. [7] found only a small percentage of the open 

access literature was based upon systematic research, while most 

of the literature was based on the experiences or opinions of K-12 

online learning practitioners. Further, Rice [23] indicated that 

“…a paucity of research exists when examining high school 

students enrolled in virtual schools, and the research base is 

smaller still when the population of students is further narrowed 

to the elementary grades” (p. 430). Simply put, while the practice 

of K-12 online learning is growing at an exponential rate, the 

availability of empirical research to guide that growth has been 

lacking. As a response to this need, the collaboratory described 

herein will also be used as a platform to collect data focusing on 

how it can enhance learning. The following sections describe the 

development of the Sustainable Product Development 

Collaboratory and its use as a pedagogical tool, including the 

description of a teaching module focused on product design and 

manufacturing and supply chain analysis, and methods for student 

assessment.  

2. PROJECT OVERVIEW 
The overarching objective of the CI-TEAM Demonstration 

Project discussed herein is to convey sustainability principles in 

the context of product architectural design, manufacturing, 

assembly, and supply chain decisions to a wide spectrum of active 

learners, ranging from K-12 students, to university students, and 

to practitioners. The project will actively engage learners in the 

development of, and research conducted within the collaboratory. 

The collaboratory is enabled by user-friendly, license-free web-

based tools (e.g., Google SketchUp) to deliver a holistic and 

broadly usable cyber-platform. The specific goals of this CI-

TEAM project include: 

 Deploying a Sustainable Product Development Collaboratory 

that includes modules to support conceptual design variant 

generation, life cycle cost and environmental analysis, and 

supply chain optimization; 

 Developing and disseminating educational materials that can 

provide project-based activities in support of interaction with 

the Sustainable Product Development Collaboratory; 

 Assessing the educational effects, or more specifically, the 

cyberinfrastructure competency gained through interaction 

with the Sustainable Product Development Collaboratory, 

including assessment of activities at the participating 

universities and user adoption of the cyber-platform; and 

 Engaging underrepresented groups and high-school students 

to promote a diverse workforce that is ready to exploit 

cyberinfrastructure tools. 

Below, we first explain the underlying educational philosophy 

adopted during the development of the collaboratory and then we 

present a sample learning module and methods of assessment. 

Finally, we discuss conclusions and observations based on the 

collaboratory and learning module development efforts. 

3. PEDAGOGICAL AND INSTRUCTIONAL 

METHODOLOGIES FOR 

COLLABORATORY-BASED 

SUSTAINABLE DESIGN EDUCATION 
Although we had a clear vision that a cyber-based tool and 

interactive e-learning platform had to be built as introduced above, 

we opted to think critically and learn from prior literature about 

what pedagogical and instructional methodologies we should 

follow to make it more effective. Below, we provide a summary of 

our findings along with our philosophical direction.  

Carew and Mitchell [6] studied engineering academics’ 

conceptions of sustainability and stated that variation in 

conceptions of sustainability and explicit contestation of the 

variation in the engineering classroom offers opportunities to 

enrich undergraduate learning and teaching. In their study, Carew 

and Mitchell [6] concluded that sustainability education requires a 

diversity of teaching and learning methods that can consider the 

role of values and assumptions in sustainable decision-making. 

One of the ways in which instructional design can be varied is in 

the autonomy the learner may have in completing learning 

activities. Prior literature points to the potential positive effect of 

increasing autonomy as the learners develop intellectually.  

Vygotsky [26] observed that learning for children and adolescents 

is a social process that focuses upon interaction within a zone of 

proximal development. The zone of proximal development “…is 

the distance between the actual developmental level as determined 

by independent problem solving and the level of potential 

development as determined through problem solving under adult 

guidance or in collaboration with more capable peers” (Vygotsky 

[27], p. 86). Cavanaugh et al. [8] suggested, “[S]ince adults have 

progressed through these stages of cognitive development, 

delivery of web based education at the adult level need not 

concentrate on methods that help the learner develop these 

cognitive skills” (p. 7). Methods designed to help younger 

learners develop cognitive skills are intended as guidance to 

ensure that these learners remain in the zone of proximal 

development. Further, Moore [18] noted that K-12 educators 

typically are expected to maintain control of the content and 

method of delivery within the classroom. In fact, Moore even 

posited that K-12 students “should not be compelled to assume a 

degree of autonomy they are not ready to handle, and so it is 

customary in child education for the preparatory and evaluation 

processes to rest entirely in the hands of the teacher” (p. 84). 

Simply put, children are not ready to assume high degrees of 

autonomy, and thus child and adolescent learners require more 

structure in their educational settings. 

The approach employed for scaffolding of learning is an important 

concern when autonomy of learning is not left to the learner. One 

compelling approach for scaffolding is constructionism. As a form 

of constructivist learning theory, constructionism is essentially the 

process of learning through constructing, or designing or making 

a product. This learning theory is based on Papert’s [20] work 

with students using the Logo programming language, where they 

programmed an electronic “turtle” to move about on the screen or 

a physical “turtle” to move about the floor and leave a marking of 
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where the object had traveled. Papert believed that through a 

process of trial and error, the students learned how to command 

and debug the “turtle” to create specific geometric shapes (and 

thus learned mathematical problem-solving and geometry). Papert 

illustrated how computer programming could be used to help 

teach these mathematical concepts to students who traditionally 

struggled with the subject. Recently, constructionism has been 

adopted by researchers who are interested in what students can 

learn through the process of designing games [14, 15, 17, 21, 22].  

The constructionist line of inquiry has regularly been found to 

enable students to attain a deeper understanding of the concept 

being taught, have richer discussions about that content, and 

retain the knowledge longer than students taught in more 

traditional, instructor-centric environments. Given these findings, 

we have been developing the Sustainable Product Development 

Collaboratory to provide a medium for learning sustainability 

concepts relevant to product development, manufacturing and 

supply chain design through constructed knowledge across 

carefully crafted learning modules.     

4. CONCEPTUAL LEARNING MODULES 

FOR THE COLLABORATORY 
Learning modules have been developed to demonstrate the effects 

of different product designs on supply chain costs and 

environmental impacts by using the Sustainable Product 

Development Collaboratory, which is comprised of several web 

application technologies. The collaboratory framework consists of 

three main modules, i.e., design module, manufacturing analysis 

module, and supply chain analysis module, as shown in Figure 1. 

The design platform, which uses Google SketchUp, a freely 

available 3D modeling tool, communicates with a web-based 

design/analysis interface, called the “collaboratory portal.”  

Alternatively, learners can access previously modeled products in 

the Product Design Database (PDDB) for further cost and 

environmental analysis. In consideration of the educational 

context for learners, in particular for K-12 students, a simple and 

easily accessible design platform is needed, so that learners do not 

require additional training in model generation and design 

modification. Accordingly, Google SketchUp was selected as the 

design platform for the collaboratory. 

XML Parser

Collaboratory

Portal

Design Platform Product Design

Database

Supply Chain

Analysis Engine

Manufacturing

Analysis Engine

Supply Chain

Analysis Module

Manufacturing

Analysis Module

Design Module

 

Figure 1. Collaboratory framework showing the portal and 

design, manufacturing, and supply chain analysis modules. 

With limited geometric and engineering analysis functionality, 

SketchUp represents a 3D modeling tool for beginners. A plugin 

was developed for the collaboratory to provide basic functions to 

extract geometric and engineering information. Figure 2 displays 

the SketchUp plugin for volume calculation developed under this 

project. If several models or geometries are in the SketchUp 

platform, the volume calculator will process only the active model, 

i.e., the component or assembly in the bounding box.  

A geometry slicing method is used to determine the solid volume 

within the bounding box. The selection of accuracy level depends 

on the complexity (irregularity) of the geometric shape. If the 

bounding box is assumed to be in stock material dimensions, for 

instance, subtracting the actual part volume from the bounding 

box volume determines how much material will be removed 

during manufacturing. Using basic functions in SketchUp, 

learners can modify an existing product model or generate a new 

product model according to their own desire. In addition, the 

collaboratory library supports the learners with preprocessed 

component and assembly models. Currently, the library contains 

the components and assembly of a bicycle pedal.  

 

 

Figure 2. Design platform plug-in for geometry and bounding box volume calculation. 
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Figure 3. Welcome page of the analysis interface. 

In addition to product design capabilities, the collaboratory portal 

provides an interface for the manufacturing analysis module and 

the supply chain analysis module. The prototype welcome page of 

the analysis interface is shown in Figure 3. The analysis interface 

includes the pre-processed model analysis interfaces, a PDDB 

communication interface, an XML parsing interface, a system-

solver communication interface, and a post-processing interface. 

The pre-processed model analysis interface provides the user an 

opportunity to view and select the pre-processed models from the 

collaboratory library (PDDB). Both assembly level and 

component level models are available in the library. Learners can 

browse the assemblies and components, and the design-analysis 

system interface displays an image of the selected component 

(Figure 4). Learners can use this interface to download the 

SketchUp-compatible drawing file from the collaboratory library 

for further processing and design modification. The file can be 

modified using SketchUp and exported to the collaboratory 

library for manufacturing and/or supply chain analysis. 

 

Figure 4. Design-analysis interface showing the body plate component model. 
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The design-analysis interface works for both the pre-processed 

models and newly designed models. For pre-processed models, 

design, manufacturing, and other analysis data are stored in the 

PDDB. The PDDB has been designed using MySQL, and the 

communication between the web portal and the MySQL has been 

developed using Java. In the case of pre-processed models, the 

Java code receives the properties from the PDDB corresponding 

to the selected pre-processed model ID. On the other hand, for a 

newly designed model, the design properties are stored in the 

PDDB as required for manufacturing process modeling. This 

interface has the intelligence to recognize whether the analysis 

command was initiated for a newly designed model or a pre-

processed model. The interface exhibits the corresponding 

properties, collected from the PDDB, for the selected model and 

provides the user a place to define additional input parameters. 

The portal displays basic geometric information taken from the 

PDDB along with representative input fields (Figure 5).  

Ongoing development is extending the PDDB and the input fields 

based upon the requirements of the manufacturing and supply 

chain analysis modules. The interface sends all the parameters 

displayed in the portal to the analysis engines through XML 

parsers. The manufacturing and supply chain analysis solvers are 

stored on a central server along with the collaboratory portal. The 

solver has separate worksheets for input parameters and output 

parameters. For performing analysis, the analysis interface reads 

the Excel workbook template stored in the PDDB and creates a 

copy of the workbook in the PDDB. The purpose of copying the 

workbook is to keep the workbook template protected from 

malicious activities.  

After creating the new workbook, the interface reads all the input 

fields and adds the input parameters to the corresponding input 

fields. If an Excel worksheet contains any formulas, logic, and/or 

links; the updates made in the input fields are not executed 

automatically. Execution of the formulas and logic steps is forced 

by reading all the worksheets. The execution time varies 

depending on the size and the contents of the workbook. After 

completing analysis, the interface reads the output worksheet and 

the output fields. The output parameters are sent to the XML 

parsing interface for storage and transmission to the post-

processing portal.  

Figure 6 illustrates the flow of the manufacturing analysis solver 

for a set of processes that might be used to fabricate a bicycle 

pedal body (PB), i.e., casting, boring, and milling. From the input 

parameters, which describe the materials and stock and final part 

geometries, the manufacturing analysis solver calculates total 

process energy use and equivalent CO2 emissions (kg CO2 eq.). 

The process carbon footprint (kg CO2 eq.) values for two variants 

are then displayed numerically and graphically for interpretation.  

With the design and manufacturing/supply chain analysis 

functionalities thus available in the collaboratory, learning 

modules can be constructed for use in the classroom at multiple 

complexity and comprehensiveness levels to educate a wide 

spectrum of learners about the concepts and practice of 

sustainable product development. In the sample learning module 

presented herein, we use the design of a bicycle pedal as a sample 

project. The sample learning module includes four parts as shown 

in Table 1; these modules are discussed in greater detail below. 

Table 1. Key parts of the sample learning module 

Module Part I. Introduction to the Activity  

Module Part II. Software Demonstration  

Module Part III. Bicycle Pedal Analysis Project  

Module Part IV. Discussion  

In Part I and Part II, the overall process, anticipated activity, and 

software (collaboratory) capabilities are explained to the 

participating students. Students at all levels are familiar with 

bicycles, but may not be aware of the variety of pedal types 

available. Thus, the module would start with an introduction and 

discussion of bicycle pedal types, which include platform, clipless, 

and pedals with toe clips. Images could be displayed using a 

projector, or actual pedals could be passed around the classroom 

to show the many types and styles.  

 

Figure 5. Interface showing properties collected from the PDDB and user defined input fields. 
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Figure 6. Manufacturing analysis solver operation. 

In Part III, students would undertake a pedal design project using 

the collaboratory, working individually or in pairs, to evaluate the 

different pedal designs and/or approaches to produce and 

assemble the pedals. Based on what the students discover, the 

instructor can lead a discussion in Part IV of the module to further 

cement the concepts of cost and environmental impact, as well as 

how they can be influenced by product and process designs. The 

instructor may conclude the discussion with how this might relate 

to purchasing decisions students make in their own lives.   

This module would be preceded by and concluded with subject 

matter pre- and post-tests to assess the knowledge gains in 

students. The tests are designed to assess multiple topics related to 

design activities completed with the collaboratory e-learning 

platform. Each pedal design requires different types and amounts 

of materials, different manufacturing processes to produce, and 

different supply chains to provide parts and materials for the pedal. 

By evaluating the set of pedal types within the collaboratory 

library, students at different levels of learning can thus explore 

different environmental effects (e.g., carbon footprint and energy 

consumption) of design changes. At higher levels of learning, 

students can be asked to change the design parameters (e.g., size) 

and engineering properties (e.g., material) using Google SketchUp 

along with the collaboratory.  

5. FOCUS GROUP STUDY  
To validate the concept of employing the collaboratory within a 

learning module, an interview was conducted with a focus group 

consisting of middle and high school teachers in Michigan. In the 

State of Michigan, Next Generation Science Standards (NGSS, 

http://www.nextgenscience.org/) are being implemented with 

strong emphasis in ecosystems, sustainability, and human impacts. 

During the focus group interviews, the teachers supported 

adoption of this collaboratory concept into the new curriculum. 

They opined that the subject of human impact on the environment, 

which is covered in eighth and ninth grades, is the topic where the 

sustainability design education fits well. In general, the teachers 

agreed that “understanding how an end product was realized and 

delivered to consumers” should be emphasized more, especially 

with respect to human impact on the environment. The scenario 

based sustainable design education activity aims to tackle these 

curricular needs.  

In order to test the usability of the collaboratory in the classroom, 

another focus group study was conducted with a modified Task-

Technology Fit questionnaire [13]. Ten graduate students 

responded to this survey, which consisted of 20 questions. The 

respondents indicated the ability of the system to conduct the 

assigned design task using a 7 point Likert scale (1: strongly agree 

– 7: strongly disagree). The assigned design task was to evaluate 

the pedal types and explore the effect on environmental 

performance (i.e., energy consumption) of design changes. Each 

pedal design requires different types and amounts of materials, 

different manufacturing processes to produce, and different supply 

chains to supply parts and materials.    

Most questions received an average response of approximately 2 

points (Figure 7), which indicates that respondents strongly 

agreed with the statements. In addition, the standard deviations 

for most of the responses are 1 to 1.5, pointing to the fact that 

most of the respondents evaluated the system with the positive 

portion of the scale (i.e., 1-4).  
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Figure 7. Collaboratory usability test results. 

However, two questions about Systems Reliability, i.e., “The 

Collaboratory system is subject to unexpected or inconvenient 

down times, which makes it harder to do this work” (Q12) and 

“The Collaboratory system is subject to frequent problems and 

crashes” (Q13) had averages of 3.9 and 4.1, respectively. Thus, 

the system reliability must be improved to be more robust for a 

better user experience. In addition, the average of the question 

about Quality, “The Collaboratory system is missing critical data 

that would be very useful in this job” (Q2) was 4.0 (standard 

deviation of 1.8). Q2 relates to the ability of the system to 

maintain the data, which was needed by the users, thus improved 

ability of the system to maintain data is needed for users to 

identify changes in the data and to access the previous and current 

data easily.  

This section demonstrated the collaboratory usability assessment, 

which shows the effectiveness of the collaboratory for the given 

design task, i.e., evaluating the impact of different pedal designs 

on environmental performance. The following section describes a 

proposed method for knowledge assessment.  

6. KNOWLEDGE ASSESSMENT  
The knowledge assessment targets the cyberinfrastructure 

competency gained through interaction with the Sustainable 

Product Development Collaboratory as well as content knowledge 

gained through pre- and post-tests. Pre- and post-testing focuses 

on the following three learning objectives: 

1) Developing an awareness and understanding about the 

impacts of product architecture, manufacturing process, and 

supply chain decisions on the economic and environmental 

sustainability of a product; 

2) Articulating the impacts of product architecture, 

manufacturing process, and supply chain decisions on the 

economic and environmental sustainability of a product; and  

3) Developing product design solutions that address technical 

requirements, in addition to economic and environmental 

sustainability goals.   

These objectives cover students’ knowledge gains through 

abstract means as well as a more applied project-based approach, 

and thus, we use Kolb’s Learning model [16] as a basis in crafting 

our assessment questions. In this model, knowledge construction 

is assumed to progress in various stages, which are not necessarily 

experienced in order. These stages include  

Stage 1: Observation of concrete situations from different 

perspectives (Concrete Experience – CE) 

Stage 2: Observation and reflection of the experiences (Reflective 

Observation – RO) 

Stage 3: Formation of abstract concepts and generalizations based 

on experiences and reflections (Abstract Conceptualization – AC) 

Stage 4: Testing the implications of the concepts and 

generalizations (Active Experimentation – AE). 
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In its essence, the collaboratory is a medium for students to 

actively experiment with a concrete situation (product design) to 

test the learned concepts, in addition to providing guidance as 

critical domain knowledge. Active experimentation also fits well 

with the constructionist approach, which encourages learning 

through constructing, or designing or making a product [20].   

The knowledge-gain assessment questions that we have developed 

are open-ended in nature, and tap into awareness of the concepts 

and the level of articulation. The questions also involve solving 

problems using the concepts learned; therefore, they cover all 

stages in Kolb’s Learning model. Sample questions that can be 

used to assess knowledge gain include the following:  

In your own words, explain what you understand about the 

environmental impact of a product.  

Explain the contribution of different life cycle stages on the 

environmental impact of a product. 

Which of the following statements best describes your 

understanding of current product design practice? 

Student responses to knowledge assessment pre- and post-tests 

will be evaluated based on the pre-recorded correct answers to 

assess the level of knowing on this particular subject – sustainable 

design, manufacturing, and supply chain management. 

By using this sample learning module and the design activities, it 

is anticipated that students will be able to analyze the relative 

impacts of components of a particular pedal, as well as the effects 

of changes to their related geometries, manufacturing processes, 

and supply chains. The actual implementation and assessment 

results will be reported in an upcoming article.  

7. CONCLUDING REMARKS 
This article presented a pedagogical framework and a sample 

learning module developed under an NSF CI-TEAM 

Demonstration project, entitled “A Sustainable Product 

Development Collaboratory.” This project aims to educate a wide 

spectrum of learners (K-12, university, industry) in sustainable 

design and manufacturing by demonstrating the effects of 

different product designs on supply chain costs and environmental 

impacts. The presented collaboratory has the potential to create an 

evolving design repository, promote empirical/experimental 

investigation to model life cycle costs and environmental 

performance, and advance methods for joint optimization of 

design variants and supply chains, while being readily available 

and reusable by students and practitioners. In addition, the 

collaboratory stands to benefit educational research by providing 

a platform for experimental learning module development, 

implementation, and assessment in the classroom environment at 

multiple levels and in multiple regions. 

A focus group study was conducted to understand middle school 

and high school teacher’s perspectives. While they stated the 

importance of sustainability education and relevancy of the 

collaboratory concept to their curricula, they also emphasized that 

student constructivist learning behavior should be addressed. The 

teachers indicated that a game type or competition based learning 

environment is effective. The collaboratory will be further 

enhanced to support this constructivist pattern of learning. 

Collaboratory development is focused on designing a bicycle 

pedal by considering sustainability principles in design, 

manufacturing, and supply chain activities. However, evaluating 

sustainability implications of a product design decision should 

include the impacts of the overall product life cycle. In other 

words, products that are superior when manufacturing 

performance metrics are taken into account may not be the ideal 

choice when considering other life cycle aspects (e.g., service or 

end of life). Thus, performance of other life cycle stages will be 

continuously included in this scalable collaboratory environment.  
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ABSTRACT
Cyber Physical Systems (CPS) are the conjoining of an enti-
ties’ physical and computational elements. The development
of a typical CPS system follows a sequence from concep-
tual modeling, testing in simulated (virtual) worlds, testing
in controlled (possibly laboratory) environments and finally
deployment. Throughout each (repeatable) stage, the be-
havior of the physical entities, the sensing and situation as-
sessment, and the computation and control options have to
be understood and carefully represented through abstrac-
tion.

The CPS Group at the Ohio State University, as part of
an NSF funded CPS project on “Autonomous Driving in
Mixed Environments”, has been developing CPS related ed-
ucational activities at the K-12, undergraduate and gradu-
ate levels. The aim of these educational activities is to train
students in the principles and design issues in CPS and to
broaden the participation in science and engineering. The
project team has a strong commitment to impact STEM
education across the entire K-20 community.

In this paper, we focus on the K-12 community and present
a two-week Summer Program for high school juniors and se-
niors that introduces them to the principles of CPS design
and walks them through several of the design steps. We
also provide an online repository that aids CPS researchers
in providing a similar educational experience.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education – computer science education

General Terms
Education, Design
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1. INTRODUCTION
As the Cyber-Physical Systems Group (CPS) at The Ohio

State University, under an NSF funded project entitled “Au-
tonomous Driving in Mixed Environments”, we have been
planning educational activities to promote student interest
in the Science, Technology and Mathematics (STEM) fields.
The need for promoting STEM related education to middle-
high school students in the STEM fields has been widely
documented [7, 11, 5] and can be summarized as highlight-
ing the need for the United States to prepare a sufficient
number of STEM professionals capable of innovation. As
described in [6], STEM education can be visualized as a
pipeline that begins in early education, extends through
college and ends with employment with critical transition
points that includes the high school to college transition.

The CPS group at Ohio State has significant experience
working designing K-12 education related activities (in addi-
tion to college undergraduate and graduate student courses).
In [8], the authors discuss a project designed for middle
school girls as a part of a week-long workshop, entitled “Fu-
ture Engineers’ Summer Camp”held at The Ohio State Uni-
versity. The authors describe their approach to introducing
middle school girls to fault tolerant computing through a va-
riety of kinesthetic learning activities. Kinesthetic learning
activities [10], are proposed by the authors as a process by
which students learn about theoretical concepts by carry-
ing out physical activities, as opposed to passively listening
to lectures. The authors describe their success using kines-
thetic learning activities to explain complex algorithms, such
as sorting, to younger audiences. In [9], the authors discuss
coursework developed at the undergraduate level to teach
students the important concept of abstraction.

In this paper, we present a two-week educational pro-
gram for high school students that introduces them to Cy-
ber Physical Systems, and the design and development of
such systems through the modeling and simulation at dif-
fering levels of abstraction. Students are introduced to CPS
through the engineering of autonomous vehicles or driverless
cars. In particular, students are asked to develop algorithms
for a vehicle (in this case, a Roomba) that can avoid obsta-
cles. The aim of the program is to help students emulate the
scientific process employed by CPS researchers while learn-
ing to use common techniques and tools. This paper aims
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to describe the activities and provide sufficient resources to
facilitate the emulation of such a program.

CPS design, due to the cost and difficulty of direct phys-
ical testing, typically goes through four phases in system
design:

1. Conceptual Modeling: Understand the mathemat-
ics of the problem, and propose a theoretical solution
(develop equations of motion, develop analytical solu-
tions where possible.)

2. Simulated Testing: Use computer simulations to
validate algorithms (use a software package with a sim-
ulated test bed to test obstacle avoidance algorithms.)

3. Controlled Environment Testing: Use a physical
test-bed of a simulated environment to validate al-
gorithms (use the developed algorithm on a physical
Roomba within a simulated environment.)

4. Real World Deployment: Test the algorithm in the
real world (use the developed algorithm on a physical
vehicle on actual city streets.)

The activities described in this paper are conducted as a
part of the Summer Institute (SI) held at the Ohio Super-
computer Center (OSC). SI is a two-week residential pro-
gram for gifted highschool freshman, sophomores, and ju-
niors designed to raise students’ interest and awareness of
the STEM fields. SI challenges students to cultivate their
research ability through the use of cutting-edge tools, model-
ing and simulation, and interaction with active researchers.
Students are also encouraged to develop interpersonal skills
through presentations and participation in a variety of sci-
ence related field trips, and teambuilding activities.

The CPS project developed for this purpose is called “Ob-
stacle Avoidance Roombas,” and is a direct product of au-
tonomous vehicle research carried out by CPS researchers
at Ohio State. Over two years, 2010 and 2011, eight mo-
tivated students were chosen to participate in the project.
These students were introduced to real-life aspects of CPS
designs, trained in C/C++ programming, and taught rele-
vant mathematics and physics concepts. Students were then
asked to use a simulator, called Player/Stage, to program (in
C/C++) Roombas (as shown in Figure 1) to complete the
project. The project was divided into a sequence of four
subproblems to help students understand the logical project
progression.

1. Program a Roomba to follow a set of coordinates en-
tered by a user

2. Program a Roomba to acquire a target, and plan the
optimum path to reach the target

3. Program a Roomba to acquire a target, and avoid a
single obstacle to reach the target

4. Program a Roomba to acquire a target, and avoid mul-
tiple obstacles to reach the target

Students are taught how simulations can provide a path
to real world implementation, and use developed code on a
set of robots and obstacles in a laboratory setting at Ohio
State University.

Figure 1: Roomba fitted with GPS tag

In this article, we present details of this project, the educa-
tional materials developed, and results obtained. We begin
by giving an overview of the SI program, the CPS related
project, and the intended competencies. We present the log-
ical progression of the project through the four step process
taken by CPS researchers. We conclude the project descrip-
tion with student feedback and lessons learned by the CPS
staff. In order to facilitate similar projects, we end with a list
of the resources that were used in developing this project.

2. ABOUT OSC’S SUMMER INSTITUTE
For over 20 years, the Ohio Supercomputer Center (lo-

cated in Columbus,OH) has offered the Summer Institute
(SI) to Ohio’s gifted students entering their sophomore, ju-
nior or senior years of high school and their teachers. SI is
a two-week residential program designed to raise students’
interest in the Science, Technology, Engineering and Mathe-
matics (STEM) fields through a collaborative and dynamic
research environment and hands on experience with the lat-
est in cutting edge technology. The program is held in
Columbus, OH and students live in the dormitories of The
Ohio State University for this two-week period. Students
typically arrive at OSC by 9 AM every morning, and work
on their chosen projects until 5 PM when they are taken
back to their dorm rooms and take part in a variety of so-
cial activities. Each year, a number of projects are chosen
by SI staff that appeal to students. Projects are decided
taking into account previous student feedback, real-world
applicability of project, staff expertise and funding.

The program begins by teaching students UNIX, the oper-
ating system of the computers they use. Next, students learn
a programming language (C/C++/MATLAB) and any soft-
ware required to complete their projects. Students are re-
quired to do their own work from code implementation to
final presentations. The ability to develop algorithms and
an understanding of the project’s science/engineering basis
are needed.

2.1 SI 2010 and 2011
Thirty two students, and four teachers participated in the

SI’s held in 2010 and 2011. In SI 2010 and 2011, there were
four projects ranging from robotics to medical imaging. The
four projects with descriptions (as given to students) are
given in [1]. The project described in this paper, Obstacle
Avoidance Roombas, was presented to SI participants as
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follows:

Obstacle Avoidance Roombas:

Many organizations, such as the US Army, require vehi-
cles that are capable of avoiding dangerous objects. These
objects may be explosive obstacles, booby trapped buildings,
or armed personnel. This sponsored project involves students
using robots and robotic simulators to design an “Obstacle
Avoidance Roomba.”

The project uses a Roomba, an autonomous robotic vac-
uum cleaner, fitted with LIDAR (a light based ranging de-
vice). The goal of the project is to program the Roombas to
avoid randomly placed obstacles to reach a destination. Stu-
dents work with a vehicle simulator, called Player/Stage, to
design “the brains” of a Roomba . After successfully simulat-
ing the behavior, the research group will do “real-life” tests
of the Roomba in a specially fitted laboratory.

The SI program began with a presentation of four projects
and students were allowed to choose one based on their in-
terests.

2.2 Project: Obstacle Avoidance Roombas
The project involves the design of algorithms and code

that directs a Roomba to avoid obstacles and reach a tar-
get or goal. Initial programming and testing of code is done
using the Player/Stage [3] simulator. Player is a network
server for robot control that supports a variety of robot
hardware. Stage simulates (in 2.5D) a population of mo-
bile robots, sensors and objects. The Player/Stage pack-
age allows quick prototyping of algorithms for implementing
embedded computers. The Player/Stage environment is de-
signed to simulate a set of roads and intersections set up in
the Control and Transportation Laboratory (CTL) testbed,
at The Ohio State University. Sensors used in the testbed
are simulated in the Player/Stage environment. Thus, the
students see how a ”real-world” laboratory environment can
be abstracted and modeled in a simulated environment. The
necessity of a “cyber” environment is further demonstrated
by the ease with which code prototyped in the simulator
can be transferred to testbed equipment. Students are also
introduced to limitations of the simulated world, and situa-
tions in which the simulator may allow a violation of physics
or mathematical possibilities in the real world such as a sim-
ulator valid Roomba position that translates to a Roomba
hovering above the ground that cannot be attained physi-
cally.

In general, the two weeks of SI are divided into training
and project components. The first week consists primar-
ily of providing students with tools and any mathematical
or physical foundations required to complete their projects.
Students also make multiple laboratory visits to gain an un-
derstanding of the environment that they are simulating.

2.3 Competencies
The CPS research team decided on various competencies

that would need to be taught to students.

2.3.1 Mathematics
Students were given a two hour interactive lecture that

introduced them to the mathematical concepts required to
complete Obstacle Avoidance Roomba project. The lecture
began with a refresher on coordinate geometry and covered

Figure 2: OSU ACT Vehicle and Sensors

concepts such as: frames of reference, coordinate and homo-
geneous transformations. Student competency was tested
with simple mathematical problems such as: “The roomba
is facing 45 ◦ in the Roomba frame, what would be the cor-
responding angle in the Earth frame?”

2.3.2 Physics
Students were given a guest lecture about the physics be-

hind CPS fundamentals. Students were taught that vehicles
are often modeled as a point-mass or a bicycle to simplify
calculations. Students were then taught about the point-
mass model and Bicycle model of vehicles. Students also re-
viewed Newton’s laws, friction, and simple dynamics. Stu-
dent competency was tested informally through questions
and answers.

2.3.3 Tools
Students were introduced to various tools used by CPS

researchers in the design and deployment of autonomous ve-
hicles. Students were given a tour of Ohio State’s Center
for Automotive Research and one of the autonomous vehi-
cles as shown in Figure 2. Instruction concentrated on the
sensors used in the vehicle, namely the GPS systems, Laser
Rangefinder and Radar systems. Student competency was
tested informally through questions and answers.

2.3.4 Programming
Students were introduced to programming of different lan-

guages used in CPS design. Instruction concentrated on
C/C++ (two popular programming languages) and MAT-
LAB (a very high level programming language popular with
engineers). Students were given a two hour lecture on pro-
gramming basics, that concentrated on syntax, and com-
mands. Training materials was taken largely from previ-
ously developed training material available at [2]. Student
competency was tested throughout the project.

2.3.5 Scientific Process
The scientific process employed by CPS researchers, de-

scribed in Section 1, was the central theme of the Obsta-
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cle Avoidance Roomba project. Students were reminded
throughout the project of the process and that the logical
progression of the project followed this process.

3. PHASE 1: CONCEPTUAL MODELING
In the first phase, students are provided with details of

the problem to be solved and asked to develop algorithms
for each sub-part of the problem. The goal of this phase is
to introduce students to the process of learning the mathe-
matical and physical competencies described in section 2.3
and turning them into a proposed algorithm. Another goal
is to introduce students to the concept of peer review.

Students are also given real life examples of autonomous
vehicles performing obstacle avoidance. Student also learned
about the sensors used in Roombas, giving them an under-
standing of the type of data that they can use for develop-
ing their algorithms. Student learning is tested continuously
through simple exercises.

Once students are comfortable with the competencies re-
quired for project completion, they are split into two groups
of two student each. Students then work in their sub-group
collaboratively develop high level algorithms for the four
parts of the problem. In order to simulate the peer-review
process of scientific development, students are asked to present
their algorithms for each of the problem parts to the other
group and instructor for comments and feedback.

4. PHASE 2: SIMULATED TESTING
Once students have developed algorithms that pass the

peer review process, they are asked to use computer sim-
ulations to validate their algorithms for each of the sub-
problems. The goal of this phase is to provide students with
hand-on experience with the simulation tools (one of the in-
tended competencies) used by CPS researchers, in addition
to introducing students to the process of simulated valida-
tion of algorithms.

4.1 Training and Tools
Students use the Player/Stage package, a commonly used

robot simulation program. Player provides a network inter-
face for a variety of robot hardware, such as the Roomba.
Stage is a mobile robot simulator that provides handles to
a variety of sensor models. The environment used within
Player/Stage has been developed by the Center for Intel-
ligent Transportation Research (CITR), and simulates the
physical testbed, called SimVille, available for laboratory
testing at CITR. SimVille is described later in this paper.
The Player/Stage program uses the C/C++ programming
language to control the simulated Roombas movements. De-
veloped code can be transferred directly to the actual Room-
bas in the physical testbed.

To introduce students to the Player/Stage syntax, stu-
dents are walked through the solution of the first problem.
Students are then asked to convert the algorithms developed
in Phase 1 into Player/Stage compatible C/C++ code.

4.2 Activities
Students spent approximately twenty hours programming

in C/C++ with the Player/Stage environment. Their goal
was to solve the remaining three parts of the problem as
mentioned in section 2.2. At the end of each problem, stu-
dents are asked to present their code (to emulate the code

Figure 3: Simulated Version of Third Part of Project
(Red Circle represents the Roomba, Black Squares
Represent Obstacles)

Figure 4: Code Sample of Group 1

review process), and simulations to other students and the
project lead (for peer review).

In order to promote the development of robust algorithms
and code, students try to provide conditions that may“break”
the code or algorithm. Further, the instructor may modify
the environment, such as moving the obstacle. The aim of
this task is to teach students the fundamentals of designing
robust code, and the fact that research and development is
an iterative process. Once students and instructor are satis-
fied with the robustness of code and algorithm, they proceed
to the next part of the problem. An example of the simulated
output for Problem 4 is given in Figure 3. For this part, stu-
dents use Player/Stage to program the Roomba (red circle)
to pass through all the Obstacles (black squares).

4.3 Difference in Student Approaches
Students were encouraged to use the the math and physics

they were taught to develop their own algorithm for con-
trolling the Roomba. For example, in the third part of the
project, where students were asked to program a Roomba to
reach a target by avoiding a single obstacle, one group ap-
proached the problem by coding a set of switch statements
that would move the Roomba in a deterministic manner de-
pending on which quadrant of the screen the obstacle is in.

Another group programmed the Roomba to travel to a
fixed point away from the obstacle. The two code samples
of Figures 4 and 5 show one such difference in approach.

5. PHASE 3: CONTROLLED ENVIRONMENT
TESTING

Once students have sufficiently robust code, they are asked
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Figure 5: Code Sample of Group 2

to use a controlled representation (laboratory setting) of the
real world - a testbed, called SimVille. SimVille was cre-
ated in 2007 in order to expedite research efforts in urban
environment scenarios. SimVille [12] is a 1/7 scale road net-
work that is designed to provide easy access to a road net-
work. Additionally ceiling mounted cameras provide a “Vir-
tual GPS”system that robots (Roombas) using SimVille can
get information about their location, location of obstacles,
etc. The Player program works as the network interface to
communicate between Roombas, GPS sensors, and control
code. Control code is a slightly modified version of code
written for the Stage simulator. A sample configuration of
SimVille is given in Figure 6. The goal of this phase is to in-
troduce students to the concept of a controlled (laboratory)
environment, and illustrate the parallels between code de-
veloped for the simulated environment and code needed for
the testbed environment. Students also learn the difference
between these settings. For example, some of the Roomba
speed values used in the simulated environment cannot be
physically realized in the testbed environment because of
physical limitations of the Roomba motors, and floor mate-
rial which are approximated in the simulator.

5.1 Presentation and Tools
Students are given multiple tours of the testbed, over the

course of the algorithm development and simulator proof-
of-concept phases, to give them an understanding of the lab
capabilities, and physical constraints. Additionally, students
are allowed to play with the roombas to understand the dy-
namics of movement. Students are shown how to translate
code written in Stage to the actual Roombas, through a var-
ied compilation technique. Student are also given a detailed
view of the sensors present in the testbed.

Once students have programmed their algorithms for the

Figure 6: Testbed

four problems, they are asked to implement their code on
the testbed. Students are able to modify the code they have
written for Stage and use their algorithms on the actual
Roombas.

5.2 Activities
While students are testing their code with the Roombas

in SimVille, SI staff introduce perturbations to the environ-
ment by moving obstacles to give students an understand-
ing of working with moving obstacles. Students are asked to
modify their code, if necessary, to solve any issues that are
brought about by these perturbations. Students complete
their testing for all four parts of the problem by the end of
the second week

6. PHASE 4: REAL WORLD DEPLOYMENT
While deploying the developed code on an actual vehicle

is not feasible, given the short time span, students are in-
troduced to this important phase through tours of several
laboratories, including the Center for Automotive Research
(CAR), which houses the OSU Autonomous Vehicle. Stu-
dents also have an opportunity to visit other laboratories at
The Ohio State University such as: a Bio-dynamics Labora-
tory, and a Virtual Reality Laboratory. The goals of these
laboratory visits is to show students the practical aspects of
their work. The goal of this phase is to show students the
final phase of the CPS research process - real world deploy-
ment.

7. CLOSING AND FEEDBACK
At the end of the two-week period, students are asked

to present their research, and results to all of the SI stu-
dents, Ohio State University faculty, SI Staff, and parents.
Students are also asked to give their feedback, and any sug-
gestions for future SI programs.

7.1 Participant Feedback
Upon completion of the Summer Institute program in

2010 and 2011, students were asked for their feedback of the
project, and suggestions for how to improve the project in
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subsequent years. Excerpts from their comments are given
below:

7.1.1 Student 1
“For the past two weeks, I have been enrolled in the Ob-

stacle Avoidance Roomba project at the OSC Summer Insti-
tute. I have found it both informative and entertaining, and
strongly urge that it be offered again next year. Learning
C and the rudiments of autonomous-vehicle programming is
engaging, and I enjoy the relaxed and informal working en-
vironment. However, I felt that the competitive arrangement
of two pairs of programmers against one another was some-
what counterproductive: we probably would have been able
to accomplish considerably more if we had pooled all of our
resources.” Video feedback can be found at [4].

7.1.2 Student 2
“At first I was really just looking forward to an easy project

with roombas since I’ve used them before. Not using any
other sensors was a bummer, but I realize now that it’d be
impossible to incorporate the sensors in our time frame. I
liked working in a big group better than in our teams of 2,
because it got really competitive at times. My favorite parts
of the project were when the program actually worked when
compiled and driving the roombas at Dreese labs. I’ve actu-
ally learned a lot about psuedocode, high level coding, and dif-
ferent approaches to obstacle avoidance and using the GPS
sensors. Overall I really enjoyed working on the project, and
it’s definitely the highlight of my summer.”

7.1.3 Student 3
“During the past two weeks I had lots of fun learning about

Roombas, C Programming, and Quake 3. I thought that the
pace of the project was slow enough that I did not feel rushed,
yet fast enough to allow us to be productive. I think that it
might have been interesting to replace the multi-obstacle lab
with a lab having to do with sensors. We talked a lot about
the importance of sensors, so I was a bit disappointed to
discover that we would not be using them in our project. The
camp was extremely fun because of all of the participating
students and staff. This was probably one of the best two
weeks I have had in a while.”

7.1.4 Student 4
“When I was first assigned this project, my head was in-

trigued by the possibilities of what we could program the
Roomba to do. Shortly after we started programming, how-
ever, we ran face to face to the difficulties of using C to tell
the Roomba where and how to move. Project Obstacle Avoid-
ance Roomba is an great assignment to enlighten those un-
familiar with Autonomous Vehicles. The Roomba Project il-
lustrates the challenges of avoiding the walls, moving around
the obstacles, even turning the Roomba. Although I had
no part in writing the functions of controlling the Roomba,
there was plenty of work of just coding in an algorithm the
robot can follow to drive itself. Obstacle Avoidance Roomba
Project would be a great stepping-stone to help interested
newcomers step into the field of Autonomous Driving.”

7.2 Lessons and Future Projects
The SI Staff learned many valuable lessons from students,

and will use these to provide improved iterations of the
project in subsequent years.

7.2.1 Scope
Students particularly enjoy the coding components of the

project. The scope of the project is sufficient for students
to have an understanding of CPS fundamentals without ex-
cessive training. Coding training given in C/C++ and is in-
tended to help students with the Player/Stage programming.
Basic mathematical training in coordinate transformations,
homogeneous transformations in addition to basic physics is
also provided to give students further understanding of the
Roombas. Students expressed interest in using a larger set
of sensors (as opposed to purely GPS coordinates). Inclu-
sion of further sensors may be difficult within the 2 week
length of the program.

7.2.2 Competition
Students at times felt that the competitive process was

counterproductive and that they would rather that compo-
nent not be in the next iteration of the project. Students
indicated a preference for group based work - something they
felt would be more productive. This modification was made
in SI 2011 and groups worked in a collaborative manner
while maintaining the peer review process. Students were
also allowed to switch groups based on approaches or ar-
eas of interest. The collaborative group structure was more
successful than the competing group structure.

7.2.3 Working with varying student capabilities
One of the difficulties faced by the project teams was in-

structing students with differing technical capabilities, es-
pecially in knowledge of programming. In SI 2010 students
were paired such that each group would have one student
proficient in programming working alongside a student who
was not as familiar with programming. With student feed-
back that they felt this process required them to “carry”
another student, in SI 2011, an additional instructor (who
was also a SI 2010 student) was brought in to give person-
alized attention to students who required technical help - so
as to ensure proficient students were not slowed down.

7.2.4 Metrics to Judge Project
One metric used to judge program success in SI 2010 and

2011 is student willingness to participate in future robotics
related activities after the Summer Institute program. An-
other metric, student learning of competencies, was tested
through informal systems. In future iterations, the authors
wish to devise a formal evaluation to judge student compe-
tencies.

7.2.5 Project Evaluation
In SI 2010 and 2011, evaluation was collected through a

daily online journal that asked students the following ques-
tions:

1. What did you learn today?

2. Who did you help out today and how?

3. Who helped you out today and how?

4. What did you like best about today’s activities?

5. What did you like least about today’s activities?
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Such information was collected over eight days culminat-
ing in a final comprehensive survey about the overall experi-
ence. Data was also collected about student-instructor inter-
actions and improvements that could be made to the overall
program and particular project. In the final survey, 100%
of the students “Strongly Agree” that the instructors were
helpful. Multiple students cited that the “High Point” of the
experience was in the Roomba testbed. One student cited a
“Low Point” when they had difficulty with the coding com-
ponent of the project. Overall, 75% of the students felt that
the programming portion of the project was enjoyable with
25% feeling that they needed greater prior programming ex-
perience. Students were also asked to comment about the
experience such as lab tours, residence halls, etc. As a mea-
sure of being taught in a way that corresponds to learning
style, 36% said “Strongly Agree”, 43% said “Agree” and 21%
said “Neutral.” 100% of the students said that the project
has deepend their desire to work in the field of robotics or
engineering.

8. TOOLS AND RESOURCES
The aim of this paper is to present a CPS related study

that can be recreated. This section outlines the tools/material
used and basic instructions on creating a similar project.

• The first step is to download and install the Player/Stage
project from http://playerstage.sourceforge.net.
Download and installation instructions for a variety of
hardware configurations is included in the instruction
manual.

• The programmable roombas used in the testbed com-
ponent of the project can be purchased from http:

//store.irobot.com. The Player/Stage simulator can
be configured to work with this Roomba.

• To view and download the SI 2011 Source Code:
http://dl.dropbox.com/u/1268613/codesamples.zip

• To view and/or download the SI 2010 Student Presen-
tation and Videos:
http://dl.dropbox.com/u/1268613/RoombaProject.zip

Other related links and resources:

1. Student Feedback Video:
http://www.youtube.com/watch?v=Ke8ONfF-Q64

2. NSF CPS Program:
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=

503286

3. C/C++ Training Material:
http://www.osc.edu/supercomputing/training/

9. CONCLUSIONS
We present a two week educational program for High

School students as a part of the Summer Institute program
at the Ohio Supercomputer Center. Students are introduced
to CPS related fundamentals, and develop the algorithm and
code for an obstacle avoidance Roomba. Students are taught
the scientific process of moving from simulated to real world

testing, and are taught the CPS core competencies of math-
ematics, physics, programming languages, and other tools.

Additionally, students are introduced to the concepts of peer
review, and iterative development. Student feedback showed
that students greatly enjoy the program, and students indi-
cate interest in future participation in CPS related research
activities. We also give the reader the tools and resources
required to recreate the summer educational program.
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ABSTRACT 

The ever-increasing amount of computational power 

available has made it possible to use docking programs to 

screen large numbers of compounds to search for molecules 

that inhibit proteins.  This technique can be used not only 

by pharmaceutical companies with large research and 

development budgets and large research universities, but 

also at small liberal arts colleges with no special computing 

equipment beyond the desktop PCs in any campus' 

computer laboratory.  However, despite the availability of 

significant quantities of compute time available to small 

colleges to conduct these virtual screens, such as 

supercomputing time available through grants, we are 

unaware of any small colleges that do this.  We describe the 

experiences of an interdisciplinary research collaboration 

between faculty in the Chemistry and Computer Science 

Departments in a chemistry course where chemistry and 

biology students were shown how to conduct virtual 

screens.  This project began when the authors, who had 

been collaborating on drug discovery research using virtual 

screening, decided that the virtual screening process they 

were using in their research could be adapted to fit in a 

couple of lab periods and would complement one of the 

instructors’ courses on medicinal chemistry.  The resulting 

labs would introduce students to the virtual screening 

portion of the drug discovery process. 
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1. INTRODUCTION 
Identifying novel chemotherapeutics has become 

increasingly challenging and expensive.  For every 10,000 

compounds evaluated in animal trials, only 10 will make it 

to clinical trials.  The average cost to bring a drug to market 

is estimated to be about 800 million dollars [1].  Thus the 

need for more efficient methods of identifying compounds 

has become increasingly important.  One of these methods 

is virtual screening.  The increasing amount of available 

computing power and the number of protein structures that 

have been solved have made this an increasingly attractive 

approach.  As of April 10, 2012, there were 80,710 

structures in the Protein Data Bank (PDB), which offer a 

plethora of possibilities for conducting virtual screens [2].  

The number of solved structures will only increase as 

thousands of structures are deposited annually in the PDB.   

 

Many of the chemistry and biology curriculums lack 

sufficient computational instruction to prepare the next 

generation of scientists. Proficiency in computational 

science has become increasingly important.  Many 

industrial companies including big pharmaceutical 

companies such as Pfizer, Genentech, Eli Lilly & Co and 

Johnson & Johnson have begun using methods like virtual 

screening to improve their efficiency in the drug discovery 

process.  Thus student graduating with experience using 

computational tools and methods will be much more 

employable.  

 

In this paper we describe our experiences with students 

using a supercomputer to conduct a virtual screen using 

AutoDock Vina to identify inhibitors for a number of 

diseases [3]. The docking program calculates the binding 

affinity of each of the compounds in a library of 

compounds specified by the user.  The compounds are 

sorted by binding affinity using Microsoft Excel and 

subsequently the top hits can be visualized in PyMOL [4].  

Visualizing the compounds in PyMOL allows the student to 

confirm that the predicted binding conformation would 

induce the required inhibitory affect. The project described 

here can be incorporated to into a large drug discovery 

project.  The compounds identified as hits from the docking 
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program could subsequently be screened in a wet 

laboratory.  

 

Having undergraduate students work on drug discovery in 

an academic environment is now feasible with the minimal 

computational power available on any campus and the 

supercomputer time one can obtain with grants.  This type 

of applied project stimulated interest amongst our students, 

as they were able to envision what the impact of the project 

would be if they found a good potential inhibitor.  This 

project also allowed us to highlight the interdisciplinary 

nature of the modern drug discovery process, which relies 

on computer science, chemistry, and biology.  The project 

outlined here creates a platform for a drug discovery 

research project. 

 

2. RELATED WORK 
While there have been several articles published about 

using virtual screens in a curriculum, none to our 

knowledge have used supercomputing [5].  An 

advantageous attribute of this project is the ability to adapt 

this project to any number of diseases or disorders.  Along 

with a large variety of targets the concept of using super 

computing power can be adopted to a wide variety of 

simulations and modeling programs [6, 7].   

A recent article by Sutch et al. described an activity 

focused on a structure based drug design [8].  One of the 

programs used in that activity to conduct the virtual screen 

was MEDock, which is a simple docking program.  

Unfortunately, this simplicity also imposes several 

imitations on MEDock’s versatility.  It only allows for 

areas of 300 atoms to be evaluated in a virtual screen.  It 

also limits the number jobs that can be submitted. The 

largest problem with this program is that it perpetuates the 

black box thinking of virtual screening.  Students need 

much less insight into the program to be able to 

successfully screen compounds, thus requiring less 

understanding of the science behind the project.  Also in 

the project described herein students use PyMOL, which is 

a commonly used program for visualizing macromolecules 

in both academia and industry.   

 

Other articles describing small molecule interactions 

with drug targets have focused on the specifics of the 

compounds’ conformations and chemical properties in 

relation to protein, but do not address the greater issue of 

the drug discovery process or virtual screening [9, 10].  

None of the previous lab activities we have found in the 

literature required the student to engage in the computer 

science aspect as much as this activity does.  Most of the 

activities used programs that are less versatile but have a 

graphical user interface. While this can be very 

advantageous for large classes, it does allow the students to 

conduct the exercise with out much understanding of the 

docking program.   

 

 

3. THE GOALS AND ACTIVITIES 
There were a number of goals for the labs, including 

getting students to learn the important role that computers 

can play in the drug discovery process.  Students were also 

supposed to learn how to use a docking program, gain 

experience using software other than the commercial off-

the-shelf software they use on a daily basis, and get 

exposure to the Linux operating system and a command 

line interface.  Other goals were to gain an appreciation for 

how much supercomputers can speed up the virtual 

screening process and understand that supercomputing time 

can be obtained at no cost even by small academic 

institutions that do not have the financial resources to buy a 

supercomputer or time on a supercomputer.  Students also 

were shown how to use PyMOL, a protein visualization 

program.  Finally, students also were shown some new data 

analysis skills with Excel.   

 

Students learned a little about supercomputers as part of the 

lab.  The most striking thing that students learned is that the 

virtual screening process is significantly faster using a 

supercomputer, because they can screen many molecules at 

once, rather than only a few at a time, when using a single 

CPU core per molecule.  They also learned that as opposed 

to desktop computer or a server where you can just start 

tasks whenever you want, on a supercomputer, you must 

submit your task to the queuing system and the queuing 

system controls when your task is run.  The students 

learned that the queuing system using a number of factors 

to determine when a task should be run, including the 

number of CPU cores needed and the amount of time 

requested for the task.  Therefore, they understood that 

while using more CPU cores might finish the virtual screen 

faster once the task was started, requesting many more 

resources might delay when the task was started and could 

ultimately result in the virtual screen being completed later 

than if they requested fewer CPU cores.  Students also 

learned how to check the queue on the supercomputer to 

see whether their task was waiting or being run.  Figure 1 

shows a screen capture from the lab manual where the 

students would check the queue. 

 

The laboratory was conducted in three phases over the 

course of two days due to the laboratory time being 1 hour 

and 15 minutes.  However, we note that the activity would 

fit very well in a traditional 3 hour laboratory.  Prior to the 

laboratory students had to choose a protein that was known 

to be a good drug target from the PDB. To identify a 

protein student conducted a literature search using 

SciFinder, PubMed or Google Scholar.  Students were 

instructed to identify a protein that had been previously 

shown to be a good drug target, either through chemical 

inhibition, knockout study, or methods that demonstrated 

the proteins potential as a drug target.  Secondly, students 

had to very verify that 3D structure had been solved.  This 

was easily done by searching the PDB site for the structure.  

With only these two constraints, students have a large 

number of targets to choice from.  The variability of the 

drug target selection was purposely done was to allow the 

students to take ownership over the project as well to force 

the student to think critically about the target.  The 
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Figure 1: A screen capture from the laboratory manual showing the output from querying the supercomputer’s 

queue. 

 

structures were then converted to pdbqt files (the file 

format that AutoDock Vina uses) and the search grid was 

set using AutoDock Tools [11].  Although students were 

required to choose a protein, convert it, and find the search 

grid, three pre-converted proteins structures and search 

grids have been included in the supplemental materials with 

this paper (Sample_Targets.doc) for readers wanting to test 

the lab without having to first find a protein, convert it to a 

pdbqt file, and find the search grid.   Those three proteins 

are targets for Alzheimer’s disease, Cancer, and HIV.   

 

On the first day, students carried out Phase one of the 

laboratory.  Before beginning the laboratory, students were 

given a 26-page full-color laboratory manual that included 

numerous screen captures to help them with the laboratory.  

Figures 2 and 3 show portions of the lab manual showing 

the students how to lo on to a remote computer with ssh 

and scp.  The lab manual has been included in the 

supplemental materials with this paper 

(Laboratory_Manual.docx).  Students began the laboratory 

by downloading a protein pdbqt file from the course 

Blackboard site and then a secure shell (ssh) program and a 

secure copy (scp) program from the Internet.  Next, each 

student was given a distinct username and password to log 

onto a server on campus.  Students logged on to the server, 

transferred the protein file to the server, and using the 

docking program, tested how well the protein bound to a 

potential drug molecule. We showed the students how to 

use AutoDock Vina, an open source software package from 

the Scripps Institute [3].   

 

Students continued working on the laboratory on the 

second day by starting with Phase two.  In Phase two, 

students created a shell script to automate the screening of 

multiple compounds.  While Phase two of the laboratory 

manual included instructions to perform the analysis of the 

data from the virtual screening, to save time, students were 

assigned to do that portion of the laboratory at home.  

Students then did Phase three of the laboratory.  In Phase 

three, students logged on to a supercomputer located across 
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Figure 2: Portion of the laboratory manual showing how to log on to a supercomputer or a remote server using ssh. 

 

 
Figure 3: Portion of the laboratory manual showing how to log on to a supercomputer or a remote server using scp. 

 
the country and uploaded a protein file.  Finally, they edited 

a shell script that they could use to automate the virtual 

screening, and submitted the job to the batch scheduling 

system on the supercomputer.   

 

Finally, the students were asked to complete their projects 

in their assigned groups.  The output files from the virtual 

screens were posted on blackboard for the convenience of 

the students.  The results of each group’s screen were 

posted as text files.  Each group converted their text file to 

an Excel file so they could quickly identify the top binding 

affinity compounds; those compounds are termed hits.   

 

AutoDock Vina identifies several binding conformations 

for each of the compounds screened and outputs those 

values, as shown in Figure 4.  The compounds the students 

screened came from the ZINC database 

(http://zinc.docking.org/pdbqt/) [12].  However, the 

conformation with the best binding affinity is the one most 

likely to occur, so the students were supposed to remove 

the data for the other conformations of the same compound 

from the data.  Using Excel, the students were able to 

remove the extra conformations for each compound and 

sort the remaining data to quickly identify the compounds 

with the best binding affinity.  The hits are subsequently 

visualized in PyMOL.  An example is shown in Figure 5.   
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Figure 4: Portion of the laboratory manual showing the output of AutoDock Vina after screening a molecule. 

 

A handout with commands for PyMOL is included in the 

supplementary materials with this paper 

(PyMOL_Commands.doc).  Visualization of the binding 

conformations with the protein is important since a 

compound may have a high binding affinity for a protein, 

but may not inhibit its activity.  When visually inspecting 

the hits with PyMOL, students were instructed to verify 

that the compounds bind to the active site or to a known 
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allosteric site of the protein.  When ranking the hits and 

trying to identify a few lead compounds to pursue, if 

specific details about the protein are known, such as, if a 

residue is essential to the protein’s function, then any 

compounds interacting with these residues should be given 

extra consideration. 

 

During the evaluation of the hits in PyMOL, students had 

to critically evaluate how the potential inhibitor was 

predicted to bind to the targeted protein.  Two main aspects 

were focused on during the evaluations of binding: 

orientation and the interactions between the compounds 

and the protein. First, did it bind in a manner that would 

inhibit enzymatic activity?  Typically this could be 

determined by it binding to either the active site or a known 

allosteric site.  Also compounds predicted to interact with 

residues previously shown to be important were especially 

noteworthy.  Secondly, students examined what 

interactions the compounds have with the targeted protein, 

such as hydrogen bonding, ionic interactions, and 

hydrophobic interactions, as these interactions determine its 

binding affinity. The students learned the relationship 

between how the thermodynamics of the calculated values 

relate to how the compounds interact with the protein. By 

being able to visualize the predicted binding conformations 

in PyMOL, students were able to see the interactions that 

lead to the predicted binding affinity.  Compounds 

displaying a large number of favorable interactions 

displayed the greatest binding affinity.  Lastly, many 

students fail to see the importance of understanding 

thermodynamics and this project allows the students to see 

a real world application of thermodynamics.  During the lab 

section, students were given a brief explanation on how the 

docking program measures the energy between the 

compounds and the protein. 

 
For this course, Medicinal Chemistry, thirteen students 

consisting of biology, chemistry, and biochemistry majors 

participated in the activity.  Each group of students had to 

create a written report of their finding where they had to 

give some background about the disease, explain the 

function and importance of the selected target, and 

demonstrate that they had identified a potential inhibitor for 

the targeted protein.  The groups were also required to 

present their work to the rest of the class with a PowerPoint 

presentation. 

 

4. STUDENT REACTIONS 
The students in the course were given an anonymous 

survey at the end of the semester.  The survey is included in 

the supplementary materials (survey.pdf).  The survey 

responses indicated a significantly increased awareness of 

the availability of supercomputing resources.  The surveys 

also showed that the students learned how to use the 

software for the project, including AutoDock Vina and 

PyMOL, and that the students learned new techniques in 

Excel.  The surveys demonstrated that the students became 

more comfortable using the command prompt and they also 

learned some simple UNIX commands.  Because there is a 

significant amount of scientific software that must be run 

from the command prompt, increasing the students’ 

comfort with the command prompt is very important as we 

try to prepare them for their future careers.  The students 

 

 
Figure 5: An image of one of the top binding 

inhibitors as calculated by AutoDock Vina.  This is 

an example of an image the students will generate 

during the project using PyMOL. 

 

also learned the importance of computation in science, as 

an alternative method of solving problems, so they 

understand that science can be done outside of a wet 

laboratory.  They also understood that supercomputing 

could be applied to problems in other domains and would 

recommend its use for other projects.  In addition to 

learning computational science techniques, students also 

demonstrated an increased understanding of fundamental 

chemistry concepts.   

 

The students in the class reacted very favorably to the 

laboratory.  All of the students felt that the laboratory 

manual was easy to follow.  At the end of the course, over 

one third of the students expressed a desire to continue 

working on the projects and in particular, work more on the 

computational aspect of the project and conduct virtual 

screens of more compounds to try to find more potent 

inhibitors.  These students, who were completing their 

Junior year, will be working on directed research projects 

related to the course projects in the upcoming year.  A large 

percentage of the graduating Seniors also expressed that 

they would have continued working on the projects if they 

were not graduating, and several said they might be willing 

to come back over the summer to continue until they had 

found jobs.  One student commented that she thought the 

computing aspect of the project was “extremely interesting 

and educational.”  Because this student was not very 

comfortable with using computers for science to begin 

with, we found that this was very encouraging.   

 

5. INSTRUCTOR REACTIONS 

AND LESSONS LEARNED 
It took 2.5 hours spread over two days for students to 

complete the laboratory activities other than the data 

analysis portion.  The students were able to complete the 
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Phase one activities in 1 hour, with each student working 

on their own computer.  During the first day, although the 

students were given the laboratory manuals, the instructor 

showed the students how to do the tasks on a computer 

where the screen was projected at the front of the 

classroom.  This was done to try to get the students more 

comfortable with some of the tasks that they might be less 

familiar with.  On the second day, students worked in their 

project groups, with one group per computer and the 

students were told to follow the laboratory manual’s 

instructions but to feel free to ask questions whenever they 

had any trouble.  Because of the detail of the laboratory 

manual, which included numerous screen captures, this 

worked well.  The instructors felt that the second day went 

smoother than the first day and believed that forcing the 

students to follow the laboratory manual rather than having 

one instructor demonstrating the tasks at the front of the 

room worked very well.  However, it may have been 

important to help the students get comfortable with the 

tasks during the first day of the laboratory by having them 

watch the instructor rather than having them simply follow 

the instructions on the laboratory manual. 

 

During the process of the students downloading the ssh 

client and the scp client, we learned that although the 

laboratory manual was very detailed, the students tended to 

have difficulty entering URLs correctly. As we progressed 

through the laboratory, we discovered that the same idea 

held for places where the students needed to type 

commands.    Instructors using this lab should be aware of 

the difficulties that the students had with entering URLs 

and commands so they are prepared for the inevitable 

questions about why something does not work.     

 

One issue that we did not anticipate was the amount of time 

that it took the server the students used in Phase one and 

Phase two of the laboratory to run the virtual screens.  The 

server used was a dual-core desktop computer that was 4-5 

years old and while it did the processing quickly enough 

during our testing of the laboratory materials before giving 

the laboratory to the students, multiplying the tasks the 

computer needed to do by 13 proved to be too much for the 

computer to handle gracefully.  While it completed all the 

tasks, it was slow enough in Phase one of the laboratory 

that we put the students into their project groups for Phase 

two and Phase three.  We recommend that others use a 

computer better equipped to handle the computational 

demands of the number of students. 

 

There are a few suggestions that we have for other 

instructors who will use this module when teaching their 

courses.  The number of students in each group in our class 

ranged from 2 to 5 students.  The groups were allowed to 

divide the work up as they wanted.  In the smaller groups, it 

appeared that all the student were extremely active.  In the 

larger groups, the amount of work varied vastly between 

students.  Thus, one suggestion we have is limiting the size 

of the student groups to 2-3 students.  The instructor may 

also want to load the protein files that students will use and 

the shell script onto the server before the laboratory, if they 

want to shift the focus more towards the chemistry aspect 

and minimize the computer science portion of the project.  

The instructor may want to mention before the laboratory 

that not every command that the students enter will result in 

significant visual output in the command window, as this 

confused several of our students.   

 

6. CONCLUSIONS 
We were able to develop a hands-on laboratory project that 

allows students to gain valuable experience in 

computational science with real-world applications.  We 

have been able to present the material in a manner that 

engaged the students and stimulated interest in 

computational science research.  Because all of the 

software is open source and all the required resources 

beyond what exist in any college computer lab are freely 

available through grants, this project can be done at schools 

of any size at no cost.  The project can be run as a pre-

packaged standalone laboratory assignment just to 

introduce students to virtual screening and computational 

chemistry or as a large semester-long project.  If the project 

is run as a full course project, it could be used to prepare 

students for directed research projects in drug discovery 

and senior thesis work.  Since computational science has 

become a more substantial part of a number of scientific 

disciplines, this project could be used as a model to develop 

other computational science lab projects. 

 

7. FUTURE WORK 
In continuing the development of this project, we will 

extend it to a full semester project.  In the full semester 

project, students would be required to use the information 

gathered from evaluating the hits in virtual screen to 

generate a second generation of inhibitors.  Thus, when 

students are evaluating the hits in PyMOL they will have to 

identify any additional interaction that can be utilized by an 

inhibitor.  This could be done by adding and additional 

hydrogen bonding acceptor or donor, creating a 

hydrophobic group to utilize a hydrophobic pocket, or 

removing a group that is creating an unfavorable steric 

effect. This deals with the properites a compounds should 

posses to be a more likely drug candidate.  Once the 

students have designed a set of compounds they will 

virtually construct them using Jmol 

(http://jmol.sourceforge.net/) and Open Babel 

(http://openbabel.sourceforge.net/), which are both open 

source software.  The compounds will then be re-screened  

to indentify which chemical modications had the largest 

effect on the binding affinity.  Lastly students would be 

asked to propose a synthesis for their top three hits.   

In future work, we will create an electronic lab kit, 

containing a step-by-step laboratory manual and either all 

the files or links to all the files, depending on licensing 

restrictions, that instructors would need to recreate the 

laboratory at their own institutions. 
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ABSTRACT
Complex scientific codes and the datasets they generate are
in need of a sophisticated categorization environment that
allows the community to store, search, and enhance meta-
data in an open, dynamic system. Currently, data is often
presented in a read-only format, distilled and curated by a
select group of researchers. We envision a more open and
dynamic system, where authors can publish their data in
a writeable format, allowing users to annotate the datasets
with their own comments and data. This would enable the
scientific community to collaborate on a higher level than
before, where researchers could for example annotate a pub-
lished dataset with their citations.

Such a system would require a complete set of permissions to
ensure that any individual’s data cannot be altered by others
unless they specifically allow it. For this reason datasets
and codes are generally presented read-only, to protect the
author’s data; however, this also prevents the type of social
revolutions that the private sector has seen with Facebook
and Twitter.

In this paper, we present an alternative method of publish-
ing codes and datasets, based on Fluidinfo1, which is an
openly writeable and social metadata engine. We will use
the specific example of the Einstein Toolkit, a shared sci-
entific code built using the Cactus Framework, to illustrate
how the code’s metadata may be published in writeable form
via Fluidinfo.

1. INTRODUCTION
Data management is quickly becoming a challenge in large
scale simulations and modeling as compute resources in-
crease in size, and simulations integrate with observational
and experimental data. Not only do these simulations pro-
duce increasingly large datasets, which must then be an-
alyzed and categorized, but the codes themselves become

1http://www.fluidinfo.com
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bear this notice and the full citation of the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright c©JOCSE, a supported publication of
the Shodor Education Foundation Inc.

more and more complex, often being developed by dis-
tributed teams. The Cactus Computational Toolkit2 is one
such software framework, comprising over 500 software mod-
ules (known as Thorns), of which a subset must be compiled
to produce a full simulation stack.

The Cactus Thorns specify their public interface using the
Cactus Configuration Language (CCL), which describes the
mechanics of the thorn, but provides little semantic data.
This makes it difficult to determine which of the hundreds
of thorns may be needed for a particular simulation. There
are two standard methods for dealing with these ambiguities:

1. Detail the semantics of every thorn in documentation
within the source tree. This is somewhat helpful when
a user has already downloaded the thorn in question,
but it does not help a new user discover useful thorns.

2. Collect documentation and use-cases for each thorn on
the main webpage for the framework. This is much
more helpful to new users in search of thorns, but
it raises new issues. Who maintains the website and
keeps the web-based documentation synchronized with
the source code? Thorns are generally maintained by
individual authors, not the community, so should all
authors have write access to the web server? If so, how
does one prevent authors from misrepresenting each
other’s codes? The end user is still presented a read-
only interface, meaning a user cannot easily annotate
and recommend useful thorns to others.

In the following sections, we will describe how Fluidinfo may
be used to annotate these datasets in a writeable manner,
while preserving the safety and integrity of the author’s orig-
inal data. We aim to show that the concept of “tagging,”
as introduced by social networking services, is well suited
to building and maintaining distributed scientific collabora-
tions in the computational sciences. Our approach is based
on loosely structured data, in contrast to other data formats
used in metadata and semantic web research. Section 2 ex-
amines other approaches to similar problems. Section 3 de-
scribes the Cactus Configuration Language, which contains
a substantial amount of Thorn metadata. Section 4 intro-
duces Fluidinfo, the writeable metadata engine, and its core
concepts. Section 5 describes specifically our strategy for

2http://www.cactuscode.org
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publishing the Einstein Toolkit metadata to Fluidinfo. Sec-
tion 6 investigates how the strategy presented in Section 5
may be adapted for publishing datasets as opposed to codes.
Section 8 reflects on the educational value of this project,
and the Blue Waters Undergraduate Petascale Education
Program that supported it.

2. RELATED WORK
Before discussing our approach to solving this problem, let
us examine other systems that could be used to support dis-
tributed collaboration. RDFPeers [3] is a distributed RDF
repository designed to solve scalability issues faced by many
centralized metadata stores. It uses a peer-to-peer archi-
tecture to spread metadata across many machines, and ef-
ficiently route queries to the appropriate machine. A dis-
tributed system like RDFPeers would be a natural fit for
our problem, as it could encourage authors to maintain the
metadata pertaining to their codes and datasets alongside
the actual data; however, we feel that RDF as a data format
may be excessively complex for our purposes. We believe
that a simpler format based on social tagging, like that used
by the Delicious bookmarking service3, would be sufficient
for our needs. In particular, RDF is based on triples of sub-
jects, predicates, and objects, whereas the tagging method we
describe only needs objects and attributes. Clearly we could
use RDF triples with a constant predicate hasAttribute,
but we gain little by doing so and incur additional complex-
ity.

The Social Accessibility [13] project attempts to help site-
owners keep up with accessibility standards by crowd-
sourcing some of the work. It is comprised of three pieces:
(1) a browser script with which end-users may register com-
plaints about websites and receive patches, (2) a browser
plugin to allow volunteers to investigate accessibility issues
and submit patches, and (3) a server that stores the com-
plaints and patches. When an end-user visits a website, the
browser script searches the server for any applicable patches,
retrieves them, and applies them to the page. The user’s
browsing experience is immediately enriched by the knowl-
edge of the community with little effort on the user’s part.
This project appears to have a similar goal to our own, en-
riching content via collaborative editing, albeit applied to a
different problem domain.

3. CACTUS CONFIGURATION LAN-
GUAGE

The Cactus Framework [15, 7] is an open source, modular,
portable programming environment for HPC computing4.
It was designed and written specifically to enable scientists
and engineers to collaboratively develop and perform the
large–scale simulations needed for modern scientific discov-
eries across a broad range of disciplines. Cactus is well suited
for use in large, international research collaborations. For
example, the Einstein Toolkit Consortium [16] is a collab-
oration of over 60 researchers who use Cactus for research
into relativistic astrophysics, and who maintain a core set of
some 175 modules.

3http://www.delicious.com
4This section was adapted from a previous paper on the
Cactus Configuration Language [1].

Figure 1: Cactus components are called thorns and
the integrating framework is called the flesh. The
interface between thorns and the flesh is provided
by a set of configuration files writing in the Cactus
Configuration Language (CCL).

3.1 Architecture
Cactus is a component framework. Its components are called
thorns whereas the framework itself is called the flesh (Fig-
ure 1). The flesh is the core of Cactus, it provides the APIs
for thorns to communicate with each other, and performs a
number of administrative tasks at build–time and run–time.
Cactus depends on three configuration files and two optional
files provided by each thorn to direct these tasks and provide
inter–thorn APIs. These files are:

• interface.ccl Defines the thorn interface and inher-
itance along with variables and aliased functions.

• param.ccl Defines parameters which can be specified
in a Cactus parameter file and are set at the start of a
Cactus run.

• schedule.ccl Defines when and how scheduled func-
tions provided by thorns should be invoked by the Cac-
tus scheduler.

• configuration.ccl (optional) Defines build–time de-
pendencies in terms of provided and required capabil-
ities, e.g. interfaces to Cactus–external libraries.

• test.ccl (optional) Defines how to test a thorn’s cor-
rectness via regression tests.

The flesh is responsible for parsing the configuration files at
build-time, generating source code to instantiate the differ-
ent required thorn variables, parameters and functions, as
well as checking required thorn dependencies.

At run-time the flesh parses a user provided parameter file
that defines which thorns are required and provides key-
value pairs of parameter assignments.5 The flesh then ac-
5Note that this parameter file is different from the file
param.ccl which is used to define which parameters exist,
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Schedule, Configuration
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Thorn guide, Examples, 

Metadata

Cactus Thorn

Figure 2: Cactus thorns are comprised of source
code, documentation, test–suites for regression test-
ing, along with a set of configuration files written
in the Cactus Configuration Language (CCL) which
define the interface with other thorns and the Cac-
tus flesh.

tivates only the required thorns, sets the given parameters,
using default values for parameters which are not specified
in the parameter file, and creates the schedule of which func-
tions provided by the activated thorns to run at which time.

The Cactus flesh provides the main iteration loop for simu-
lations (although this can be overloaded by any thorn) but
does not handle memory allocation for variables or paral-
lelization; this is performed by a driver thorn. The flesh
performs no computation of its own — this is all done by
thorns. It simply orchestrates the computations defined by
the thorns.

The thorns are the basic modules of Cactus. They are
largely independent of each other and communicate via calls
to the Flesh API. Thorns are collected into logical group-
ings called arrangements. This is not strictly required, but
strongly recommended to aid with their organization. An
important concept is that of an interface. Thorns do not
define relationships with other specific thorns, nor do they
communicate directly with other thorns. Instead they de-
fine relationships with an interface, which may be provided
by multiple thorns. This distinction exists so that thorns
providing the same interface may be interchanged without
affecting any other thorns. Interfaces in Cactus are fairly
similar to abstract classes in Java or virtual base classes
in C++, with the important distinction that in Cactus the
interface is not explicitly defined anywhere outside of the
thorn.

This ability to choose among multiple thorns providing the
same interface is important for introducing new capabilities
in Cactus with minimal changes to other thorns, so that
different research groups can implement their own particu-
lar solver for some problem, yet still take advantage of the
large amount of community thorns. For example, the orig-
inal driver thorn for Cactus which handles domain decom-
position and message passing is a unigrid driver called PUGH.
More recently, a driver thorn which implements adaptive
mesh refinement (AMR) was developed called Carpet [10, 9,

while the former is used to assign values to those parameters
at run-time.

4]. Carpet makes it possible for simulations to run with mul-
tiple levels of mesh refinement, which can be used to achieve
great accuracy compared to unigrid simulations. Both PUGH

and Carpet provide the interface driver and application
thorns can relatively straightforwardly migrate from unigrid
to using the advanced AMR thorn.

Thorns providing the same interface may also be compiled
together in the same executable, with the user choosing in
the parameter file, at run-time, which implementation to
use. This allows users to switch among various thorns with-
out having to recompile Cactus.

Thorns include a doc directory which provides the documen-
tation for the thorn in LATEX format. This allows users to
build one single reference guide to all thorns via a simple
command.

3.2 Tools
As a distributed software framework, Cactus can make use
of some additional tools to assemble the code and manage
the simulations. Oftentimes each arrangement of thorns re-
sides in its own source control repository, as they are mostly
independent of each other. This leads to a retrieval process
that would quickly become unmanageable for end-users (for
example the Einstein Toolkit is comprised of 135 thorns).
To facilitate this process we use a thornlist written using
the Component Retrieval Language [11], which allows the
maintainers of a distributed framework to distribute a sin-
gle file containing the URLs of the components and the de-
sired directory structure. This file can then be processed by
a program such as our own GetComponents script, and the
entire retrieval process becomes automated.

In addition to the complex retrieval process, compiling Cac-
tus and managing simulations can be a difficult task, espe-
cially for new users. There are a large number of options that
may be required for a successful compilation, and these will
vary across architectures. To assist with this process a tool
called the Simulation Factory [12, 14] was developed. Simu-
lation Factory provides a central means of control for manag-
ing access to different resources, configuring and building the
Cactus codebase, and also managing the simulations created
using Cactus. Simulation Factory uses a database known as
the Machine Database, which allows Simulation Factory to
be resource agnostic, allowing it to run consistently across
any pre-configured HPC resource.

4. FLUIDINFO
Fluidinfo is an openly writeable datastore, whose goal is to
extend collaborative tagging to all forms of data. Designed
around the metaphor of post-it notes, it is a collection of
objects and tags at its core, with a complete set of permis-
sions to give users full control over their data. Fluidinfo is
developed and hosted by Fluidinfo Inc., a start-up company.
This section will give a brief overview of the basic concepts
of Fluidinfo; a more detailed discussion may be found in the
official documentation [6].

4.1 Objects
One of the core concepts of Fluidinfo is that objects are
completely anonymous, having no owner and no inherent
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Figure 3: Visual representation of the Fluidinfo object for the song “Black Star” by Radiohead. Note the combination

of tags from a variety of users, with primitive and opaque values.

meaning. Objects exist solely as a container for tags, which
define their semantics.

4.2 Tags
Tags have owners and permissions, so while anyone can tag
an object, tags may be read-only, read-write, or completely
invisible to the outside world. When a tag is placed on an
object, it may contain any value, and the type of value need
not be consistent between tag-instances (although in prac-
tice this would be a good idea). Fluidinfo does, however dis-
tinguish between so-called primitive and opaque tag-values.

Primitive tag-values are a subset of the standard types
found in many programming languages: integers,
floating-point numbers, booleans, strings, the null
value, and sets of strings. Note that arrays, or sets
of anything other than strings are considered opaque
values. Primitive values are useful because Fluidinfo
allows indexing of these values, permitting more com-
plex and specific querying of tags with primitive values.

Opaque tag-values include any type of value that is not
considered primitive. This includes JSON arrays or
objects, binary data, anything that can be assigned
a MIME-type. Opaque values are not indexed, and
therefore users cannot search based on the contents of
opaque tags, merely their presence.

4.2.1 About Tag
If objects are anonymous and an instance of a tag may con-
tain any value independent of the other instances, one may
wonder how to identify a specific object. Fluidinfo allows
objects to be uniquely identified by a UUID (Universally
Unique Identifier6) and the so-called about-tag. The about-
tag, fluiddb/about, is a unique, immutable tag that may
optionally be provided when creating an object. This al-
lows for an object to be given some basic semantic value
without adding any user tags to it, which can be useful in
establishing tagging conventions.

4.3 Namespaces
Tags can be grouped together in Namespaces. All of a user’s
tags will live inside the user’s top-level namespace to avoid
conflicts with other users’ tags, but sub-namespaces can
be used to logically group tags. As an example, suppose
the Fluidinfo user eric created a rating tag in his top-
level namespace, the qualified name of that tag would be

6http://en.wikipedia.org/wiki/UUID

eric/rating. If we look back at Section 4.2.1, we can sur-
mise that there is actually nothing special about the about-
tag, it is simply a tag belonging to the fluiddb user, who is
guaranteed to never change the value.

4.4 Permissions
The core mechanic that allows Fluidinfo to be flexible is its
permissions system. Each namespace and tag has an explicit
set of permissions, describing exactly how users may interact
with the item in question. This affords users fine-grained
control over their data. They can publish it in read-only,
read-write, or write-only form, or even transfer entire control
of a namespace/tag to another user7. As an example of how
these permissions can be used, let us examine how Fluidinfo
creates new users. There is a tag, fluiddb/users/username,
placed on the object representing a user, that tells Fluidinfo
that such a user exists. The fluidinfo.com user has cre-
ate permissions for this tag, so when a new user signs up
on http://fluidinfo.com, the fluidinfo.com user creates a
new object and adds the fluiddb/users/username tag to
it, signifying that a new user has been created.

4.5 Fluidinfo Query Language
Fluidinfo includes a simple query language to allow users to
search the datastore for specific tags and tag-values. There
are five basic types of queries in Fluidinfo’s query language.

Presence queries are the simplest type. They check only
for the presence of a tag on an object, and are written
as has <tag>.

Numeric queries search for tags that have a specific value
using the standard mathematical equality operators,
and are written as <tag> (=,<,>,etc.) <value>.

Textual queries attempt to match the query text against
the text contents of a tag, and are written as <tag>

matches <text>.

Set contents queries check for the tags that contain the
given string. Note the difference between set contents
and textual queries: set contents apply to tags con-
taining a set of strings while textual queries apply to
tags containing a single string. Set contents queries
are written as <tag> contains <string>.

Logical queries combine the above types using the (, ),
and, or, and except operators. This allows arbitrarily

7For a more detailed and complete list of the allowed permis-
sions, visit http://doc.fluidinfo.com/fluidDB/permissions.
html
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complex queries, such as
(has eric/seen and (eric/rating > 4 or

john/rating > 8)) except imdb.com/rating < 5.

5. WRITEABLE METADATA ENGINE
FOR CACTUS COMPONENTS

In this section we will describe the desired capabilities for
handling metadata for simulation codes, such as the ability
to support open data objects and metadata which can then
be provided by any user, promoting community driven stan-
dards and enabling innovation. Such a system would allow
researchers to annotate the codes with their opinions, expe-
riences, or tips while preserving the integrity of the original
data. Social networks have already solved a subset of this
problem, but there is no equivalent system in use by the
scientific community.

Foursquare is a location-aware social networking site. Users
publish their presence at a physical location, e.g. a metro
station, a restaurant, a school, and can add photos or tips
for others. If the physical location does not exist, users can
add their own selecting basic metadata to describe the site.
Social features include the ability to see where your friends
are and have been, and to read the tips left by others.

Learning from this flexible model we envisage similar tools
for data that will encourage academic data to break free
from the current constraints of rigid schema, proprietary
and controlled databases and lack of social networking tools.
The general scenario we envisage is described below, here for
software components, although a similar methodology will
work for general data sets.

1. Software components (e.g. Cactus Thorns) are added
to Fluidinfo in the same manner as foursquare lo-
cations. Basic tags could for example be based on
the Dublin Core [5], with fields for authors, soft-
ware location, etc. These tags can only be edited
by the original user unless specified otherwise. An
object would be created in Fluidinfo for each soft-
ware component, we suggest an about-tag conven-
tion of CCTK:<arrangement>/<thorn>; however, this is
strictly optional as the thorns would also be identified
by their tags. There could also be multiple objects for
each thorn since they could be added by people other
than the original authors.

2. Trusted experts or consortia can then tag thorns to
provide a quality ranking, associate datasets generated
by the thorn, or warn new users of an existing bug. For
example, a maintainer for the Einstein Toolkit would
tag Cactus thorns with the release for which they have
been tested and verified. Users can then search for soft-
ware which has been ratified by the Einstein Toolkit
Consortium, or they could search for software that has
been recommended by a trusted colleague.

3. A graduate student is working on a research project to
develop a new ontology for scientific computing. She
can easily add tags representing this ontology to the
Cactus thorns, where the user community can test out
her work without necessitating new servers, or without
her having write access to the basic thorn tags.

We implemented a prototype of such a system for the Cactus
Thorns, with a web front-end written in Python [8]. The ini-
tial set of metadata we extracted from each thorn came from
the configuration files and the Readme, representing a sub-
set of the functional and bibliographical metadata contained
in each thorn, as seen in Table 1. These tags are added au-
tomatically by a Python script that parses the configuration
and Readme files of a thorn. The intent is for thorn authors
to run this script on their thorns, immediately populating
Fluidinfo with a set of Cactus metadata. Once the basic set
of metadata has been imported, we can begin to enhance
the existing data by adding other relevant tags to the ob-
jects representing thorns.

The Einstein Toolkit is a small subset of all Cactus thorns,
and thorns may be imcompatible with each other, e.g. if
they implement the same interface. Therefore it would
be useful for users to know if any given thorn is part of
the Einstein Toolkit; we can implement this quite nat-
urally by creating an einsteintoolkit.org user8, which
will tag all thorns in the toolkit with an einstein-

toolkit.org/includes tag with the value set to True. Fig-
ure 4 illustrates what the resulting Fluidinfo object might
look like.

Using this tag structure we created a simple web application,
running on Google’s AppEngine platform, to dynamically
retrieve the objects representing the Einstein Toolkit, and
insert the values into an HTML template for easy viewing
of the thorn metadata. Figure 5 shows a sample page from
this web application.

With these two sources of data we can already perform useful
queries on the Cactus metadata. Cactus uses a tool called
GetComponents [11] to automate the process of retrieving
many thorns from different locations. To accomplish this,
GetComponents essentially needs three pieces of informa-
tion:

1. Where the thorn is located (URL).

2. How to retrieve the thorn (version control system).

3. Where to place the thorn on the local filesystem.

All of this data is contained in the Fluidinfo tags posted by
the Python script9! So if we wanted to retrieve the Einstein
Toolkit, we could dynamically generate a file in the CRL
format GetComponents uses by querying Fluidinfo for all
objects that have einsteintoolkit.org/includes = True,
retrieving the tags

• gridaphobe/CCTK/arrangement

• gridaphobe/CCTK/name

• gridaphobe/CCTK/url

8Fluidinfo only allows the owner of a domain to create the
user for that domain, so domain users can be more readily
trusted.
9Cactus has a convention of placing thorns inside an
arrangements directory with the structure arrange-
ments/<arrangement>/<thorn>.
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gridaphobe/CCTK/name="carpet"

gridaphobe/CCTK/provides_function={Non-primitive type}

gridaphobe/CCTK/requires_function={Non-primitive type}

gridaphobe/CCTK/scm="git"

gridaphobe/CCTK/shares={Non-primitive type}

gridaphobe/CCTK/url="carpetgit@carpetcode.dyndns.org:carpet"

gridaphobe/CCTK/uses_function={Non-primitive type}

gridaphobe/CCTK/version="Unknown"

njr/index/about

einsteintoolkit/includes=True

fluiddb/about="CCTK:carpet/carpet"

gridaphobe/CCTK/arrangement="carpet"

gridaphobe/CCTK/authors={Non-primitive type}

gridaphobe/CCTK/description

gridaphobe/CCTK/implements="driver"

gridaphobe/CCTK/inherits={Non-primitive type}

gridaphobe/CCTK/language="Unknown"

gridaphobe/CCTK/licence="GPLv2+"

gridaphobe/CCTK/maintainers={Non-primitive type}

Figure 4: Visual representation of the Fluidinfo object for the Carpet module in the Einstein Toolkit.

Fully-qualified Tag Description

gridaphobe/CCTK/arrangement The arrangement the thorn belongs to.
gridaphobe/CCTK/authors A list of all authors of the thorn.
gridaphobe/CCTK/description The description of the thorn as found in the Readme.
gridaphobe/CCTK/implements A list of interfaces the thorn implements.
gridaphobe/CCTK/inherits The thorn (if any) inherited from.
gridaphobe/CCTK/name The name of the thorn.
gridaphobe/CCTK/scm The version control system used for the thorn’s source code.
gridaphobe/CCTK/url The URL where the thorn’s source code is located.

Table 1: A sample of the tags used to describe Cactus thorns in Fluidinfo. The tag names are fully-qualified
and assume the current user’s name is gridaphobe.

Figure 5: A prototype of a web application that
dynamically displays thorn metadata based on the
tags stored in Fluidinfo. The Einstein logo in the
top-right corner indicates that this thorn is part of
the Einstein Toolkit.

• gridaphobe/CCTK/scm

The returned data could then be reformatted into a CRL
file, and GetComponents invoked to automatically retrieve
the requested thorns10.

This is already a significant improvement over the current
system of creating and distributing a thornlist, which is both
tedious and error-prone, but we can go further and solve
a problem that was previously unsolvable. The Einstein
Toolkit thorns can all be compiled together; however, they
are not all needed to run individual simulations. Researchers
will generally only compile a subset of the Einstein Toolkit,
including just the thorns needed to model their particular
system. In this case downloading the entire Einstein Toolkit
is superfluous, we would like to simply download the thorns
that we actually need. Using the thorn configuration files, we
can construct a list of the thorns we will need to download
in order to use a specific base set of thorns, providing initial
data, drivers, and other components of a simulation [1]. We
can then dynamically retrieve the tags mentioned above for
only this subset of thorns, and provide GetComponents with
a much smaller list of thorns to download. This also has
the benefit of isolating the code in the source tree of any
simulation to only that which is necessary.

If we wanted to implement a system like this on our own,
we would have to setup a new webserver and database, de-
fine a schema to contain the data, create a REST API, and

10There are some issues not covered by this example, e.g.
the directory structure of different git repositories, but none
that could not be resolved by adding a few extra tags
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then assign someone to maintain the database and server.
If we additionally wanted the system to be writeable (or at
least have individual thorns managed by their authors), we
would then have to implement an authentication system as
well, and our data would still be limited to some pre-defined
schema. Fluidinfo allows others to add to our data, and we
can choose whether to ignore it or to begin incorporating
pieces into our applications.

6. FUTURE WORK
In the previous section we saw how to use Fluidinfo to store
the metadata of Cactus thorns in a writeable format, add
tags to those thorns from a different source, and then use
tags from both sources to solve a problem that previously
could not be solved without setting up our own web server.
We did, however, ignore one issue; the example only dealt
with thorns uploaded by one user, whereas the Einstein
Toolkit is comprised of thorns written by many different
authors. Suppose we don’t know who all of the authors are,
how will we know which tags to retrieve? For example, the
Carpet thorns are written by Dr. Erik Schnetter, but un-
less we know his Fluidinfo username, we won’t know how to
retrieve his tags. Fluidinfo does not currently support wild-
cards in the list of tags to return, so we must explicitly list
the tags we want. So how can we best adapt our solution to
the actual problem? There are two possible solutions:

1. Instead of using tags in the author’s namespace, we
could take advantage of Fluidinfo’s permissions system
to give all authors write permission to tags in a cac-

tuscode.org/CCTK namespace. This way we would al-
ways retrieve tags from the trusted domain user. This
solution detracts from the personalization of Fluidinfo
though, since the tags are coming from a domain user
instead of the author himself. In a sense this repre-
sents how we might solve the metadata problem on
our own, but with the extra downside that we can
no longer prevent authors from modifying each other’s
tags! Fluidinfo does not allow separate permissions per
tag-instance, and this would become far too complex
to manage regardless.

2. Create a cactuscode.org/author tag that would be
applied to the objects representing the users in Flu-
idinfo who are authors of Cactus thorns. This way
we can query Fluidinfo for the objects with the tag,
and ask it to return the fluiddb/users/username tag,
giving us a list of all Fluidinfo users who are also Cac-
tus authors. Then we can proceed with the process
described in Section 5. This solution has several ad-
vantages: (1) authors cannot modify each other’s tags
without explicit permission, (2) in the event of a tag
collision (where more than one author has tagged a
thorn) we can apply some filtering condition based on
the thorn’s own author list to determine which tags are
most authoritative, (3) we are actually adding more
data to the ecosystem by tagging the users as Cactus
authors.

6.1 Other Datasets
Supercomputers are generating massive amounts of data on
a daily basis, data which must be stored efficiently and then

classified so that it can be referred to and even cited. Our
strategy in Section 5 can easily be adapted to solve this prob-
lem. Suppose we run a simulation of two colliding neutron
stars and store the resulting dataset. We can now create
an object in Fluidinfo to represent this simulation, and tag
it with the machine used, number of cores, initial values,
duration, and any number of other relevant statistics about
both the simulation and the output. Then a PhD student
uses our dataset in her thesis; she can tag the dataset in
Fluidinfo with a <student>/cited tag whose value would
be a list of all papers in which she cited our dataset (likely
using DOIs). If she is consistent in tagging the datasets
she has cited, we could perform interesting queries using
Fluidinfo, i.e. we could quickly determine which supercom-
puters had contributed most to her work. Other researchers
might tag the datasets with specific situations where they
proved useful, or perhaps related datasets. With a write-
able, schemaless system, the datasets may be augmented in
any fashion deemed suitable by users. This allows for use-
cases the original publisher could not have conceived of to
arise organically.

It is becoming clear that citing datasets produced by sim-
ulations will be essential for continued scientific progress,
one need look no further than the NSF’s Computational and
Data-Enabled Science and Engineering11 program. Ball and
Duke have raised some important questions that will have
to be answered for data citation to become widespread [2].
We would like to address the question of how the metadata
can be stored in a manner accessible both to humans and
automated scripts. By storing the metadata in a shared
datastore like Fluidinfo, it is immediately available for con-
sumption by scripts, and by extension easily converted into
a human-readable page as we have demonstrated in this pa-
per. We also gain the advantage of not being tied to any
schema, allowing us to freely add more metadata whenever
necessary. Finally, the writable nature of Fluidinfo removes
the author’s responsibility of linking to all papers that have
cited the dataset. The author of a paper can simply tag the
dataset in Fluidinfo!

7. CONCLUSION
Scientific research is increasingly dependent on the simula-
tion of complex processes and, by extension, on the ability to
organize, search, and refer to the datasets generated by sim-
ulations. We propose using writable metadata to distribute
and maintain scientific metadata, and have shown one possi-
ble method of implementing such a system. More work will
be required to investigate alternative systems, schemas, and
interfaces, as well as to determine what would be an optimal
solution. We hope that the scientific community will take
this opportunity to start a conversation about how to man-
age the large amounts of data currently being generated by
our research on a daily basis.

8. EDUCATIONAL EXPERIENCE
The research presented in this paper was performed as part
of a year-long internship sponsored by the Shodor Educa-
tional Foundation12. The program began with a two-week

11http://www.nsf.gov/mps/cds-e/
12http://www.shodor.org
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intensive introduction to HPC, covering parallelization is-
sues, N-Body problems, MPI, and other computational sci-
ence topics. Following the introductory session, the interns
split up to work with individual mentors for the rest of the
year. While not strictly related to Computational Science,
the research presented in this paper was strongly supported
and enhanced by the Blue Waters Petascale Internship, es-
pecially the focus on solving real problems.
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T. Radke, E. Seidel, and J. Shalf. The Cactus
framework and toolkit: Design and applications. In
Vector and Parallel Processing – VECPAR’2002, 5th
International Conference, Lecture Notes in Computer
Science, Berlin, 2003. Springer.

[8] Python Programming Language.

[9] Erik Schnetter, Peter Diener, Nils Dorband, and
Manuel Tiglio. A multi-block infrastructure for
three-dimensional time-dependent numerical relativity.
Class. Quantum Grav., 23:S553–S578, 2006.

[10] Erik Schnetter, Scott H. Hawley, and Ian Hawke.
Evolutions in 3D numerical relativity using fixed mesh
refinement. Class. Quantum Grav., 21(6):1465–1488,
21 March 2004.

[11] Eric L. Seidel, Gabrielle Allen, Steven Brandt, Frank
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ABSTRACT 
An ab initio density functional theory based method that has a 
long history of dealing with large complex systems is the 
Orthogonalized Linear Combination of Atomic Orbitals 
(OLCAO) method, but it does not operate in parallel and, while 
the program is empirically observed to be fast, many components 
of its source code have not been analyzed for efficiency. This 
paper describes the beginnings of a concerted effort to modernize, 
parallelize, and functionally extend the OLCAO program so that it 
can be better applied to the complex and challenging problems of 
materials design. Specifically, profiling data were collected and 
analyzed using the popular performance monitoring tools TAU 
and PAPI as well as standard UNIX time commands. Each of the 
major components of the program was studied so that parallel 
algorithms that either modified or replaced the serial algorithm 
could be suggested. The program was run for a collection of 
different input parameters to observe trends in compute time. 
Additionally, the algorithm for computing interatomic interaction 
integrals was restructured and its performance was measured. The 
results indicate that a fair degree of speed-up of even the serial 
version of the program could be achieved rather easily, but that 
implementation of a parallel version of the program will require 
more substantial consideration.   

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – performance measures.  

General Terms 
Algorithms, Measurement, Performance. 

Keywords 
Density functional theory, atomic orbitals 

 

 

1. INTRODUCTION 
Advanced materials have played a pivotal role in recent 
technological progress, often causing the demand for designer 
characteristics or novel properties to outpace our ability to 
understand these complex materials at a fundamental level. This 
pressure to master materials at the nanoscale has pushed forward 
the development of many theoretical approaches and the 
implementation of many computational methods. A particular area 
of interest includes structures with defects that are on the order of 
10 nanometers in size because many bulk structural and electronic 
properties of materials are dominated by the properties of the 
defect. Density functional theory (DFT) based approaches 
represent the current state of the art for the application of theory to 
materials problems that require both high accuracy and high 
efficiency. This is a position somewhat between the larger scale 
molecular dynamics methods and the smaller scale but often more 
accurate quantum chemical methods. Some of the issues that DFT 
is well suited to deal with include catalysis processes [15], 
configuration of ultra-dilute dopants in crystal structures [27], and 
the determination of the tensile strength of bioceramics [5]. DFT 
is a computational, quantum mechanical framework for the 
modeling of materials and it is being actively applied with much 
success across a wide breadth of fields within a growing number 
of scientific domains. Density functional theory was created in a 
sequence of two papers by Hohenberg and Kohn [14] and Kohn 
and Sham [17]. They presented the method as one that reduces the 
problem of determining the many-body ground state wave 
function to one of determining only the charge density. For a 
system of N interacting electrons this reduces the problem from a 
space of 3N dimensions down to a space of just three. A type of 
mean-field approach is used that solves a one-electron problem 
where the potential is derived from the charge density distribution 
of all the electrons in the system. A self-consistent field (SCF) 
cycle iterates through determination of the wave-function, the 
charge density distribution, and the potential until there is no 
change in these terms.  Since its original inception, much work 
has been done to enhance this method, and a review of the theory 
can be found in a paper written by Peter Blöchl [1]. Presently, 
there exist a variety of different implementations of DFT that can 
be divided into a few prominent camps based on the choice of 
basis functions used to expand the system wave function, the 
representation of the potential function, and the representation of 
the charge density [20]. Each of the main approaches to DFT has 
its own set of advantages and disadvantages that make it 
particularly applicable to one range of materials and problems or 
another. 
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Although DFT provides an incredible simplification of the 
quantum mechanical many-body problem while still retaining 
excellent accuracy, the types of problems that are of the most 
interest still require prohibitive amounts of time for even the 
fastest computer processor to solve. Hence, parallel processing 
has become an invaluable tool and many DFT program codes 
have been adapted to take advantage of this high performance 
computing (HPC) capability. Interestingly though, the 
programming style required to develop parallel algorithms is 
significantly different from the approach of serial algorithms 
which sometimes makes it difficult to parallelize an existing code 
and gain as much efficiency as is desired. Therefore, when 
parallelizing an existing serial application, performance analysis 
of the existing algorithm lends some helpful insight about which 
sections of a program are the most computationally expensive and 
why. This could be used to determine whether the algorithm 
should be simply modified for a parallel execution environment or 
if it needs to be totally rewritten. 
 
This paper describes the beginnings of a concerted effort to 
modernize, parallelize, and functionally extend a particular DFT 
based program so that it can be applied to the complex and 
challenging problems of materials design. Specifically, profiling 
data was collected and analyzed using widely available and 
portable external libraries and standard UNIX/Fortran time 
commands. Then, each of the major components of the program 
was studied so that parallel algorithms could be suggested that 
either modified or replaced the serial algorithm. 

2. METHODS 
The primary focus of this development work is the 
Orthogonalized Linear Combination of Atomic Orbitals 
(OLCAO) method [29]. This is a density functional theory based 
method that uses Gaussian based atomic orbitals in the solid state 
wave function expansion and atom centered Gaussian functions 
for an analytical description of the potential and charge density 
distribution functions. OLCAO has found particular application in 
the study of the electronic structure, bonding, and spectroscopic 
properties of large and complex materials systems ranging from 
amorphous solids [9–11,	
  16] and complex crystals [3,	
  18,	
  19,	
  30] 
to those containing large scale structures such as grain boundaries 
(GBs) [6,	
  21,	
  23], intergranular glassy films (IGFs) [7,	
  8,	
  25], and 
passive defects [4,	
  24].  Of particular interest to the development 
work that was started as a part of the Blue Waters – 
Undergraduate Petascale Education Program (BW-UPEP) 
Internship is the capability of the OLCAO method with regard to 
performing core level spectroscopic calculations such as x-ray 
absorption near edge structure or electron energy loss near edge 
structure (XANES/ELNES) [12,	
  13,	
  24,	
  27]. An extension of the 
normal spectral calculation is being developed within OLCAO 
whereby spectra are computed for every atom in a model and then 
brought together to form an image that correlates spectral features 
with atomic structure [24]. This spectral imaging technique will be 
quite computationally intensive and while the OLCAO program is 
efficient and capable of being used to compute the 
XANES/ELNES spectra of rather large systems it is still a serial 
application and thus the calculation times can be quite lengthy, 
sometimes lasting more than a few days. There are two key 
mathematical operations that are performed in OLCAO. The first 
is the analytic calculation of a set of integrals between atomic 
orbitals in various forms given for s-type orbital in Equations 1-4. 
 

(1) 
 

 
(2) 

 
 

(3) 
 
 

(4) 
 
Equation 1 represents the overlap of two s-type Gaussian orbitals. 
Equation 2 also shows integration of s-type Gaussians but with the 
Laplacian operator for the computation of the kinetic energy. 
Equation 3 accounts for the contribution of the nuclear interaction 
to the total potential. Equation 4 is a three center integral between 
s-type Gaussians that is used for determining the Coulombic 
electron – electron contribution to the total potential. Higher 
angular momentum integrals can be derived from these equations 
via repeated differentiation making progressively more 
complicated formulas [29]. The second major operation is the 
processes of solving the eigenvalue problem that obtains the wave 
function expansion coefficients and associated energy 
eigenvalues. This requires the complete diagonalization of a large 
matrix. Some key parameters that affect the cost of these 
operations are the number of atoms in the system, the number of 
basis functions used for each atom (typically identified as either a 
minimal, full, or extended basis), the number of k-points 
(Brillouin zone integration sampling points), and the number of 
terms used to describe the potential function. Parallelization of 
these operations could significantly decrease the calculation time 
or, if the calculation time is maintained, it would allow for the 
study of much larger systems. 
 
In addition to the time stamps given by OLCAO, we used tools 
such as the Tuning and Analysis Utilities (TAU) [26] and the 
Performance Application Protocol Interface (PAPI) [2]. TAU and 
PAPI exist as a set of library function calls that are instrumented 
into the source code of a program to track a wide variety of 
information ranging from simple subroutine runtimes to the 
number of times that specific CPU events, such as a cache miss or 
an execution branch, occur. The TAU package is described as a 
“portable profiling and tracing toolkit for performance analysis of 
parallel programs.”[28] However, it does have particular uses in 
the analysis of serial programs as well. PAPI, similar to TAU, is a 
portable kit that accesses hardware performance counters 
physically present on modern microprocessors. The aim of PAPI 
is “to see, in near real time, the relation between software 
performance and processor events.” [22] Memory access overhead 
and branching performance were of particular interest in this 
study to understand where bottlenecks in OLCAO may exist. 
Memory access overhead is a fundamental problem, especially for 
HPC, because the processors often operate at data rates that are 
much faster than the data transfer rates to memory so that if the 
CPU is not well supplied with data it will sit idle. Understanding 
the cache performance of a program can help the programmer 
reorganize data structures to provide more efficient memory 
access. Conditional branch prediction is another important area 
because modern CPUs maintain a pipeline of operations and when 
a branch is mispredicted the pipeline must be flushed and refilled 
at substantial cost to efficiency. These were the primary tools that 
were used to explore the characteristics and efficiency of the 
algorithms in the OLCAO program suite. 
 
The first step to parallelizing OLCAO is to develop a base line 
understanding of its serial execution performance in terms of the 
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compute time for different sections of the code under different 
conditions. To do this, a series of different materials systems were 
selected and parameters that control the computational cost of the 
calculation were varied systematically. Two machines were used 
to collect the performance data, a local workstation using the 
commercially available AMD Phenom II X6 1090T processor and 
the Pittsburg Supercomputing Center’s Blacklight machine which 
uses the Intel Xeon X7560 processor. Smaller system calculations 
were performed on the local workstation while the larger system 
calculations made use of Blacklight. The performance trends were 
observed using a variety of tools. Specifically, timing data for 
different sections of the OLCAO program were collected first by 
using Fortran write statements that recorded the current time. This 
gave an initial understanding of the effects of parameter changes 
and did not require any modifications to the program code 
because such write statements already existed. Then, particular 
sections of the code were identified and studied with TAU and 
PAPI because they are more fine grained tools for understanding 
the reason why a particular algorithm behaves as it does. The data 
that was collected using TAU and PAPI included the rate of 
branching misprediction for the combination of different compiler 
flags and changes in the algorithm for a particular section of code. 
The code in the select section was restructured with the intent of 
reducing the number of conditional statements encountered 
overall. 

3. RESULTS AND DISCUSSION 
The profiling techniques described in section 2 were applied to the 
OLCAO program for three different material systems with a 
systematic variation of parameters. The systems used in the study 
were a 907 atom model of an IGF within crystalline β-Si3N4, a ten 
base pair periodic model of DNA with 650 atoms (computed on 
Blacklight), and a series of supercells of pure Al (computed with a 
local workstation). Details of the key structural parameters of each 
system are provided in Table 1 and an illustration of each system 
is provided in Figure 1. 
 
Table 1: Crystal Structure Details 

	
   IGF	
   DNA	
   Al	
  Full	
  Cell	
  

a	
  (Å)	
   14.533	
   30.000	
   4.050	
  

b	
  (Å)	
   15.225	
   30.000	
   4.050	
  

c	
  (Å)	
   47.420	
   39.208	
   4.050	
  

α	
  (°)	
   90	
   90	
   90	
  

β	
  (°)	
   90	
   90	
   90	
  

γ	
  (°)	
   90	
   90	
   90	
  

#	
  of	
  Atoms	
   907	
   650	
   4	
  

#	
  of	
  Electrons	
   4288	
   2220	
   12	
  

Matrix	
  
Dimension	
  

9111	
  
(Full	
  Basis)	
  

4740	
  
(Full	
  Basis)	
  

52	
  
(Full	
  Basis)	
  

Elements	
   Si,	
  N,	
  O	
  
C,	
  H,	
  N,	
  Na,	
  

O,	
  P	
  
Al	
  

 
The IGF and DNA material systems were specifically chosen as 
representatives of particular classes of materials that are of current 
research interest and therefore represent the types of systems 
likely to be encountered by the OLCAO program in practice. 
Also, these systems possess specific features that can make their 
comparison helpful. The IGF and DNA models both have a 
relatively large number of atoms but the dimension of the 

interaction matrices for the IGF and the number of electrons is 
larger in it compared to the DNA model by a factor of about two. 
The dimension is larger because the Si in the IGF includes 
unfilled 3d atomic orbitals in its basis while the DNA model has 
no atoms with 3d orbitals in its basis. The number of electrons is 
larger because the IGF contains no H and thus every atom has 
more electrons. For the IGF and DNA models it is also possible to 
easily and realistically alter the number of independent terms in 
the potential function representation. This is done by changing the 
threshold criteria for how similar two atoms need to be with 
respect to their local environment before they can share the same 
potential function values. This “sharing of values” between 
potential sites means that fewer terms are used in the potential 
function and thus that fewer independent interaction matrices need 
to be created. This issue is a particular characteristic of the 
representation of the potential function in OLCAO and is not 
generally applicable to all DFT based methods. 
 

 
 

 
 
The first level of analysis was done with a simple measurement of 
the amount of time that different segments of the OLCAO 
program took to run calculations on the IGF model and the DNA 
model when the number of terms in the potential function was 
modified. In particular, two key sections, identified as "Setup" and 
"Main," were analyzed to find the most time expensive parts of 
their code.  The "Setup" (integrals, electrostatics, exchange-
correlation) and "Main" (Secular Equation [preparation, solution], 
and everything else) programs comprise the self-consistent field 
(SCF) implementation of OLCAO. These programs and their 
components are illustrated schematically in Figure 2. 
 

(c) 

(a) 

(b) 

Figure 1:  Ball and stick models of the material systems 
studied. (a) An intergranular glassy film model in β-
Si3N4; (b) A ten base pair periodic model of DNA with Na 
counter ions; (c) A sequence of three crystalline Al 
supercells 5×5×1, 5×5×2, and 5×5×3. 
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The runtime analysis of these components is show in Figure 3. In 
the IGF system, the ratio of the calculation time for the integrals 
compared to the rest of the setup calculation is quite large (Figure 
3a). We also see that the long-range coulomb and exchange 
correlation calculations are almost unaffected by the number of 
potential terms, with the majority of the time being spent with the 
interaction integrals. In the sections of main we see that as the 
number of terms increases the preparation time of the secular 
equation quickly grows to be much larger than the time it takes to 
solve the secular equation. In this case the preparation is simply 
the task of reading the packed matrix data stored on disk by setup, 
unpacking it, and applying a coefficient to each matrix before 
accumulating it. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
When the same type of analysis is done for the DNA system, as 
shown in Figures 3c and 3d, we see a similar trend to that of the 
IGF system, where the interaction integrals grow more costly as 
the number of potential terms increases. Also, the long-range 
Coulomb calculations have more of a presence here due to the 
larger cell size and thus a larger number of reciprocal space cells 
needed for the convergence of the Ewald summation series. 
Considering the run length of the program “Main”, the trend is 
similar to the case of the IGF. The similarity of the trend is 

expected, but a comparison of the two systems presents some 
confusion. The total time of even the longest run of Setup for the 
DNA model (about 260 minutes with 512 terms in the potential 
function) is less than the shortest IGF model run with only 48 
terms in the potential function (about 815 minutes). This is likely 
due in large part to the larger size of the interaction matrix for the 
IGF model (i.e. it has many more basis functions), but there may 
also be something more subtle at work. That is, the number of 
nearest neighbors for a given atom in the DNA model is, on 
average, less than that of the IGF model because DNA is a 
molecule with exposed surface boundaries and lots of H. This will 
substantially reduce the number of interaction integrals that will 
need to be calculated resulting in an interaction matrix that is not 
only smaller, but also sparser. 
  
The pure Al model was chosen because of its simplicity and for 
the fact that we could vary specific parameters with less worry 
about how the innate characteristics of the model might mask the 
effect of a change in other parameters such as the number of k-
points or the choice of a full, minimal, or extended basis. The 
results of the timing runs for a constant number of terms in the 
potential function are shown in Figure 4. 
 

 

 
 
In the study of the Al runtime performance we see that OLCAO is 
more sensitive to changes in the basis than to increases in the 
number of k-points. When k-points are added the effect is 
multiplicative so that doubling the number of k-points effectively 
doubles the cost of the calculation while when the basis size is 
increased a non-linear trend is observed. For the 300 atom case, 
an approximate doubling of the basis size from full to extended 
more than doubles the cost of the calculation for both Setup and 
Main. This is expected because the basis size affects the 
interaction integrals matrix size which scales as the square of the 
dimension. This is clear in the "Main" section because it shows an 
increase in calculation time for the extended basis that is 
approximately four times greater than for the full basis. In setup 
this change was much less exaggerated with only about a three 

Figure 4:  Illustration of the execution time for 
calculations of various sections of the OLCAO Setup and 
Main programs for three Al supercell models with 
variation in the number of k-points and the size of the 
basis set. (a) Setup and k-points; (b) Main and k-points; 
(c) Setup and basis size; (d) Main and basis size. 
 

Figure 3:  Illustration of the execution time for the IGF 
and DNA models for various sections of the OLCAO 
Setup and Main programs and various number of 
potential terms as measured by Fortran time records.  (a) 
Setup and IGF; (b) Main and IGF; (c) Setup and DNA; 
(d) Main and DNA. 
 

Figure 2:  Schematic of the components of the SCF 
portion of the OLCAO program.  (a) Setup; (b) Main. 
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times increase. One important note is that as the system size 
increases the number of k-points needed for a high resolution 
calculation decreases. Because OLCAO is typically used for large 
and complex systems, the number of k-points is often just equal to 
one. 
 
Beyond the crude timing data, a series of calculations were 
performed to study the performance of some of the most costly 
components of the program using TAU and PAPI. The 
multicenter interaction integrals take a significant portion of the 
overall time which is typical for all atomic orbital based methods. 
Another component that is more specific to the OLCAO program 
is the orthogonalization procedure. This modifies the resultant 
interaction matrix to force the valence orbitals to be orthogonal to 
the core orbitals. For large systems this could be a costly step 
because a sequence of matrix-matrix multiplications is required. 
The program code for computing those integrals and for doing the 
orthogonalization has performed well for decades, but it has also 
not been evaluated for efficiency in just as long. Hence a 
concerted effort is underway to evaluate and possibly improve this 
aspect of the program. 
 
For the analysis of the OLCAO program using TAU and PAPI a 
different set of Al supercells was used. They were 1×1×1, 2×2×2, 
and 3×3×3 supercells of the full cell so that the models had 4, 32, 
and 108 atoms respectively. The goal of the orthogonalization 
subroutine analysis was simply to count the number of branches 
encountered by the program for a given compiler optimization 
level. The collected data is shown in Table 2. For level two 
compiler optimization (obtained using the –O2 compiler flag) the 
branch misprediction rate was slightly better than that obtained 
with level three optimization. However the total number of 
branches encountered by the program under level two 
optimization was significantly greater than that encountered under 
level three optimization. This result may have been expected, but 
an unusual second result was that the misprediction rate for the 
2×2×2 supercell for both levels of optimization was significantly 
higher than for both of the other two supercells. This exercise 
indicates that interpreting the results of higher level code analysis 
can have important subtleties that can be easily overlooked. 
 
Table 2: Al Supercell Orthogonalization Subroutine 
Branching Data 

Cell	
  and	
  
Optimization	
  

Miss-­‐	
  

Predicted	
  (%)	
  

Correctly	
  

Predicted	
  (%)	
  
Total	
  

1x1x1	
  -­‐O2	
   3.92	
   96.06	
   7748064	
  

1x1x1	
  -­‐O3	
   3.97	
   96.03	
   7749479	
  

2x2x2	
  -­‐O2	
   6.52	
   93.48	
   62052410	
  

2x2x2	
  -­‐O3	
   6.81	
   93.19	
   59604903	
  

3x3x3	
  -­‐O2	
   3.01	
   96.99	
   1222164262	
  

3x3x3	
  -­‐O3	
   3.86	
   96.14	
   957394561	
  

The analysis of the integration subroutine was also performed as a 
comparison between level two and level three compiler 
optimization, and it was also performed for the case of a 
modification in the algorithm versus the unmodified algorithm. 
The essential modification is that depending on the particular 
atoms it may be necessary to perform only s-type with s-type 
integration, or perhaps s-type with p-type or only up to p-type 
with p-type. In other cases the integral may need to include all the 
way up to the complicated d-type with d-type integral. The 

subroutine that performs the integrals checks along the way to 
determine which integrals to do, but it was observed that this 
sequence of “if-else” blocks in the code was repetitive such that if 
the section was rewritten one block could replace a sequence of 
three or four. This replacement option was present multiple times 
in the algorithm. The data from the sequence of TAU and PAPI 
runs are shown in Tables 3 through 6.  The different types of 
integrals correspond to those given in Equations 1 through 4 plus 
all of the similar integrals of the higher angular momentum 
orbitals. Again, the trend is clear. The higher level of optimization 
had a higher percentage of branch miss-predictions, but the total 
number of branches was significantly less. When the comparison 
is between the old and the new algorithm the total number of 
branches drops in all cases, but again the branch miss-prediction 
percentage increases. 
 
Table 3: Original Integration Subroutine With –O2 
Optimization. 

Integral	
  

Type	
  

Miss-­‐	
  

Predicted	
  (%)	
  

Correctly	
  

Predicted	
  (%)	
  
Total	
  

1	
   1.00	
   99.00	
   53795827	
  

2	
   1.09	
   98.91	
   67004191	
  

3	
   1.44	
   98.58	
   208187973	
  

4	
  (Avg.)	
   1.35	
   98.65	
   310677930	
  

 
Table 4: Original Integration Subroutine With –O3 
Optimization. 

Integral	
  

Type	
  

Miss-­‐	
  

Predicted	
  (%)	
  

Correctly	
  

Predicted	
  (%)	
  
Total	
  

1	
   1.95	
   98.08	
   9767131	
  

2	
   2.58	
   97.42	
   9766631	
  

3	
   2.37	
   97.63	
   63389710	
  

4	
  (Avg.)	
   2.04	
   97.96	
   66161685	
  

 
Table 5: Modified Integration Subroutine With –O2 
Optimization. 

Integral	
  

Type	
  

Miss-­‐	
  

Predicted	
  (%)	
  

Correctly	
  

Predicted	
  (%)	
  
Total	
  

1	
   0.92	
   99.08	
   53415195	
  

2	
   0.99	
   99.01	
   66378834	
  

3	
   1.16	
   98.84	
   207903892	
  

4	
  (Avg.)	
   1.24	
   98.76	
   310464531	
  

 
 
Table 6: Modified Integration Subroutine With –O3 
Optimization. 
Integral	
  

Type	
  

Miss-­‐	
  

Predicted	
  (%)	
  

Correctly	
  

Predicted	
  (%)	
  
Total	
  

1	
   1.96	
   98.04	
   8988970	
  

2	
   2.75	
   97.25	
   9140602	
  

3	
   2.92	
   97.08	
   60653657	
  

4	
  (Avg.)	
   2.40	
   97.60	
   57420935	
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4. CONCLUSION 
The sections of the OLCAO program associated with the SCF 
calculation were analyzed for their performance characteristics 
using both simple timers and more complicated instrumented 
performance monitoring tools. The results confirm some 
previously held beliefs about the relative computational cost of 
various components of the setup and main programs and also 
introduced some new and as yet unexplained results. Clear results 
include the fact that the computation of the interaction integrals is 
generally the most expensive but that preparing the Ewald 
summation data structures can become time consuming when the 
cell size becomes large. The overall cost of the interaction 
integrals calculation scales primarily with the number of terms in 
the potential function. The calculation cost scaled linearly with an 
increase in the number of k-points while it increased super-
linearly (quadratically) with an increase in the size of the basis. 
Generally, the timing data was observed to be crude but it was 
also good at giving a big picture of the behavior of the program 
and so a key conclusion is that sometimes it is not necessary to 
apply highly sophisticated methods to get a good initial 
understanding. However, it is often difficult to totally isolate one 
particular variable, especially when attempting to model realistic 
calculation performance. This may be because multiple effects are 
correlated or because the model under study has characteristics 
that are not apparent simply in terms of the number of atoms, 
potential terms, matrix dimension, etc. This was exemplified by 
the smaller average atom density in the DNA model compared to 
the IGF model. The conclusion is that extreme care must be taken 
when interpreting any profiling results as it may be possible for 
subtle effects to skew the data. 
 
Additional profiling data was obtained for the specific subroutines 
that involve the interaction integrals computed in OLCAO. The 
results indicated that even a simple attempt at code restructuring 
was able to produce noticeable results. We can conclude from this 
that while the algorithm may be fast because of its analytic nature, 
it is quite likely that significant improvements can be obtained by 
implementing a better approach to the calculation. The reasoning 
is that if even a straightforward modification can produce such 
dramatic results, then it is likely that a deeper degree of 
consideration will produce more substantial results. This also 
demonstrates that even though the profiling mission was to set the 
stage for later parallelization, it is entirely possible that the 
analysis will spark a deeper understanding of a subroutine or 
algorithm that will remain entirely serial but which may have a 
significant effect on the overall efficiency. 
 
Another important conclusion that can be drawn from this study is 
that good profiling must come from the intelligent application of 
multiple tools, both crude and advanced. The fine grained 
advanced tools can often help provide the insight needed to 
understand why a particular algorithm behaves the way it does, 
but crude measurements can provide the appropriate context in 
which to interpret that data. It is not possible to naively apply a 
powerful tool kit and expect it to do all the work and provide clear 
results. Rather, deep consideration is required to sort out the 
significance of the results for the variety of probing techniques. 
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ABSTRACT 

The R(m, n) instance of the party problem asks how many people 

must attend a party to guarantee that at the party, there is a group 

of m people who all know each other or a group of n people who 

are all complete strangers.  GPUs have been shown to 

significantly decrease the running time of some mathematical and 

scientific applications that have embarrassingly parallel portions. 

A brute force algorithm to solve the R(5, 5) instance of the party 

problem can be parallelized to run on a number of processing 

cores many orders of magnitude greater than the number of cores 

in the fastest supercomputer today.  Therefore, we believed that 

this currently unsolved problem is so computationally intensive 

that GPUs could significantly reduce the time needed to solve it.  

In this work, we compare the running time of a naïve algorithm to 

help make progress solving the R(5, 5) instance of the party 

problem on a CPU and on five different GPUs ranging from low-

end consumer GPUs to a high-end GPU.  Using just the GPUs 

computational capabilities, we observed speedups ranging from 

1.9 to over 21 in comparison to our quad-core CPU system.   

General Terms 

Parallel Programming, GPGPU, Ramsey Theory 

Keywords 

Blue Waters Undergraduate Petascale Internship, CUDA, Party 

Problem, Performance Comparison 
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1. INTRODUCTION 
Ramsey Theory is an area of mathematics concerned with "the 

mathematical study of combinatorial objects in which a certain 

degree of order must occur as the scale of the objects becomes 

large" [1].  Applications of Ramsey Theory include computational 

geometry, information theory, complexity, and parallelism [2].  

The party problem is a problem in Ramsey Theory.  The R(m, n) 

instance of the party problem asks how many people must be 

invited to a party (assuming that all the invitees will attend) to 

guarantee that at the party, there is a group of m people who all 

know each other or a group of n people who are all complete 

strangers.  Thus, the solution to the R(5, 5) instance of the party 

problem indicates the fewest number of people required to attend 

a party to guarantee that at the party, there will be a group of 5 

people who all know each other or a group of 5 people who are all 

complete strangers.  While the party problem has been solved for 

some small values of m and n, it has yet to be solved for values of 

m and n that are both equal and at least 5 [3].  For several of these 

cases, the bounds on the answers to the problem have been 

established [3].  For example, it is known that 43 ≤ R(5, 5) ≤ 49 

[3]. 

 

To help visualize the party problem, 2-colored graphs are 

typically used to show the relationship between the people as 

either acquaintances or strangers. The graphs consist of vertices 

representing the people and edges that connect every vertex to 

every other vertex, forming a complete graph.  A red edge 

connecting two vertices indicates that the vertices represent 

people who are strangers and a blue edge connecting two vertices 

indicates that the vertices represent people who are acquaintances.  

The graphs that are used to help visualize the problem can also be 

used to solve the problem.  To solve R(m, n), one must find the 

smallest number of people x such that every complete graph on x 

vertices where the edges are colored blue and red contains a 

subgraph that is a red or blue complete graph on 5 vertices.  Since 

the number of edges in a complete graph on v vertices is (v2-v)/2 

and each edge may be colored red or blue, there are 2((v^2)-v)/2 

complete graphs on v vertices.  Therefore, to increase the lower 

bound on R(5, 5) from the known lower bound of 43 to 44, one 

would need to demonstrate that at least one of the 2((43^2) - 43)/2 or 

2903 complete graphs on 43 vertices does not contain a subgraph 

that is a red or blue complete graph on 5 vertices, denoted K5.  

Alternatively, one could decrease the upper bound from the 

known value of 49 to u by demonstrating that every complete 

graph on u vertices where the edges are colored blue and red 

contains a subgraph that is a red or blue K5.  We do note that 

many of the 2903 graphs that are isomorphic to each other, and 
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thus testing one of those graphs eliminates the need to test the 

other graphs that are isomorphic to it.  Unfortunately, it is often 

slower to test if a graph is isomorphic to another graph that has 

already been tested than to test if the graph contains a red or blue 

K5.  We also note that for every graph, another graph in the 2903 

graphs can be obtained and if the original graph contains a red K5, 

then the graph obtained by reversing the edge colors must contain 

a blue K5.  Therefore, only half of the 2903 graphs need to be tested 

and this can be accomplished relatively easily.  

 

We chose to write our algorithm to attempt to increase the lower 

bound from the known value of 43 to 46 because of a conjecture 

that R(5, 5) = 46 [4].  In the computationally worst case scenario, 

our algorithm would test every graph and determine either that 

R(5, 5) > 45 if all the graphs other than the last one contained a 

red or blue K5  or that R(5, 5) ≤ 46 if every complete graph on 45 

vertices with red and blue edges contained a red or blue K5.  If we 

instead tried to decrease the upper bound on R(5, 5) by one, the 

worst case scenario would involve testing more graphs. 

 

2. RELATED WORK 
Over the past several years, many researchers have begun to use 

GPUs to do a wide variety of mathematical and scientific 

calculations that have traditionally been done on CPUs.  GPUs 

have been used to run “space and time discrete simulations” called 

stencil codes [5].  They have been used for problems in physics 

such as solving Boltzmann equations for gas flow applications [6].  

Scientists have used GPUs in bioinformatics for doing sequence 

alignment [7], for correcting errors in DNA sequencing [8], and 

weather forecasting [9].  GPUs are also being used for colorectal 

cancer research [10], cheminformatics [11], finite element 

numerical integration [12], n-body problems [13], dynamic 

programming applications [14], and many other scientific and 

mathematical applications.  GPUs are being used as components 

in some of the newest and fastest supercomputers because of their 

ability to provide significant computational capability, while using 

less power than some CPU alternatives.  The success that 

researchers have had with a wide variety of applications 

motivated us to evaluate whether GPUs would decrease the 

amount of time to solve the party problem. 

 

3. DATA STRUCTURES AND 

ALGORITHM 
As we designed our application, we were mindful of the idea that 

it would need to run efficiently in parallel on both multicore 

systems using OpenMP and on GPUs using CUDA with minimal 

revision to the code to port it from the CPU to the GPUs.  The key 

implication of this is that the code had to run with a minimal 

amount of communication between processing cores when 

running on the CPU only and when running on the GPUs only.  

Because our application just requires us to test a large number of 

graphs, it is really just an embarrassingly parallel application.  

Therefore, we realized that we could simply divide the number of 

graphs evenly by the number of cores (CPU or GPU as 

appropriate), have each core report the results of testing its share 

of graphs to a master processor, and have that processor output the 

results.  As long as each core would be able to efficiently generate 

the next graph that the core was supposed to test, this design 

would work well.  This requirement affected the data structure we 

used to represent the graphs. 

3.1 Data Structures 
As discussed in section 1, the party problem can be solved using 

graphs.  In computer programs, a graph is typically represented 

using adjacency lists or an adjacency matrix.  For our purposes, an 

adjacency matrix is preferable to adjacency lists for both 

performance and ease of implementation reasons.  While a natural 

representation of a graph using an adjacency matrix is a two-

dimensional array, for our application, a single-dimensional array 

was more useful.  To help illustrate this, we show a simple graph 

with five vertices and the corresponding two-dimensional 

adjacency matrix in Figure 1 where a red edge is represented as a 

zero, a blue edge is represented as a one, and no edge is 

represented as -9.  The adjacency matrix in Figure 1 indicates 

there are no edges from a vertex to itself, because in the party 

problem, a person is assumed to know himself/herself and thus 

there is no need for an edge from a vertex to itself.  Therefore, the 

information on the diagonal of the matrix from the upper left entry 

to the lower right entry does not need to be stored.  Because the 

relationships between two people are symmetric (if person 1 

knows person 2, then person 2 knows person 1), the information 

above the diagonal containing -9s is the same as the information 

below the diagonal and is therefore redundant.  By only storing 

the information above the diagonal, we can save a little more than 

half the memory that would be required to store the information in 

the graph.  Because many GPUs have large numbers of processing 

cores, each with fast access to a limited amount of the typically 

small quantity of memory on the GPU, this optimization was 

important to allow all the cores to evaluate different graphs in a 

single instant.  In order to save memory, we “flatten” the matrix 

and store it as a one-dimensional array as shown in Figure 2.  

While this introduced some complexity during development, the 

advantages it provided far outweighed the added complexity. 

Since the flattened array contains only zeros and ones, the digits it 

contains may be thought of as a binary number representing the 

graph.  By adding one to the rightmost element of the array and 

making any carries if appropriate to the elements to the left, one 

has adjusted the array to contain the binary representation of the 

next graph.  By continuing to add one to the digit in the rightmost 

array slot and making the appropriate carries, one can generate all 

of the possible graphs, one at a time.  This process is a very 

efficient way for a processing core to generate the next graph to 

test, and the primary advantage of using the one- dimensional 

array representation of the graph.  By assigning equally sized sets 

of graphs to each core where the graphs in a set can be 

represented as consecutive binary numbers, the cores were able to 

efficiently generate each subsequent graph that they needed to 

test, making the one-dimensional array an excellent data structure 

for storing the graphs. 

 

3.2 Algorithm 
The algorithm we used was a naïve algorithm.  The algorithm 

tested the first 335,544,320,000 (which is between 238 and 239) 

graphs of the 2990 graphs that need to be tested to determine if 

R(5, 5) ≥ 46.  We refer to the algorithm as naïve for two reasons.  

The first reason is that the algorithm is a brute force approach to 

tightening the lower bound on the value of R(5, 5).  Even more 

importantly, the algorithm was not optimized for running on the 

GPUs.  For many applications, it is possible to get significantly 

better performance on algorithms that are optimized to run on 

GPUs.  However, we were more concerned with the speedup that 

could be obtained with minimal effort.     
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In the version of the code that the CPU ran and the version that 

the GPUs ran, each of the n processing cores was given the value 

of n and assigned 1/nth of the graphs to test by being given a 

Figure 1. A Five Vertex Graph and Its Adjacency Matrix 

 

 

 

Figure 2. Flattening the Two-Dimensional Array to a One-Dimensional Array Keeping Only the Necessary Information 

 

 
decimal value that the core converted into a binary number, 

corresponding to the first graph in the range of graphs to test.  The 

cores were then able to calculate the number of graphs they 

needed to test.  The algorithm we used to test a graph to see if it 

contains a red or blue K5 cycles through all of the possible sets of 

five vertices until it finds a set that forms a red or blue K5 or until 

it has determined that no set of five vertices can contain a red or 

blue K5. Once a K5 is found, the graph is discarded and the next 

graph is generated by adding 1 to the binary representation of the 

discarded graph to obtain the next graph to test.  In the OpenMP 

version of the code for the CPU, whenever a core found a graph 

with neither a red or blue K5, it was supposed to print out the 

graph, but this situation never arose.  In the CUDA version of the 

code, whenever a core found a graph with neither a red or blue K5, 

it was supposed to write the graph to a shared memory location 

and set a flag in shared memory.  When the cores were all 

finished, the flag was copied to the CPU and if a graph with no K5 

had been found, then the shared memory with the graph’s 

information would be copied to the host system and printed out. 

 

4. METHODOLOGY 
We did our testing on an upgraded Gateway GT5674 computer 

with an AMD Phenom 9500 2.2 GHz quad-core CPU, 4 GB of 

RAM, and a 650 watt power supply.  The computer ran the 

Windows Vista operating system.  The GPUs we used ranged 

from a low end home user card (GeForce 9500 GT) to a high end 

home user card (GeForce GTX 480) to a high end workstation 

card (Quadro FX 5800).  The GPUs had varying numbers of 

CUDA cores, multiprocessors, memory, and different compute 

capabilities, as shown in Table 1. 

In order to determine the performance improvement we could 

obtain by using the GPUs, we first ran a version of the code using 

OpenMP on the system using 1, 2, and 4 cores.  We then ported 

the code to CUDA such that it would not use the CPU cores for 

testing any graphs, thus using the CPU minimally, and ran it on 

each GPU shown in Table 1. 

 

For the performance testing, we chose to have the program test 

335,544,320,000 graphs.  That number was chosen because it was 

a multiple of the number of cores in every one of the GPUs we 

used and the algorithm took about an hour to test that many 

graphs using all 4 CPU cores.  By picking a value that took the 

CPU a long time, we expected to see what, if any, performance 

gains we could reasonably expect under normal conditions of the 

cores having a huge number of graphs to test, which is what we 

would encounter if we tried to solve the problem with GPUs or 

CPUs.   

 

Our only effort to tune the CUDA version of the application in an 

attempt to achieve better performance was to run the tests on each 

card using several different numbers of threads per block.  In 

order to achieve high performance and scalability, NVIDIA GPUs 

divide the threads for a multithreaded CUDA program into groups 

of threads called blocks [16].  Each block runs on a streaming 

multiprocessor, so the number of blocks that can run 

simultaneously and thus the performance of an NVIDIA GPU 
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Table 1. Specifications for GPUs Used 

GPU CUDA Cores Streaming 
Multiprocessors 

Memory (GB) Compute Capability 

GeForce 9500 GT 32 4 1 1.1 [15] 

GeForce GT 240 96 12 0.5 1.2 [15] 

GeForce GTS 450 192 4 1 2.1 [15] 

Quadro FX 5800 240 30 4 1.3 [15] 

GeForce GTX 480 480 15 1.5 2.0 [15] 

 

 

scales with the number of streaming multiprocessors [16].  One 

can adjust the number of threads that run in each block to try to 

obtain better performance by using more blocks, to a maximum of 

512 threads per block on GPUs with compute capability 1.x and 

1024 threads per block on GPUs with compute capability 2.x [16].  

Since we had GPUs with both 1.x and 2.x compute capabilities, 

we chose to limit the threads per block to 512 for all of our testing 

for consistency.  Because some people have suggested that the 

number of threads per block should be at least 64 as well as being 

a multiple of 64 [17] and others have found that 128 to 256 

threads per block resulted in the best performance for their 

applications [18], we also ran tests with 64, 128, and 256 threads 

per block in addition to 512 threads per block.  The GeForce 9500 

GT which was unable to run the code using 512 threads per block 

due to hardware limitations, so we were only able to test it with 

64, 128, and 256 threads per block on that GPU.  We discuss the 

results of these tests in Section 5. 

 

In order to try to take full advantage of the GPU for computing 

rather than also for updating the computer’s display, we explored 

the possibility of using a second graphics card dedicated to the 

display in our test system.  The GPUs with compute capability 1.x 

were compatible with a second NVIDIA graphics card, an 

NVIDIA GeForce 6200 that is not CUDA-enabled.  This allowed 

us to use the GeForce 6200 for the display, freeing up the CUDA 

cards to do only the computations.  The cards with compute 

capability 2.x did not work with the second graphics card.  

Therefore, we tested all the GPUs without the GeForce 6200.  We 

also tested cards with compute capability 1.x while using the 

GeForce 6200 for the display.  This allowed us to determine if 

using a GPU for both computations and to run the display had a 

significant impact on the performance of the cards.  We discuss 

the results of these tests in Section 5. 

 

5. RESULTS 
We conducted a test consisting of 10 trials where each of the 

devices (CPU-only using 1, 2, and 4 cores and GPU-only with 

each GPU) tested 335,544,320,000 graphs.  Each test was 

repeated for each GPU using each number of threads per block 

except 512 threads per block for the GeForce 9500 GT.  For the 

GPUs that were compatible with the second graphics card, we 

conducted 10 trials using the second graphics card to drive the 

display with each number of threads per block other than 512 

blocks for the GeForce 9500 GT.  After analyzing the results of 

10 trials for each test, we concluded that the range of the results 

for each GPU and for each number of CPU cores used was 

sufficiently small to conclude that 10 trials was sufficient to be 

confident that we were getting accurate results.  In 24 of the 30 

GPU tests, the range between the values obtained from the 10 

trials was 2 seconds or less.  In the remaining 6 tests, the ranges 

were one of 3 seconds (test average 603 seconds), one of 5 

seconds (test average 2241 seconds), two of 6 seconds (test 

averages 634 seconds and 3167 seconds), one of 10 seconds (test 

average 2258 seconds), and one of 13 seconds (test average 637 

seconds).  The only GPUs that had a range of more than 1 second 

for the 10 trials in any given test were the GeForce 9500 GT and 

the GeForce GT 240, which are the lower end home GPUs.  For 

the CPU core tests, the ranges for the tests were 36 seconds (test 

average 3254 seconds) for 4 cores, 88 seconds (test average 6846 

seconds) for 2 cores, and 130 seconds (test average 13,226 

seconds) for 1 core. 

 

5.1 Effects of Using the GPU to Drive 

Display 
We observed that using the GPU to drive the system’s display in 

addition to testing the graphs did increase the amount of time 

taken to finish testing the graphs, as shown in Table 2.  The least 

powerful GPU (the GeForce 9500 GT) consistently suffered the 

biggest performance loss in terms of additional time to finish 

testing the graphs.  However, when taking the additional time as a 

percentage of the time to test the graphs when not using the GPU, 

the most powerful GPU (the Quadro FX 5800) suffered the 

biggest performance loss.  The increase in time required to test the 

graphs was only an additional 2.5% or less of the time taken to 

complete the computations without using the GPU for the 

system’s video output.  Therefore, we do not believe using the 

GPUs to run the systems video is a significant detriment to the 

performance of the GPU on the computations. 

 

5.2 Effect of Using Different Numbers of 

Threads Per Block 
As discussed in the Section 4, the number of threads per block can 

have an impact on the performance of the GPUs, so we ran the 

tests using 64, 128, 256, and 512 threads per block for each card 

except 512 for the GeForce 9500 GT.  We found that there was a 

significant variation on the running time of the algorithm using 

different numbers of threads per block, as shown in Figure 3.   

The data shown in Figure 3 only shows the variation based on 

threads per block for the GPUs when the second graphics card 

was not in the system for consistency, but we observed that the 

data from the tests where the second graphics card was used 

demonstrated analogous results.  In Table 3, we show the percent 

increase in time required to test the graphs from the tests using the 

number of threads per block that produced the fastest time to the 

tests using the number of threads per block that produced the 

slowest time.  The increase in the time required to test all the 

graphs ranged from 8% to 54% based on the GPU.  Although we 
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observed the least impact on the GPU with the most memory, the 

GPU with the least memory had the second smallest impact which 

was significantly less than the other GPUs, so the magnitude of 

the impact was not simply based on the amount of memory of the 

GPU.  128 threads per block produced the best results with the 

GeForce GT 240, Quadro FX 5800, and GeForce GTX 480.  The 

GeForce 9500 GT performed best with 64 threads per block, but 

was only 4 seconds faster than it was with 128 threads per block.  

The GeForce GTS 450 performed best with 256 threads per block, 

but only 10 seconds better than with 128 threads per block.  

Therefore, when comparing the performance of the GPUs, we use 

the performance from the test with the number of threads per 

block that was most commonly the best for the GPUs.  We note 

the difference between the speedup obtained by using the 

performance when the GPUs used 128 threads per block and the 

performance from the best number of threads per block would be 

negligible. 

Table 2. Performance Comparison of GPUs When Used for Video vs. When Not Used for Video 

GPU Threads 

Used 
Per 

Block 

Average Time 

(seconds) When Using 
GPU for Video 

Average Time 

(seconds) When 
Not Using GPU 

for Video 

Additional 

Time Taken 
(seconds) 

Additional Time as Percent 

Difference from Average Time 
When Not Using GPU for Video 

GeForce 9500 GT 512 ------ ------ ------ ------ 

GeForce 9500 GT 256 3167.4 3156.3 11.1 0.4 

GeForce 9500 GT 128 2257.8 2242.4 15.4 0.7 

GeForce 9500 GT 64 2253.9 2241.3 12.6 0.6 

GeForce GT 240 512 636.9 634.0 2.9 0.5 

GeForce GT 240 256 538.0 531.2 6.8 1.3 

GeForce GT 240 128 524.3 521.4 2.9 0.6 

GeForce GT 240 64 604.7 604.1 0.6 0.1 

Quadro FX 5800 512 297.6 292.4 5.2 1.8 

Quadro FX 5800 256 289.0 283.8 5.2 1.8 

Quadro FX 5800 128 275.8 269.1 6.7 2.5 

Quadro FX 5800 64 277.1 272.3 4.8 1.7 

 

5.3 Speedups 
 

The speedups attained by using the GPUs over using one, two, 

and four cores of the CPU in our quad core system are shown in 

Table 4.  We note that it is strange that slightly greater than linear 

speedup was observed when running the program on the CPU 

only with all 4 cores.  One would expect that there would be a 

small performance loss, rather than performance gain in that 

situation.  We suspect that there might have been some process 

running on the computer such as antivirus software or a regularly 

scheduled task from the operating system that did not occur 

during the time the program was run with 4 cores, but did occur 

when the program was run with one core and two cores.  The 

GPU with the fewest cores attained a small speedup of 1.44 over 

using all of the cores of the CPU, meaning it would take about 

1.44 identical quad core systems to test the graphs in the same 

amount of time that GPU did.  In contrast, a high-end GPU 

(GeForce GTX 480) attained a speedup of greater than 21 over the 

quad-core system using all of the cores of the CPU, meaning it 

would take over 21 identical quad core systems to test the graphs 

in the same amount of time that GPU did.   

 

6. CONCLUSIONS 
Our results have shown that a brute force solution to the party 

problem would be greatly speeded up running on GPUs, as our 

fastest GPU did the same amount of work as our host system in a 

fraction of the time.  It would take more than 21 of our quad core 

systems or about 88 of the CPU cores in our host computer to do 

the same amount of work as the GPU in the same amount of time.  

We note that although faster CPUs are now available, they should 

still be significantly outperformed by the single GPU.  Also, with 

systems available that can run up to 8 GPUs and with faster GPUs 

available, it appears that using GPUs would be a good way to 

make progress on the party problem.  However, while we have 

seen the great potential of GPUs to speed up the process of 

making progress on the party problem, we have two concerns.  

Our program only tested graphs that allowed the cores to run 

continuously in parallel.  When certain graphs much further along 

in the set of graphs to test begin to be tested, due to the GPU 

architecture, the code of our algorithm will have to branch in 

various places, which will force it to run sequentially at times, 

decreasing the performance gains we got from the GPUs.  An 

issue that is much more problematic than the branching is that the 

brute force solution requires us to test 2990 graphs to raise the 

lower bound on R(5, 5) to 46 or to move the upper bound to 46.   

Our idea of using GPUs does not scale sufficiently by itself to 

accomplish this in a reasonable amount of time.  While we were 

able to test more than 238 graphs in 2.5 minutes using a small 

quantity of hardware available to any consumer, a back of the 

envelope calculation suggests that it would take more than a year 

on the Titan supercomputer which has 18,688 GPUs to test just 

the first 266 graphs, leaving us too far from completing the tests 

we need to solve the problem [19].  Even a new generation of 

supercomputers with many times the number of GPUs as current 

supercomputers where the GPUs were also many times faster and 

had many times the number of cores as the current GPUs would 

still not let us solve the problem.  Therefore, to devise a workable 

method to solve the party problem in a 
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Figure 3. Comparison of Running Time of GPUs Using Various Numbers of Threads per Block 

 

 

 

 

Table 3. Comparison of Percent Increased Time Required by GPUs to Test Graphs with Best and Worst Numbers of Threads Per 

Block 

GPU Percent Time Increase  

Quadro FX 5800 8 

GeForce GT 240 21 

GeForce GTX 480 36 

GeForce GTS 450 41 

GeForce 9500 GT 54 

 

 

reasonable amount of time, we will need to devise a better 

algorithm than just the naïve brute force algorithm.  If the 

algorithm is amenable to running on GPUs, perhaps using GPUs 

will help us solve the problem in the future. 

 

7. FUTURE WORK 
There are several possible opportunities for future work related to 

this research.  The first strategy we could try is to use a more 

intelligent algorithm than the brute force algorithm our program 

employed.  Using mathematics, we could decrease the set of 

graphs to test by eliminating classes of graphs that can be shown 

will contain a red K5 or blue K5 subgraph.  This may require us to 

devise a significantly more complicated algorithm to run on the 

GPUs, as the GPU cores may no longer be able to generate the 

next graph to test using the efficient method our current algorithm 

employed. We could also expand upon work that for a CPU-based 

system, used a breadth first search technique that employed 

pruning to try to search the tree of all possible graphs to generate 

only graphs with at least 43 vertices that contain neither a red or 

blue K5 [20].   
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Table 4. Speedup of Devices 

Device Average Time (seconds) Speedup Over 
Single Core 

Speedup Over 
Quad Core System 

 

CPU using 1 core 13226 -------- --------  

CPU using 2 cores   6846   1.93 --------  

CPU using 4 cores   3254   4.06 --------  

GeForce 9500 GT   2258   5.86   1.44  

GeForce GT 240     524 25.22   6.20  

GeForce GTS 450     468 28.26   6.95  

Quadro FX 5800     276 47.92 11.79  

GeForce GTX 480     150 88.18 21.69  

 

 

Another opportunity to explore this problem in more depth is to 

determine the binary representation of the first graph that causes 

the CUDA code we wrote to branch and thus run sequentially.  

We also would like to measure the performance of the cards 

during the period when the graphs cause the code to branch and 

compare it to the performance of the OpenMP version of the code 

running on just the CPU cores for the same set of graphs. 

 

8. REFLECTIONS 
This research project was a result of The Blue Waters 

Undergraduate Petascale Education Program with which I 

participated in as a student intern. The BWUPEP is an educational 

program that gives students from colleges and universities around 

the country the opportunity to learn about the high performance 

computing discipline and apply what they learn in specific 

research projects at their home institutions. Previous to my 

experience with the Blue Waters Undergraduate Petascale 

Education Program internship, I had limited knowledge about the 

field of computer science and parallel computing. I knew this 

internship would be the opportunity of a lifetime for me to get my 

foot into the door of the computer science world. Over the course 

of the internship, I learned more than I ever imagined and have 

gained experience that will be valuable to me for years to come. I 

am now confident in my abilities to handle issues related to HPC 

and computationally intense problems. 

 

My Blue Waters Undergraduate Petascale Education Program 

internship began with a two-week trip to attend Blue Waters 

Undergraduate Petascale Institute at NCSA at the University of 

Illinois Urbana-Champaign to learn about High Performance and 

Parallel Computing. There I met new students from around the 

country who were also awarded the internship to conduct research 

at their respective universities and colleges. During those two 

weeks we underwent intense educational sessions everyday 

learning the methodologies and ideologies of High Performance 

Computing and methods used to develop and debug code on 

parallel computers and clusters. From this boot camp experience, I 

took back with me the knowledge and ability to conduct my 

research for this project and future work, as well as new 

friendships I had formed. 

 

The bonus of my BWUPEP internship and the culmination of all 

my hard work involved a free trip to SC11 in Seattle, Washington 

to work as a student volunteer and participant in the education 

program with the other student interns and volunteers. I created a 

poster to be presented at the resource fair about my research 

experience as well as the research I conducted over the summer 

for this project.  Going to SC11 was an eye-opening experience 

and I hope to attend more of the SC conferences in the future. I 

got the chance to meet many students in multiple disciplines of 

computation as well as network with professors and major 

companies who are involved in supercomputing. 

 

This internship has provided me with the tools and knowledge I 

need to move forward and continue work and research in the field 

of high performance and parallel computing. Over the course of 

the internship, I have learned the basics of a computer's hardware 

and architecture and how the hardware works along with the 

operating system to conduct multiprocessing and parallel 

computing. I have been exposed to multiple ways to parallelize 

code using OpenMP, MPI, and CUDA. The mentors at the boot 

camp in Illinois instilled in me the ideologies of high performance 

computing and taught me the systematic methods to successfully 

debug parallelized code. I experienced hands on learning by 

creating several small-scale local clusters on my own with the 

resources I had available at my home institution. I also learned 

about Graph Theory, Ramsey Theory, and the mathematics they 

involve, catching a glimpse of the numerous computationally 

intense problems of today. 

 

This internship has given me the opportunity to experience first 

hand the process of research in an academic environment, which I 

will continue to use in my future work. This experience as a 

whole has provided me with the knowledge, tools, and experience 

to be successful in future endeavors. My research work with my 

mentor, Dr. David Toth, has opened doors for me that I never 

knew existed. The work I have done for this project has sparked 

my interest for more computationally intense problems that might 

hold some potential for me to work on using HPC in the future. 
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