
A Performance Comparison of a Naïve Algorithm to Solve
the Party Problem using GPUs

Michael V.E. Bryant
Merrimack College
315 Turnpike Street

North Andover, MA 01845

michael.bryant@merrimack.edu

David Toth
University of Mary Washington

1301 College Avenue
Fredericksburg, VA 22401

dtoth@umw.edu

ABSTRACT

The R(m, n) instance of the party problem asks how many people

must attend a party to guarantee that at the party, there is a group

of m people who all know each other or a group of n people who

are all complete strangers. GPUs have been shown to

significantly decrease the running time of some mathematical and

scientific applications that have embarrassingly parallel portions.

A brute force algorithm to solve the R(5, 5) instance of the party

problem can be parallelized to run on a number of processing

cores many orders of magnitude greater than the number of cores

in the fastest supercomputer today. Therefore, we believed that

this currently unsolved problem is so computationally intensive

that GPUs could significantly reduce the time needed to solve it.

In this work, we compare the running time of a naïve algorithm to

help make progress solving the R(5, 5) instance of the party

problem on a CPU and on five different GPUs ranging from low-

end consumer GPUs to a high-end GPU. Using just the GPUs

computational capabilities, we observed speedups ranging from

1.9 to over 21 in comparison to our quad-core CPU system.

General Terms

Parallel Programming, GPGPU, Ramsey Theory

Keywords

Blue Waters Undergraduate Petascale Internship, CUDA, Party

Problem, Performance Comparison

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported

publication of the Shodor Education Foundation Inc.

1. INTRODUCTION
Ramsey Theory is an area of mathematics concerned with "the

mathematical study of combinatorial objects in which a certain

degree of order must occur as the scale of the objects becomes

large" [1]. Applications of Ramsey Theory include computational

geometry, information theory, complexity, and parallelism [2].

The party problem is a problem in Ramsey Theory. The R(m, n)

instance of the party problem asks how many people must be

invited to a party (assuming that all the invitees will attend) to

guarantee that at the party, there is a group of m people who all

know each other or a group of n people who are all complete

strangers. Thus, the solution to the R(5, 5) instance of the party

problem indicates the fewest number of people required to attend

a party to guarantee that at the party, there will be a group of 5

people who all know each other or a group of 5 people who are all

complete strangers. While the party problem has been solved for

some small values of m and n, it has yet to be solved for values of

m and n that are both equal and at least 5 [3]. For several of these

cases, the bounds on the answers to the problem have been

established [3]. For example, it is known that 43 ≤ R(5, 5) ≤ 49

[3].

To help visualize the party problem, 2-colored graphs are

typically used to show the relationship between the people as

either acquaintances or strangers. The graphs consist of vertices

representing the people and edges that connect every vertex to

every other vertex, forming a complete graph. A red edge

connecting two vertices indicates that the vertices represent

people who are strangers and a blue edge connecting two vertices

indicates that the vertices represent people who are acquaintances.

The graphs that are used to help visualize the problem can also be

used to solve the problem. To solve R(m, n), one must find the

smallest number of people x such that every complete graph on x

vertices where the edges are colored blue and red contains a

subgraph that is a red or blue complete graph on 5 vertices. Since

the number of edges in a complete graph on v vertices is (v2-v)/2

and each edge may be colored red or blue, there are 2((v^2)-v)/2

complete graphs on v vertices. Therefore, to increase the lower

bound on R(5, 5) from the known lower bound of 43 to 44, one

would need to demonstrate that at least one of the 2((43^2) - 43)/2 or

2903 complete graphs on 43 vertices does not contain a subgraph

that is a red or blue complete graph on 5 vertices, denoted K5.

Alternatively, one could decrease the upper bound from the

known value of 49 to u by demonstrating that every complete

graph on u vertices where the edges are colored blue and red

contains a subgraph that is a red or blue K5. We do note that

many of the 2903 graphs that are isomorphic to each other, and

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 41

thus testing one of those graphs eliminates the need to test the

other graphs that are isomorphic to it. Unfortunately, it is often

slower to test if a graph is isomorphic to another graph that has

already been tested than to test if the graph contains a red or blue

K5. We also note that for every graph, another graph in the 2903

graphs can be obtained and if the original graph contains a red K5,

then the graph obtained by reversing the edge colors must contain

a blue K5. Therefore, only half of the 2903 graphs need to be tested

and this can be accomplished relatively easily.

We chose to write our algorithm to attempt to increase the lower

bound from the known value of 43 to 46 because of a conjecture

that R(5, 5) = 46 [4]. In the computationally worst case scenario,

our algorithm would test every graph and determine either that

R(5, 5) > 45 if all the graphs other than the last one contained a

red or blue K5 or that R(5, 5) ≤ 46 if every complete graph on 45

vertices with red and blue edges contained a red or blue K5. If we

instead tried to decrease the upper bound on R(5, 5) by one, the

worst case scenario would involve testing more graphs.

2. RELATED WORK
Over the past several years, many researchers have begun to use

GPUs to do a wide variety of mathematical and scientific

calculations that have traditionally been done on CPUs. GPUs

have been used to run “space and time discrete simulations” called

stencil codes [5]. They have been used for problems in physics

such as solving Boltzmann equations for gas flow applications [6].

Scientists have used GPUs in bioinformatics for doing sequence

alignment [7], for correcting errors in DNA sequencing [8], and

weather forecasting [9]. GPUs are also being used for colorectal

cancer research [10], cheminformatics [11], finite element

numerical integration [12], n-body problems [13], dynamic

programming applications [14], and many other scientific and

mathematical applications. GPUs are being used as components

in some of the newest and fastest supercomputers because of their

ability to provide significant computational capability, while using

less power than some CPU alternatives. The success that

researchers have had with a wide variety of applications

motivated us to evaluate whether GPUs would decrease the

amount of time to solve the party problem.

3. DATA STRUCTURES AND

ALGORITHM
As we designed our application, we were mindful of the idea that

it would need to run efficiently in parallel on both multicore

systems using OpenMP and on GPUs using CUDA with minimal

revision to the code to port it from the CPU to the GPUs. The key

implication of this is that the code had to run with a minimal

amount of communication between processing cores when

running on the CPU only and when running on the GPUs only.

Because our application just requires us to test a large number of

graphs, it is really just an embarrassingly parallel application.

Therefore, we realized that we could simply divide the number of

graphs evenly by the number of cores (CPU or GPU as

appropriate), have each core report the results of testing its share

of graphs to a master processor, and have that processor output the

results. As long as each core would be able to efficiently generate

the next graph that the core was supposed to test, this design

would work well. This requirement affected the data structure we

used to represent the graphs.

3.1 Data Structures
As discussed in section 1, the party problem can be solved using

graphs. In computer programs, a graph is typically represented

using adjacency lists or an adjacency matrix. For our purposes, an

adjacency matrix is preferable to adjacency lists for both

performance and ease of implementation reasons. While a natural

representation of a graph using an adjacency matrix is a two-

dimensional array, for our application, a single-dimensional array

was more useful. To help illustrate this, we show a simple graph

with five vertices and the corresponding two-dimensional

adjacency matrix in Figure 1 where a red edge is represented as a

zero, a blue edge is represented as a one, and no edge is

represented as -9. The adjacency matrix in Figure 1 indicates

there are no edges from a vertex to itself, because in the party

problem, a person is assumed to know himself/herself and thus

there is no need for an edge from a vertex to itself. Therefore, the

information on the diagonal of the matrix from the upper left entry

to the lower right entry does not need to be stored. Because the

relationships between two people are symmetric (if person 1

knows person 2, then person 2 knows person 1), the information

above the diagonal containing -9s is the same as the information

below the diagonal and is therefore redundant. By only storing

the information above the diagonal, we can save a little more than

half the memory that would be required to store the information in

the graph. Because many GPUs have large numbers of processing

cores, each with fast access to a limited amount of the typically

small quantity of memory on the GPU, this optimization was

important to allow all the cores to evaluate different graphs in a

single instant. In order to save memory, we “flatten” the matrix

and store it as a one-dimensional array as shown in Figure 2.

While this introduced some complexity during development, the

advantages it provided far outweighed the added complexity.

Since the flattened array contains only zeros and ones, the digits it

contains may be thought of as a binary number representing the

graph. By adding one to the rightmost element of the array and

making any carries if appropriate to the elements to the left, one

has adjusted the array to contain the binary representation of the

next graph. By continuing to add one to the digit in the rightmost

array slot and making the appropriate carries, one can generate all

of the possible graphs, one at a time. This process is a very

efficient way for a processing core to generate the next graph to

test, and the primary advantage of using the one- dimensional

array representation of the graph. By assigning equally sized sets

of graphs to each core where the graphs in a set can be

represented as consecutive binary numbers, the cores were able to

efficiently generate each subsequent graph that they needed to

test, making the one-dimensional array an excellent data structure

for storing the graphs.

3.2 Algorithm
The algorithm we used was a naïve algorithm. The algorithm

tested the first 335,544,320,000 (which is between 238 and 239)

graphs of the 2990 graphs that need to be tested to determine if

R(5, 5) ≥ 46. We refer to the algorithm as naïve for two reasons.

The first reason is that the algorithm is a brute force approach to

tightening the lower bound on the value of R(5, 5). Even more

importantly, the algorithm was not optimized for running on the

GPUs. For many applications, it is possible to get significantly

better performance on algorithms that are optimized to run on

GPUs. However, we were more concerned with the speedup that

could be obtained with minimal effort.

Volume 3, Issue 2 Journal of Computational Science Education

42 ISSN 2153-4136 December 2012

In the version of the code that the CPU ran and the version that

the GPUs ran, each of the n processing cores was given the value

of n and assigned 1/nth of the graphs to test by being given a

Figure 1. A Five Vertex Graph and Its Adjacency Matrix

Figure 2. Flattening the Two-Dimensional Array to a One-Dimensional Array Keeping Only the Necessary Information

decimal value that the core converted into a binary number,

corresponding to the first graph in the range of graphs to test. The

cores were then able to calculate the number of graphs they

needed to test. The algorithm we used to test a graph to see if it

contains a red or blue K5 cycles through all of the possible sets of

five vertices until it finds a set that forms a red or blue K5 or until

it has determined that no set of five vertices can contain a red or

blue K5. Once a K5 is found, the graph is discarded and the next

graph is generated by adding 1 to the binary representation of the

discarded graph to obtain the next graph to test. In the OpenMP

version of the code for the CPU, whenever a core found a graph

with neither a red or blue K5, it was supposed to print out the

graph, but this situation never arose. In the CUDA version of the

code, whenever a core found a graph with neither a red or blue K5,

it was supposed to write the graph to a shared memory location

and set a flag in shared memory. When the cores were all

finished, the flag was copied to the CPU and if a graph with no K5

had been found, then the shared memory with the graph’s

information would be copied to the host system and printed out.

4. METHODOLOGY
We did our testing on an upgraded Gateway GT5674 computer

with an AMD Phenom 9500 2.2 GHz quad-core CPU, 4 GB of

RAM, and a 650 watt power supply. The computer ran the

Windows Vista operating system. The GPUs we used ranged

from a low end home user card (GeForce 9500 GT) to a high end

home user card (GeForce GTX 480) to a high end workstation

card (Quadro FX 5800). The GPUs had varying numbers of

CUDA cores, multiprocessors, memory, and different compute

capabilities, as shown in Table 1.

In order to determine the performance improvement we could

obtain by using the GPUs, we first ran a version of the code using

OpenMP on the system using 1, 2, and 4 cores. We then ported

the code to CUDA such that it would not use the CPU cores for

testing any graphs, thus using the CPU minimally, and ran it on

each GPU shown in Table 1.

For the performance testing, we chose to have the program test

335,544,320,000 graphs. That number was chosen because it was

a multiple of the number of cores in every one of the GPUs we

used and the algorithm took about an hour to test that many

graphs using all 4 CPU cores. By picking a value that took the

CPU a long time, we expected to see what, if any, performance

gains we could reasonably expect under normal conditions of the

cores having a huge number of graphs to test, which is what we

would encounter if we tried to solve the problem with GPUs or

CPUs.

Our only effort to tune the CUDA version of the application in an

attempt to achieve better performance was to run the tests on each

card using several different numbers of threads per block. In

order to achieve high performance and scalability, NVIDIA GPUs

divide the threads for a multithreaded CUDA program into groups

of threads called blocks [16]. Each block runs on a streaming

multiprocessor, so the number of blocks that can run

simultaneously and thus the performance of an NVIDIA GPU

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 43

Table 1. Specifications for GPUs Used

GPU CUDA Cores Streaming
Multiprocessors

Memory (GB) Compute Capability

GeForce 9500 GT 32 4 1 1.1 [15]

GeForce GT 240 96 12 0.5 1.2 [15]

GeForce GTS 450 192 4 1 2.1 [15]

Quadro FX 5800 240 30 4 1.3 [15]

GeForce GTX 480 480 15 1.5 2.0 [15]

scales with the number of streaming multiprocessors [16]. One

can adjust the number of threads that run in each block to try to

obtain better performance by using more blocks, to a maximum of

512 threads per block on GPUs with compute capability 1.x and

1024 threads per block on GPUs with compute capability 2.x [16].

Since we had GPUs with both 1.x and 2.x compute capabilities,

we chose to limit the threads per block to 512 for all of our testing

for consistency. Because some people have suggested that the

number of threads per block should be at least 64 as well as being

a multiple of 64 [17] and others have found that 128 to 256

threads per block resulted in the best performance for their

applications [18], we also ran tests with 64, 128, and 256 threads

per block in addition to 512 threads per block. The GeForce 9500

GT which was unable to run the code using 512 threads per block

due to hardware limitations, so we were only able to test it with

64, 128, and 256 threads per block on that GPU. We discuss the

results of these tests in Section 5.

In order to try to take full advantage of the GPU for computing

rather than also for updating the computer’s display, we explored

the possibility of using a second graphics card dedicated to the

display in our test system. The GPUs with compute capability 1.x

were compatible with a second NVIDIA graphics card, an

NVIDIA GeForce 6200 that is not CUDA-enabled. This allowed

us to use the GeForce 6200 for the display, freeing up the CUDA

cards to do only the computations. The cards with compute

capability 2.x did not work with the second graphics card.

Therefore, we tested all the GPUs without the GeForce 6200. We

also tested cards with compute capability 1.x while using the

GeForce 6200 for the display. This allowed us to determine if

using a GPU for both computations and to run the display had a

significant impact on the performance of the cards. We discuss

the results of these tests in Section 5.

5. RESULTS
We conducted a test consisting of 10 trials where each of the

devices (CPU-only using 1, 2, and 4 cores and GPU-only with

each GPU) tested 335,544,320,000 graphs. Each test was

repeated for each GPU using each number of threads per block

except 512 threads per block for the GeForce 9500 GT. For the

GPUs that were compatible with the second graphics card, we

conducted 10 trials using the second graphics card to drive the

display with each number of threads per block other than 512

blocks for the GeForce 9500 GT. After analyzing the results of

10 trials for each test, we concluded that the range of the results

for each GPU and for each number of CPU cores used was

sufficiently small to conclude that 10 trials was sufficient to be

confident that we were getting accurate results. In 24 of the 30

GPU tests, the range between the values obtained from the 10

trials was 2 seconds or less. In the remaining 6 tests, the ranges

were one of 3 seconds (test average 603 seconds), one of 5

seconds (test average 2241 seconds), two of 6 seconds (test

averages 634 seconds and 3167 seconds), one of 10 seconds (test

average 2258 seconds), and one of 13 seconds (test average 637

seconds). The only GPUs that had a range of more than 1 second

for the 10 trials in any given test were the GeForce 9500 GT and

the GeForce GT 240, which are the lower end home GPUs. For

the CPU core tests, the ranges for the tests were 36 seconds (test

average 3254 seconds) for 4 cores, 88 seconds (test average 6846

seconds) for 2 cores, and 130 seconds (test average 13,226

seconds) for 1 core.

5.1 Effects of Using the GPU to Drive

Display
We observed that using the GPU to drive the system’s display in

addition to testing the graphs did increase the amount of time

taken to finish testing the graphs, as shown in Table 2. The least

powerful GPU (the GeForce 9500 GT) consistently suffered the

biggest performance loss in terms of additional time to finish

testing the graphs. However, when taking the additional time as a

percentage of the time to test the graphs when not using the GPU,

the most powerful GPU (the Quadro FX 5800) suffered the

biggest performance loss. The increase in time required to test the

graphs was only an additional 2.5% or less of the time taken to

complete the computations without using the GPU for the

system’s video output. Therefore, we do not believe using the

GPUs to run the systems video is a significant detriment to the

performance of the GPU on the computations.

5.2 Effect of Using Different Numbers of

Threads Per Block
As discussed in the Section 4, the number of threads per block can

have an impact on the performance of the GPUs, so we ran the

tests using 64, 128, 256, and 512 threads per block for each card

except 512 for the GeForce 9500 GT. We found that there was a

significant variation on the running time of the algorithm using

different numbers of threads per block, as shown in Figure 3.

The data shown in Figure 3 only shows the variation based on

threads per block for the GPUs when the second graphics card

was not in the system for consistency, but we observed that the

data from the tests where the second graphics card was used

demonstrated analogous results. In Table 3, we show the percent

increase in time required to test the graphs from the tests using the

number of threads per block that produced the fastest time to the

tests using the number of threads per block that produced the

slowest time. The increase in the time required to test all the

graphs ranged from 8% to 54% based on the GPU. Although we

Volume 3, Issue 2 Journal of Computational Science Education

44 ISSN 2153-4136 December 2012

observed the least impact on the GPU with the most memory, the

GPU with the least memory had the second smallest impact which

was significantly less than the other GPUs, so the magnitude of

the impact was not simply based on the amount of memory of the

GPU. 128 threads per block produced the best results with the

GeForce GT 240, Quadro FX 5800, and GeForce GTX 480. The

GeForce 9500 GT performed best with 64 threads per block, but

was only 4 seconds faster than it was with 128 threads per block.

The GeForce GTS 450 performed best with 256 threads per block,

but only 10 seconds better than with 128 threads per block.

Therefore, when comparing the performance of the GPUs, we use

the performance from the test with the number of threads per

block that was most commonly the best for the GPUs. We note

the difference between the speedup obtained by using the

performance when the GPUs used 128 threads per block and the

performance from the best number of threads per block would be

negligible.

Table 2. Performance Comparison of GPUs When Used for Video vs. When Not Used for Video

GPU Threads

Used
Per

Block

Average Time

(seconds) When Using
GPU for Video

Average Time

(seconds) When
Not Using GPU

for Video

Additional

Time Taken
(seconds)

Additional Time as Percent

Difference from Average Time
When Not Using GPU for Video

GeForce 9500 GT 512 ------ ------ ------ ------

GeForce 9500 GT 256 3167.4 3156.3 11.1 0.4

GeForce 9500 GT 128 2257.8 2242.4 15.4 0.7

GeForce 9500 GT 64 2253.9 2241.3 12.6 0.6

GeForce GT 240 512 636.9 634.0 2.9 0.5

GeForce GT 240 256 538.0 531.2 6.8 1.3

GeForce GT 240 128 524.3 521.4 2.9 0.6

GeForce GT 240 64 604.7 604.1 0.6 0.1

Quadro FX 5800 512 297.6 292.4 5.2 1.8

Quadro FX 5800 256 289.0 283.8 5.2 1.8

Quadro FX 5800 128 275.8 269.1 6.7 2.5

Quadro FX 5800 64 277.1 272.3 4.8 1.7

5.3 Speedups

The speedups attained by using the GPUs over using one, two,

and four cores of the CPU in our quad core system are shown in

Table 4. We note that it is strange that slightly greater than linear

speedup was observed when running the program on the CPU

only with all 4 cores. One would expect that there would be a

small performance loss, rather than performance gain in that

situation. We suspect that there might have been some process

running on the computer such as antivirus software or a regularly

scheduled task from the operating system that did not occur

during the time the program was run with 4 cores, but did occur

when the program was run with one core and two cores. The

GPU with the fewest cores attained a small speedup of 1.44 over

using all of the cores of the CPU, meaning it would take about

1.44 identical quad core systems to test the graphs in the same

amount of time that GPU did. In contrast, a high-end GPU

(GeForce GTX 480) attained a speedup of greater than 21 over the

quad-core system using all of the cores of the CPU, meaning it

would take over 21 identical quad core systems to test the graphs

in the same amount of time that GPU did.

6. CONCLUSIONS
Our results have shown that a brute force solution to the party

problem would be greatly speeded up running on GPUs, as our

fastest GPU did the same amount of work as our host system in a

fraction of the time. It would take more than 21 of our quad core

systems or about 88 of the CPU cores in our host computer to do

the same amount of work as the GPU in the same amount of time.

We note that although faster CPUs are now available, they should

still be significantly outperformed by the single GPU. Also, with

systems available that can run up to 8 GPUs and with faster GPUs

available, it appears that using GPUs would be a good way to

make progress on the party problem. However, while we have

seen the great potential of GPUs to speed up the process of

making progress on the party problem, we have two concerns.

Our program only tested graphs that allowed the cores to run

continuously in parallel. When certain graphs much further along

in the set of graphs to test begin to be tested, due to the GPU

architecture, the code of our algorithm will have to branch in

various places, which will force it to run sequentially at times,

decreasing the performance gains we got from the GPUs. An

issue that is much more problematic than the branching is that the

brute force solution requires us to test 2990 graphs to raise the

lower bound on R(5, 5) to 46 or to move the upper bound to 46.

Our idea of using GPUs does not scale sufficiently by itself to

accomplish this in a reasonable amount of time. While we were

able to test more than 238 graphs in 2.5 minutes using a small

quantity of hardware available to any consumer, a back of the

envelope calculation suggests that it would take more than a year

on the Titan supercomputer which has 18,688 GPUs to test just

the first 266 graphs, leaving us too far from completing the tests

we need to solve the problem [19]. Even a new generation of

supercomputers with many times the number of GPUs as current

supercomputers where the GPUs were also many times faster and

had many times the number of cores as the current GPUs would

still not let us solve the problem. Therefore, to devise a workable

method to solve the party problem in a

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 45

Figure 3. Comparison of Running Time of GPUs Using Various Numbers of Threads per Block

Table 3. Comparison of Percent Increased Time Required by GPUs to Test Graphs with Best and Worst Numbers of Threads Per

Block

GPU Percent Time Increase

Quadro FX 5800 8

GeForce GT 240 21

GeForce GTX 480 36

GeForce GTS 450 41

GeForce 9500 GT 54

reasonable amount of time, we will need to devise a better

algorithm than just the naïve brute force algorithm. If the

algorithm is amenable to running on GPUs, perhaps using GPUs

will help us solve the problem in the future.

7. FUTURE WORK
There are several possible opportunities for future work related to

this research. The first strategy we could try is to use a more

intelligent algorithm than the brute force algorithm our program

employed. Using mathematics, we could decrease the set of

graphs to test by eliminating classes of graphs that can be shown

will contain a red K5 or blue K5 subgraph. This may require us to

devise a significantly more complicated algorithm to run on the

GPUs, as the GPU cores may no longer be able to generate the

next graph to test using the efficient method our current algorithm

employed. We could also expand upon work that for a CPU-based

system, used a breadth first search technique that employed

pruning to try to search the tree of all possible graphs to generate

only graphs with at least 43 vertices that contain neither a red or

blue K5 [20].

2254

605 703

204
277

2258

524 468

150
276

3167

538
458

151
289

637

468

155
298

0

500

1000

1500

2000

2500

3000

3500

GeForce 9500 GT GeForce GT 240 GeForce GTS 450 GeForce GTX 480 Quadro FX 5800

T
im

e
 t

o
 T

e
st

 G
ra

p
h

s
(s

e
c

o
n

d
s)

GPU

Comparing Performance Based on Threads

Per Block

64 Threads Per Block 128 Threads Per Block

256 Threads Per Block 512 Threads Per Block

Volume 3, Issue 2 Journal of Computational Science Education

46 ISSN 2153-4136 December 2012

Table 4. Speedup of Devices

Device Average Time (seconds) Speedup Over
Single Core

Speedup Over
Quad Core System

CPU using 1 core 13226 -------- --------

CPU using 2 cores 6846 1.93 --------

CPU using 4 cores 3254 4.06 --------

GeForce 9500 GT 2258 5.86 1.44

GeForce GT 240 524 25.22 6.20

GeForce GTS 450 468 28.26 6.95

Quadro FX 5800 276 47.92 11.79

GeForce GTX 480 150 88.18 21.69

Another opportunity to explore this problem in more depth is to

determine the binary representation of the first graph that causes

the CUDA code we wrote to branch and thus run sequentially.

We also would like to measure the performance of the cards

during the period when the graphs cause the code to branch and

compare it to the performance of the OpenMP version of the code

running on just the CPU cores for the same set of graphs.

8. REFLECTIONS
This research project was a result of The Blue Waters

Undergraduate Petascale Education Program with which I

participated in as a student intern. The BWUPEP is an educational

program that gives students from colleges and universities around

the country the opportunity to learn about the high performance

computing discipline and apply what they learn in specific

research projects at their home institutions. Previous to my

experience with the Blue Waters Undergraduate Petascale

Education Program internship, I had limited knowledge about the

field of computer science and parallel computing. I knew this

internship would be the opportunity of a lifetime for me to get my

foot into the door of the computer science world. Over the course

of the internship, I learned more than I ever imagined and have

gained experience that will be valuable to me for years to come. I

am now confident in my abilities to handle issues related to HPC

and computationally intense problems.

My Blue Waters Undergraduate Petascale Education Program

internship began with a two-week trip to attend Blue Waters

Undergraduate Petascale Institute at NCSA at the University of

Illinois Urbana-Champaign to learn about High Performance and

Parallel Computing. There I met new students from around the

country who were also awarded the internship to conduct research

at their respective universities and colleges. During those two

weeks we underwent intense educational sessions everyday

learning the methodologies and ideologies of High Performance

Computing and methods used to develop and debug code on

parallel computers and clusters. From this boot camp experience, I

took back with me the knowledge and ability to conduct my

research for this project and future work, as well as new

friendships I had formed.

The bonus of my BWUPEP internship and the culmination of all

my hard work involved a free trip to SC11 in Seattle, Washington

to work as a student volunteer and participant in the education

program with the other student interns and volunteers. I created a

poster to be presented at the resource fair about my research

experience as well as the research I conducted over the summer

for this project. Going to SC11 was an eye-opening experience

and I hope to attend more of the SC conferences in the future. I

got the chance to meet many students in multiple disciplines of

computation as well as network with professors and major

companies who are involved in supercomputing.

This internship has provided me with the tools and knowledge I

need to move forward and continue work and research in the field

of high performance and parallel computing. Over the course of

the internship, I have learned the basics of a computer's hardware

and architecture and how the hardware works along with the

operating system to conduct multiprocessing and parallel

computing. I have been exposed to multiple ways to parallelize

code using OpenMP, MPI, and CUDA. The mentors at the boot

camp in Illinois instilled in me the ideologies of high performance

computing and taught me the systematic methods to successfully

debug parallelized code. I experienced hands on learning by

creating several small-scale local clusters on my own with the

resources I had available at my home institution. I also learned

about Graph Theory, Ramsey Theory, and the mathematics they

involve, catching a glimpse of the numerous computationally

intense problems of today.

This internship has given me the opportunity to experience first

hand the process of research in an academic environment, which I

will continue to use in my future work. This experience as a

whole has provided me with the knowledge, tools, and experience

to be successful in future endeavors. My research work with my

mentor, Dr. David Toth, has opened doors for me that I never

knew existed. The work I have done for this project has sparked

my interest for more computationally intense problems that might

hold some potential for me to work on using HPC in the future.

9. ACKNOWLEDGEMENTS
This work was supported by the Blue Waters Undergraduate

Petascale Education Program funded by the National Science

Foundation's Office of CyberInfrastructure, which provided

support for one of the authors in the form of a Blue Waters

Undergraduate Petascale Research Internship. This work was also

supported by NVIDIA through their Academic Partnership

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 47

Program, which provided the GeForce GTX 480 and Quadro FX

5800 GPUs we used.

10. REFERENCES
[1] ramsey theory - Wolfram|Alpha. (2012).

http://www.wolframalpha.com/input/?i=ramsey+theory.

[2] Vera Rosta, Ramsey Theory Applications, The Electronic

Journal of Combinatorics. December 7, 2004,

http://www.combinatorics.org/ojs/index.php/eljc/article/view

/ds13/pdf.

[3] S. P. Radziszowski, Small Ramsey Numbers, The Electronic

Journal of Combinatorics. DS1.10. (originally published

July 3, 1994, last updated August 4, 2009),

http://www.combinatorics.org/Surveys/ds1/sur.pdf.

[4] Personal communication with Peter Christopher, Ph.D.,

January 2005.

[5] A. Schafer, D. Fey, High Performance Stencil Code

Algorithms for GPGPUs, Procedia Computer Science 4

(2011) 2027-2036.

[6] Y. Y. Kloss, P. V. Shuvalov, F. G. Tcheremissine, Solving

Boltzmann equation on GPU, Procedia Computer Science 1

(2010), 1083-1091.

[7] C. Ling, K. Benkrid, Design and Implementation of a

CUDA-Compatible GPU-based Core for Gapped BLAST

Algorithm, Procedia Computer Science 1 (2010) 495-504.

[8] H. Shi, B. Schmidt, W. Liu, W. Muller-Wittig, Quality-score

guided error correction for short-read sequencing data using

CUDA, Procedia Computer Science 1 (2010) 1129-1138.

[9] T. Shimokawabe, T. Aoki, J. Ishida, K. Kawano, C. Muroi,

145 TFlops Performance on 3990 GPUs of TSUBAME 2.0

Supercomputer for an Operational Weather Prediction,

Procedia Computer Science 4 (2011) 1535-1544.

[10] GPGPUGRID.net, News archive (2011),

http://www.gpugrid.net/old_news.php.

[11] M. Maggioni, M. D. Santambrogio, J. Liang, GPU-

accelerated Chemical Similarity Assessment for Large Scale

Databases, Procedia Computer Science 4 (2011), 2007-2016.

[12] P. Maciol, P. Plaszewski, K. Banas, 3D finite element

numerical integration on GPUs, Procedia Computer Science

1 (2010), 1093-1100.

[13] L. Nyland, M. Harris, J. Prins, Fast N-Body simulation with

CUDA, in: GPU Gems, vol. 3, Addison Wesley, 2007, 677-

795.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Scheaffer, K.

Skadron, A performance study of general-purpose

applications on graphics processors using CUDA, J. Parallel

Distrib. Comput. 68 (2008), 1370-1380.

[15] NVIDIA, CUDA GPUs | NVIDIA Developer Zone (August

2011) - http://developer.nvidia.com/cuda-gpus.

[16] NVIDIA CUDA C Programming Guide 3.2 (November

2010) –

http://developer.nvidia.com/object/cuda_3_2_downloads.htm

l.

[17] S. Walkowiak, K. Wawruch, M. Nowotka, L. Ligowski, W.

Rudnicki, Exploring utilization of GPU for database

applications, Procedia Computer Science 1(2010) 505-513.

[18] V. W. Lee, C. Kim, J. Chhugani, M. Desiher, D. Kim, A. D.

Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P.

Hammarlund, R. Singhal, P. Dubey, Debunking the 100X

GPU vs. CPU Myth: An Evaluation of Throughput

Computing on CPU and GPU, Proceedings of the 37th annual

international symposium on Computer architecture (2010)

451-454.

[19] Introducing Titan | The World's #1 Open Science

Supercomputer (2012), http://www.olcf.ornl.gov/titan/.

[20] S. Krach, A High Performance Computing Approach to

Ramsey Theory, undergraduate thesis, Department of

Computer Science, Merrimack College, 2011.

Volume 3, Issue 2 Journal of Computational Science Education

48 ISSN 2153-4136 December 2012

