
Volume 3 Issue 2

December 2012

	

Volume 3, Issue 2 December 2012

Editor: Steven Gordon
Associate Editors: Thomas Hacker, Holly Hirst, David Joiner,

Ashok Krishnamurthy, Robert Panoff,
Helen Piontkivska, Susan Ragan, Shawn Sendlinger,
D.E. Stevenson, Mayya Tokman, Theresa Windus

CSERD Project Manager: Patricia Jacobs. Managing Editor: Jennifer
Houchins. Web Development: Jennifer Houchins, Eric Aiello. Graphics:
Stephen Behun, Heather Marvin.

The Journal Of Computational Science Education (JOCSE), ISSN 2153-4136,
is published quarterly in online form, with more frequent releases if submission
quantity warrants, and is a supported publication of the Shodor Education
Foundation Incorporated. Materials accepted by JOCSE will be hosted on the
JOCSE website, and will be catalogued by the Computational Science Education
Reference Desk (CSERD) for inclusion in the National Science Digital Library
(NSDL).

Subscription: JOCSE is a freely available online peer-reviewed publication
which can be accessed at http://jocse.org.

Copyright c©JOCSE 2012 by the Journal Of Computational Science Education,
a supported publication of the Shodor Education Foundation Incorporated.

	

Contents

Introduction to Volume 3 Issue 2
Steven I. Gordon, Editor

1

Cyber Collaboratory-based Sustainable Design Education: A Pedagogical
Framework
Kyoung-Yun Kim, Karl R. Haapala, Gül E. Okudan Kremer, and Michael K.
Barbour 2

A Hands-on Education Program on Cyber Physical Systems for High School
Students
Vijay Gadepally, Ashok Krishnamurthy, and Umit Ozguner 11

Using Supercomputing to Conduct Virtual Screen as Part of the Drug Discovery
Process in a Medicinal Chemistry Course
David Toth and Jimmy Franco 18

Metadata Management in Scientific Computing
Eric L. Seidel 26

Bringing ab initio Electronic Structure Calculations to the Nano Scale through
High Performance Computing
James Currie, Rachel Cramm Horn, and Paul Rulis 34

A Performance Comparison of a Naïve Algorithm to Solve the Party Problem
using GPUs
Michael V.E. Bryant and David Toth 41

	

Introduction to Volume 3 Issue 2

Steven I. Gordon
Editor

Ohio Supercomputer Center
Columbus, OH

sgordon@osc.edu

Forward
This issue of JOCSE provides a diverse set of approaches
to computational science education along with several very
sophisticated student projects. Kim et al describe a com-
prehensive framework for learning about sustainable design
through a series of steps to design a bicycle pedal and to
evaluate the impacts of production on several sustainabil-
ity measures. They have developed a Sustainable Product
Development Collaboratory that allows students to make
changes in the product design and to then see its impacts
on energy use and the carbon footprint of the production
process.

Gadepally et al use a combination of an analogous physi-
cal system and simulation environment to demonstrate the
principles of building autonomous vehicles. Students in a
summer workshop use a programmable Roomba and pro-
gram it to avoid obstacles on a physical course setup to
represent city streets. This is augmented by a related simu-
lation environment where various commands can be tested.
In that process, they learn the mathematical concepts, pro-
gramming tools, and modeling processes that are used by
engineers creating and testing such systems.

Toth and Franco present a virtual lab focused on the screen-
ing of drugs as part of a medicinal chemistry course. Stu-
dents are introduced to the process of screening drugs using
a supercomputer program to identify inhibitors for a number
of diseases. Students used a typical workflow that included
identifying a protein that has been found to be a good drug
target, discovering whether its 3D structure has been solved,
using a docking program to screen potential compounds, and
generating a visualization of the final docking results.

The student papers in this issue demonstrate the diverse
skills that students have acquired through internship experi-
ences. Those include the generation of metadata that allows
annotation of scientific datasets, the porting and testing of a
parallel version of a computational chemistry code, and test-

ing the speedup of codes using GPUs. Each of those projects
has made a significant impact on the academic careers and
future career goals of the participating students.

We hope the issue provides insights that you can use in
your classrooms. Make sure you also encourage others to
start reading and contributing to JOCSE so that we broadly
share our experiences in computational science education.

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 1

Cyber Collaboratory-based Sustainable Design Education:

A Pedagogical Framework
Kyoung-Yun Kim

Department of Industrial
and Systems Engineering
Wayne State University

Detroit, MI, USA
+1-313-577-4396

kykim@eng.wayne.edu

Karl R. Haapala
School of Mechanical,

Industrial, and
Manufacturing Engineering

Oregon State University
Corvallis, OR, USA
+1-541-737-3122

haapalak@engr.orst.edu

Gül E. Okudan
Kremer

School of Engineering
Design & Department of

Industrial and
Manufacturing Engineering

The Pennsylvania State
University

University Park, PA, USA
+1-814-863-1530

gek3@engr.psu.edu

Michael K. Barbour
College of Education

Wayne State University
Detroit, MI, USA
+1-313-577-1693

mkbarbour@gmail.com

ABSTRACT
Educators from across the educational spectrum are faced with

challenges in delivering curricula that address sustainability issues.

This article introduces a cyber-based interactive e-learning

platform, entitled the Sustainable Product Development

Collaboratory, which is focused on addressing this need. This

collaboratory aims to educate a wide spectrum of learners in the

concepts of sustainable design and manufacturing by

demonstrating the effects of product design on supply chain costs

and environmental impacts. In this paper, we discuss the overall

conceptual framework of this collaboratory along with

pedagogical and instructional methodologies related to

collaboratory-based sustainable design education. Finally, a

sample learning module is presented along with methods for

assessment of student learning and experiences with the

collaboratory.

Keywords

Sustainable design education; sustainable product development

collaboratory; constructivist learning theory; manufacturing

analysis

1. INTRODUCTION
This paper introduces an NSF CI-TEAM Demonstration Project,

entitled A Sustainable Product Development Collaboratory,

which aims to develop and test a collaborative e-learning

laboratory for sustainable design and manufacturing. This article

discusses the collaboratory framework development and a sample

learning module from the project.

Due to challenges of existing science and engineering curricula in

addressing technical solutions from a holistic perspective that

considers economic, environmental, and social aspects (e.g.,

availability of instructional materials with the requisite

multidisciplinary focus), engineers within modern manufacturing

companies often undertake ad hoc approaches to sustainable

product and process development; often without proper tools or

training to do so. One other contributing factor challenging the

proliferation of sustainable science and engineering in industry is

the focus on recruiting new graduates who demonstrate the

potential to make an immediate contribution to technical

corporate goals based on their experience [12, 24, 25]. Such

practices do not necessarily promote a preference for individuals

with a broader knowledge set blending two or more disciplines, a

need for adequately addressing sustainability goals.

Researchers and practitioners alike recognize that a vast majority

of product cost, quality, and overall sustainability is decided

during early design. Despite this fact, sustainable design and

manufacturing education remains in its infancy, although Allen et

al. [1] described the significant, emerging levels of “grassroots”

activities for sustainable design and manufacturing. At the same

time, an NSF MT21 Study [19] highlighted the need to improve

K-12 student interest in STEM (Science, Technology,

Engineering, and Mathematics) disciplines, which is in a “State of

Emergency.” By coupling traditional engineering skills with a

broader sustainability perspective, it is posited that the next

generation will be more effectively attracted to careers in

engineering.

The collaboratory developed as part of this project will provide a

much needed cyber-based tool in support of K-12 online learning.

In the United States, the first K-12 schools to begin using online

learning included a private school and several public school

districts in California, in the early 1990s [4]. This adoption was

followed by the introduction of statewide and intra-state virtual

schools in Utah, Florida, and New England in the middle of the

1990s [3, 11]. Watson et al. [28] reported that online learning

activity is surging in all 50 states and the District of Columbia

today. During the 2000-01 school year, Clark [10] estimated that

there were between 40,000 and 50,000 K-12 students enrolled in

one or more distance education courses. Estimates for the 2010-11

school year placed K-12 online learning enrollment at around

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Copyright ©JOCSE, a

supported publication of the Shodor Education Foundation Inc.

Volume 3, Issue 2 Journal of Computational Science Education

2 ISSN 2153-4136 December 2012

4,000,000 students [2]. In 2006, Michigan became the first state

to require that all students complete some form of online learning

in order to graduate from high school (other states, such as New

Mexico, Alabama, Florida, and Idaho, as well as a number of

individual school districts elsewhere, have followed Michigan’s

lead). Some experts have even predicted the majority of K-12

education will be delivered using some kind of online learning by

the year 2020 [9].

Despite these recent advances however, Barbour and Reeves [5]

wrote, “[T]here has been a deficit of rigorous reviews of the

literature related to virtual schools” (p. 402). Similarly,

Cavanaugh et al. [7] found only a small percentage of the open

access literature was based upon systematic research, while most

of the literature was based on the experiences or opinions of K-12

online learning practitioners. Further, Rice [23] indicated that

“…a paucity of research exists when examining high school

students enrolled in virtual schools, and the research base is

smaller still when the population of students is further narrowed

to the elementary grades” (p. 430). Simply put, while the practice

of K-12 online learning is growing at an exponential rate, the

availability of empirical research to guide that growth has been

lacking. As a response to this need, the collaboratory described

herein will also be used as a platform to collect data focusing on

how it can enhance learning. The following sections describe the

development of the Sustainable Product Development

Collaboratory and its use as a pedagogical tool, including the

description of a teaching module focused on product design and

manufacturing and supply chain analysis, and methods for student

assessment.

2. PROJECT OVERVIEW
The overarching objective of the CI-TEAM Demonstration

Project discussed herein is to convey sustainability principles in

the context of product architectural design, manufacturing,

assembly, and supply chain decisions to a wide spectrum of active

learners, ranging from K-12 students, to university students, and

to practitioners. The project will actively engage learners in the

development of, and research conducted within the collaboratory.

The collaboratory is enabled by user-friendly, license-free web-

based tools (e.g., Google SketchUp) to deliver a holistic and

broadly usable cyber-platform. The specific goals of this CI-

TEAM project include:

 Deploying a Sustainable Product Development Collaboratory

that includes modules to support conceptual design variant

generation, life cycle cost and environmental analysis, and

supply chain optimization;

 Developing and disseminating educational materials that can

provide project-based activities in support of interaction with

the Sustainable Product Development Collaboratory;

 Assessing the educational effects, or more specifically, the

cyberinfrastructure competency gained through interaction

with the Sustainable Product Development Collaboratory,

including assessment of activities at the participating

universities and user adoption of the cyber-platform; and

 Engaging underrepresented groups and high-school students

to promote a diverse workforce that is ready to exploit

cyberinfrastructure tools.

Below, we first explain the underlying educational philosophy

adopted during the development of the collaboratory and then we

present a sample learning module and methods of assessment.

Finally, we discuss conclusions and observations based on the

collaboratory and learning module development efforts.

3. PEDAGOGICAL AND INSTRUCTIONAL

METHODOLOGIES FOR

COLLABORATORY-BASED

SUSTAINABLE DESIGN EDUCATION
Although we had a clear vision that a cyber-based tool and

interactive e-learning platform had to be built as introduced above,

we opted to think critically and learn from prior literature about

what pedagogical and instructional methodologies we should

follow to make it more effective. Below, we provide a summary of

our findings along with our philosophical direction.

Carew and Mitchell [6] studied engineering academics’

conceptions of sustainability and stated that variation in

conceptions of sustainability and explicit contestation of the

variation in the engineering classroom offers opportunities to

enrich undergraduate learning and teaching. In their study, Carew

and Mitchell [6] concluded that sustainability education requires a

diversity of teaching and learning methods that can consider the

role of values and assumptions in sustainable decision-making.

One of the ways in which instructional design can be varied is in

the autonomy the learner may have in completing learning

activities. Prior literature points to the potential positive effect of

increasing autonomy as the learners develop intellectually.

Vygotsky [26] observed that learning for children and adolescents

is a social process that focuses upon interaction within a zone of

proximal development. The zone of proximal development “…is

the distance between the actual developmental level as determined

by independent problem solving and the level of potential

development as determined through problem solving under adult

guidance or in collaboration with more capable peers” (Vygotsky

[27], p. 86). Cavanaugh et al. [8] suggested, “[S]ince adults have

progressed through these stages of cognitive development,

delivery of web based education at the adult level need not

concentrate on methods that help the learner develop these

cognitive skills” (p. 7). Methods designed to help younger

learners develop cognitive skills are intended as guidance to

ensure that these learners remain in the zone of proximal

development. Further, Moore [18] noted that K-12 educators

typically are expected to maintain control of the content and

method of delivery within the classroom. In fact, Moore even

posited that K-12 students “should not be compelled to assume a

degree of autonomy they are not ready to handle, and so it is

customary in child education for the preparatory and evaluation

processes to rest entirely in the hands of the teacher” (p. 84).

Simply put, children are not ready to assume high degrees of

autonomy, and thus child and adolescent learners require more

structure in their educational settings.

The approach employed for scaffolding of learning is an important

concern when autonomy of learning is not left to the learner. One

compelling approach for scaffolding is constructionism. As a form

of constructivist learning theory, constructionism is essentially the

process of learning through constructing, or designing or making

a product. This learning theory is based on Papert’s [20] work

with students using the Logo programming language, where they

programmed an electronic “turtle” to move about on the screen or

a physical “turtle” to move about the floor and leave a marking of

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 3

where the object had traveled. Papert believed that through a

process of trial and error, the students learned how to command

and debug the “turtle” to create specific geometric shapes (and

thus learned mathematical problem-solving and geometry). Papert

illustrated how computer programming could be used to help

teach these mathematical concepts to students who traditionally

struggled with the subject. Recently, constructionism has been

adopted by researchers who are interested in what students can

learn through the process of designing games [14, 15, 17, 21, 22].

The constructionist line of inquiry has regularly been found to

enable students to attain a deeper understanding of the concept

being taught, have richer discussions about that content, and

retain the knowledge longer than students taught in more

traditional, instructor-centric environments. Given these findings,

we have been developing the Sustainable Product Development

Collaboratory to provide a medium for learning sustainability

concepts relevant to product development, manufacturing and

supply chain design through constructed knowledge across

carefully crafted learning modules.

4. CONCEPTUAL LEARNING MODULES

FOR THE COLLABORATORY
Learning modules have been developed to demonstrate the effects

of different product designs on supply chain costs and

environmental impacts by using the Sustainable Product

Development Collaboratory, which is comprised of several web

application technologies. The collaboratory framework consists of

three main modules, i.e., design module, manufacturing analysis

module, and supply chain analysis module, as shown in Figure 1.

The design platform, which uses Google SketchUp, a freely

available 3D modeling tool, communicates with a web-based

design/analysis interface, called the “collaboratory portal.”

Alternatively, learners can access previously modeled products in

the Product Design Database (PDDB) for further cost and

environmental analysis. In consideration of the educational

context for learners, in particular for K-12 students, a simple and

easily accessible design platform is needed, so that learners do not

require additional training in model generation and design

modification. Accordingly, Google SketchUp was selected as the

design platform for the collaboratory.

XML Parser

Collaboratory

Portal

Design Platform Product Design

Database

Supply Chain

Analysis Engine

Manufacturing

Analysis Engine

Supply Chain

Analysis Module

Manufacturing

Analysis Module

Design Module

Figure 1. Collaboratory framework showing the portal and

design, manufacturing, and supply chain analysis modules.

With limited geometric and engineering analysis functionality,

SketchUp represents a 3D modeling tool for beginners. A plugin

was developed for the collaboratory to provide basic functions to

extract geometric and engineering information. Figure 2 displays

the SketchUp plugin for volume calculation developed under this

project. If several models or geometries are in the SketchUp

platform, the volume calculator will process only the active model,

i.e., the component or assembly in the bounding box.

A geometry slicing method is used to determine the solid volume

within the bounding box. The selection of accuracy level depends

on the complexity (irregularity) of the geometric shape. If the

bounding box is assumed to be in stock material dimensions, for

instance, subtracting the actual part volume from the bounding

box volume determines how much material will be removed

during manufacturing. Using basic functions in SketchUp,

learners can modify an existing product model or generate a new

product model according to their own desire. In addition, the

collaboratory library supports the learners with preprocessed

component and assembly models. Currently, the library contains

the components and assembly of a bicycle pedal.

Figure 2. Design platform plug-in for geometry and bounding box volume calculation.

Volume 3, Issue 2 Journal of Computational Science Education

4 ISSN 2153-4136 December 2012

Figure 3. Welcome page of the analysis interface.

In addition to product design capabilities, the collaboratory portal

provides an interface for the manufacturing analysis module and

the supply chain analysis module. The prototype welcome page of

the analysis interface is shown in Figure 3. The analysis interface

includes the pre-processed model analysis interfaces, a PDDB

communication interface, an XML parsing interface, a system-

solver communication interface, and a post-processing interface.

The pre-processed model analysis interface provides the user an

opportunity to view and select the pre-processed models from the

collaboratory library (PDDB). Both assembly level and

component level models are available in the library. Learners can

browse the assemblies and components, and the design-analysis

system interface displays an image of the selected component

(Figure 4). Learners can use this interface to download the

SketchUp-compatible drawing file from the collaboratory library

for further processing and design modification. The file can be

modified using SketchUp and exported to the collaboratory

library for manufacturing and/or supply chain analysis.

Figure 4. Design-analysis interface showing the body plate component model.

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 5

The design-analysis interface works for both the pre-processed

models and newly designed models. For pre-processed models,

design, manufacturing, and other analysis data are stored in the

PDDB. The PDDB has been designed using MySQL, and the

communication between the web portal and the MySQL has been

developed using Java. In the case of pre-processed models, the

Java code receives the properties from the PDDB corresponding

to the selected pre-processed model ID. On the other hand, for a

newly designed model, the design properties are stored in the

PDDB as required for manufacturing process modeling. This

interface has the intelligence to recognize whether the analysis

command was initiated for a newly designed model or a pre-

processed model. The interface exhibits the corresponding

properties, collected from the PDDB, for the selected model and

provides the user a place to define additional input parameters.

The portal displays basic geometric information taken from the

PDDB along with representative input fields (Figure 5).

Ongoing development is extending the PDDB and the input fields

based upon the requirements of the manufacturing and supply

chain analysis modules. The interface sends all the parameters

displayed in the portal to the analysis engines through XML

parsers. The manufacturing and supply chain analysis solvers are

stored on a central server along with the collaboratory portal. The

solver has separate worksheets for input parameters and output

parameters. For performing analysis, the analysis interface reads

the Excel workbook template stored in the PDDB and creates a

copy of the workbook in the PDDB. The purpose of copying the

workbook is to keep the workbook template protected from

malicious activities.

After creating the new workbook, the interface reads all the input

fields and adds the input parameters to the corresponding input

fields. If an Excel worksheet contains any formulas, logic, and/or

links; the updates made in the input fields are not executed

automatically. Execution of the formulas and logic steps is forced

by reading all the worksheets. The execution time varies

depending on the size and the contents of the workbook. After

completing analysis, the interface reads the output worksheet and

the output fields. The output parameters are sent to the XML

parsing interface for storage and transmission to the post-

processing portal.

Figure 6 illustrates the flow of the manufacturing analysis solver

for a set of processes that might be used to fabricate a bicycle

pedal body (PB), i.e., casting, boring, and milling. From the input

parameters, which describe the materials and stock and final part

geometries, the manufacturing analysis solver calculates total

process energy use and equivalent CO2 emissions (kg CO2 eq.).

The process carbon footprint (kg CO2 eq.) values for two variants

are then displayed numerically and graphically for interpretation.

With the design and manufacturing/supply chain analysis

functionalities thus available in the collaboratory, learning

modules can be constructed for use in the classroom at multiple

complexity and comprehensiveness levels to educate a wide

spectrum of learners about the concepts and practice of

sustainable product development. In the sample learning module

presented herein, we use the design of a bicycle pedal as a sample

project. The sample learning module includes four parts as shown

in Table 1; these modules are discussed in greater detail below.

Table 1. Key parts of the sample learning module

Module Part I. Introduction to the Activity

Module Part II. Software Demonstration

Module Part III. Bicycle Pedal Analysis Project

Module Part IV. Discussion

In Part I and Part II, the overall process, anticipated activity, and

software (collaboratory) capabilities are explained to the

participating students. Students at all levels are familiar with

bicycles, but may not be aware of the variety of pedal types

available. Thus, the module would start with an introduction and

discussion of bicycle pedal types, which include platform, clipless,

and pedals with toe clips. Images could be displayed using a

projector, or actual pedals could be passed around the classroom

to show the many types and styles.

Figure 5. Interface showing properties collected from the PDDB and user defined input fields.

Volume 3, Issue 2 Journal of Computational Science Education

6 ISSN 2153-4136 December 2012

0
50

100

150

200

250

300

350

400

450

PB 1 - Machining
PB 2 - Net Casting

Eq
.

C
O

2
 (

gr
am

s)

Process Flow

Process Carbon Footprint

Casting Machining

Operation Process Parameter Var. Value Units

Length of Bounded Vol. l 72.000 mm

Width of Bounded Vol. w 61.000 mm

Height of Bounded Vol. h 24.000 mm

Void Vol. w/in Bound. Vol. V v 27629 mm3

Material Density d 0.000 kg/mm3

Mass of Steel Plate m 0.210 kg

Specific Energy Required C E 10.990 MJ/kg

Energy Consumption EC 2307.936 kJ

Length of Cut L 72.000 mm

Initial Diameter D i 10.160 mm

Final Diameter D f 14.097 mm

Unit Power U 120000 in-lb/in3

Unit Power U 0.001 kJ/mm3

Energy Consumption EC 0.298 kJ

Length of Cut L 101.443 mm

Width of Desired Cut W 0.508 mm

Depth of Cut d 24.003 mm

Cutter Diameter D c 6.350 mm

Tool Passes P 0.080

Unit Power U 120000 in-lb/in3

Unit Power U 0.001 kJ/mm3

Energy Consumption EC 2.274 kJ

Casting

Boring

Milling

PB 1 - Machining Calculate totals from design and process information

Display results

PB 1 -

Machining

PB 2 - Net

Casting

PB 1 -

Machining

PB 2 - Net

Casting

Casting 3127.77 2307.95 420.00 310.00

Machining 5.98 2.57 0.80 0.35

Totals 3133.75 2310.52 420.80 310.35

Energy Use (kJ) Eq. CO2 (g)

Process Type

Figure 6. Manufacturing analysis solver operation.

In Part III, students would undertake a pedal design project using

the collaboratory, working individually or in pairs, to evaluate the

different pedal designs and/or approaches to produce and

assemble the pedals. Based on what the students discover, the

instructor can lead a discussion in Part IV of the module to further

cement the concepts of cost and environmental impact, as well as

how they can be influenced by product and process designs. The

instructor may conclude the discussion with how this might relate

to purchasing decisions students make in their own lives.

This module would be preceded by and concluded with subject

matter pre- and post-tests to assess the knowledge gains in

students. The tests are designed to assess multiple topics related to

design activities completed with the collaboratory e-learning

platform. Each pedal design requires different types and amounts

of materials, different manufacturing processes to produce, and

different supply chains to provide parts and materials for the pedal.

By evaluating the set of pedal types within the collaboratory

library, students at different levels of learning can thus explore

different environmental effects (e.g., carbon footprint and energy

consumption) of design changes. At higher levels of learning,

students can be asked to change the design parameters (e.g., size)

and engineering properties (e.g., material) using Google SketchUp

along with the collaboratory.

5. FOCUS GROUP STUDY
To validate the concept of employing the collaboratory within a

learning module, an interview was conducted with a focus group

consisting of middle and high school teachers in Michigan. In the

State of Michigan, Next Generation Science Standards (NGSS,

http://www.nextgenscience.org/) are being implemented with

strong emphasis in ecosystems, sustainability, and human impacts.

During the focus group interviews, the teachers supported

adoption of this collaboratory concept into the new curriculum.

They opined that the subject of human impact on the environment,

which is covered in eighth and ninth grades, is the topic where the

sustainability design education fits well. In general, the teachers

agreed that “understanding how an end product was realized and

delivered to consumers” should be emphasized more, especially

with respect to human impact on the environment. The scenario

based sustainable design education activity aims to tackle these

curricular needs.

In order to test the usability of the collaboratory in the classroom,

another focus group study was conducted with a modified Task-

Technology Fit questionnaire [13]. Ten graduate students

responded to this survey, which consisted of 20 questions. The

respondents indicated the ability of the system to conduct the

assigned design task using a 7 point Likert scale (1: strongly agree

– 7: strongly disagree). The assigned design task was to evaluate

the pedal types and explore the effect on environmental

performance (i.e., energy consumption) of design changes. Each

pedal design requires different types and amounts of materials,

different manufacturing processes to produce, and different supply

chains to supply parts and materials.

Most questions received an average response of approximately 2

points (Figure 7), which indicates that respondents strongly

agreed with the statements. In addition, the standard deviations

for most of the responses are 1 to 1.5, pointing to the fact that

most of the respondents evaluated the system with the positive

portion of the scale (i.e., 1-4).

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 7

Figure 7. Collaboratory usability test results.

However, two questions about Systems Reliability, i.e., “The

Collaboratory system is subject to unexpected or inconvenient

down times, which makes it harder to do this work” (Q12) and

“The Collaboratory system is subject to frequent problems and

crashes” (Q13) had averages of 3.9 and 4.1, respectively. Thus,

the system reliability must be improved to be more robust for a

better user experience. In addition, the average of the question

about Quality, “The Collaboratory system is missing critical data

that would be very useful in this job” (Q2) was 4.0 (standard

deviation of 1.8). Q2 relates to the ability of the system to

maintain the data, which was needed by the users, thus improved

ability of the system to maintain data is needed for users to

identify changes in the data and to access the previous and current

data easily.

This section demonstrated the collaboratory usability assessment,

which shows the effectiveness of the collaboratory for the given

design task, i.e., evaluating the impact of different pedal designs

on environmental performance. The following section describes a

proposed method for knowledge assessment.

6. KNOWLEDGE ASSESSMENT
The knowledge assessment targets the cyberinfrastructure

competency gained through interaction with the Sustainable

Product Development Collaboratory as well as content knowledge

gained through pre- and post-tests. Pre- and post-testing focuses

on the following three learning objectives:

1) Developing an awareness and understanding about the

impacts of product architecture, manufacturing process, and

supply chain decisions on the economic and environmental

sustainability of a product;

2) Articulating the impacts of product architecture,

manufacturing process, and supply chain decisions on the

economic and environmental sustainability of a product; and

3) Developing product design solutions that address technical

requirements, in addition to economic and environmental

sustainability goals.

These objectives cover students’ knowledge gains through

abstract means as well as a more applied project-based approach,

and thus, we use Kolb’s Learning model [16] as a basis in crafting

our assessment questions. In this model, knowledge construction

is assumed to progress in various stages, which are not necessarily

experienced in order. These stages include

Stage 1: Observation of concrete situations from different

perspectives (Concrete Experience – CE)

Stage 2: Observation and reflection of the experiences (Reflective

Observation – RO)

Stage 3: Formation of abstract concepts and generalizations based

on experiences and reflections (Abstract Conceptualization – AC)

Stage 4: Testing the implications of the concepts and

generalizations (Active Experimentation – AE).

Volume 3, Issue 2 Journal of Computational Science Education

8 ISSN 2153-4136 December 2012

In its essence, the collaboratory is a medium for students to

actively experiment with a concrete situation (product design) to

test the learned concepts, in addition to providing guidance as

critical domain knowledge. Active experimentation also fits well

with the constructionist approach, which encourages learning

through constructing, or designing or making a product [20].

The knowledge-gain assessment questions that we have developed

are open-ended in nature, and tap into awareness of the concepts

and the level of articulation. The questions also involve solving

problems using the concepts learned; therefore, they cover all

stages in Kolb’s Learning model. Sample questions that can be

used to assess knowledge gain include the following:

In your own words, explain what you understand about the

environmental impact of a product.

Explain the contribution of different life cycle stages on the

environmental impact of a product.

Which of the following statements best describes your

understanding of current product design practice?

Student responses to knowledge assessment pre- and post-tests

will be evaluated based on the pre-recorded correct answers to

assess the level of knowing on this particular subject – sustainable

design, manufacturing, and supply chain management.

By using this sample learning module and the design activities, it

is anticipated that students will be able to analyze the relative

impacts of components of a particular pedal, as well as the effects

of changes to their related geometries, manufacturing processes,

and supply chains. The actual implementation and assessment

results will be reported in an upcoming article.

7. CONCLUDING REMARKS
This article presented a pedagogical framework and a sample

learning module developed under an NSF CI-TEAM

Demonstration project, entitled “A Sustainable Product

Development Collaboratory.” This project aims to educate a wide

spectrum of learners (K-12, university, industry) in sustainable

design and manufacturing by demonstrating the effects of

different product designs on supply chain costs and environmental

impacts. The presented collaboratory has the potential to create an

evolving design repository, promote empirical/experimental

investigation to model life cycle costs and environmental

performance, and advance methods for joint optimization of

design variants and supply chains, while being readily available

and reusable by students and practitioners. In addition, the

collaboratory stands to benefit educational research by providing

a platform for experimental learning module development,

implementation, and assessment in the classroom environment at

multiple levels and in multiple regions.

A focus group study was conducted to understand middle school

and high school teacher’s perspectives. While they stated the

importance of sustainability education and relevancy of the

collaboratory concept to their curricula, they also emphasized that

student constructivist learning behavior should be addressed. The

teachers indicated that a game type or competition based learning

environment is effective. The collaboratory will be further

enhanced to support this constructivist pattern of learning.

Collaboratory development is focused on designing a bicycle

pedal by considering sustainability principles in design,

manufacturing, and supply chain activities. However, evaluating

sustainability implications of a product design decision should

include the impacts of the overall product life cycle. In other

words, products that are superior when manufacturing

performance metrics are taken into account may not be the ideal

choice when considering other life cycle aspects (e.g., service or

end of life). Thus, performance of other life cycle stages will be

continuously included in this scalable collaboratory environment.

8. ACKNOWLEDGMENTS
This work is funded by the National Science Foundation under

grant numbers OCI-1041423 (Oregon State), OCI-1041328 (Penn

State), and OCI-1041380 (Wayne State).

9. REFERENCES
[1] Allen D, Allenby B, Bridges M, Crittenden J, Davidson C,

Hendrickson C, Matthews S, Murphy C, Pijawka D (2008).

Benchmarking Sustainable Engineering Education: Final

Report. EPA Grant Number: X3-83235101-0.

[2] Ambient Insight. (2011). 2011 learning technology research

taxonomy: Research methodology, buyer segmentation,

product definitions, and licensing model. Monroe, WA:

Author. Retrieved from

www.ambientinsight.com/Resources/Documents/AmbientIns

ight_Learning_Technology_Taxonomy.pdf

[3] Barbour, M. K. (2009). Today's student and virtual

schooling: The reality, the challenges, the promise... Journal

of Distance Learning, 13, 1, 5-25.

[4] Barbour, M. K. (2011). The promise and the reality:

Exploring virtual schooling in rural jurisdictions. Education

in Rural Australia, 21, 1, 1-20.

[5] Barbour, M. K., & Reeves, T. C. (2009). The reality of

virtual schools: A review of the literature. Computers and

Education, 52, 2, 402–416.

[6] Carew, A., Mitchell, C. (2008). Teaching sustainability as a

contested concept: capitalizing on variation in engineering

educators' conceptions of environmental, social and

economic sustainability. Journal of Cleaner Production, 16,

1, 105-115

[7] Cavanaugh, C., Barbour, M. K., & Clark, T. (2009).

Research and practice in K-12 online learning: A review of

literature. International Review of Research in Open and

Distance Learning, 10, 1.

http://www.irrodl.org/index.php/irrodl/article/view/607

[8] Cavanaugh, C., Gillan, K. J., Kromrey, J., Hess, M., &

Blomeyer, R. (2004). The effects of distance education on K–

12 student outcomes: A meta-analysis. Naperville, IL:

Learning Point Associates. Retrieved July 4, 2005, from

http://www.ncrel.org/tech/distance/k12distance.pdf.

[9] Christensen, C. M., Horn, M. B., & Johnson, C. W. (2008).

Disrupting class: How disruptive innovation will change the

way the world learns. New York : McGraw-Hill.

[10] Clark, T. (2001). Virtual schools: Trends and issues - A

study of virtual schools in the United States. San Francisco,

CA: Western Regional Educational Laboratories. Retrieved

July 4, 2005 from

http://www.wested.org/online_pubs/virtualschools.pdf

[11] Clark, T. (2007). Virtual and distance education in North

American schools. In M. G. Moore (Ed.), Handbook of

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 9

Distance Education (2nd ed., pp. 473–490). Mahwah, NJ:

Lawrence Erlbaum Associates, Inc.

[12] Dankwort, C. W., Weidlich, R., Guenther, B., and Blaurock,

J. E. (2004). Engineers' CAx education - it's not only CAD.

Computer-Aided Design, 36, 1439-1450.

[13] Goodhue, D. L. and Thompson, R. L., (1995) Task-

Technology Fit and Individual Performance. MIS Quarterly,

19, 2, 213 – 236

[14] Kafai, Y. (2001). The educational potential of electronic

games: From games–to–teach to games–to–learn. Paper

presented at the Playing by the Rules: The Cultural Policy

Challenges of Video Games, Chicago, IL.

[15] Kafai, Y., Ching, C. C., & Marshall, S. (1997). Children as

designers of educational multimedia software. Computers in

Education, 29, 2, 117-126.

[16] Kolb, D. A. (1984). Experiential Learning: experience as the

source of learning and development. New Jersey: Prentice-

Hall (0 13 295261 0)

[17] Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk,

N. (2008). Programming by choice: urban youth learning

programming with scratch. Proceedings of the 39th SIGCSE

Technical Symposium on Computer Science Education,

Portland, OR, USA.

[18] Moore, M. G. (1973). Toward a theory of independent

learning and teaching. Journal of Higher Education, 44, 12,

661-679.

[19] NSF 2007 MT21 Study,

http://www.nsf.gov/news/news_summ.jsp?cntn_id=110845

[20] Papert, S. (1980). Mindstorms: Children, Computers, and

Powerful Ideas. New York: Basic Books.

[21] Peppler, K. A., & Kafai, Y. (2007). From SuperGoo to

Scratch: Exploring creative digital media production in

informal learning. Learning, Media and Technology, 32, 2,

149-166.

[22] Resnick, M. (2009). Scratch programming for all.

Communications of the ACM, 52, 11, 60.

[23] Rice, K. L. (2006). A comprehensive look at distance

education in the K-12 context. Journal of Research on

Technology in Education, 38, 4, 425-448.

[24] SME Competency Gap Research,

http://www.sme.org/downloads/foundation/Competency_Ga

p.pdf, Accessed 12/28/06.

[25] Thota, R. and Dwivedi, S. (2006). Implementation of

product realization concepts in design and manufacturing

course. ASEE paper, 2006-2180.

[26] Vygotsky, L. S. (1962). Thought and Language (E.

Hanfmann & G. Vakar, Trans.). Cambridge, MA: The M.I.T.

Press.

[27] Vygotsky, L. S. (1978). Mind in society: The development of

higher psychologist processes. Cambridge, MA: Harvard

University Press.

[28] Watson, J., Murin, A., Vashaw, L., Gemin, B., & Rapp, C.

(2011). Keeping pace with K–12 online learning: An annual

review of policy and practice. Evergreen, CO: Evergreen

Education Group.

Volume 3, Issue 2 Journal of Computational Science Education

10 ISSN 2153-4136 December 2012

A Hands-on Education Program on Cyber Physical
Systems for High School Students

Vijay Gadepally
∗

Ohio Supercomputer Center
1224 Kinnear Road

Columbus, Ohio
vijayg@osc.edu

Ashok Krishnamurthy
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, Ohio

ashok@osc.edu

Umit Ozguner
The Ohio State University
Electrical and Computer

Engineering
umit@ece.osu.edu

ABSTRACT
Cyber Physical Systems (CPS) are the conjoining of an enti-
ties’ physical and computational elements. The development
of a typical CPS system follows a sequence from concep-
tual modeling, testing in simulated (virtual) worlds, testing
in controlled (possibly laboratory) environments and finally
deployment. Throughout each (repeatable) stage, the be-
havior of the physical entities, the sensing and situation as-
sessment, and the computation and control options have to
be understood and carefully represented through abstrac-
tion.

The CPS Group at the Ohio State University, as part of
an NSF funded CPS project on “Autonomous Driving in
Mixed Environments”, has been developing CPS related ed-
ucational activities at the K-12, undergraduate and gradu-
ate levels. The aim of these educational activities is to train
students in the principles and design issues in CPS and to
broaden the participation in science and engineering. The
project team has a strong commitment to impact STEM
education across the entire K-20 community.

In this paper, we focus on the K-12 community and present
a two-week Summer Program for high school juniors and se-
niors that introduces them to the principles of CPS design
and walks them through several of the design steps. We
also provide an online repository that aids CPS researchers
in providing a similar educational experience.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education – computer science education

General Terms
Education, Design

∗Vijay Gadepally is a PhD candidate at The Ohio State
University and corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright c© JOCSE, a supported publication of
the Shodor Education Foundation Inc.

Keywords
Education, Supercomputing, Human Factors, Cyber Physi-
cal Systems

1. INTRODUCTION
As the Cyber-Physical Systems Group (CPS) at The Ohio

State University, under an NSF funded project entitled “Au-
tonomous Driving in Mixed Environments”, we have been
planning educational activities to promote student interest
in the Science, Technology and Mathematics (STEM) fields.
The need for promoting STEM related education to middle-
high school students in the STEM fields has been widely
documented [7, 11, 5] and can be summarized as highlight-
ing the need for the United States to prepare a sufficient
number of STEM professionals capable of innovation. As
described in [6], STEM education can be visualized as a
pipeline that begins in early education, extends through
college and ends with employment with critical transition
points that includes the high school to college transition.

The CPS group at Ohio State has significant experience
working designing K-12 education related activities (in addi-
tion to college undergraduate and graduate student courses).
In [8], the authors discuss a project designed for middle
school girls as a part of a week-long workshop, entitled “Fu-
ture Engineers’ Summer Camp”held at The Ohio State Uni-
versity. The authors describe their approach to introducing
middle school girls to fault tolerant computing through a va-
riety of kinesthetic learning activities. Kinesthetic learning
activities [10], are proposed by the authors as a process by
which students learn about theoretical concepts by carry-
ing out physical activities, as opposed to passively listening
to lectures. The authors describe their success using kines-
thetic learning activities to explain complex algorithms, such
as sorting, to younger audiences. In [9], the authors discuss
coursework developed at the undergraduate level to teach
students the important concept of abstraction.

In this paper, we present a two-week educational pro-
gram for high school students that introduces them to Cy-
ber Physical Systems, and the design and development of
such systems through the modeling and simulation at dif-
fering levels of abstraction. Students are introduced to CPS
through the engineering of autonomous vehicles or driverless
cars. In particular, students are asked to develop algorithms
for a vehicle (in this case, a Roomba) that can avoid obsta-
cles. The aim of the program is to help students emulate the
scientific process employed by CPS researchers while learn-
ing to use common techniques and tools. This paper aims

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 11

to describe the activities and provide sufficient resources to
facilitate the emulation of such a program.

CPS design, due to the cost and difficulty of direct phys-
ical testing, typically goes through four phases in system
design:

1. Conceptual Modeling: Understand the mathemat-
ics of the problem, and propose a theoretical solution
(develop equations of motion, develop analytical solu-
tions where possible.)

2. Simulated Testing: Use computer simulations to
validate algorithms (use a software package with a sim-
ulated test bed to test obstacle avoidance algorithms.)

3. Controlled Environment Testing: Use a physical
test-bed of a simulated environment to validate al-
gorithms (use the developed algorithm on a physical
Roomba within a simulated environment.)

4. Real World Deployment: Test the algorithm in the
real world (use the developed algorithm on a physical
vehicle on actual city streets.)

The activities described in this paper are conducted as a
part of the Summer Institute (SI) held at the Ohio Super-
computer Center (OSC). SI is a two-week residential pro-
gram for gifted highschool freshman, sophomores, and ju-
niors designed to raise students’ interest and awareness of
the STEM fields. SI challenges students to cultivate their
research ability through the use of cutting-edge tools, model-
ing and simulation, and interaction with active researchers.
Students are also encouraged to develop interpersonal skills
through presentations and participation in a variety of sci-
ence related field trips, and teambuilding activities.

The CPS project developed for this purpose is called “Ob-
stacle Avoidance Roombas,” and is a direct product of au-
tonomous vehicle research carried out by CPS researchers
at Ohio State. Over two years, 2010 and 2011, eight mo-
tivated students were chosen to participate in the project.
These students were introduced to real-life aspects of CPS
designs, trained in C/C++ programming, and taught rele-
vant mathematics and physics concepts. Students were then
asked to use a simulator, called Player/Stage, to program (in
C/C++) Roombas (as shown in Figure 1) to complete the
project. The project was divided into a sequence of four
subproblems to help students understand the logical project
progression.

1. Program a Roomba to follow a set of coordinates en-
tered by a user

2. Program a Roomba to acquire a target, and plan the
optimum path to reach the target

3. Program a Roomba to acquire a target, and avoid a
single obstacle to reach the target

4. Program a Roomba to acquire a target, and avoid mul-
tiple obstacles to reach the target

Students are taught how simulations can provide a path
to real world implementation, and use developed code on a
set of robots and obstacles in a laboratory setting at Ohio
State University.

Figure 1: Roomba fitted with GPS tag

In this article, we present details of this project, the educa-
tional materials developed, and results obtained. We begin
by giving an overview of the SI program, the CPS related
project, and the intended competencies. We present the log-
ical progression of the project through the four step process
taken by CPS researchers. We conclude the project descrip-
tion with student feedback and lessons learned by the CPS
staff. In order to facilitate similar projects, we end with a list
of the resources that were used in developing this project.

2. ABOUT OSC’S SUMMER INSTITUTE
For over 20 years, the Ohio Supercomputer Center (lo-

cated in Columbus,OH) has offered the Summer Institute
(SI) to Ohio’s gifted students entering their sophomore, ju-
nior or senior years of high school and their teachers. SI is
a two-week residential program designed to raise students’
interest in the Science, Technology, Engineering and Mathe-
matics (STEM) fields through a collaborative and dynamic
research environment and hands on experience with the lat-
est in cutting edge technology. The program is held in
Columbus, OH and students live in the dormitories of The
Ohio State University for this two-week period. Students
typically arrive at OSC by 9 AM every morning, and work
on their chosen projects until 5 PM when they are taken
back to their dorm rooms and take part in a variety of so-
cial activities. Each year, a number of projects are chosen
by SI staff that appeal to students. Projects are decided
taking into account previous student feedback, real-world
applicability of project, staff expertise and funding.

The program begins by teaching students UNIX, the oper-
ating system of the computers they use. Next, students learn
a programming language (C/C++/MATLAB) and any soft-
ware required to complete their projects. Students are re-
quired to do their own work from code implementation to
final presentations. The ability to develop algorithms and
an understanding of the project’s science/engineering basis
are needed.

2.1 SI 2010 and 2011
Thirty two students, and four teachers participated in the

SI’s held in 2010 and 2011. In SI 2010 and 2011, there were
four projects ranging from robotics to medical imaging. The
four projects with descriptions (as given to students) are
given in [1]. The project described in this paper, Obstacle
Avoidance Roombas, was presented to SI participants as

Volume 3, Issue 2 Journal of Computational Science Education

12 ISSN 2153-4136 December 2012

follows:

Obstacle Avoidance Roombas:

Many organizations, such as the US Army, require vehi-
cles that are capable of avoiding dangerous objects. These
objects may be explosive obstacles, booby trapped buildings,
or armed personnel. This sponsored project involves students
using robots and robotic simulators to design an “Obstacle
Avoidance Roomba.”

The project uses a Roomba, an autonomous robotic vac-
uum cleaner, fitted with LIDAR (a light based ranging de-
vice). The goal of the project is to program the Roombas to
avoid randomly placed obstacles to reach a destination. Stu-
dents work with a vehicle simulator, called Player/Stage, to
design “the brains” of a Roomba . After successfully simulat-
ing the behavior, the research group will do “real-life” tests
of the Roomba in a specially fitted laboratory.

The SI program began with a presentation of four projects
and students were allowed to choose one based on their in-
terests.

2.2 Project: Obstacle Avoidance Roombas
The project involves the design of algorithms and code

that directs a Roomba to avoid obstacles and reach a tar-
get or goal. Initial programming and testing of code is done
using the Player/Stage [3] simulator. Player is a network
server for robot control that supports a variety of robot
hardware. Stage simulates (in 2.5D) a population of mo-
bile robots, sensors and objects. The Player/Stage pack-
age allows quick prototyping of algorithms for implementing
embedded computers. The Player/Stage environment is de-
signed to simulate a set of roads and intersections set up in
the Control and Transportation Laboratory (CTL) testbed,
at The Ohio State University. Sensors used in the testbed
are simulated in the Player/Stage environment. Thus, the
students see how a ”real-world” laboratory environment can
be abstracted and modeled in a simulated environment. The
necessity of a “cyber” environment is further demonstrated
by the ease with which code prototyped in the simulator
can be transferred to testbed equipment. Students are also
introduced to limitations of the simulated world, and situa-
tions in which the simulator may allow a violation of physics
or mathematical possibilities in the real world such as a sim-
ulator valid Roomba position that translates to a Roomba
hovering above the ground that cannot be attained physi-
cally.

In general, the two weeks of SI are divided into training
and project components. The first week consists primar-
ily of providing students with tools and any mathematical
or physical foundations required to complete their projects.
Students also make multiple laboratory visits to gain an un-
derstanding of the environment that they are simulating.

2.3 Competencies
The CPS research team decided on various competencies

that would need to be taught to students.

2.3.1 Mathematics
Students were given a two hour interactive lecture that

introduced them to the mathematical concepts required to
complete Obstacle Avoidance Roomba project. The lecture
began with a refresher on coordinate geometry and covered

Figure 2: OSU ACT Vehicle and Sensors

concepts such as: frames of reference, coordinate and homo-
geneous transformations. Student competency was tested
with simple mathematical problems such as: “The roomba
is facing 45 ◦ in the Roomba frame, what would be the cor-
responding angle in the Earth frame?”

2.3.2 Physics
Students were given a guest lecture about the physics be-

hind CPS fundamentals. Students were taught that vehicles
are often modeled as a point-mass or a bicycle to simplify
calculations. Students were then taught about the point-
mass model and Bicycle model of vehicles. Students also re-
viewed Newton’s laws, friction, and simple dynamics. Stu-
dent competency was tested informally through questions
and answers.

2.3.3 Tools
Students were introduced to various tools used by CPS

researchers in the design and deployment of autonomous ve-
hicles. Students were given a tour of Ohio State’s Center
for Automotive Research and one of the autonomous vehi-
cles as shown in Figure 2. Instruction concentrated on the
sensors used in the vehicle, namely the GPS systems, Laser
Rangefinder and Radar systems. Student competency was
tested informally through questions and answers.

2.3.4 Programming
Students were introduced to programming of different lan-

guages used in CPS design. Instruction concentrated on
C/C++ (two popular programming languages) and MAT-
LAB (a very high level programming language popular with
engineers). Students were given a two hour lecture on pro-
gramming basics, that concentrated on syntax, and com-
mands. Training materials was taken largely from previ-
ously developed training material available at [2]. Student
competency was tested throughout the project.

2.3.5 Scientific Process
The scientific process employed by CPS researchers, de-

scribed in Section 1, was the central theme of the Obsta-

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 13

cle Avoidance Roomba project. Students were reminded
throughout the project of the process and that the logical
progression of the project followed this process.

3. PHASE 1: CONCEPTUAL MODELING
In the first phase, students are provided with details of

the problem to be solved and asked to develop algorithms
for each sub-part of the problem. The goal of this phase is
to introduce students to the process of learning the mathe-
matical and physical competencies described in section 2.3
and turning them into a proposed algorithm. Another goal
is to introduce students to the concept of peer review.

Students are also given real life examples of autonomous
vehicles performing obstacle avoidance. Student also learned
about the sensors used in Roombas, giving them an under-
standing of the type of data that they can use for develop-
ing their algorithms. Student learning is tested continuously
through simple exercises.

Once students are comfortable with the competencies re-
quired for project completion, they are split into two groups
of two student each. Students then work in their sub-group
collaboratively develop high level algorithms for the four
parts of the problem. In order to simulate the peer-review
process of scientific development, students are asked to present
their algorithms for each of the problem parts to the other
group and instructor for comments and feedback.

4. PHASE 2: SIMULATED TESTING
Once students have developed algorithms that pass the

peer review process, they are asked to use computer sim-
ulations to validate their algorithms for each of the sub-
problems. The goal of this phase is to provide students with
hand-on experience with the simulation tools (one of the in-
tended competencies) used by CPS researchers, in addition
to introducing students to the process of simulated valida-
tion of algorithms.

4.1 Training and Tools
Students use the Player/Stage package, a commonly used

robot simulation program. Player provides a network inter-
face for a variety of robot hardware, such as the Roomba.
Stage is a mobile robot simulator that provides handles to
a variety of sensor models. The environment used within
Player/Stage has been developed by the Center for Intel-
ligent Transportation Research (CITR), and simulates the
physical testbed, called SimVille, available for laboratory
testing at CITR. SimVille is described later in this paper.
The Player/Stage program uses the C/C++ programming
language to control the simulated Roombas movements. De-
veloped code can be transferred directly to the actual Room-
bas in the physical testbed.

To introduce students to the Player/Stage syntax, stu-
dents are walked through the solution of the first problem.
Students are then asked to convert the algorithms developed
in Phase 1 into Player/Stage compatible C/C++ code.

4.2 Activities
Students spent approximately twenty hours programming

in C/C++ with the Player/Stage environment. Their goal
was to solve the remaining three parts of the problem as
mentioned in section 2.2. At the end of each problem, stu-
dents are asked to present their code (to emulate the code

Figure 3: Simulated Version of Third Part of Project
(Red Circle represents the Roomba, Black Squares
Represent Obstacles)

Figure 4: Code Sample of Group 1

review process), and simulations to other students and the
project lead (for peer review).

In order to promote the development of robust algorithms
and code, students try to provide conditions that may“break”
the code or algorithm. Further, the instructor may modify
the environment, such as moving the obstacle. The aim of
this task is to teach students the fundamentals of designing
robust code, and the fact that research and development is
an iterative process. Once students and instructor are satis-
fied with the robustness of code and algorithm, they proceed
to the next part of the problem. An example of the simulated
output for Problem 4 is given in Figure 3. For this part, stu-
dents use Player/Stage to program the Roomba (red circle)
to pass through all the Obstacles (black squares).

4.3 Difference in Student Approaches
Students were encouraged to use the the math and physics

they were taught to develop their own algorithm for con-
trolling the Roomba. For example, in the third part of the
project, where students were asked to program a Roomba to
reach a target by avoiding a single obstacle, one group ap-
proached the problem by coding a set of switch statements
that would move the Roomba in a deterministic manner de-
pending on which quadrant of the screen the obstacle is in.

Another group programmed the Roomba to travel to a
fixed point away from the obstacle. The two code samples
of Figures 4 and 5 show one such difference in approach.

5. PHASE 3: CONTROLLED ENVIRONMENT
TESTING

Once students have sufficiently robust code, they are asked

Volume 3, Issue 2 Journal of Computational Science Education

14 ISSN 2153-4136 December 2012

Figure 5: Code Sample of Group 2

to use a controlled representation (laboratory setting) of the
real world - a testbed, called SimVille. SimVille was cre-
ated in 2007 in order to expedite research efforts in urban
environment scenarios. SimVille [12] is a 1/7 scale road net-
work that is designed to provide easy access to a road net-
work. Additionally ceiling mounted cameras provide a “Vir-
tual GPS”system that robots (Roombas) using SimVille can
get information about their location, location of obstacles,
etc. The Player program works as the network interface to
communicate between Roombas, GPS sensors, and control
code. Control code is a slightly modified version of code
written for the Stage simulator. A sample configuration of
SimVille is given in Figure 6. The goal of this phase is to in-
troduce students to the concept of a controlled (laboratory)
environment, and illustrate the parallels between code de-
veloped for the simulated environment and code needed for
the testbed environment. Students also learn the difference
between these settings. For example, some of the Roomba
speed values used in the simulated environment cannot be
physically realized in the testbed environment because of
physical limitations of the Roomba motors, and floor mate-
rial which are approximated in the simulator.

5.1 Presentation and Tools
Students are given multiple tours of the testbed, over the

course of the algorithm development and simulator proof-
of-concept phases, to give them an understanding of the lab
capabilities, and physical constraints. Additionally, students
are allowed to play with the roombas to understand the dy-
namics of movement. Students are shown how to translate
code written in Stage to the actual Roombas, through a var-
ied compilation technique. Student are also given a detailed
view of the sensors present in the testbed.

Once students have programmed their algorithms for the

Figure 6: Testbed

four problems, they are asked to implement their code on
the testbed. Students are able to modify the code they have
written for Stage and use their algorithms on the actual
Roombas.

5.2 Activities
While students are testing their code with the Roombas

in SimVille, SI staff introduce perturbations to the environ-
ment by moving obstacles to give students an understand-
ing of working with moving obstacles. Students are asked to
modify their code, if necessary, to solve any issues that are
brought about by these perturbations. Students complete
their testing for all four parts of the problem by the end of
the second week

6. PHASE 4: REAL WORLD DEPLOYMENT
While deploying the developed code on an actual vehicle

is not feasible, given the short time span, students are in-
troduced to this important phase through tours of several
laboratories, including the Center for Automotive Research
(CAR), which houses the OSU Autonomous Vehicle. Stu-
dents also have an opportunity to visit other laboratories at
The Ohio State University such as: a Bio-dynamics Labora-
tory, and a Virtual Reality Laboratory. The goals of these
laboratory visits is to show students the practical aspects of
their work. The goal of this phase is to show students the
final phase of the CPS research process - real world deploy-
ment.

7. CLOSING AND FEEDBACK
At the end of the two-week period, students are asked

to present their research, and results to all of the SI stu-
dents, Ohio State University faculty, SI Staff, and parents.
Students are also asked to give their feedback, and any sug-
gestions for future SI programs.

7.1 Participant Feedback
Upon completion of the Summer Institute program in

2010 and 2011, students were asked for their feedback of the
project, and suggestions for how to improve the project in

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 15

subsequent years. Excerpts from their comments are given
below:

7.1.1 Student 1
“For the past two weeks, I have been enrolled in the Ob-

stacle Avoidance Roomba project at the OSC Summer Insti-
tute. I have found it both informative and entertaining, and
strongly urge that it be offered again next year. Learning
C and the rudiments of autonomous-vehicle programming is
engaging, and I enjoy the relaxed and informal working en-
vironment. However, I felt that the competitive arrangement
of two pairs of programmers against one another was some-
what counterproductive: we probably would have been able
to accomplish considerably more if we had pooled all of our
resources.” Video feedback can be found at [4].

7.1.2 Student 2
“At first I was really just looking forward to an easy project

with roombas since I’ve used them before. Not using any
other sensors was a bummer, but I realize now that it’d be
impossible to incorporate the sensors in our time frame. I
liked working in a big group better than in our teams of 2,
because it got really competitive at times. My favorite parts
of the project were when the program actually worked when
compiled and driving the roombas at Dreese labs. I’ve actu-
ally learned a lot about psuedocode, high level coding, and dif-
ferent approaches to obstacle avoidance and using the GPS
sensors. Overall I really enjoyed working on the project, and
it’s definitely the highlight of my summer.”

7.1.3 Student 3
“During the past two weeks I had lots of fun learning about

Roombas, C Programming, and Quake 3. I thought that the
pace of the project was slow enough that I did not feel rushed,
yet fast enough to allow us to be productive. I think that it
might have been interesting to replace the multi-obstacle lab
with a lab having to do with sensors. We talked a lot about
the importance of sensors, so I was a bit disappointed to
discover that we would not be using them in our project. The
camp was extremely fun because of all of the participating
students and staff. This was probably one of the best two
weeks I have had in a while.”

7.1.4 Student 4
“When I was first assigned this project, my head was in-

trigued by the possibilities of what we could program the
Roomba to do. Shortly after we started programming, how-
ever, we ran face to face to the difficulties of using C to tell
the Roomba where and how to move. Project Obstacle Avoid-
ance Roomba is an great assignment to enlighten those un-
familiar with Autonomous Vehicles. The Roomba Project il-
lustrates the challenges of avoiding the walls, moving around
the obstacles, even turning the Roomba. Although I had
no part in writing the functions of controlling the Roomba,
there was plenty of work of just coding in an algorithm the
robot can follow to drive itself. Obstacle Avoidance Roomba
Project would be a great stepping-stone to help interested
newcomers step into the field of Autonomous Driving.”

7.2 Lessons and Future Projects
The SI Staff learned many valuable lessons from students,

and will use these to provide improved iterations of the
project in subsequent years.

7.2.1 Scope
Students particularly enjoy the coding components of the

project. The scope of the project is sufficient for students
to have an understanding of CPS fundamentals without ex-
cessive training. Coding training given in C/C++ and is in-
tended to help students with the Player/Stage programming.
Basic mathematical training in coordinate transformations,
homogeneous transformations in addition to basic physics is
also provided to give students further understanding of the
Roombas. Students expressed interest in using a larger set
of sensors (as opposed to purely GPS coordinates). Inclu-
sion of further sensors may be difficult within the 2 week
length of the program.

7.2.2 Competition
Students at times felt that the competitive process was

counterproductive and that they would rather that compo-
nent not be in the next iteration of the project. Students
indicated a preference for group based work - something they
felt would be more productive. This modification was made
in SI 2011 and groups worked in a collaborative manner
while maintaining the peer review process. Students were
also allowed to switch groups based on approaches or ar-
eas of interest. The collaborative group structure was more
successful than the competing group structure.

7.2.3 Working with varying student capabilities
One of the difficulties faced by the project teams was in-

structing students with differing technical capabilities, es-
pecially in knowledge of programming. In SI 2010 students
were paired such that each group would have one student
proficient in programming working alongside a student who
was not as familiar with programming. With student feed-
back that they felt this process required them to “carry”
another student, in SI 2011, an additional instructor (who
was also a SI 2010 student) was brought in to give person-
alized attention to students who required technical help - so
as to ensure proficient students were not slowed down.

7.2.4 Metrics to Judge Project
One metric used to judge program success in SI 2010 and

2011 is student willingness to participate in future robotics
related activities after the Summer Institute program. An-
other metric, student learning of competencies, was tested
through informal systems. In future iterations, the authors
wish to devise a formal evaluation to judge student compe-
tencies.

7.2.5 Project Evaluation
In SI 2010 and 2011, evaluation was collected through a

daily online journal that asked students the following ques-
tions:

1. What did you learn today?

2. Who did you help out today and how?

3. Who helped you out today and how?

4. What did you like best about today’s activities?

5. What did you like least about today’s activities?

Volume 3, Issue 2 Journal of Computational Science Education

16 ISSN 2153-4136 December 2012

Such information was collected over eight days culminat-
ing in a final comprehensive survey about the overall experi-
ence. Data was also collected about student-instructor inter-
actions and improvements that could be made to the overall
program and particular project. In the final survey, 100%
of the students “Strongly Agree” that the instructors were
helpful. Multiple students cited that the “High Point” of the
experience was in the Roomba testbed. One student cited a
“Low Point” when they had difficulty with the coding com-
ponent of the project. Overall, 75% of the students felt that
the programming portion of the project was enjoyable with
25% feeling that they needed greater prior programming ex-
perience. Students were also asked to comment about the
experience such as lab tours, residence halls, etc. As a mea-
sure of being taught in a way that corresponds to learning
style, 36% said “Strongly Agree”, 43% said “Agree” and 21%
said “Neutral.” 100% of the students said that the project
has deepend their desire to work in the field of robotics or
engineering.

8. TOOLS AND RESOURCES
The aim of this paper is to present a CPS related study

that can be recreated. This section outlines the tools/material
used and basic instructions on creating a similar project.

• The first step is to download and install the Player/Stage
project from http://playerstage.sourceforge.net.
Download and installation instructions for a variety of
hardware configurations is included in the instruction
manual.

• The programmable roombas used in the testbed com-
ponent of the project can be purchased from http:

//store.irobot.com. The Player/Stage simulator can
be configured to work with this Roomba.

• To view and download the SI 2011 Source Code:
http://dl.dropbox.com/u/1268613/codesamples.zip

• To view and/or download the SI 2010 Student Presen-
tation and Videos:
http://dl.dropbox.com/u/1268613/RoombaProject.zip

Other related links and resources:

1. Student Feedback Video:
http://www.youtube.com/watch?v=Ke8ONfF-Q64

2. NSF CPS Program:
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=

503286

3. C/C++ Training Material:
http://www.osc.edu/supercomputing/training/

9. CONCLUSIONS
We present a two week educational program for High

School students as a part of the Summer Institute program
at the Ohio Supercomputer Center. Students are introduced
to CPS related fundamentals, and develop the algorithm and
code for an obstacle avoidance Roomba. Students are taught
the scientific process of moving from simulated to real world

testing, and are taught the CPS core competencies of math-
ematics, physics, programming languages, and other tools.

Additionally, students are introduced to the concepts of peer
review, and iterative development. Student feedback showed
that students greatly enjoy the program, and students indi-
cate interest in future participation in CPS related research
activities. We also give the reader the tools and resources
required to recreate the summer educational program.

10. ACKNOWLEDGMENTS
This work was supported by a National Science Foun-

dation Grant. The authors would also like to thank Paul
Sivilotti, Keith Redmill, Scott Biddlestone, Arda Kurt, and
Micheal Vernier for their support in developing the educa-
tion activities.

11. REFERENCES
[1] Ohio supercomputer center, si 2010 project listing:

http://www.osc.edu/education/si/projects/index.shtml.

[2] The ohio supercomputer center, training material:
http://www.osc.edu/supercomputing/training/.

[3] The player/stage project:
http://playerstage.sourceforge.net/.

[4] Upper arlington student discusses osc’s 2010 summer
institute and computational science:
http://www.youtube.com/watch?v=ke8onff-q64.

[5] J. Kuenzi. Science, technology, engineering, and
mathematics (STEM) education issues and legislative
options. In Library of Congress, Washington DC
Congressional Research Office, 2006.

[6] B. Lowell, H. Salzman, H. Bernstein, and
E. Henderson. Steady as she goes? Three generations
of students through the science and engineering
pipeline. In Annual Meetings of the Association for
Public Policy Analysis and Management Washington,
DC on November, volume 7, pages 9–10, 2009.

[7] L. Perez-Felkner, S. McDonald, and B. Schneider.
What Happens to High-Achieving Females after High
School? Gender and Persistence on the Postsecondary
STEM Pipeline.

[8] P. Sivilotti and M. Demirbas. Introducing middle
school girls to fault tolerant computing. In Proceedings
of the 34th SIGCSE technical symposium on Computer
science education, pages 327–331. ACM, 2003.

[9] P. Sivilotti and M. Lang. Interfaces first (and
foremost) with Java. In Proceedings of the 41st ACM
technical symposium on Computer science education,
pages 515–519. ACM, 2010.

[10] P. Sivilotti and S. Pike. The suitability of kinesthetic
learning activities for teaching distributed algorithms.
ACM SIGCSE Bulletin, 39(1):362–366, 2007.

[11] W. Tyson, R. Lee, K. Borman, and M. Hanson.
Science, Technology, Engineering, and Mathematics
(STEM) Pathways: High School Science and Math
Coursework and Postsecondary Degree Attainment.
Journal of Education for Students Placed at Risk
(JESPAR), 12(3):28, 2007.

[12] M. Vernier. Virtual sensor system: Merging the real
world with a simulation environment, 2010.

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 17

http://playerstage.sourceforge.net
http://store.irobot.com
http://store.irobot.com
http://dl.dropbox.com/u/1268613/codesamples.zip
http://dl.dropbox.com/u/1268613/RoombaProject.zip
http://www.youtube.com/watch?v=Ke8ONfF-Q64
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
http://www.osc.edu/supercomputing/training/

Using Supercomputing to Conduct Virtual Screen as Part
of the Drug Discovery Process in a Medicinal Chemistry

Course

David Toth
University of Mary Washington

1301 College Avenue
Fredericksburg, VA 22401

dtoth@umw.edu

Jimmy Franco
Merrimack College
315 Turnpike Street

North Andover, MA 01845

jimmy.franco@merrimack.edu

ABSTRACT

The ever-increasing amount of computational power

available has made it possible to use docking programs to

screen large numbers of compounds to search for molecules

that inhibit proteins. This technique can be used not only

by pharmaceutical companies with large research and

development budgets and large research universities, but

also at small liberal arts colleges with no special computing

equipment beyond the desktop PCs in any campus'

computer laboratory. However, despite the availability of

significant quantities of compute time available to small

colleges to conduct these virtual screens, such as

supercomputing time available through grants, we are

unaware of any small colleges that do this. We describe the

experiences of an interdisciplinary research collaboration

between faculty in the Chemistry and Computer Science

Departments in a chemistry course where chemistry and

biology students were shown how to conduct virtual

screens. This project began when the authors, who had

been collaborating on drug discovery research using virtual

screening, decided that the virtual screening process they

were using in their research could be adapted to fit in a

couple of lab periods and would complement one of the

instructors’ courses on medicinal chemistry. The resulting

labs would introduce students to the virtual screening

portion of the drug discovery process.

General Terms

Supercomputing, Computational Chemistry Education,

Drug Discovery, Medicinal Chemistry

Keywords

Docking, Virtual Screening, AutoDock Vina, PyMOL

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Copyright ©JOCSE, a supported publication of the Shodor

Education Foundation Inc.

1. INTRODUCTION
Identifying novel chemotherapeutics has become

increasingly challenging and expensive. For every 10,000

compounds evaluated in animal trials, only 10 will make it

to clinical trials. The average cost to bring a drug to market

is estimated to be about 800 million dollars [1]. Thus the

need for more efficient methods of identifying compounds

has become increasingly important. One of these methods

is virtual screening. The increasing amount of available

computing power and the number of protein structures that

have been solved have made this an increasingly attractive

approach. As of April 10, 2012, there were 80,710

structures in the Protein Data Bank (PDB), which offer a

plethora of possibilities for conducting virtual screens [2].

The number of solved structures will only increase as

thousands of structures are deposited annually in the PDB.

Many of the chemistry and biology curriculums lack

sufficient computational instruction to prepare the next

generation of scientists. Proficiency in computational

science has become increasingly important. Many

industrial companies including big pharmaceutical

companies such as Pfizer, Genentech, Eli Lilly & Co and

Johnson & Johnson have begun using methods like virtual

screening to improve their efficiency in the drug discovery

process. Thus student graduating with experience using

computational tools and methods will be much more

employable.

In this paper we describe our experiences with students

using a supercomputer to conduct a virtual screen using

AutoDock Vina to identify inhibitors for a number of

diseases [3]. The docking program calculates the binding

affinity of each of the compounds in a library of

compounds specified by the user. The compounds are

sorted by binding affinity using Microsoft Excel and

subsequently the top hits can be visualized in PyMOL [4].

Visualizing the compounds in PyMOL allows the student to

confirm that the predicted binding conformation would

induce the required inhibitory affect. The project described

here can be incorporated to into a large drug discovery

project. The compounds identified as hits from the docking

Volume 3, Issue 2 Journal of Computational Science Education

18 ISSN 2153-4136 December 2012

program could subsequently be screened in a wet

laboratory.

Having undergraduate students work on drug discovery in

an academic environment is now feasible with the minimal

computational power available on any campus and the

supercomputer time one can obtain with grants. This type

of applied project stimulated interest amongst our students,

as they were able to envision what the impact of the project

would be if they found a good potential inhibitor. This

project also allowed us to highlight the interdisciplinary

nature of the modern drug discovery process, which relies

on computer science, chemistry, and biology. The project

outlined here creates a platform for a drug discovery

research project.

2. RELATED WORK
While there have been several articles published about

using virtual screens in a curriculum, none to our

knowledge have used supercomputing [5]. An

advantageous attribute of this project is the ability to adapt

this project to any number of diseases or disorders. Along

with a large variety of targets the concept of using super

computing power can be adopted to a wide variety of

simulations and modeling programs [6, 7].

A recent article by Sutch et al. described an activity

focused on a structure based drug design [8]. One of the

programs used in that activity to conduct the virtual screen

was MEDock, which is a simple docking program.

Unfortunately, this simplicity also imposes several

imitations on MEDock’s versatility. It only allows for

areas of 300 atoms to be evaluated in a virtual screen. It

also limits the number jobs that can be submitted. The

largest problem with this program is that it perpetuates the

black box thinking of virtual screening. Students need

much less insight into the program to be able to

successfully screen compounds, thus requiring less

understanding of the science behind the project. Also in

the project described herein students use PyMOL, which is

a commonly used program for visualizing macromolecules

in both academia and industry.

Other articles describing small molecule interactions

with drug targets have focused on the specifics of the

compounds’ conformations and chemical properties in

relation to protein, but do not address the greater issue of

the drug discovery process or virtual screening [9, 10].

None of the previous lab activities we have found in the

literature required the student to engage in the computer

science aspect as much as this activity does. Most of the

activities used programs that are less versatile but have a

graphical user interface. While this can be very

advantageous for large classes, it does allow the students to

conduct the exercise with out much understanding of the

docking program.

3. THE GOALS AND ACTIVITIES
There were a number of goals for the labs, including

getting students to learn the important role that computers

can play in the drug discovery process. Students were also

supposed to learn how to use a docking program, gain

experience using software other than the commercial off-

the-shelf software they use on a daily basis, and get

exposure to the Linux operating system and a command

line interface. Other goals were to gain an appreciation for

how much supercomputers can speed up the virtual

screening process and understand that supercomputing time

can be obtained at no cost even by small academic

institutions that do not have the financial resources to buy a

supercomputer or time on a supercomputer. Students also

were shown how to use PyMOL, a protein visualization

program. Finally, students also were shown some new data

analysis skills with Excel.

Students learned a little about supercomputers as part of the

lab. The most striking thing that students learned is that the

virtual screening process is significantly faster using a

supercomputer, because they can screen many molecules at

once, rather than only a few at a time, when using a single

CPU core per molecule. They also learned that as opposed

to desktop computer or a server where you can just start

tasks whenever you want, on a supercomputer, you must

submit your task to the queuing system and the queuing

system controls when your task is run. The students

learned that the queuing system using a number of factors

to determine when a task should be run, including the

number of CPU cores needed and the amount of time

requested for the task. Therefore, they understood that

while using more CPU cores might finish the virtual screen

faster once the task was started, requesting many more

resources might delay when the task was started and could

ultimately result in the virtual screen being completed later

than if they requested fewer CPU cores. Students also

learned how to check the queue on the supercomputer to

see whether their task was waiting or being run. Figure 1

shows a screen capture from the lab manual where the

students would check the queue.

The laboratory was conducted in three phases over the

course of two days due to the laboratory time being 1 hour

and 15 minutes. However, we note that the activity would

fit very well in a traditional 3 hour laboratory. Prior to the

laboratory students had to choose a protein that was known

to be a good drug target from the PDB. To identify a

protein student conducted a literature search using

SciFinder, PubMed or Google Scholar. Students were

instructed to identify a protein that had been previously

shown to be a good drug target, either through chemical

inhibition, knockout study, or methods that demonstrated

the proteins potential as a drug target. Secondly, students

had to very verify that 3D structure had been solved. This

was easily done by searching the PDB site for the structure.

With only these two constraints, students have a large

number of targets to choice from. The variability of the

drug target selection was purposely done was to allow the

students to take ownership over the project as well to force

the student to think critically about the target. The

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 19

Figure 1: A screen capture from the laboratory manual showing the output from querying the supercomputer’s

queue.

structures were then converted to pdbqt files (the file

format that AutoDock Vina uses) and the search grid was

set using AutoDock Tools [11]. Although students were

required to choose a protein, convert it, and find the search

grid, three pre-converted proteins structures and search

grids have been included in the supplemental materials with

this paper (Sample_Targets.doc) for readers wanting to test

the lab without having to first find a protein, convert it to a

pdbqt file, and find the search grid. Those three proteins

are targets for Alzheimer’s disease, Cancer, and HIV.

On the first day, students carried out Phase one of the

laboratory. Before beginning the laboratory, students were

given a 26-page full-color laboratory manual that included

numerous screen captures to help them with the laboratory.

Figures 2 and 3 show portions of the lab manual showing

the students how to lo on to a remote computer with ssh

and scp. The lab manual has been included in the

supplemental materials with this paper

(Laboratory_Manual.docx). Students began the laboratory

by downloading a protein pdbqt file from the course

Blackboard site and then a secure shell (ssh) program and a

secure copy (scp) program from the Internet. Next, each

student was given a distinct username and password to log

onto a server on campus. Students logged on to the server,

transferred the protein file to the server, and using the

docking program, tested how well the protein bound to a

potential drug molecule. We showed the students how to

use AutoDock Vina, an open source software package from

the Scripps Institute [3].

Students continued working on the laboratory on the

second day by starting with Phase two. In Phase two,

students created a shell script to automate the screening of

multiple compounds. While Phase two of the laboratory

manual included instructions to perform the analysis of the

data from the virtual screening, to save time, students were

assigned to do that portion of the laboratory at home.

Students then did Phase three of the laboratory. In Phase

three, students logged on to a supercomputer located across

Volume 3, Issue 2 Journal of Computational Science Education

20 ISSN 2153-4136 December 2012

Figure 2: Portion of the laboratory manual showing how to log on to a supercomputer or a remote server using ssh.

Figure 3: Portion of the laboratory manual showing how to log on to a supercomputer or a remote server using scp.

the country and uploaded a protein file. Finally, they edited

a shell script that they could use to automate the virtual

screening, and submitted the job to the batch scheduling

system on the supercomputer.

Finally, the students were asked to complete their projects

in their assigned groups. The output files from the virtual

screens were posted on blackboard for the convenience of

the students. The results of each group’s screen were

posted as text files. Each group converted their text file to

an Excel file so they could quickly identify the top binding

affinity compounds; those compounds are termed hits.

AutoDock Vina identifies several binding conformations

for each of the compounds screened and outputs those

values, as shown in Figure 4. The compounds the students

screened came from the ZINC database

(http://zinc.docking.org/pdbqt/) [12]. However, the

conformation with the best binding affinity is the one most

likely to occur, so the students were supposed to remove

the data for the other conformations of the same compound

from the data. Using Excel, the students were able to

remove the extra conformations for each compound and

sort the remaining data to quickly identify the compounds

with the best binding affinity. The hits are subsequently

visualized in PyMOL. An example is shown in Figure 5.

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 21

Figure 4: Portion of the laboratory manual showing the output of AutoDock Vina after screening a molecule.

A handout with commands for PyMOL is included in the

supplementary materials with this paper

(PyMOL_Commands.doc). Visualization of the binding

conformations with the protein is important since a

compound may have a high binding affinity for a protein,

but may not inhibit its activity. When visually inspecting

the hits with PyMOL, students were instructed to verify

that the compounds bind to the active site or to a known

Volume 3, Issue 2 Journal of Computational Science Education

22 ISSN 2153-4136 December 2012

allosteric site of the protein. When ranking the hits and

trying to identify a few lead compounds to pursue, if

specific details about the protein are known, such as, if a

residue is essential to the protein’s function, then any

compounds interacting with these residues should be given

extra consideration.

During the evaluation of the hits in PyMOL, students had

to critically evaluate how the potential inhibitor was

predicted to bind to the targeted protein. Two main aspects

were focused on during the evaluations of binding:

orientation and the interactions between the compounds

and the protein. First, did it bind in a manner that would

inhibit enzymatic activity? Typically this could be

determined by it binding to either the active site or a known

allosteric site. Also compounds predicted to interact with

residues previously shown to be important were especially

noteworthy. Secondly, students examined what

interactions the compounds have with the targeted protein,

such as hydrogen bonding, ionic interactions, and

hydrophobic interactions, as these interactions determine its

binding affinity. The students learned the relationship

between how the thermodynamics of the calculated values

relate to how the compounds interact with the protein. By

being able to visualize the predicted binding conformations

in PyMOL, students were able to see the interactions that

lead to the predicted binding affinity. Compounds

displaying a large number of favorable interactions

displayed the greatest binding affinity. Lastly, many

students fail to see the importance of understanding

thermodynamics and this project allows the students to see

a real world application of thermodynamics. During the lab

section, students were given a brief explanation on how the

docking program measures the energy between the

compounds and the protein.

For this course, Medicinal Chemistry, thirteen students

consisting of biology, chemistry, and biochemistry majors

participated in the activity. Each group of students had to

create a written report of their finding where they had to

give some background about the disease, explain the

function and importance of the selected target, and

demonstrate that they had identified a potential inhibitor for

the targeted protein. The groups were also required to

present their work to the rest of the class with a PowerPoint

presentation.

4. STUDENT REACTIONS
The students in the course were given an anonymous

survey at the end of the semester. The survey is included in

the supplementary materials (survey.pdf). The survey

responses indicated a significantly increased awareness of

the availability of supercomputing resources. The surveys

also showed that the students learned how to use the

software for the project, including AutoDock Vina and

PyMOL, and that the students learned new techniques in

Excel. The surveys demonstrated that the students became

more comfortable using the command prompt and they also

learned some simple UNIX commands. Because there is a

significant amount of scientific software that must be run

from the command prompt, increasing the students’

comfort with the command prompt is very important as we

try to prepare them for their future careers. The students

Figure 5: An image of one of the top binding

inhibitors as calculated by AutoDock Vina. This is

an example of an image the students will generate

during the project using PyMOL.

also learned the importance of computation in science, as

an alternative method of solving problems, so they

understand that science can be done outside of a wet

laboratory. They also understood that supercomputing

could be applied to problems in other domains and would

recommend its use for other projects. In addition to

learning computational science techniques, students also

demonstrated an increased understanding of fundamental

chemistry concepts.

The students in the class reacted very favorably to the

laboratory. All of the students felt that the laboratory

manual was easy to follow. At the end of the course, over

one third of the students expressed a desire to continue

working on the projects and in particular, work more on the

computational aspect of the project and conduct virtual

screens of more compounds to try to find more potent

inhibitors. These students, who were completing their

Junior year, will be working on directed research projects

related to the course projects in the upcoming year. A large

percentage of the graduating Seniors also expressed that

they would have continued working on the projects if they

were not graduating, and several said they might be willing

to come back over the summer to continue until they had

found jobs. One student commented that she thought the

computing aspect of the project was “extremely interesting

and educational.” Because this student was not very

comfortable with using computers for science to begin

with, we found that this was very encouraging.

5. INSTRUCTOR REACTIONS

AND LESSONS LEARNED
It took 2.5 hours spread over two days for students to

complete the laboratory activities other than the data

analysis portion. The students were able to complete the

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 23

Phase one activities in 1 hour, with each student working

on their own computer. During the first day, although the

students were given the laboratory manuals, the instructor

showed the students how to do the tasks on a computer

where the screen was projected at the front of the

classroom. This was done to try to get the students more

comfortable with some of the tasks that they might be less

familiar with. On the second day, students worked in their

project groups, with one group per computer and the

students were told to follow the laboratory manual’s

instructions but to feel free to ask questions whenever they

had any trouble. Because of the detail of the laboratory

manual, which included numerous screen captures, this

worked well. The instructors felt that the second day went

smoother than the first day and believed that forcing the

students to follow the laboratory manual rather than having

one instructor demonstrating the tasks at the front of the

room worked very well. However, it may have been

important to help the students get comfortable with the

tasks during the first day of the laboratory by having them

watch the instructor rather than having them simply follow

the instructions on the laboratory manual.

During the process of the students downloading the ssh

client and the scp client, we learned that although the

laboratory manual was very detailed, the students tended to

have difficulty entering URLs correctly. As we progressed

through the laboratory, we discovered that the same idea

held for places where the students needed to type

commands. Instructors using this lab should be aware of

the difficulties that the students had with entering URLs

and commands so they are prepared for the inevitable

questions about why something does not work.

One issue that we did not anticipate was the amount of time

that it took the server the students used in Phase one and

Phase two of the laboratory to run the virtual screens. The

server used was a dual-core desktop computer that was 4-5

years old and while it did the processing quickly enough

during our testing of the laboratory materials before giving

the laboratory to the students, multiplying the tasks the

computer needed to do by 13 proved to be too much for the

computer to handle gracefully. While it completed all the

tasks, it was slow enough in Phase one of the laboratory

that we put the students into their project groups for Phase

two and Phase three. We recommend that others use a

computer better equipped to handle the computational

demands of the number of students.

There are a few suggestions that we have for other

instructors who will use this module when teaching their

courses. The number of students in each group in our class

ranged from 2 to 5 students. The groups were allowed to

divide the work up as they wanted. In the smaller groups, it

appeared that all the student were extremely active. In the

larger groups, the amount of work varied vastly between

students. Thus, one suggestion we have is limiting the size

of the student groups to 2-3 students. The instructor may

also want to load the protein files that students will use and

the shell script onto the server before the laboratory, if they

want to shift the focus more towards the chemistry aspect

and minimize the computer science portion of the project.

The instructor may want to mention before the laboratory

that not every command that the students enter will result in

significant visual output in the command window, as this

confused several of our students.

6. CONCLUSIONS
We were able to develop a hands-on laboratory project that

allows students to gain valuable experience in

computational science with real-world applications. We

have been able to present the material in a manner that

engaged the students and stimulated interest in

computational science research. Because all of the

software is open source and all the required resources

beyond what exist in any college computer lab are freely

available through grants, this project can be done at schools

of any size at no cost. The project can be run as a pre-

packaged standalone laboratory assignment just to

introduce students to virtual screening and computational

chemistry or as a large semester-long project. If the project

is run as a full course project, it could be used to prepare

students for directed research projects in drug discovery

and senior thesis work. Since computational science has

become a more substantial part of a number of scientific

disciplines, this project could be used as a model to develop

other computational science lab projects.

7. FUTURE WORK
In continuing the development of this project, we will

extend it to a full semester project. In the full semester

project, students would be required to use the information

gathered from evaluating the hits in virtual screen to

generate a second generation of inhibitors. Thus, when

students are evaluating the hits in PyMOL they will have to

identify any additional interaction that can be utilized by an

inhibitor. This could be done by adding and additional

hydrogen bonding acceptor or donor, creating a

hydrophobic group to utilize a hydrophobic pocket, or

removing a group that is creating an unfavorable steric

effect. This deals with the properites a compounds should

posses to be a more likely drug candidate. Once the

students have designed a set of compounds they will

virtually construct them using Jmol

(http://jmol.sourceforge.net/) and Open Babel

(http://openbabel.sourceforge.net/), which are both open

source software. The compounds will then be re-screened

to indentify which chemical modications had the largest

effect on the binding affinity. Lastly students would be

asked to propose a synthesis for their top three hits.

In future work, we will create an electronic lab kit,

containing a step-by-step laboratory manual and either all

the files or links to all the files, depending on licensing

restrictions, that instructors would need to recreate the

laboratory at their own institutions.

8. ACKNOWLEDGEMENTS
This work used the Extreme Science and Engineering

Discovery Environment (XSEDE), which is supported by

National Science Foundation grant number OCI-1053575.

Volume 3, Issue 2 Journal of Computational Science Education

24 ISSN 2153-4136 December 2012

We wish to thank the Extreme Science and Engineering

Discovery Environment (XSEDE) program, which

supported this work by providing the supercomputer time

through grant TG-MCB120071. We also wish to thank the

Texas Advanced Computing Center (TACC), which

provided the supercomputer we used for this work. We

would also like to acknowledge the students in the course

for their participation in this project.

9. REFERENCES
[1] Silverman, Richard B. The Organic Chemistry of

Drug Design and Drug Action. 2nd ed. Amsterdam ;

Boston: Elsevier Academic Press, 2004.

[2] RCSB Protein Data Bank

http://www.rcsb.org/pdb/home/home.do.

[3] Trott, O.; Olson, A. J. Journal of Computational

Chemistry 2010, 31, 455-461.

[4] The PyMOL Molecular Graphics System, Version

1.2r3pre, Schrödinger, LLC. http://www.pymol.org/

[5] Baudry, J.; Hergenrother, P. J. Journal of Chemical

Education 2005, 82, 890.

[6] Artavanis-Tsakonas, K.; Weihofen, W. A.; Antos, J.

M.; Coleman, B. I.; Comeaux, C. A.; Duraisingh, M.

T.; Gaudet, R.; Ploegh, H. L. The Journal of

biological chemistry 2010, 285, 6857-66.

[7] Sotomayor, M.; Weihofen, W. A.; Gaudet, R.; Corey,

D. P. Neuron 2010, 66, 85-100.

[8] Sutch, B. T.; Romero, R. M.; Neamati, N.; Haworth, I.

S. Journal of Chemical Education 2012, 89 (1), pp

45–51.

[9] Yuriev, E.; Chalmers, D.; Capuano, B. Journal of

Chemical Education 2009, 86 (4), p 477.

[10] Manallack, D. T.; Chalmers, D. K.; Yuriev, E. Journal

of Chemical Education 2010, 87 (6), pp 625–627.

[11] AutoDock Vina – molecular docking and virtual

screening program

http://vina.scripps.edu/tutorial.html.

[12] Irwin, J. J.; Shoichet, B. K. Journal of Chemical

Information and Modeling 2004, 45, 177-182.

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 25

Metadata Management in Scientific Computing

Eric L. Seidel
The City College of New York

eseidel01@ccny.cuny.edu

ABSTRACT
Complex scientific codes and the datasets they generate are
in need of a sophisticated categorization environment that
allows the community to store, search, and enhance meta-
data in an open, dynamic system. Currently, data is often
presented in a read-only format, distilled and curated by a
select group of researchers. We envision a more open and
dynamic system, where authors can publish their data in
a writeable format, allowing users to annotate the datasets
with their own comments and data. This would enable the
scientific community to collaborate on a higher level than
before, where researchers could for example annotate a pub-
lished dataset with their citations.

Such a system would require a complete set of permissions to
ensure that any individual’s data cannot be altered by others
unless they specifically allow it. For this reason datasets
and codes are generally presented read-only, to protect the
author’s data; however, this also prevents the type of social
revolutions that the private sector has seen with Facebook
and Twitter.

In this paper, we present an alternative method of publish-
ing codes and datasets, based on Fluidinfo1, which is an
openly writeable and social metadata engine. We will use
the specific example of the Einstein Toolkit, a shared sci-
entific code built using the Cactus Framework, to illustrate
how the code’s metadata may be published in writeable form
via Fluidinfo.

1. INTRODUCTION
Data management is quickly becoming a challenge in large
scale simulations and modeling as compute resources in-
crease in size, and simulations integrate with observational
and experimental data. Not only do these simulations pro-
duce increasingly large datasets, which must then be an-
alyzed and categorized, but the codes themselves become

1http://www.fluidinfo.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation of the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright c©JOCSE, a supported publication of
the Shodor Education Foundation Inc.

more and more complex, often being developed by dis-
tributed teams. The Cactus Computational Toolkit2 is one
such software framework, comprising over 500 software mod-
ules (known as Thorns), of which a subset must be compiled
to produce a full simulation stack.

The Cactus Thorns specify their public interface using the
Cactus Configuration Language (CCL), which describes the
mechanics of the thorn, but provides little semantic data.
This makes it difficult to determine which of the hundreds
of thorns may be needed for a particular simulation. There
are two standard methods for dealing with these ambiguities:

1. Detail the semantics of every thorn in documentation
within the source tree. This is somewhat helpful when
a user has already downloaded the thorn in question,
but it does not help a new user discover useful thorns.

2. Collect documentation and use-cases for each thorn on
the main webpage for the framework. This is much
more helpful to new users in search of thorns, but
it raises new issues. Who maintains the website and
keeps the web-based documentation synchronized with
the source code? Thorns are generally maintained by
individual authors, not the community, so should all
authors have write access to the web server? If so, how
does one prevent authors from misrepresenting each
other’s codes? The end user is still presented a read-
only interface, meaning a user cannot easily annotate
and recommend useful thorns to others.

In the following sections, we will describe how Fluidinfo may
be used to annotate these datasets in a writeable manner,
while preserving the safety and integrity of the author’s orig-
inal data. We aim to show that the concept of “tagging,”
as introduced by social networking services, is well suited
to building and maintaining distributed scientific collabora-
tions in the computational sciences. Our approach is based
on loosely structured data, in contrast to other data formats
used in metadata and semantic web research. Section 2 ex-
amines other approaches to similar problems. Section 3 de-
scribes the Cactus Configuration Language, which contains
a substantial amount of Thorn metadata. Section 4 intro-
duces Fluidinfo, the writeable metadata engine, and its core
concepts. Section 5 describes specifically our strategy for

2http://www.cactuscode.org

Volume 3, Issue 2 Journal of Computational Science Education

26 ISSN 2153-4136 December 2012

http://www.fluidinfo.com
http://www.cactuscode.org

publishing the Einstein Toolkit metadata to Fluidinfo. Sec-
tion 6 investigates how the strategy presented in Section 5
may be adapted for publishing datasets as opposed to codes.
Section 8 reflects on the educational value of this project,
and the Blue Waters Undergraduate Petascale Education
Program that supported it.

2. RELATED WORK
Before discussing our approach to solving this problem, let
us examine other systems that could be used to support dis-
tributed collaboration. RDFPeers [3] is a distributed RDF
repository designed to solve scalability issues faced by many
centralized metadata stores. It uses a peer-to-peer archi-
tecture to spread metadata across many machines, and ef-
ficiently route queries to the appropriate machine. A dis-
tributed system like RDFPeers would be a natural fit for
our problem, as it could encourage authors to maintain the
metadata pertaining to their codes and datasets alongside
the actual data; however, we feel that RDF as a data format
may be excessively complex for our purposes. We believe
that a simpler format based on social tagging, like that used
by the Delicious bookmarking service3, would be sufficient
for our needs. In particular, RDF is based on triples of sub-
jects, predicates, and objects, whereas the tagging method we
describe only needs objects and attributes. Clearly we could
use RDF triples with a constant predicate hasAttribute,
but we gain little by doing so and incur additional complex-
ity.

The Social Accessibility [13] project attempts to help site-
owners keep up with accessibility standards by crowd-
sourcing some of the work. It is comprised of three pieces:
(1) a browser script with which end-users may register com-
plaints about websites and receive patches, (2) a browser
plugin to allow volunteers to investigate accessibility issues
and submit patches, and (3) a server that stores the com-
plaints and patches. When an end-user visits a website, the
browser script searches the server for any applicable patches,
retrieves them, and applies them to the page. The user’s
browsing experience is immediately enriched by the knowl-
edge of the community with little effort on the user’s part.
This project appears to have a similar goal to our own, en-
riching content via collaborative editing, albeit applied to a
different problem domain.

3. CACTUS CONFIGURATION LAN-
GUAGE

The Cactus Framework [15, 7] is an open source, modular,
portable programming environment for HPC computing4.
It was designed and written specifically to enable scientists
and engineers to collaboratively develop and perform the
large–scale simulations needed for modern scientific discov-
eries across a broad range of disciplines. Cactus is well suited
for use in large, international research collaborations. For
example, the Einstein Toolkit Consortium [16] is a collab-
oration of over 60 researchers who use Cactus for research
into relativistic astrophysics, and who maintain a core set of
some 175 modules.

3http://www.delicious.com
4This section was adapted from a previous paper on the
Cactus Configuration Language [1].

Figure 1: Cactus components are called thorns and
the integrating framework is called the flesh. The
interface between thorns and the flesh is provided
by a set of configuration files writing in the Cactus
Configuration Language (CCL).

3.1 Architecture
Cactus is a component framework. Its components are called
thorns whereas the framework itself is called the flesh (Fig-
ure 1). The flesh is the core of Cactus, it provides the APIs
for thorns to communicate with each other, and performs a
number of administrative tasks at build–time and run–time.
Cactus depends on three configuration files and two optional
files provided by each thorn to direct these tasks and provide
inter–thorn APIs. These files are:

• interface.ccl Defines the thorn interface and inher-
itance along with variables and aliased functions.

• param.ccl Defines parameters which can be specified
in a Cactus parameter file and are set at the start of a
Cactus run.

• schedule.ccl Defines when and how scheduled func-
tions provided by thorns should be invoked by the Cac-
tus scheduler.

• configuration.ccl (optional) Defines build–time de-
pendencies in terms of provided and required capabil-
ities, e.g. interfaces to Cactus–external libraries.

• test.ccl (optional) Defines how to test a thorn’s cor-
rectness via regression tests.

The flesh is responsible for parsing the configuration files at
build-time, generating source code to instantiate the differ-
ent required thorn variables, parameters and functions, as
well as checking required thorn dependencies.

At run-time the flesh parses a user provided parameter file
that defines which thorns are required and provides key-
value pairs of parameter assignments.5 The flesh then ac-
5Note that this parameter file is different from the file
param.ccl which is used to define which parameters exist,

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 27

http://www.delicious.com

Configuration Files (CCL)
Interface, Parameters,

Schedule, Configuration

Source Code
Fortran/C/C++, include files,

Makefile

Verification & Validation
Testsuites

Documentation
Thorn guide, Examples,

Metadata

Cactus Thorn

Figure 2: Cactus thorns are comprised of source
code, documentation, test–suites for regression test-
ing, along with a set of configuration files written
in the Cactus Configuration Language (CCL) which
define the interface with other thorns and the Cac-
tus flesh.

tivates only the required thorns, sets the given parameters,
using default values for parameters which are not specified
in the parameter file, and creates the schedule of which func-
tions provided by the activated thorns to run at which time.

The Cactus flesh provides the main iteration loop for simu-
lations (although this can be overloaded by any thorn) but
does not handle memory allocation for variables or paral-
lelization; this is performed by a driver thorn. The flesh
performs no computation of its own — this is all done by
thorns. It simply orchestrates the computations defined by
the thorns.

The thorns are the basic modules of Cactus. They are
largely independent of each other and communicate via calls
to the Flesh API. Thorns are collected into logical group-
ings called arrangements. This is not strictly required, but
strongly recommended to aid with their organization. An
important concept is that of an interface. Thorns do not
define relationships with other specific thorns, nor do they
communicate directly with other thorns. Instead they de-
fine relationships with an interface, which may be provided
by multiple thorns. This distinction exists so that thorns
providing the same interface may be interchanged without
affecting any other thorns. Interfaces in Cactus are fairly
similar to abstract classes in Java or virtual base classes
in C++, with the important distinction that in Cactus the
interface is not explicitly defined anywhere outside of the
thorn.

This ability to choose among multiple thorns providing the
same interface is important for introducing new capabilities
in Cactus with minimal changes to other thorns, so that
different research groups can implement their own particu-
lar solver for some problem, yet still take advantage of the
large amount of community thorns. For example, the orig-
inal driver thorn for Cactus which handles domain decom-
position and message passing is a unigrid driver called PUGH.
More recently, a driver thorn which implements adaptive
mesh refinement (AMR) was developed called Carpet [10, 9,

while the former is used to assign values to those parameters
at run-time.

4]. Carpet makes it possible for simulations to run with mul-
tiple levels of mesh refinement, which can be used to achieve
great accuracy compared to unigrid simulations. Both PUGH

and Carpet provide the interface driver and application
thorns can relatively straightforwardly migrate from unigrid
to using the advanced AMR thorn.

Thorns providing the same interface may also be compiled
together in the same executable, with the user choosing in
the parameter file, at run-time, which implementation to
use. This allows users to switch among various thorns with-
out having to recompile Cactus.

Thorns include a doc directory which provides the documen-
tation for the thorn in LATEX format. This allows users to
build one single reference guide to all thorns via a simple
command.

3.2 Tools
As a distributed software framework, Cactus can make use
of some additional tools to assemble the code and manage
the simulations. Oftentimes each arrangement of thorns re-
sides in its own source control repository, as they are mostly
independent of each other. This leads to a retrieval process
that would quickly become unmanageable for end-users (for
example the Einstein Toolkit is comprised of 135 thorns).
To facilitate this process we use a thornlist written using
the Component Retrieval Language [11], which allows the
maintainers of a distributed framework to distribute a sin-
gle file containing the URLs of the components and the de-
sired directory structure. This file can then be processed by
a program such as our own GetComponents script, and the
entire retrieval process becomes automated.

In addition to the complex retrieval process, compiling Cac-
tus and managing simulations can be a difficult task, espe-
cially for new users. There are a large number of options that
may be required for a successful compilation, and these will
vary across architectures. To assist with this process a tool
called the Simulation Factory [12, 14] was developed. Simu-
lation Factory provides a central means of control for manag-
ing access to different resources, configuring and building the
Cactus codebase, and also managing the simulations created
using Cactus. Simulation Factory uses a database known as
the Machine Database, which allows Simulation Factory to
be resource agnostic, allowing it to run consistently across
any pre-configured HPC resource.

4. FLUIDINFO
Fluidinfo is an openly writeable datastore, whose goal is to
extend collaborative tagging to all forms of data. Designed
around the metaphor of post-it notes, it is a collection of
objects and tags at its core, with a complete set of permis-
sions to give users full control over their data. Fluidinfo is
developed and hosted by Fluidinfo Inc., a start-up company.
This section will give a brief overview of the basic concepts
of Fluidinfo; a more detailed discussion may be found in the
official documentation [6].

4.1 Objects
One of the core concepts of Fluidinfo is that objects are
completely anonymous, having no owner and no inherent

Volume 3, Issue 2 Journal of Computational Science Education

28 ISSN 2153-4136 December 2012

Figure 3: Visual representation of the Fluidinfo object for the song “Black Star” by Radiohead. Note the combination

of tags from a variety of users, with primitive and opaque values.

meaning. Objects exist solely as a container for tags, which
define their semantics.

4.2 Tags
Tags have owners and permissions, so while anyone can tag
an object, tags may be read-only, read-write, or completely
invisible to the outside world. When a tag is placed on an
object, it may contain any value, and the type of value need
not be consistent between tag-instances (although in prac-
tice this would be a good idea). Fluidinfo does, however dis-
tinguish between so-called primitive and opaque tag-values.

Primitive tag-values are a subset of the standard types
found in many programming languages: integers,
floating-point numbers, booleans, strings, the null
value, and sets of strings. Note that arrays, or sets
of anything other than strings are considered opaque
values. Primitive values are useful because Fluidinfo
allows indexing of these values, permitting more com-
plex and specific querying of tags with primitive values.

Opaque tag-values include any type of value that is not
considered primitive. This includes JSON arrays or
objects, binary data, anything that can be assigned
a MIME-type. Opaque values are not indexed, and
therefore users cannot search based on the contents of
opaque tags, merely their presence.

4.2.1 About Tag
If objects are anonymous and an instance of a tag may con-
tain any value independent of the other instances, one may
wonder how to identify a specific object. Fluidinfo allows
objects to be uniquely identified by a UUID (Universally
Unique Identifier6) and the so-called about-tag. The about-
tag, fluiddb/about, is a unique, immutable tag that may
optionally be provided when creating an object. This al-
lows for an object to be given some basic semantic value
without adding any user tags to it, which can be useful in
establishing tagging conventions.

4.3 Namespaces
Tags can be grouped together in Namespaces. All of a user’s
tags will live inside the user’s top-level namespace to avoid
conflicts with other users’ tags, but sub-namespaces can
be used to logically group tags. As an example, suppose
the Fluidinfo user eric created a rating tag in his top-
level namespace, the qualified name of that tag would be

6http://en.wikipedia.org/wiki/UUID

eric/rating. If we look back at Section 4.2.1, we can sur-
mise that there is actually nothing special about the about-
tag, it is simply a tag belonging to the fluiddb user, who is
guaranteed to never change the value.

4.4 Permissions
The core mechanic that allows Fluidinfo to be flexible is its
permissions system. Each namespace and tag has an explicit
set of permissions, describing exactly how users may interact
with the item in question. This affords users fine-grained
control over their data. They can publish it in read-only,
read-write, or write-only form, or even transfer entire control
of a namespace/tag to another user7. As an example of how
these permissions can be used, let us examine how Fluidinfo
creates new users. There is a tag, fluiddb/users/username,
placed on the object representing a user, that tells Fluidinfo
that such a user exists. The fluidinfo.com user has cre-
ate permissions for this tag, so when a new user signs up
on http://fluidinfo.com, the fluidinfo.com user creates a
new object and adds the fluiddb/users/username tag to
it, signifying that a new user has been created.

4.5 Fluidinfo Query Language
Fluidinfo includes a simple query language to allow users to
search the datastore for specific tags and tag-values. There
are five basic types of queries in Fluidinfo’s query language.

Presence queries are the simplest type. They check only
for the presence of a tag on an object, and are written
as has <tag>.

Numeric queries search for tags that have a specific value
using the standard mathematical equality operators,
and are written as <tag> (=,<,>,etc.) <value>.

Textual queries attempt to match the query text against
the text contents of a tag, and are written as <tag>

matches <text>.

Set contents queries check for the tags that contain the
given string. Note the difference between set contents
and textual queries: set contents apply to tags con-
taining a set of strings while textual queries apply to
tags containing a single string. Set contents queries
are written as <tag> contains <string>.

Logical queries combine the above types using the (,),
and, or, and except operators. This allows arbitrarily

7For a more detailed and complete list of the allowed permis-
sions, visit http://doc.fluidinfo.com/fluidDB/permissions.
html

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 29

http://en.wikipedia.org/wiki/UUID
http://fluidinfo.com
http://doc.fluidinfo.com/fluidDB/permissions.html
http://doc.fluidinfo.com/fluidDB/permissions.html

complex queries, such as
(has eric/seen and (eric/rating > 4 or

john/rating > 8)) except imdb.com/rating < 5.

5. WRITEABLE METADATA ENGINE
FOR CACTUS COMPONENTS

In this section we will describe the desired capabilities for
handling metadata for simulation codes, such as the ability
to support open data objects and metadata which can then
be provided by any user, promoting community driven stan-
dards and enabling innovation. Such a system would allow
researchers to annotate the codes with their opinions, expe-
riences, or tips while preserving the integrity of the original
data. Social networks have already solved a subset of this
problem, but there is no equivalent system in use by the
scientific community.

Foursquare is a location-aware social networking site. Users
publish their presence at a physical location, e.g. a metro
station, a restaurant, a school, and can add photos or tips
for others. If the physical location does not exist, users can
add their own selecting basic metadata to describe the site.
Social features include the ability to see where your friends
are and have been, and to read the tips left by others.

Learning from this flexible model we envisage similar tools
for data that will encourage academic data to break free
from the current constraints of rigid schema, proprietary
and controlled databases and lack of social networking tools.
The general scenario we envisage is described below, here for
software components, although a similar methodology will
work for general data sets.

1. Software components (e.g. Cactus Thorns) are added
to Fluidinfo in the same manner as foursquare lo-
cations. Basic tags could for example be based on
the Dublin Core [5], with fields for authors, soft-
ware location, etc. These tags can only be edited
by the original user unless specified otherwise. An
object would be created in Fluidinfo for each soft-
ware component, we suggest an about-tag conven-
tion of CCTK:<arrangement>/<thorn>; however, this is
strictly optional as the thorns would also be identified
by their tags. There could also be multiple objects for
each thorn since they could be added by people other
than the original authors.

2. Trusted experts or consortia can then tag thorns to
provide a quality ranking, associate datasets generated
by the thorn, or warn new users of an existing bug. For
example, a maintainer for the Einstein Toolkit would
tag Cactus thorns with the release for which they have
been tested and verified. Users can then search for soft-
ware which has been ratified by the Einstein Toolkit
Consortium, or they could search for software that has
been recommended by a trusted colleague.

3. A graduate student is working on a research project to
develop a new ontology for scientific computing. She
can easily add tags representing this ontology to the
Cactus thorns, where the user community can test out
her work without necessitating new servers, or without
her having write access to the basic thorn tags.

We implemented a prototype of such a system for the Cactus
Thorns, with a web front-end written in Python [8]. The ini-
tial set of metadata we extracted from each thorn came from
the configuration files and the Readme, representing a sub-
set of the functional and bibliographical metadata contained
in each thorn, as seen in Table 1. These tags are added au-
tomatically by a Python script that parses the configuration
and Readme files of a thorn. The intent is for thorn authors
to run this script on their thorns, immediately populating
Fluidinfo with a set of Cactus metadata. Once the basic set
of metadata has been imported, we can begin to enhance
the existing data by adding other relevant tags to the ob-
jects representing thorns.

The Einstein Toolkit is a small subset of all Cactus thorns,
and thorns may be imcompatible with each other, e.g. if
they implement the same interface. Therefore it would
be useful for users to know if any given thorn is part of
the Einstein Toolkit; we can implement this quite nat-
urally by creating an einsteintoolkit.org user8, which
will tag all thorns in the toolkit with an einstein-

toolkit.org/includes tag with the value set to True. Fig-
ure 4 illustrates what the resulting Fluidinfo object might
look like.

Using this tag structure we created a simple web application,
running on Google’s AppEngine platform, to dynamically
retrieve the objects representing the Einstein Toolkit, and
insert the values into an HTML template for easy viewing
of the thorn metadata. Figure 5 shows a sample page from
this web application.

With these two sources of data we can already perform useful
queries on the Cactus metadata. Cactus uses a tool called
GetComponents [11] to automate the process of retrieving
many thorns from different locations. To accomplish this,
GetComponents essentially needs three pieces of informa-
tion:

1. Where the thorn is located (URL).

2. How to retrieve the thorn (version control system).

3. Where to place the thorn on the local filesystem.

All of this data is contained in the Fluidinfo tags posted by
the Python script9! So if we wanted to retrieve the Einstein
Toolkit, we could dynamically generate a file in the CRL
format GetComponents uses by querying Fluidinfo for all
objects that have einsteintoolkit.org/includes = True,
retrieving the tags

• gridaphobe/CCTK/arrangement

• gridaphobe/CCTK/name

• gridaphobe/CCTK/url

8Fluidinfo only allows the owner of a domain to create the
user for that domain, so domain users can be more readily
trusted.
9Cactus has a convention of placing thorns inside an
arrangements directory with the structure arrange-
ments/<arrangement>/<thorn>.

Volume 3, Issue 2 Journal of Computational Science Education

30 ISSN 2153-4136 December 2012

6/5/11 4:03 PM

Page 1 of 1file:///Users/eric/Documents/BW_UPEP/carpet.svg

fi
fluidinfo

edf71876-
96b7-
4d5b-
8a68-

528be09c6b57

gridaphobe/CCTK/name="carpet"

gridaphobe/CCTK/provides_function={Non-primitive type}

gridaphobe/CCTK/requires_function={Non-primitive type}

gridaphobe/CCTK/scm="git"

gridaphobe/CCTK/shares={Non-primitive type}

gridaphobe/CCTK/url="carpetgit@carpetcode.dyndns.org:carpet"

gridaphobe/CCTK/uses_function={Non-primitive type}

gridaphobe/CCTK/version="Unknown"

njr/index/about

einsteintoolkit/includes=True

fluiddb/about="CCTK:carpet/carpet"

gridaphobe/CCTK/arrangement="carpet"

gridaphobe/CCTK/authors={Non-primitive type}

gridaphobe/CCTK/description

gridaphobe/CCTK/implements="driver"

gridaphobe/CCTK/inherits={Non-primitive type}

gridaphobe/CCTK/language="Unknown"

gridaphobe/CCTK/licence="GPLv2+"

gridaphobe/CCTK/maintainers={Non-primitive type}

Figure 4: Visual representation of the Fluidinfo object for the Carpet module in the Einstein Toolkit.

Fully-qualified Tag Description

gridaphobe/CCTK/arrangement The arrangement the thorn belongs to.
gridaphobe/CCTK/authors A list of all authors of the thorn.
gridaphobe/CCTK/description The description of the thorn as found in the Readme.
gridaphobe/CCTK/implements A list of interfaces the thorn implements.
gridaphobe/CCTK/inherits The thorn (if any) inherited from.
gridaphobe/CCTK/name The name of the thorn.
gridaphobe/CCTK/scm The version control system used for the thorn’s source code.
gridaphobe/CCTK/url The URL where the thorn’s source code is located.

Table 1: A sample of the tags used to describe Cactus thorns in Fluidinfo. The tag names are fully-qualified
and assume the current user’s name is gridaphobe.

Figure 5: A prototype of a web application that
dynamically displays thorn metadata based on the
tags stored in Fluidinfo. The Einstein logo in the
top-right corner indicates that this thorn is part of
the Einstein Toolkit.

• gridaphobe/CCTK/scm

The returned data could then be reformatted into a CRL
file, and GetComponents invoked to automatically retrieve
the requested thorns10.

This is already a significant improvement over the current
system of creating and distributing a thornlist, which is both
tedious and error-prone, but we can go further and solve
a problem that was previously unsolvable. The Einstein
Toolkit thorns can all be compiled together; however, they
are not all needed to run individual simulations. Researchers
will generally only compile a subset of the Einstein Toolkit,
including just the thorns needed to model their particular
system. In this case downloading the entire Einstein Toolkit
is superfluous, we would like to simply download the thorns
that we actually need. Using the thorn configuration files, we
can construct a list of the thorns we will need to download
in order to use a specific base set of thorns, providing initial
data, drivers, and other components of a simulation [1]. We
can then dynamically retrieve the tags mentioned above for
only this subset of thorns, and provide GetComponents with
a much smaller list of thorns to download. This also has
the benefit of isolating the code in the source tree of any
simulation to only that which is necessary.

If we wanted to implement a system like this on our own,
we would have to setup a new webserver and database, de-
fine a schema to contain the data, create a REST API, and

10There are some issues not covered by this example, e.g.
the directory structure of different git repositories, but none
that could not be resolved by adding a few extra tags

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 31

then assign someone to maintain the database and server.
If we additionally wanted the system to be writeable (or at
least have individual thorns managed by their authors), we
would then have to implement an authentication system as
well, and our data would still be limited to some pre-defined
schema. Fluidinfo allows others to add to our data, and we
can choose whether to ignore it or to begin incorporating
pieces into our applications.

6. FUTURE WORK
In the previous section we saw how to use Fluidinfo to store
the metadata of Cactus thorns in a writeable format, add
tags to those thorns from a different source, and then use
tags from both sources to solve a problem that previously
could not be solved without setting up our own web server.
We did, however, ignore one issue; the example only dealt
with thorns uploaded by one user, whereas the Einstein
Toolkit is comprised of thorns written by many different
authors. Suppose we don’t know who all of the authors are,
how will we know which tags to retrieve? For example, the
Carpet thorns are written by Dr. Erik Schnetter, but un-
less we know his Fluidinfo username, we won’t know how to
retrieve his tags. Fluidinfo does not currently support wild-
cards in the list of tags to return, so we must explicitly list
the tags we want. So how can we best adapt our solution to
the actual problem? There are two possible solutions:

1. Instead of using tags in the author’s namespace, we
could take advantage of Fluidinfo’s permissions system
to give all authors write permission to tags in a cac-

tuscode.org/CCTK namespace. This way we would al-
ways retrieve tags from the trusted domain user. This
solution detracts from the personalization of Fluidinfo
though, since the tags are coming from a domain user
instead of the author himself. In a sense this repre-
sents how we might solve the metadata problem on
our own, but with the extra downside that we can
no longer prevent authors from modifying each other’s
tags! Fluidinfo does not allow separate permissions per
tag-instance, and this would become far too complex
to manage regardless.

2. Create a cactuscode.org/author tag that would be
applied to the objects representing the users in Flu-
idinfo who are authors of Cactus thorns. This way
we can query Fluidinfo for the objects with the tag,
and ask it to return the fluiddb/users/username tag,
giving us a list of all Fluidinfo users who are also Cac-
tus authors. Then we can proceed with the process
described in Section 5. This solution has several ad-
vantages: (1) authors cannot modify each other’s tags
without explicit permission, (2) in the event of a tag
collision (where more than one author has tagged a
thorn) we can apply some filtering condition based on
the thorn’s own author list to determine which tags are
most authoritative, (3) we are actually adding more
data to the ecosystem by tagging the users as Cactus
authors.

6.1 Other Datasets
Supercomputers are generating massive amounts of data on
a daily basis, data which must be stored efficiently and then

classified so that it can be referred to and even cited. Our
strategy in Section 5 can easily be adapted to solve this prob-
lem. Suppose we run a simulation of two colliding neutron
stars and store the resulting dataset. We can now create
an object in Fluidinfo to represent this simulation, and tag
it with the machine used, number of cores, initial values,
duration, and any number of other relevant statistics about
both the simulation and the output. Then a PhD student
uses our dataset in her thesis; she can tag the dataset in
Fluidinfo with a <student>/cited tag whose value would
be a list of all papers in which she cited our dataset (likely
using DOIs). If she is consistent in tagging the datasets
she has cited, we could perform interesting queries using
Fluidinfo, i.e. we could quickly determine which supercom-
puters had contributed most to her work. Other researchers
might tag the datasets with specific situations where they
proved useful, or perhaps related datasets. With a write-
able, schemaless system, the datasets may be augmented in
any fashion deemed suitable by users. This allows for use-
cases the original publisher could not have conceived of to
arise organically.

It is becoming clear that citing datasets produced by sim-
ulations will be essential for continued scientific progress,
one need look no further than the NSF’s Computational and
Data-Enabled Science and Engineering11 program. Ball and
Duke have raised some important questions that will have
to be answered for data citation to become widespread [2].
We would like to address the question of how the metadata
can be stored in a manner accessible both to humans and
automated scripts. By storing the metadata in a shared
datastore like Fluidinfo, it is immediately available for con-
sumption by scripts, and by extension easily converted into
a human-readable page as we have demonstrated in this pa-
per. We also gain the advantage of not being tied to any
schema, allowing us to freely add more metadata whenever
necessary. Finally, the writable nature of Fluidinfo removes
the author’s responsibility of linking to all papers that have
cited the dataset. The author of a paper can simply tag the
dataset in Fluidinfo!

7. CONCLUSION
Scientific research is increasingly dependent on the simula-
tion of complex processes and, by extension, on the ability to
organize, search, and refer to the datasets generated by sim-
ulations. We propose using writable metadata to distribute
and maintain scientific metadata, and have shown one possi-
ble method of implementing such a system. More work will
be required to investigate alternative systems, schemas, and
interfaces, as well as to determine what would be an optimal
solution. We hope that the scientific community will take
this opportunity to start a conversation about how to man-
age the large amounts of data currently being generated by
our research on a daily basis.

8. EDUCATIONAL EXPERIENCE
The research presented in this paper was performed as part
of a year-long internship sponsored by the Shodor Educa-
tional Foundation12. The program began with a two-week

11http://www.nsf.gov/mps/cds-e/
12http://www.shodor.org

Volume 3, Issue 2 Journal of Computational Science Education

32 ISSN 2153-4136 December 2012

http://www.nsf.gov/mps/cds-e/
http://www.shodor.org

intensive introduction to HPC, covering parallelization is-
sues, N-Body problems, MPI, and other computational sci-
ence topics. Following the introductory session, the interns
split up to work with individual mentors for the rest of the
year. While not strictly related to Computational Science,
the research presented in this paper was strongly supported
and enhanced by the Blue Waters Petascale Internship, es-
pecially the focus on solving real problems.

Acknowledgments
This work was supported by the Blue Waters Undergradu-
ate Petascale Education Program, as well as Fluidinfo, Inc.
The initial work relating to the Cactus Configuration Lan-
guage was supported by NSF REU program (#1005165).
We would like to thank Steven Brandt, Frank Löffler, and
Erik Schnetter for their mentorship in the Cactus group, and
Gabrielle Allen for suggesting the use of Fluidinfo for storing
the thorn metadata. We acknowledge Nicholas J. Radcliffe,
who created http://abouttag.com to generate visuals of Flu-
idinfo objects.

9. REFERENCES
[1] Gabrielle Allen, Tom Goodale, Frank Löffler, David

Rideout, Erik Schnetter, and Eric L. Seidel.
Component specification in the cactus framework:
The cactus configuration language. In CBHPC ’10,
New York, NY, USA, 2010. ACM.

[2] A. Ball and M. Duke. Data citation and linking. In
DCC Briefing Papers. Digital Curation Centre, 2011.

[3] Min Cai, Martin Frank, Baoshi Yan, and Robert
MacGregor. A subscribable peer-to-peer rdf repository
for distributed metadata management. Web
Semantics: Science, Services and Agents on the World
Wide Web, 2(2):109 – 130, 2004.

[4] Mesh Refinement with Carpet.

[5] Dublin Core Metadata Initiative.

[6] Fluidinfo Documentation.

[7] T. Goodale, G. Allen, G. Lanfermann, J. Massó,
T. Radke, E. Seidel, and J. Shalf. The Cactus
framework and toolkit: Design and applications. In
Vector and Parallel Processing – VECPAR’2002, 5th
International Conference, Lecture Notes in Computer
Science, Berlin, 2003. Springer.

[8] Python Programming Language.

[9] Erik Schnetter, Peter Diener, Nils Dorband, and
Manuel Tiglio. A multi-block infrastructure for
three-dimensional time-dependent numerical relativity.
Class. Quantum Grav., 23:S553–S578, 2006.

[10] Erik Schnetter, Scott H. Hawley, and Ian Hawke.
Evolutions in 3D numerical relativity using fixed mesh
refinement. Class. Quantum Grav., 21(6):1465–1488,
21 March 2004.

[11] Eric L. Seidel, Gabrielle Allen, Steven Brandt, Frank
Löffler, and Erik Schnetter. Simplifying complex
software assembly: the component retrieval language
and implementation. In TG ’10: Proceedings of the
2010 TeraGrid Conference, pages 1–8, New York, NY,
USA, 2010. ACM.

[12] SimFactory: Herding Numerical Simulations.

[13] Hironobu Takagi, Shinya Kawanaka, Masatomo
Kobayashi, Takashi Itoh, and Chieko Asakawa. Social
accessibility: achieving accessibility through

collaborative metadata authoring. In Proceedings of
the 10th international ACM SIGACCESS conference
on Computers and accessibility, Assets ’08, pages
193–200, New York, NY, USA, 2008. ACM.

[14] Michael Thomas and Erik Schnetter. Simulation
factory: Taming application configuration and
workflow on high-end resources. In CBHPC ’10, New
York, NY, USA, 2010. ACM.

[15] Cactus Computational Toolkit.

[16] The Einstein Toolkit.

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 33

http://abouttag.com

Bringing ab initio Electronic Structure Calculations to the
Nano Scale through High Performance Computing

James Currie
University of Missouri – Kansas City

Department of Physics and Astronomy
5110 Rockhill Road

Kansas City, MO, 64110
1-816-235-2501

jecyrd@mail.umkc.edu

Rachel Cramm Horn
University of Missouri – Kansas City

Department of Physics and Astronomy
5110 Rockhill Road

Kansas City, MO, 64110
1-816-235-2501

rec44f@mail.umkc.edu

Paul Rulis
University of Missouri – Kansas City

Department of Physics and Astronomy
5110 Rockhill Road

Kansas City, MO, 64110
1-816-235-5945

rulisp@umkc.edu

ABSTRACT
An ab initio density functional theory based method that has a
long history of dealing with large complex systems is the
Orthogonalized Linear Combination of Atomic Orbitals
(OLCAO) method, but it does not operate in parallel and, while
the program is empirically observed to be fast, many components
of its source code have not been analyzed for efficiency. This
paper describes the beginnings of a concerted effort to modernize,
parallelize, and functionally extend the OLCAO program so that it
can be better applied to the complex and challenging problems of
materials design. Specifically, profiling data were collected and
analyzed using the popular performance monitoring tools TAU
and PAPI as well as standard UNIX time commands. Each of the
major components of the program was studied so that parallel
algorithms that either modified or replaced the serial algorithm
could be suggested. The program was run for a collection of
different input parameters to observe trends in compute time.
Additionally, the algorithm for computing interatomic interaction
integrals was restructured and its performance was measured. The
results indicate that a fair degree of speed-up of even the serial
version of the program could be achieved rather easily, but that
implementation of a parallel version of the program will require
more substantial consideration.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – performance measures.

General Terms
Algorithms, Measurement, Performance.

Keywords
Density functional theory, atomic orbitals

1. INTRODUCTION
Advanced materials have played a pivotal role in recent
technological progress, often causing the demand for designer
characteristics or novel properties to outpace our ability to
understand these complex materials at a fundamental level. This
pressure to master materials at the nanoscale has pushed forward
the development of many theoretical approaches and the
implementation of many computational methods. A particular area
of interest includes structures with defects that are on the order of
10 nanometers in size because many bulk structural and electronic
properties of materials are dominated by the properties of the
defect. Density functional theory (DFT) based approaches
represent the current state of the art for the application of theory to
materials problems that require both high accuracy and high
efficiency. This is a position somewhat between the larger scale
molecular dynamics methods and the smaller scale but often more
accurate quantum chemical methods. Some of the issues that DFT
is well suited to deal with include catalysis processes [15],
configuration of ultra-dilute dopants in crystal structures [27], and
the determination of the tensile strength of bioceramics [5]. DFT
is a computational, quantum mechanical framework for the
modeling of materials and it is being actively applied with much
success across a wide breadth of fields within a growing number
of scientific domains. Density functional theory was created in a
sequence of two papers by Hohenberg and Kohn [14] and Kohn
and Sham [17]. They presented the method as one that reduces the
problem of determining the many-body ground state wave
function to one of determining only the charge density. For a
system of N interacting electrons this reduces the problem from a
space of 3N dimensions down to a space of just three. A type of
mean-field approach is used that solves a one-electron problem
where the potential is derived from the charge density distribution
of all the electrons in the system. A self-consistent field (SCF)
cycle iterates through determination of the wave-function, the
charge density distribution, and the potential until there is no
change in these terms. Since its original inception, much work
has been done to enhance this method, and a review of the theory
can be found in a paper written by Peter Blöchl [1]. Presently,
there exist a variety of different implementations of DFT that can
be divided into a few prominent camps based on the choice of
basis functions used to expand the system wave function, the
representation of the potential function, and the representation of
the charge density [20]. Each of the main approaches to DFT has
its own set of advantages and disadvantages that make it
particularly applicable to one range of materials and problems or
another.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

Volume 3, Issue 2 Journal of Computational Science Education

34 ISSN 2153-4136 December 2012

Although DFT provides an incredible simplification of the
quantum mechanical many-body problem while still retaining
excellent accuracy, the types of problems that are of the most
interest still require prohibitive amounts of time for even the
fastest computer processor to solve. Hence, parallel processing
has become an invaluable tool and many DFT program codes
have been adapted to take advantage of this high performance
computing (HPC) capability. Interestingly though, the
programming style required to develop parallel algorithms is
significantly different from the approach of serial algorithms
which sometimes makes it difficult to parallelize an existing code
and gain as much efficiency as is desired. Therefore, when
parallelizing an existing serial application, performance analysis
of the existing algorithm lends some helpful insight about which
sections of a program are the most computationally expensive and
why. This could be used to determine whether the algorithm
should be simply modified for a parallel execution environment or
if it needs to be totally rewritten.

This paper describes the beginnings of a concerted effort to
modernize, parallelize, and functionally extend a particular DFT
based program so that it can be applied to the complex and
challenging problems of materials design. Specifically, profiling
data was collected and analyzed using widely available and
portable external libraries and standard UNIX/Fortran time
commands. Then, each of the major components of the program
was studied so that parallel algorithms could be suggested that
either modified or replaced the serial algorithm.

2. METHODS
The primary focus of this development work is the
Orthogonalized Linear Combination of Atomic Orbitals
(OLCAO) method [29]. This is a density functional theory based
method that uses Gaussian based atomic orbitals in the solid state
wave function expansion and atom centered Gaussian functions
for an analytical description of the potential and charge density
distribution functions. OLCAO has found particular application in
the study of the electronic structure, bonding, and spectroscopic
properties of large and complex materials systems ranging from
amorphous solids [9–11,	
 16] and complex crystals [3,	
 18,	
 19,	
 30]
to those containing large scale structures such as grain boundaries
(GBs) [6,	
 21,	
 23], intergranular glassy films (IGFs) [7,	
 8,	
 25], and
passive defects [4,	
 24]. Of particular interest to the development
work that was started as a part of the Blue Waters –
Undergraduate Petascale Education Program (BW-UPEP)
Internship is the capability of the OLCAO method with regard to
performing core level spectroscopic calculations such as x-ray
absorption near edge structure or electron energy loss near edge
structure (XANES/ELNES) [12,	
 13,	
 24,	
 27]. An extension of the
normal spectral calculation is being developed within OLCAO
whereby spectra are computed for every atom in a model and then
brought together to form an image that correlates spectral features
with atomic structure [24]. This spectral imaging technique will be
quite computationally intensive and while the OLCAO program is
efficient and capable of being used to compute the
XANES/ELNES spectra of rather large systems it is still a serial
application and thus the calculation times can be quite lengthy,
sometimes lasting more than a few days. There are two key
mathematical operations that are performed in OLCAO. The first
is the analytic calculation of a set of integrals between atomic
orbitals in various forms given for s-type orbital in Equations 1-4.

(1)

(2)

(3)

(4)

Equation 1 represents the overlap of two s-type Gaussian orbitals.
Equation 2 also shows integration of s-type Gaussians but with the
Laplacian operator for the computation of the kinetic energy.
Equation 3 accounts for the contribution of the nuclear interaction
to the total potential. Equation 4 is a three center integral between
s-type Gaussians that is used for determining the Coulombic
electron – electron contribution to the total potential. Higher
angular momentum integrals can be derived from these equations
via repeated differentiation making progressively more
complicated formulas [29]. The second major operation is the
processes of solving the eigenvalue problem that obtains the wave
function expansion coefficients and associated energy
eigenvalues. This requires the complete diagonalization of a large
matrix. Some key parameters that affect the cost of these
operations are the number of atoms in the system, the number of
basis functions used for each atom (typically identified as either a
minimal, full, or extended basis), the number of k-points
(Brillouin zone integration sampling points), and the number of
terms used to describe the potential function. Parallelization of
these operations could significantly decrease the calculation time
or, if the calculation time is maintained, it would allow for the
study of much larger systems.

In addition to the time stamps given by OLCAO, we used tools
such as the Tuning and Analysis Utilities (TAU) [26] and the
Performance Application Protocol Interface (PAPI) [2]. TAU and
PAPI exist as a set of library function calls that are instrumented
into the source code of a program to track a wide variety of
information ranging from simple subroutine runtimes to the
number of times that specific CPU events, such as a cache miss or
an execution branch, occur. The TAU package is described as a
“portable profiling and tracing toolkit for performance analysis of
parallel programs.”[28] However, it does have particular uses in
the analysis of serial programs as well. PAPI, similar to TAU, is a
portable kit that accesses hardware performance counters
physically present on modern microprocessors. The aim of PAPI
is “to see, in near real time, the relation between software
performance and processor events.” [22] Memory access overhead
and branching performance were of particular interest in this
study to understand where bottlenecks in OLCAO may exist.
Memory access overhead is a fundamental problem, especially for
HPC, because the processors often operate at data rates that are
much faster than the data transfer rates to memory so that if the
CPU is not well supplied with data it will sit idle. Understanding
the cache performance of a program can help the programmer
reorganize data structures to provide more efficient memory
access. Conditional branch prediction is another important area
because modern CPUs maintain a pipeline of operations and when
a branch is mispredicted the pipeline must be flushed and refilled
at substantial cost to efficiency. These were the primary tools that
were used to explore the characteristics and efficiency of the
algorithms in the OLCAO program suite.

The first step to parallelizing OLCAO is to develop a base line
understanding of its serial execution performance in terms of the

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 35

compute time for different sections of the code under different
conditions. To do this, a series of different materials systems were
selected and parameters that control the computational cost of the
calculation were varied systematically. Two machines were used
to collect the performance data, a local workstation using the
commercially available AMD Phenom II X6 1090T processor and
the Pittsburg Supercomputing Center’s Blacklight machine which
uses the Intel Xeon X7560 processor. Smaller system calculations
were performed on the local workstation while the larger system
calculations made use of Blacklight. The performance trends were
observed using a variety of tools. Specifically, timing data for
different sections of the OLCAO program were collected first by
using Fortran write statements that recorded the current time. This
gave an initial understanding of the effects of parameter changes
and did not require any modifications to the program code
because such write statements already existed. Then, particular
sections of the code were identified and studied with TAU and
PAPI because they are more fine grained tools for understanding
the reason why a particular algorithm behaves as it does. The data
that was collected using TAU and PAPI included the rate of
branching misprediction for the combination of different compiler
flags and changes in the algorithm for a particular section of code.
The code in the select section was restructured with the intent of
reducing the number of conditional statements encountered
overall.

3. RESULTS AND DISCUSSION
The profiling techniques described in section 2 were applied to the
OLCAO program for three different material systems with a
systematic variation of parameters. The systems used in the study
were a 907 atom model of an IGF within crystalline β-Si3N4, a ten
base pair periodic model of DNA with 650 atoms (computed on
Blacklight), and a series of supercells of pure Al (computed with a
local workstation). Details of the key structural parameters of each
system are provided in Table 1 and an illustration of each system
is provided in Figure 1.

Table 1: Crystal Structure Details

	
 IGF	
 DNA	
 Al	
 Full	
 Cell	

a	
 (Å)	
 14.533	
 30.000	
 4.050	

b	
 (Å)	
 15.225	
 30.000	
 4.050	

c	
 (Å)	
 47.420	
 39.208	
 4.050	

α	
 (°)	
 90	
 90	
 90	

β	
 (°)	
 90	
 90	
 90	

γ	
 (°)	
 90	
 90	
 90	

#	
 of	
 Atoms	
 907	
 650	
 4	

#	
 of	
 Electrons	
 4288	
 2220	
 12	

Matrix	

Dimension	

9111	

(Full	
 Basis)	

4740	

(Full	
 Basis)	

52	

(Full	
 Basis)	

Elements	
 Si,	
 N,	
 O	

C,	
 H,	
 N,	
 Na,	

O,	
 P	

Al	

The IGF and DNA material systems were specifically chosen as
representatives of particular classes of materials that are of current
research interest and therefore represent the types of systems
likely to be encountered by the OLCAO program in practice.
Also, these systems possess specific features that can make their
comparison helpful. The IGF and DNA models both have a
relatively large number of atoms but the dimension of the

interaction matrices for the IGF and the number of electrons is
larger in it compared to the DNA model by a factor of about two.
The dimension is larger because the Si in the IGF includes
unfilled 3d atomic orbitals in its basis while the DNA model has
no atoms with 3d orbitals in its basis. The number of electrons is
larger because the IGF contains no H and thus every atom has
more electrons. For the IGF and DNA models it is also possible to
easily and realistically alter the number of independent terms in
the potential function representation. This is done by changing the
threshold criteria for how similar two atoms need to be with
respect to their local environment before they can share the same
potential function values. This “sharing of values” between
potential sites means that fewer terms are used in the potential
function and thus that fewer independent interaction matrices need
to be created. This issue is a particular characteristic of the
representation of the potential function in OLCAO and is not
generally applicable to all DFT based methods.

The first level of analysis was done with a simple measurement of
the amount of time that different segments of the OLCAO
program took to run calculations on the IGF model and the DNA
model when the number of terms in the potential function was
modified. In particular, two key sections, identified as "Setup" and
"Main," were analyzed to find the most time expensive parts of
their code. The "Setup" (integrals, electrostatics, exchange-
correlation) and "Main" (Secular Equation [preparation, solution],
and everything else) programs comprise the self-consistent field
(SCF) implementation of OLCAO. These programs and their
components are illustrated schematically in Figure 2.

(c)

(a)

(b)

Figure 1: Ball and stick models of the material systems
studied. (a) An intergranular glassy film model in β-
Si3N4; (b) A ten base pair periodic model of DNA with Na
counter ions; (c) A sequence of three crystalline Al
supercells 5×5×1, 5×5×2, and 5×5×3.

Volume 3, Issue 2 Journal of Computational Science Education

36 ISSN 2153-4136 December 2012

The runtime analysis of these components is show in Figure 3. In
the IGF system, the ratio of the calculation time for the integrals
compared to the rest of the setup calculation is quite large (Figure
3a). We also see that the long-range coulomb and exchange
correlation calculations are almost unaffected by the number of
potential terms, with the majority of the time being spent with the
interaction integrals. In the sections of main we see that as the
number of terms increases the preparation time of the secular
equation quickly grows to be much larger than the time it takes to
solve the secular equation. In this case the preparation is simply
the task of reading the packed matrix data stored on disk by setup,
unpacking it, and applying a coefficient to each matrix before
accumulating it.

When the same type of analysis is done for the DNA system, as
shown in Figures 3c and 3d, we see a similar trend to that of the
IGF system, where the interaction integrals grow more costly as
the number of potential terms increases. Also, the long-range
Coulomb calculations have more of a presence here due to the
larger cell size and thus a larger number of reciprocal space cells
needed for the convergence of the Ewald summation series.
Considering the run length of the program “Main”, the trend is
similar to the case of the IGF. The similarity of the trend is

expected, but a comparison of the two systems presents some
confusion. The total time of even the longest run of Setup for the
DNA model (about 260 minutes with 512 terms in the potential
function) is less than the shortest IGF model run with only 48
terms in the potential function (about 815 minutes). This is likely
due in large part to the larger size of the interaction matrix for the
IGF model (i.e. it has many more basis functions), but there may
also be something more subtle at work. That is, the number of
nearest neighbors for a given atom in the DNA model is, on
average, less than that of the IGF model because DNA is a
molecule with exposed surface boundaries and lots of H. This will
substantially reduce the number of interaction integrals that will
need to be calculated resulting in an interaction matrix that is not
only smaller, but also sparser.

The pure Al model was chosen because of its simplicity and for
the fact that we could vary specific parameters with less worry
about how the innate characteristics of the model might mask the
effect of a change in other parameters such as the number of k-
points or the choice of a full, minimal, or extended basis. The
results of the timing runs for a constant number of terms in the
potential function are shown in Figure 4.

In the study of the Al runtime performance we see that OLCAO is
more sensitive to changes in the basis than to increases in the
number of k-points. When k-points are added the effect is
multiplicative so that doubling the number of k-points effectively
doubles the cost of the calculation while when the basis size is
increased a non-linear trend is observed. For the 300 atom case,
an approximate doubling of the basis size from full to extended
more than doubles the cost of the calculation for both Setup and
Main. This is expected because the basis size affects the
interaction integrals matrix size which scales as the square of the
dimension. This is clear in the "Main" section because it shows an
increase in calculation time for the extended basis that is
approximately four times greater than for the full basis. In setup
this change was much less exaggerated with only about a three

Figure 4: Illustration of the execution time for
calculations of various sections of the OLCAO Setup and
Main programs for three Al supercell models with
variation in the number of k-points and the size of the
basis set. (a) Setup and k-points; (b) Main and k-points;
(c) Setup and basis size; (d) Main and basis size.

Figure 3: Illustration of the execution time for the IGF
and DNA models for various sections of the OLCAO
Setup and Main programs and various number of
potential terms as measured by Fortran time records. (a)
Setup and IGF; (b) Main and IGF; (c) Setup and DNA;
(d) Main and DNA.

Figure 2: Schematic of the components of the SCF
portion of the OLCAO program. (a) Setup; (b) Main.

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 37

times increase. One important note is that as the system size
increases the number of k-points needed for a high resolution
calculation decreases. Because OLCAO is typically used for large
and complex systems, the number of k-points is often just equal to
one.

Beyond the crude timing data, a series of calculations were
performed to study the performance of some of the most costly
components of the program using TAU and PAPI. The
multicenter interaction integrals take a significant portion of the
overall time which is typical for all atomic orbital based methods.
Another component that is more specific to the OLCAO program
is the orthogonalization procedure. This modifies the resultant
interaction matrix to force the valence orbitals to be orthogonal to
the core orbitals. For large systems this could be a costly step
because a sequence of matrix-matrix multiplications is required.
The program code for computing those integrals and for doing the
orthogonalization has performed well for decades, but it has also
not been evaluated for efficiency in just as long. Hence a
concerted effort is underway to evaluate and possibly improve this
aspect of the program.

For the analysis of the OLCAO program using TAU and PAPI a
different set of Al supercells was used. They were 1×1×1, 2×2×2,
and 3×3×3 supercells of the full cell so that the models had 4, 32,
and 108 atoms respectively. The goal of the orthogonalization
subroutine analysis was simply to count the number of branches
encountered by the program for a given compiler optimization
level. The collected data is shown in Table 2. For level two
compiler optimization (obtained using the –O2 compiler flag) the
branch misprediction rate was slightly better than that obtained
with level three optimization. However the total number of
branches encountered by the program under level two
optimization was significantly greater than that encountered under
level three optimization. This result may have been expected, but
an unusual second result was that the misprediction rate for the
2×2×2 supercell for both levels of optimization was significantly
higher than for both of the other two supercells. This exercise
indicates that interpreting the results of higher level code analysis
can have important subtleties that can be easily overlooked.

Table 2: Al Supercell Orthogonalization Subroutine
Branching Data

Cell	
 and	

Optimization	

Miss-­‐	

Predicted	
 (%)	

Correctly	

Predicted	
 (%)	

Total	

1x1x1	
 -­‐O2	
 3.92	
 96.06	
 7748064	

1x1x1	
 -­‐O3	
 3.97	
 96.03	
 7749479	

2x2x2	
 -­‐O2	
 6.52	
 93.48	
 62052410	

2x2x2	
 -­‐O3	
 6.81	
 93.19	
 59604903	

3x3x3	
 -­‐O2	
 3.01	
 96.99	
 1222164262	

3x3x3	
 -­‐O3	
 3.86	
 96.14	
 957394561	

The analysis of the integration subroutine was also performed as a
comparison between level two and level three compiler
optimization, and it was also performed for the case of a
modification in the algorithm versus the unmodified algorithm.
The essential modification is that depending on the particular
atoms it may be necessary to perform only s-type with s-type
integration, or perhaps s-type with p-type or only up to p-type
with p-type. In other cases the integral may need to include all the
way up to the complicated d-type with d-type integral. The

subroutine that performs the integrals checks along the way to
determine which integrals to do, but it was observed that this
sequence of “if-else” blocks in the code was repetitive such that if
the section was rewritten one block could replace a sequence of
three or four. This replacement option was present multiple times
in the algorithm. The data from the sequence of TAU and PAPI
runs are shown in Tables 3 through 6. The different types of
integrals correspond to those given in Equations 1 through 4 plus
all of the similar integrals of the higher angular momentum
orbitals. Again, the trend is clear. The higher level of optimization
had a higher percentage of branch miss-predictions, but the total
number of branches was significantly less. When the comparison
is between the old and the new algorithm the total number of
branches drops in all cases, but again the branch miss-prediction
percentage increases.

Table 3: Original Integration Subroutine With –O2
Optimization.

Integral	

Type	

Miss-­‐	

Predicted	
 (%)	

Correctly	

Predicted	
 (%)	

Total	

1	
 1.00	
 99.00	
 53795827	

2	
 1.09	
 98.91	
 67004191	

3	
 1.44	
 98.58	
 208187973	

4	
 (Avg.)	
 1.35	
 98.65	
 310677930	

Table 4: Original Integration Subroutine With –O3
Optimization.

Integral	

Type	

Miss-­‐	

Predicted	
 (%)	

Correctly	

Predicted	
 (%)	

Total	

1	
 1.95	
 98.08	
 9767131	

2	
 2.58	
 97.42	
 9766631	

3	
 2.37	
 97.63	
 63389710	

4	
 (Avg.)	
 2.04	
 97.96	
 66161685	

Table 5: Modified Integration Subroutine With –O2
Optimization.

Integral	

Type	

Miss-­‐	

Predicted	
 (%)	

Correctly	

Predicted	
 (%)	

Total	

1	
 0.92	
 99.08	
 53415195	

2	
 0.99	
 99.01	
 66378834	

3	
 1.16	
 98.84	
 207903892	

4	
 (Avg.)	
 1.24	
 98.76	
 310464531	

Table 6: Modified Integration Subroutine With –O3
Optimization.
Integral	

Type	

Miss-­‐	

Predicted	
 (%)	

Correctly	

Predicted	
 (%)	

Total	

1	
 1.96	
 98.04	
 8988970	

2	
 2.75	
 97.25	
 9140602	

3	
 2.92	
 97.08	
 60653657	

4	
 (Avg.)	
 2.40	
 97.60	
 57420935	

Volume 3, Issue 2 Journal of Computational Science Education

38 ISSN 2153-4136 December 2012

4. CONCLUSION
The sections of the OLCAO program associated with the SCF
calculation were analyzed for their performance characteristics
using both simple timers and more complicated instrumented
performance monitoring tools. The results confirm some
previously held beliefs about the relative computational cost of
various components of the setup and main programs and also
introduced some new and as yet unexplained results. Clear results
include the fact that the computation of the interaction integrals is
generally the most expensive but that preparing the Ewald
summation data structures can become time consuming when the
cell size becomes large. The overall cost of the interaction
integrals calculation scales primarily with the number of terms in
the potential function. The calculation cost scaled linearly with an
increase in the number of k-points while it increased super-
linearly (quadratically) with an increase in the size of the basis.
Generally, the timing data was observed to be crude but it was
also good at giving a big picture of the behavior of the program
and so a key conclusion is that sometimes it is not necessary to
apply highly sophisticated methods to get a good initial
understanding. However, it is often difficult to totally isolate one
particular variable, especially when attempting to model realistic
calculation performance. This may be because multiple effects are
correlated or because the model under study has characteristics
that are not apparent simply in terms of the number of atoms,
potential terms, matrix dimension, etc. This was exemplified by
the smaller average atom density in the DNA model compared to
the IGF model. The conclusion is that extreme care must be taken
when interpreting any profiling results as it may be possible for
subtle effects to skew the data.

Additional profiling data was obtained for the specific subroutines
that involve the interaction integrals computed in OLCAO. The
results indicated that even a simple attempt at code restructuring
was able to produce noticeable results. We can conclude from this
that while the algorithm may be fast because of its analytic nature,
it is quite likely that significant improvements can be obtained by
implementing a better approach to the calculation. The reasoning
is that if even a straightforward modification can produce such
dramatic results, then it is likely that a deeper degree of
consideration will produce more substantial results. This also
demonstrates that even though the profiling mission was to set the
stage for later parallelization, it is entirely possible that the
analysis will spark a deeper understanding of a subroutine or
algorithm that will remain entirely serial but which may have a
significant effect on the overall efficiency.

Another important conclusion that can be drawn from this study is
that good profiling must come from the intelligent application of
multiple tools, both crude and advanced. The fine grained
advanced tools can often help provide the insight needed to
understand why a particular algorithm behaves the way it does,
but crude measurements can provide the appropriate context in
which to interpret that data. It is not possible to naively apply a
powerful tool kit and expect it to do all the work and provide clear
results. Rather, deep consideration is required to sort out the
significance of the results for the variety of probing techniques.

5. ACKNOWLEDGMENTS
Special thanks to SHODOR, the National Computational Science
Institute (NCSI), the National Center for Supercomputing
Applications (NCSA), and everyone else involved in the Blue
Waters Undergraduate Petascale Education Program (BW-UPEP).

The BW-UPEP program supports a number of undergraduate
students working on a diverse range of computational science
problems. Support includes a two week intensive workshop at the
NCSA facility on the University of Illinois – Urbana Champaign
campus, pairing with a faculty advisor, a stipend, and a forum for
the student to attain help if needed throughout the internship.

The BW-UPEP program has given me (J.C.) the chance to
experience a number of things I might not otherwise have been
exposed to. The two week workshop was particularly effective in
teaching me the tools I would need to effectively carry out my
research. Specifically, I learned how to develop parallel
algorithms using MPI, OpenMP, and CUDA. Particular to my
individual project, I learned how to use many technical tools like
TAU and PAPI, and the important role that these tools can play
while trying to improve a computationally intensive application. I
was also given the opportunity to attend two conferences,
Teragrid ’11 (now XSEDE) and SC ’11. I gave poster
presentations at both conferences and this provided me with
important experiences such as how to create and give scientific
presentations. Furthermore, in attending the conferences I was
able to meet and interact with members of the broader HPC
community which was very inspirational. The experience as a
whole has persuaded me to pursue a career in computational
science.

Finally thanks to XSEDE and the Pittsburg Supercomputing
Center for providing access to the resources that were used to do
this project.
6. REFERENCES
[1] Blöchl, P.E. 2011. Theory and Practice of Density-

Functional Theory. arXiv:1108.1104. (Aug. 2011).
[2] Browne, S. et al. 2000. A Portable Programming Interface

for Performance Evaluation on Modern Processors.
International Journal of High Performance Computing
Applications. 14, 3 (Aug. 2000), 189–204.

[3] Caruso, A.N. et al. 2009. Direct evidence of electron spin
polarization from an organic-based magnet: [Fe[sup
II](TCNE)(NCMe)[sub 2]][Fe[sup III]Cl[sub 4]]. Physical
Review B (Condensed Matter and Materials Physics). 79,
19 (2009), 195202–5.

[4] Chen, Y. et al. 2002. Ab-initio calculation of Si-K and Si-L
ELNES edges in an extended inactive defect model of
crystalline silicon. Materials Transactions. 43, 7 (2002),
1430–1434.

[5] Ching, W.Y. et al. 2009. Ab initio elastic properties and
tensile strength of crystalline hydroxyapatite. Acta
Biomaterialia. 5, 8 (2009), 3067–3075.

[6] Ching, W.Y. et al. 2006. Ab initio modeling of clean and
Y-doped grain boundaries in alumina and intergranular
glassy films (IGF) in β-Si3N4. Journal of Materials
Science. 41, 16 (2006), 5061–5067.

[7] Ching, W.Y. et al. 2009. Ab initio tensile experiment on a
model of an intergranular glassy film in β-Si3N4 with
prismatic surfaces. Applied Physics Letters. 94, 5 (2009),
051907–3.

[8] Ching, W.Y. et al. 2010. Theoretical study of the elasticity,
mechanical behavior, electronic structure, interatomic
bonding, and dielectric function of an intergranular glassy
film model in prismatic β-Si_{3}N_{4}. Physical Review
B. 81, 21 (Jun. 2010), 214120.

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 39

[9] Ching, W.Y. 1982. Theory of amorphous SiO2 and SiOx. I.
Atomic structural models. Physical Review B. 26, 12 (Dec.
1982), 6610–6621.

[10] Ching, W.Y. 1982. Theory of amorphous SiO2 and SiOx.
II. Electron states in an intrinsic glass. Physical Review B.
26, 12 (Dec. 1982), 6622–6632.

[11] Ching, W.Y. 1982. Theory of amorphous SiO2 and SiOx.
III. Electronic structures of SiOx. Physical Review B. 26,
12 (Dec. 1982), 6633–6642.

[12] Ching, W.Y. and Rulis, P. 2008. Ab initio calculation of
the O-K, N-K, Si-K, Si-L3, Y-K, Y-L3 edges in the Y-Si-
O-N system: A strategy for ELNES/XANES spectral
modeling in complex materials. Physical Review B
Condensed Matter and Materials Physics. 77, 3 (2008),
035125/1–035125/17.

[13] Ching, W.Y. and Rulis, P. 2008. Large differences in the
electronic structure and spectroscopic properties of three
phases of AlPO4 from ab initio calculations. Physical
Review B Condensed Matter and Materials Physics. 77, 12
(2008), 125116/1–125116/7.

[14] Hohenberg, P. and Kohn, W. 1964. Inhomogeneous
Electron Gas. Physical Review. 136, 3B (1964), B864.

[15] Honkala, K. et al. 2005. Ammonia Synthesis from First-
Principles Calculations. Science. 307, 5709 (Jan. 2005),
555–558.

[16] Huang, M.-Z. and Ching, W.Y. 1994. Electronic and
transport properties of perfect sp2-bonded amorphous
graphitic carbon. Physical Review B. 49, 7 (1994), 4987.

[17] Kohn, W. and Sham, L.J. 1965. Self-Consistent Equations
Including Exchange and Correlation Effects. Physical
Review. 140, 4A (1965), A1133.

[18] Liang, L. et al. 2010. Mechanical properties, electronic
structure and bonding of a- and b-tricalcium phosphates
with surface characterization. Acta Biomaterialia. 6, 9
(2010), 3763–3771.

[19] Liang, L. et al. 2009. Theoretical study of the large linear
dichroism of herapathite. Physical Review B (Condensed
Matter and Materials Physics). 80, 23 (2009), 235132–5.

[20] Martin, R.M. 2004. Electronic Structure: Basic Theory and
Practical Methods. Cambridge University Press.

[21] Mo, S.-D. et al. 1999. Electronic structure of a grain-
boundary model in SrTiO3. Physical Review B. 60, 4
(1999), 2416.

[22] PAPI: http://icl.cs.utk.edu/papi/. Accessed: 2012-05-30.
[23] Rulis, P. et al. 2004. Ab initio ELNES/XANES spectral

calculation of polar and non-polar grain boundaries in β-
SiC. Acta Materialia. 52, 10 (2004), 3009–3018.

[24] Rulis, P. et al. 2009. Spectroscopic imaging of electron
energy loss spectra using ab initio data and function field
visualization. Ultramicroscopy. 109, 12 (2009), 1472–
1478.

[25] Rulis, P. and Ching, W. 2011. Theoretical ELNES spectra
of Si-K, Si-L, N-K, and O-K edges of an intergranular
glassy film model in β-Si3N4. Journal of Materials
Science. 46, 12 (2011), 4191–4198.

[26] Shende, S.S. and Malony, A.D. 2006. The Tau Parallel
Performance System. International Journal of High
Performance Computing Applications. 20, 2 (May. 2006),
287–311.

[27] Tanaka, I. et al. 2003. Identification of ultradilute dopants
in ceramics. Nat Mater. 2, 8 (2003), 541–545.

[28] TAU - Tuning and Analysis Utilities:
http://www.cs.uoregon.edu/Research/tau/home.php.
Accessed: 2012-05-30.

[29] Wai-Yim Ching and Paul Rulis 2012. Electronic Structure
Methods for Complex Materials: The Orthogonalized
Linear Combination of Atomic Orbitals. Oxford University
Press.

[30] Zhong, X. and Ching, W.Y. 1990. Calculation of local
orbital moments of conduction electrons in Nd2Fe14B.
Journal of Applied Physics. 67, 9 (May. 1990), 4768–4770.

Volume 3, Issue 2 Journal of Computational Science Education

40 ISSN 2153-4136 December 2012

A Performance Comparison of a Naïve Algorithm to Solve
the Party Problem using GPUs

Michael V.E. Bryant
Merrimack College
315 Turnpike Street

North Andover, MA 01845

michael.bryant@merrimack.edu

David Toth
University of Mary Washington

1301 College Avenue
Fredericksburg, VA 22401

dtoth@umw.edu

ABSTRACT

The R(m, n) instance of the party problem asks how many people

must attend a party to guarantee that at the party, there is a group

of m people who all know each other or a group of n people who

are all complete strangers. GPUs have been shown to

significantly decrease the running time of some mathematical and

scientific applications that have embarrassingly parallel portions.

A brute force algorithm to solve the R(5, 5) instance of the party

problem can be parallelized to run on a number of processing

cores many orders of magnitude greater than the number of cores

in the fastest supercomputer today. Therefore, we believed that

this currently unsolved problem is so computationally intensive

that GPUs could significantly reduce the time needed to solve it.

In this work, we compare the running time of a naïve algorithm to

help make progress solving the R(5, 5) instance of the party

problem on a CPU and on five different GPUs ranging from low-

end consumer GPUs to a high-end GPU. Using just the GPUs

computational capabilities, we observed speedups ranging from

1.9 to over 21 in comparison to our quad-core CPU system.

General Terms

Parallel Programming, GPGPU, Ramsey Theory

Keywords

Blue Waters Undergraduate Petascale Internship, CUDA, Party

Problem, Performance Comparison

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported

publication of the Shodor Education Foundation Inc.

1. INTRODUCTION
Ramsey Theory is an area of mathematics concerned with "the

mathematical study of combinatorial objects in which a certain

degree of order must occur as the scale of the objects becomes

large" [1]. Applications of Ramsey Theory include computational

geometry, information theory, complexity, and parallelism [2].

The party problem is a problem in Ramsey Theory. The R(m, n)

instance of the party problem asks how many people must be

invited to a party (assuming that all the invitees will attend) to

guarantee that at the party, there is a group of m people who all

know each other or a group of n people who are all complete

strangers. Thus, the solution to the R(5, 5) instance of the party

problem indicates the fewest number of people required to attend

a party to guarantee that at the party, there will be a group of 5

people who all know each other or a group of 5 people who are all

complete strangers. While the party problem has been solved for

some small values of m and n, it has yet to be solved for values of

m and n that are both equal and at least 5 [3]. For several of these

cases, the bounds on the answers to the problem have been

established [3]. For example, it is known that 43 ≤ R(5, 5) ≤ 49

[3].

To help visualize the party problem, 2-colored graphs are

typically used to show the relationship between the people as

either acquaintances or strangers. The graphs consist of vertices

representing the people and edges that connect every vertex to

every other vertex, forming a complete graph. A red edge

connecting two vertices indicates that the vertices represent

people who are strangers and a blue edge connecting two vertices

indicates that the vertices represent people who are acquaintances.

The graphs that are used to help visualize the problem can also be

used to solve the problem. To solve R(m, n), one must find the

smallest number of people x such that every complete graph on x

vertices where the edges are colored blue and red contains a

subgraph that is a red or blue complete graph on 5 vertices. Since

the number of edges in a complete graph on v vertices is (v2-v)/2

and each edge may be colored red or blue, there are 2((v^2)-v)/2

complete graphs on v vertices. Therefore, to increase the lower

bound on R(5, 5) from the known lower bound of 43 to 44, one

would need to demonstrate that at least one of the 2((43^2) - 43)/2 or

2903 complete graphs on 43 vertices does not contain a subgraph

that is a red or blue complete graph on 5 vertices, denoted K5.

Alternatively, one could decrease the upper bound from the

known value of 49 to u by demonstrating that every complete

graph on u vertices where the edges are colored blue and red

contains a subgraph that is a red or blue K5. We do note that

many of the 2903 graphs that are isomorphic to each other, and

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 41

thus testing one of those graphs eliminates the need to test the

other graphs that are isomorphic to it. Unfortunately, it is often

slower to test if a graph is isomorphic to another graph that has

already been tested than to test if the graph contains a red or blue

K5. We also note that for every graph, another graph in the 2903

graphs can be obtained and if the original graph contains a red K5,

then the graph obtained by reversing the edge colors must contain

a blue K5. Therefore, only half of the 2903 graphs need to be tested

and this can be accomplished relatively easily.

We chose to write our algorithm to attempt to increase the lower

bound from the known value of 43 to 46 because of a conjecture

that R(5, 5) = 46 [4]. In the computationally worst case scenario,

our algorithm would test every graph and determine either that

R(5, 5) > 45 if all the graphs other than the last one contained a

red or blue K5 or that R(5, 5) ≤ 46 if every complete graph on 45

vertices with red and blue edges contained a red or blue K5. If we

instead tried to decrease the upper bound on R(5, 5) by one, the

worst case scenario would involve testing more graphs.

2. RELATED WORK
Over the past several years, many researchers have begun to use

GPUs to do a wide variety of mathematical and scientific

calculations that have traditionally been done on CPUs. GPUs

have been used to run “space and time discrete simulations” called

stencil codes [5]. They have been used for problems in physics

such as solving Boltzmann equations for gas flow applications [6].

Scientists have used GPUs in bioinformatics for doing sequence

alignment [7], for correcting errors in DNA sequencing [8], and

weather forecasting [9]. GPUs are also being used for colorectal

cancer research [10], cheminformatics [11], finite element

numerical integration [12], n-body problems [13], dynamic

programming applications [14], and many other scientific and

mathematical applications. GPUs are being used as components

in some of the newest and fastest supercomputers because of their

ability to provide significant computational capability, while using

less power than some CPU alternatives. The success that

researchers have had with a wide variety of applications

motivated us to evaluate whether GPUs would decrease the

amount of time to solve the party problem.

3. DATA STRUCTURES AND

ALGORITHM
As we designed our application, we were mindful of the idea that

it would need to run efficiently in parallel on both multicore

systems using OpenMP and on GPUs using CUDA with minimal

revision to the code to port it from the CPU to the GPUs. The key

implication of this is that the code had to run with a minimal

amount of communication between processing cores when

running on the CPU only and when running on the GPUs only.

Because our application just requires us to test a large number of

graphs, it is really just an embarrassingly parallel application.

Therefore, we realized that we could simply divide the number of

graphs evenly by the number of cores (CPU or GPU as

appropriate), have each core report the results of testing its share

of graphs to a master processor, and have that processor output the

results. As long as each core would be able to efficiently generate

the next graph that the core was supposed to test, this design

would work well. This requirement affected the data structure we

used to represent the graphs.

3.1 Data Structures
As discussed in section 1, the party problem can be solved using

graphs. In computer programs, a graph is typically represented

using adjacency lists or an adjacency matrix. For our purposes, an

adjacency matrix is preferable to adjacency lists for both

performance and ease of implementation reasons. While a natural

representation of a graph using an adjacency matrix is a two-

dimensional array, for our application, a single-dimensional array

was more useful. To help illustrate this, we show a simple graph

with five vertices and the corresponding two-dimensional

adjacency matrix in Figure 1 where a red edge is represented as a

zero, a blue edge is represented as a one, and no edge is

represented as -9. The adjacency matrix in Figure 1 indicates

there are no edges from a vertex to itself, because in the party

problem, a person is assumed to know himself/herself and thus

there is no need for an edge from a vertex to itself. Therefore, the

information on the diagonal of the matrix from the upper left entry

to the lower right entry does not need to be stored. Because the

relationships between two people are symmetric (if person 1

knows person 2, then person 2 knows person 1), the information

above the diagonal containing -9s is the same as the information

below the diagonal and is therefore redundant. By only storing

the information above the diagonal, we can save a little more than

half the memory that would be required to store the information in

the graph. Because many GPUs have large numbers of processing

cores, each with fast access to a limited amount of the typically

small quantity of memory on the GPU, this optimization was

important to allow all the cores to evaluate different graphs in a

single instant. In order to save memory, we “flatten” the matrix

and store it as a one-dimensional array as shown in Figure 2.

While this introduced some complexity during development, the

advantages it provided far outweighed the added complexity.

Since the flattened array contains only zeros and ones, the digits it

contains may be thought of as a binary number representing the

graph. By adding one to the rightmost element of the array and

making any carries if appropriate to the elements to the left, one

has adjusted the array to contain the binary representation of the

next graph. By continuing to add one to the digit in the rightmost

array slot and making the appropriate carries, one can generate all

of the possible graphs, one at a time. This process is a very

efficient way for a processing core to generate the next graph to

test, and the primary advantage of using the one- dimensional

array representation of the graph. By assigning equally sized sets

of graphs to each core where the graphs in a set can be

represented as consecutive binary numbers, the cores were able to

efficiently generate each subsequent graph that they needed to

test, making the one-dimensional array an excellent data structure

for storing the graphs.

3.2 Algorithm
The algorithm we used was a naïve algorithm. The algorithm

tested the first 335,544,320,000 (which is between 238 and 239)

graphs of the 2990 graphs that need to be tested to determine if

R(5, 5) ≥ 46. We refer to the algorithm as naïve for two reasons.

The first reason is that the algorithm is a brute force approach to

tightening the lower bound on the value of R(5, 5). Even more

importantly, the algorithm was not optimized for running on the

GPUs. For many applications, it is possible to get significantly

better performance on algorithms that are optimized to run on

GPUs. However, we were more concerned with the speedup that

could be obtained with minimal effort.

Volume 3, Issue 2 Journal of Computational Science Education

42 ISSN 2153-4136 December 2012

In the version of the code that the CPU ran and the version that

the GPUs ran, each of the n processing cores was given the value

of n and assigned 1/nth of the graphs to test by being given a

Figure 1. A Five Vertex Graph and Its Adjacency Matrix

Figure 2. Flattening the Two-Dimensional Array to a One-Dimensional Array Keeping Only the Necessary Information

decimal value that the core converted into a binary number,

corresponding to the first graph in the range of graphs to test. The

cores were then able to calculate the number of graphs they

needed to test. The algorithm we used to test a graph to see if it

contains a red or blue K5 cycles through all of the possible sets of

five vertices until it finds a set that forms a red or blue K5 or until

it has determined that no set of five vertices can contain a red or

blue K5. Once a K5 is found, the graph is discarded and the next

graph is generated by adding 1 to the binary representation of the

discarded graph to obtain the next graph to test. In the OpenMP

version of the code for the CPU, whenever a core found a graph

with neither a red or blue K5, it was supposed to print out the

graph, but this situation never arose. In the CUDA version of the

code, whenever a core found a graph with neither a red or blue K5,

it was supposed to write the graph to a shared memory location

and set a flag in shared memory. When the cores were all

finished, the flag was copied to the CPU and if a graph with no K5

had been found, then the shared memory with the graph’s

information would be copied to the host system and printed out.

4. METHODOLOGY
We did our testing on an upgraded Gateway GT5674 computer

with an AMD Phenom 9500 2.2 GHz quad-core CPU, 4 GB of

RAM, and a 650 watt power supply. The computer ran the

Windows Vista operating system. The GPUs we used ranged

from a low end home user card (GeForce 9500 GT) to a high end

home user card (GeForce GTX 480) to a high end workstation

card (Quadro FX 5800). The GPUs had varying numbers of

CUDA cores, multiprocessors, memory, and different compute

capabilities, as shown in Table 1.

In order to determine the performance improvement we could

obtain by using the GPUs, we first ran a version of the code using

OpenMP on the system using 1, 2, and 4 cores. We then ported

the code to CUDA such that it would not use the CPU cores for

testing any graphs, thus using the CPU minimally, and ran it on

each GPU shown in Table 1.

For the performance testing, we chose to have the program test

335,544,320,000 graphs. That number was chosen because it was

a multiple of the number of cores in every one of the GPUs we

used and the algorithm took about an hour to test that many

graphs using all 4 CPU cores. By picking a value that took the

CPU a long time, we expected to see what, if any, performance

gains we could reasonably expect under normal conditions of the

cores having a huge number of graphs to test, which is what we

would encounter if we tried to solve the problem with GPUs or

CPUs.

Our only effort to tune the CUDA version of the application in an

attempt to achieve better performance was to run the tests on each

card using several different numbers of threads per block. In

order to achieve high performance and scalability, NVIDIA GPUs

divide the threads for a multithreaded CUDA program into groups

of threads called blocks [16]. Each block runs on a streaming

multiprocessor, so the number of blocks that can run

simultaneously and thus the performance of an NVIDIA GPU

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 43

Table 1. Specifications for GPUs Used

GPU CUDA Cores Streaming
Multiprocessors

Memory (GB) Compute Capability

GeForce 9500 GT 32 4 1 1.1 [15]

GeForce GT 240 96 12 0.5 1.2 [15]

GeForce GTS 450 192 4 1 2.1 [15]

Quadro FX 5800 240 30 4 1.3 [15]

GeForce GTX 480 480 15 1.5 2.0 [15]

scales with the number of streaming multiprocessors [16]. One

can adjust the number of threads that run in each block to try to

obtain better performance by using more blocks, to a maximum of

512 threads per block on GPUs with compute capability 1.x and

1024 threads per block on GPUs with compute capability 2.x [16].

Since we had GPUs with both 1.x and 2.x compute capabilities,

we chose to limit the threads per block to 512 for all of our testing

for consistency. Because some people have suggested that the

number of threads per block should be at least 64 as well as being

a multiple of 64 [17] and others have found that 128 to 256

threads per block resulted in the best performance for their

applications [18], we also ran tests with 64, 128, and 256 threads

per block in addition to 512 threads per block. The GeForce 9500

GT which was unable to run the code using 512 threads per block

due to hardware limitations, so we were only able to test it with

64, 128, and 256 threads per block on that GPU. We discuss the

results of these tests in Section 5.

In order to try to take full advantage of the GPU for computing

rather than also for updating the computer’s display, we explored

the possibility of using a second graphics card dedicated to the

display in our test system. The GPUs with compute capability 1.x

were compatible with a second NVIDIA graphics card, an

NVIDIA GeForce 6200 that is not CUDA-enabled. This allowed

us to use the GeForce 6200 for the display, freeing up the CUDA

cards to do only the computations. The cards with compute

capability 2.x did not work with the second graphics card.

Therefore, we tested all the GPUs without the GeForce 6200. We

also tested cards with compute capability 1.x while using the

GeForce 6200 for the display. This allowed us to determine if

using a GPU for both computations and to run the display had a

significant impact on the performance of the cards. We discuss

the results of these tests in Section 5.

5. RESULTS
We conducted a test consisting of 10 trials where each of the

devices (CPU-only using 1, 2, and 4 cores and GPU-only with

each GPU) tested 335,544,320,000 graphs. Each test was

repeated for each GPU using each number of threads per block

except 512 threads per block for the GeForce 9500 GT. For the

GPUs that were compatible with the second graphics card, we

conducted 10 trials using the second graphics card to drive the

display with each number of threads per block other than 512

blocks for the GeForce 9500 GT. After analyzing the results of

10 trials for each test, we concluded that the range of the results

for each GPU and for each number of CPU cores used was

sufficiently small to conclude that 10 trials was sufficient to be

confident that we were getting accurate results. In 24 of the 30

GPU tests, the range between the values obtained from the 10

trials was 2 seconds or less. In the remaining 6 tests, the ranges

were one of 3 seconds (test average 603 seconds), one of 5

seconds (test average 2241 seconds), two of 6 seconds (test

averages 634 seconds and 3167 seconds), one of 10 seconds (test

average 2258 seconds), and one of 13 seconds (test average 637

seconds). The only GPUs that had a range of more than 1 second

for the 10 trials in any given test were the GeForce 9500 GT and

the GeForce GT 240, which are the lower end home GPUs. For

the CPU core tests, the ranges for the tests were 36 seconds (test

average 3254 seconds) for 4 cores, 88 seconds (test average 6846

seconds) for 2 cores, and 130 seconds (test average 13,226

seconds) for 1 core.

5.1 Effects of Using the GPU to Drive

Display
We observed that using the GPU to drive the system’s display in

addition to testing the graphs did increase the amount of time

taken to finish testing the graphs, as shown in Table 2. The least

powerful GPU (the GeForce 9500 GT) consistently suffered the

biggest performance loss in terms of additional time to finish

testing the graphs. However, when taking the additional time as a

percentage of the time to test the graphs when not using the GPU,

the most powerful GPU (the Quadro FX 5800) suffered the

biggest performance loss. The increase in time required to test the

graphs was only an additional 2.5% or less of the time taken to

complete the computations without using the GPU for the

system’s video output. Therefore, we do not believe using the

GPUs to run the systems video is a significant detriment to the

performance of the GPU on the computations.

5.2 Effect of Using Different Numbers of

Threads Per Block
As discussed in the Section 4, the number of threads per block can

have an impact on the performance of the GPUs, so we ran the

tests using 64, 128, 256, and 512 threads per block for each card

except 512 for the GeForce 9500 GT. We found that there was a

significant variation on the running time of the algorithm using

different numbers of threads per block, as shown in Figure 3.

The data shown in Figure 3 only shows the variation based on

threads per block for the GPUs when the second graphics card

was not in the system for consistency, but we observed that the

data from the tests where the second graphics card was used

demonstrated analogous results. In Table 3, we show the percent

increase in time required to test the graphs from the tests using the

number of threads per block that produced the fastest time to the

tests using the number of threads per block that produced the

slowest time. The increase in the time required to test all the

graphs ranged from 8% to 54% based on the GPU. Although we

Volume 3, Issue 2 Journal of Computational Science Education

44 ISSN 2153-4136 December 2012

observed the least impact on the GPU with the most memory, the

GPU with the least memory had the second smallest impact which

was significantly less than the other GPUs, so the magnitude of

the impact was not simply based on the amount of memory of the

GPU. 128 threads per block produced the best results with the

GeForce GT 240, Quadro FX 5800, and GeForce GTX 480. The

GeForce 9500 GT performed best with 64 threads per block, but

was only 4 seconds faster than it was with 128 threads per block.

The GeForce GTS 450 performed best with 256 threads per block,

but only 10 seconds better than with 128 threads per block.

Therefore, when comparing the performance of the GPUs, we use

the performance from the test with the number of threads per

block that was most commonly the best for the GPUs. We note

the difference between the speedup obtained by using the

performance when the GPUs used 128 threads per block and the

performance from the best number of threads per block would be

negligible.

Table 2. Performance Comparison of GPUs When Used for Video vs. When Not Used for Video

GPU Threads

Used
Per

Block

Average Time

(seconds) When Using
GPU for Video

Average Time

(seconds) When
Not Using GPU

for Video

Additional

Time Taken
(seconds)

Additional Time as Percent

Difference from Average Time
When Not Using GPU for Video

GeForce 9500 GT 512 ------ ------ ------ ------

GeForce 9500 GT 256 3167.4 3156.3 11.1 0.4

GeForce 9500 GT 128 2257.8 2242.4 15.4 0.7

GeForce 9500 GT 64 2253.9 2241.3 12.6 0.6

GeForce GT 240 512 636.9 634.0 2.9 0.5

GeForce GT 240 256 538.0 531.2 6.8 1.3

GeForce GT 240 128 524.3 521.4 2.9 0.6

GeForce GT 240 64 604.7 604.1 0.6 0.1

Quadro FX 5800 512 297.6 292.4 5.2 1.8

Quadro FX 5800 256 289.0 283.8 5.2 1.8

Quadro FX 5800 128 275.8 269.1 6.7 2.5

Quadro FX 5800 64 277.1 272.3 4.8 1.7

5.3 Speedups

The speedups attained by using the GPUs over using one, two,

and four cores of the CPU in our quad core system are shown in

Table 4. We note that it is strange that slightly greater than linear

speedup was observed when running the program on the CPU

only with all 4 cores. One would expect that there would be a

small performance loss, rather than performance gain in that

situation. We suspect that there might have been some process

running on the computer such as antivirus software or a regularly

scheduled task from the operating system that did not occur

during the time the program was run with 4 cores, but did occur

when the program was run with one core and two cores. The

GPU with the fewest cores attained a small speedup of 1.44 over

using all of the cores of the CPU, meaning it would take about

1.44 identical quad core systems to test the graphs in the same

amount of time that GPU did. In contrast, a high-end GPU

(GeForce GTX 480) attained a speedup of greater than 21 over the

quad-core system using all of the cores of the CPU, meaning it

would take over 21 identical quad core systems to test the graphs

in the same amount of time that GPU did.

6. CONCLUSIONS
Our results have shown that a brute force solution to the party

problem would be greatly speeded up running on GPUs, as our

fastest GPU did the same amount of work as our host system in a

fraction of the time. It would take more than 21 of our quad core

systems or about 88 of the CPU cores in our host computer to do

the same amount of work as the GPU in the same amount of time.

We note that although faster CPUs are now available, they should

still be significantly outperformed by the single GPU. Also, with

systems available that can run up to 8 GPUs and with faster GPUs

available, it appears that using GPUs would be a good way to

make progress on the party problem. However, while we have

seen the great potential of GPUs to speed up the process of

making progress on the party problem, we have two concerns.

Our program only tested graphs that allowed the cores to run

continuously in parallel. When certain graphs much further along

in the set of graphs to test begin to be tested, due to the GPU

architecture, the code of our algorithm will have to branch in

various places, which will force it to run sequentially at times,

decreasing the performance gains we got from the GPUs. An

issue that is much more problematic than the branching is that the

brute force solution requires us to test 2990 graphs to raise the

lower bound on R(5, 5) to 46 or to move the upper bound to 46.

Our idea of using GPUs does not scale sufficiently by itself to

accomplish this in a reasonable amount of time. While we were

able to test more than 238 graphs in 2.5 minutes using a small

quantity of hardware available to any consumer, a back of the

envelope calculation suggests that it would take more than a year

on the Titan supercomputer which has 18,688 GPUs to test just

the first 266 graphs, leaving us too far from completing the tests

we need to solve the problem [19]. Even a new generation of

supercomputers with many times the number of GPUs as current

supercomputers where the GPUs were also many times faster and

had many times the number of cores as the current GPUs would

still not let us solve the problem. Therefore, to devise a workable

method to solve the party problem in a

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 45

Figure 3. Comparison of Running Time of GPUs Using Various Numbers of Threads per Block

Table 3. Comparison of Percent Increased Time Required by GPUs to Test Graphs with Best and Worst Numbers of Threads Per

Block

GPU Percent Time Increase

Quadro FX 5800 8

GeForce GT 240 21

GeForce GTX 480 36

GeForce GTS 450 41

GeForce 9500 GT 54

reasonable amount of time, we will need to devise a better

algorithm than just the naïve brute force algorithm. If the

algorithm is amenable to running on GPUs, perhaps using GPUs

will help us solve the problem in the future.

7. FUTURE WORK
There are several possible opportunities for future work related to

this research. The first strategy we could try is to use a more

intelligent algorithm than the brute force algorithm our program

employed. Using mathematics, we could decrease the set of

graphs to test by eliminating classes of graphs that can be shown

will contain a red K5 or blue K5 subgraph. This may require us to

devise a significantly more complicated algorithm to run on the

GPUs, as the GPU cores may no longer be able to generate the

next graph to test using the efficient method our current algorithm

employed. We could also expand upon work that for a CPU-based

system, used a breadth first search technique that employed

pruning to try to search the tree of all possible graphs to generate

only graphs with at least 43 vertices that contain neither a red or

blue K5 [20].

2254

605 703

204
277

2258

524 468

150
276

3167

538
458

151
289

637

468

155
298

0

500

1000

1500

2000

2500

3000

3500

GeForce 9500 GT GeForce GT 240 GeForce GTS 450 GeForce GTX 480 Quadro FX 5800

T
im

e
 t

o
 T

e
st

 G
ra

p
h

s
(s

e
c

o
n

d
s)

GPU

Comparing Performance Based on Threads

Per Block

64 Threads Per Block 128 Threads Per Block

256 Threads Per Block 512 Threads Per Block

Volume 3, Issue 2 Journal of Computational Science Education

46 ISSN 2153-4136 December 2012

Table 4. Speedup of Devices

Device Average Time (seconds) Speedup Over
Single Core

Speedup Over
Quad Core System

CPU using 1 core 13226 -------- --------

CPU using 2 cores 6846 1.93 --------

CPU using 4 cores 3254 4.06 --------

GeForce 9500 GT 2258 5.86 1.44

GeForce GT 240 524 25.22 6.20

GeForce GTS 450 468 28.26 6.95

Quadro FX 5800 276 47.92 11.79

GeForce GTX 480 150 88.18 21.69

Another opportunity to explore this problem in more depth is to

determine the binary representation of the first graph that causes

the CUDA code we wrote to branch and thus run sequentially.

We also would like to measure the performance of the cards

during the period when the graphs cause the code to branch and

compare it to the performance of the OpenMP version of the code

running on just the CPU cores for the same set of graphs.

8. REFLECTIONS
This research project was a result of The Blue Waters

Undergraduate Petascale Education Program with which I

participated in as a student intern. The BWUPEP is an educational

program that gives students from colleges and universities around

the country the opportunity to learn about the high performance

computing discipline and apply what they learn in specific

research projects at their home institutions. Previous to my

experience with the Blue Waters Undergraduate Petascale

Education Program internship, I had limited knowledge about the

field of computer science and parallel computing. I knew this

internship would be the opportunity of a lifetime for me to get my

foot into the door of the computer science world. Over the course

of the internship, I learned more than I ever imagined and have

gained experience that will be valuable to me for years to come. I

am now confident in my abilities to handle issues related to HPC

and computationally intense problems.

My Blue Waters Undergraduate Petascale Education Program

internship began with a two-week trip to attend Blue Waters

Undergraduate Petascale Institute at NCSA at the University of

Illinois Urbana-Champaign to learn about High Performance and

Parallel Computing. There I met new students from around the

country who were also awarded the internship to conduct research

at their respective universities and colleges. During those two

weeks we underwent intense educational sessions everyday

learning the methodologies and ideologies of High Performance

Computing and methods used to develop and debug code on

parallel computers and clusters. From this boot camp experience, I

took back with me the knowledge and ability to conduct my

research for this project and future work, as well as new

friendships I had formed.

The bonus of my BWUPEP internship and the culmination of all

my hard work involved a free trip to SC11 in Seattle, Washington

to work as a student volunteer and participant in the education

program with the other student interns and volunteers. I created a

poster to be presented at the resource fair about my research

experience as well as the research I conducted over the summer

for this project. Going to SC11 was an eye-opening experience

and I hope to attend more of the SC conferences in the future. I

got the chance to meet many students in multiple disciplines of

computation as well as network with professors and major

companies who are involved in supercomputing.

This internship has provided me with the tools and knowledge I

need to move forward and continue work and research in the field

of high performance and parallel computing. Over the course of

the internship, I have learned the basics of a computer's hardware

and architecture and how the hardware works along with the

operating system to conduct multiprocessing and parallel

computing. I have been exposed to multiple ways to parallelize

code using OpenMP, MPI, and CUDA. The mentors at the boot

camp in Illinois instilled in me the ideologies of high performance

computing and taught me the systematic methods to successfully

debug parallelized code. I experienced hands on learning by

creating several small-scale local clusters on my own with the

resources I had available at my home institution. I also learned

about Graph Theory, Ramsey Theory, and the mathematics they

involve, catching a glimpse of the numerous computationally

intense problems of today.

This internship has given me the opportunity to experience first

hand the process of research in an academic environment, which I

will continue to use in my future work. This experience as a

whole has provided me with the knowledge, tools, and experience

to be successful in future endeavors. My research work with my

mentor, Dr. David Toth, has opened doors for me that I never

knew existed. The work I have done for this project has sparked

my interest for more computationally intense problems that might

hold some potential for me to work on using HPC in the future.

9. ACKNOWLEDGEMENTS
This work was supported by the Blue Waters Undergraduate

Petascale Education Program funded by the National Science

Foundation's Office of CyberInfrastructure, which provided

support for one of the authors in the form of a Blue Waters

Undergraduate Petascale Research Internship. This work was also

supported by NVIDIA through their Academic Partnership

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 47

Program, which provided the GeForce GTX 480 and Quadro FX

5800 GPUs we used.

10. REFERENCES
[1] ramsey theory - Wolfram|Alpha. (2012).

http://www.wolframalpha.com/input/?i=ramsey+theory.

[2] Vera Rosta, Ramsey Theory Applications, The Electronic

Journal of Combinatorics. December 7, 2004,

http://www.combinatorics.org/ojs/index.php/eljc/article/view

/ds13/pdf.

[3] S. P. Radziszowski, Small Ramsey Numbers, The Electronic

Journal of Combinatorics. DS1.10. (originally published

July 3, 1994, last updated August 4, 2009),

http://www.combinatorics.org/Surveys/ds1/sur.pdf.

[4] Personal communication with Peter Christopher, Ph.D.,

January 2005.

[5] A. Schafer, D. Fey, High Performance Stencil Code

Algorithms for GPGPUs, Procedia Computer Science 4

(2011) 2027-2036.

[6] Y. Y. Kloss, P. V. Shuvalov, F. G. Tcheremissine, Solving

Boltzmann equation on GPU, Procedia Computer Science 1

(2010), 1083-1091.

[7] C. Ling, K. Benkrid, Design and Implementation of a

CUDA-Compatible GPU-based Core for Gapped BLAST

Algorithm, Procedia Computer Science 1 (2010) 495-504.

[8] H. Shi, B. Schmidt, W. Liu, W. Muller-Wittig, Quality-score

guided error correction for short-read sequencing data using

CUDA, Procedia Computer Science 1 (2010) 1129-1138.

[9] T. Shimokawabe, T. Aoki, J. Ishida, K. Kawano, C. Muroi,

145 TFlops Performance on 3990 GPUs of TSUBAME 2.0

Supercomputer for an Operational Weather Prediction,

Procedia Computer Science 4 (2011) 1535-1544.

[10] GPGPUGRID.net, News archive (2011),

http://www.gpugrid.net/old_news.php.

[11] M. Maggioni, M. D. Santambrogio, J. Liang, GPU-

accelerated Chemical Similarity Assessment for Large Scale

Databases, Procedia Computer Science 4 (2011), 2007-2016.

[12] P. Maciol, P. Plaszewski, K. Banas, 3D finite element

numerical integration on GPUs, Procedia Computer Science

1 (2010), 1093-1100.

[13] L. Nyland, M. Harris, J. Prins, Fast N-Body simulation with

CUDA, in: GPU Gems, vol. 3, Addison Wesley, 2007, 677-

795.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Scheaffer, K.

Skadron, A performance study of general-purpose

applications on graphics processors using CUDA, J. Parallel

Distrib. Comput. 68 (2008), 1370-1380.

[15] NVIDIA, CUDA GPUs | NVIDIA Developer Zone (August

2011) - http://developer.nvidia.com/cuda-gpus.

[16] NVIDIA CUDA C Programming Guide 3.2 (November

2010) –

http://developer.nvidia.com/object/cuda_3_2_downloads.htm

l.

[17] S. Walkowiak, K. Wawruch, M. Nowotka, L. Ligowski, W.

Rudnicki, Exploring utilization of GPU for database

applications, Procedia Computer Science 1(2010) 505-513.

[18] V. W. Lee, C. Kim, J. Chhugani, M. Desiher, D. Kim, A. D.

Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P.

Hammarlund, R. Singhal, P. Dubey, Debunking the 100X

GPU vs. CPU Myth: An Evaluation of Throughput

Computing on CPU and GPU, Proceedings of the 37th annual

international symposium on Computer architecture (2010)

451-454.

[19] Introducing Titan | The World's #1 Open Science

Supercomputer (2012), http://www.olcf.ornl.gov/titan/.

[20] S. Krach, A High Performance Computing Approach to

Ramsey Theory, undergraduate thesis, Department of

Computer Science, Merrimack College, 2011.

Volume 3, Issue 2 Journal of Computational Science Education

48 ISSN 2153-4136 December 2012

	

	

Volume 3 Issue 2

December 2012

1

2

11

18

26

34

4141

	Front Cover
	Titlepage
	Table of Contents
	Introduction to Volume 3 Issue 2
	Cyber Collaboratory-based Sustainable Design Education:A Pedagogical Framework
	A Hands-on Education Program on Cyber PhysicalSystems for High School Students
	Using Supercomputing to Conduct Virtual Screen as Partof the Drug Discovery Process in a Medicinal ChemistryCourse
	Metadata Management in Scientific Computing
	Bringing ab initio Electronic Structure Calculations to theNano Scale through High Performance Computing
	A Performance Comparison of a Naïve Algorithm to Solvethe Party Problem using GPUs
	Back Cover

