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ABSTRACT 

The R(m, n) instance of the party problem asks how many people 

must attend a party to guarantee that at the party, there is a group 

of m people who all know each other or a group of n people who 

are all complete strangers.  GPUs have been shown to 

significantly decrease the running time of some mathematical and 

scientific applications that have embarrassingly parallel portions. 

A brute force algorithm to solve the R(5, 5) instance of the party 

problem can be parallelized to run on a number of processing 

cores many orders of magnitude greater than the number of cores 

in the fastest supercomputer today.  Therefore, we believed that 

this currently unsolved problem is so computationally intensive 

that GPUs could significantly reduce the time needed to solve it.  

In this work, we compare the running time of a naïve algorithm to 

help make progress solving the R(5, 5) instance of the party 

problem on a CPU and on five different GPUs ranging from low-

end consumer GPUs to a high-end GPU.  Using just the GPUs 

computational capabilities, we observed speedups ranging from 

1.9 to over 21 in comparison to our quad-core CPU system.   
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1. INTRODUCTION 
Ramsey Theory is an area of mathematics concerned with "the 

mathematical study of combinatorial objects in which a certain 

degree of order must occur as the scale of the objects becomes 

large" [1].  Applications of Ramsey Theory include computational 

geometry, information theory, complexity, and parallelism [2].  

The party problem is a problem in Ramsey Theory.  The R(m, n) 

instance of the party problem asks how many people must be 

invited to a party (assuming that all the invitees will attend) to 

guarantee that at the party, there is a group of m people who all 

know each other or a group of n people who are all complete 

strangers.  Thus, the solution to the R(5, 5) instance of the party 

problem indicates the fewest number of people required to attend 

a party to guarantee that at the party, there will be a group of 5 

people who all know each other or a group of 5 people who are all 

complete strangers.  While the party problem has been solved for 

some small values of m and n, it has yet to be solved for values of 

m and n that are both equal and at least 5 [3].  For several of these 

cases, the bounds on the answers to the problem have been 

established [3].  For example, it is known that 43 ≤ R(5, 5) ≤ 49 

[3]. 

 

To help visualize the party problem, 2-colored graphs are 

typically used to show the relationship between the people as 

either acquaintances or strangers. The graphs consist of vertices 

representing the people and edges that connect every vertex to 

every other vertex, forming a complete graph.  A red edge 

connecting two vertices indicates that the vertices represent 

people who are strangers and a blue edge connecting two vertices 

indicates that the vertices represent people who are acquaintances.  

The graphs that are used to help visualize the problem can also be 

used to solve the problem.  To solve R(m, n), one must find the 

smallest number of people x such that every complete graph on x 

vertices where the edges are colored blue and red contains a 

subgraph that is a red or blue complete graph on 5 vertices.  Since 

the number of edges in a complete graph on v vertices is (v2-v)/2 

and each edge may be colored red or blue, there are 2((v^2)-v)/2 

complete graphs on v vertices.  Therefore, to increase the lower 

bound on R(5, 5) from the known lower bound of 43 to 44, one 

would need to demonstrate that at least one of the 2((43^2) - 43)/2 or 

2903 complete graphs on 43 vertices does not contain a subgraph 

that is a red or blue complete graph on 5 vertices, denoted K5.  

Alternatively, one could decrease the upper bound from the 

known value of 49 to u by demonstrating that every complete 

graph on u vertices where the edges are colored blue and red 

contains a subgraph that is a red or blue K5.  We do note that 

many of the 2903 graphs that are isomorphic to each other, and 
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thus testing one of those graphs eliminates the need to test the 

other graphs that are isomorphic to it.  Unfortunately, it is often 

slower to test if a graph is isomorphic to another graph that has 

already been tested than to test if the graph contains a red or blue 

K5.  We also note that for every graph, another graph in the 2903 

graphs can be obtained and if the original graph contains a red K5, 

then the graph obtained by reversing the edge colors must contain 

a blue K5.  Therefore, only half of the 2903 graphs need to be tested 

and this can be accomplished relatively easily.  

 

We chose to write our algorithm to attempt to increase the lower 

bound from the known value of 43 to 46 because of a conjecture 

that R(5, 5) = 46 [4].  In the computationally worst case scenario, 

our algorithm would test every graph and determine either that 

R(5, 5) > 45 if all the graphs other than the last one contained a 

red or blue K5  or that R(5, 5) ≤ 46 if every complete graph on 45 

vertices with red and blue edges contained a red or blue K5.  If we 

instead tried to decrease the upper bound on R(5, 5) by one, the 

worst case scenario would involve testing more graphs. 

 

2. RELATED WORK 
Over the past several years, many researchers have begun to use 

GPUs to do a wide variety of mathematical and scientific 

calculations that have traditionally been done on CPUs.  GPUs 

have been used to run “space and time discrete simulations” called 

stencil codes [5].  They have been used for problems in physics 

such as solving Boltzmann equations for gas flow applications [6].  

Scientists have used GPUs in bioinformatics for doing sequence 

alignment [7], for correcting errors in DNA sequencing [8], and 

weather forecasting [9].  GPUs are also being used for colorectal 

cancer research [10], cheminformatics [11], finite element 

numerical integration [12], n-body problems [13], dynamic 

programming applications [14], and many other scientific and 

mathematical applications.  GPUs are being used as components 

in some of the newest and fastest supercomputers because of their 

ability to provide significant computational capability, while using 

less power than some CPU alternatives.  The success that 

researchers have had with a wide variety of applications 

motivated us to evaluate whether GPUs would decrease the 

amount of time to solve the party problem. 

 

3. DATA STRUCTURES AND 

ALGORITHM 
As we designed our application, we were mindful of the idea that 

it would need to run efficiently in parallel on both multicore 

systems using OpenMP and on GPUs using CUDA with minimal 

revision to the code to port it from the CPU to the GPUs.  The key 

implication of this is that the code had to run with a minimal 

amount of communication between processing cores when 

running on the CPU only and when running on the GPUs only.  

Because our application just requires us to test a large number of 

graphs, it is really just an embarrassingly parallel application.  

Therefore, we realized that we could simply divide the number of 

graphs evenly by the number of cores (CPU or GPU as 

appropriate), have each core report the results of testing its share 

of graphs to a master processor, and have that processor output the 

results.  As long as each core would be able to efficiently generate 

the next graph that the core was supposed to test, this design 

would work well.  This requirement affected the data structure we 

used to represent the graphs. 

3.1 Data Structures 
As discussed in section 1, the party problem can be solved using 

graphs.  In computer programs, a graph is typically represented 

using adjacency lists or an adjacency matrix.  For our purposes, an 

adjacency matrix is preferable to adjacency lists for both 

performance and ease of implementation reasons.  While a natural 

representation of a graph using an adjacency matrix is a two-

dimensional array, for our application, a single-dimensional array 

was more useful.  To help illustrate this, we show a simple graph 

with five vertices and the corresponding two-dimensional 

adjacency matrix in Figure 1 where a red edge is represented as a 

zero, a blue edge is represented as a one, and no edge is 

represented as -9.  The adjacency matrix in Figure 1 indicates 

there are no edges from a vertex to itself, because in the party 

problem, a person is assumed to know himself/herself and thus 

there is no need for an edge from a vertex to itself.  Therefore, the 

information on the diagonal of the matrix from the upper left entry 

to the lower right entry does not need to be stored.  Because the 

relationships between two people are symmetric (if person 1 

knows person 2, then person 2 knows person 1), the information 

above the diagonal containing -9s is the same as the information 

below the diagonal and is therefore redundant.  By only storing 

the information above the diagonal, we can save a little more than 

half the memory that would be required to store the information in 

the graph.  Because many GPUs have large numbers of processing 

cores, each with fast access to a limited amount of the typically 

small quantity of memory on the GPU, this optimization was 

important to allow all the cores to evaluate different graphs in a 

single instant.  In order to save memory, we “flatten” the matrix 

and store it as a one-dimensional array as shown in Figure 2.  

While this introduced some complexity during development, the 

advantages it provided far outweighed the added complexity. 

Since the flattened array contains only zeros and ones, the digits it 

contains may be thought of as a binary number representing the 

graph.  By adding one to the rightmost element of the array and 

making any carries if appropriate to the elements to the left, one 

has adjusted the array to contain the binary representation of the 

next graph.  By continuing to add one to the digit in the rightmost 

array slot and making the appropriate carries, one can generate all 

of the possible graphs, one at a time.  This process is a very 

efficient way for a processing core to generate the next graph to 

test, and the primary advantage of using the one- dimensional 

array representation of the graph.  By assigning equally sized sets 

of graphs to each core where the graphs in a set can be 

represented as consecutive binary numbers, the cores were able to 

efficiently generate each subsequent graph that they needed to 

test, making the one-dimensional array an excellent data structure 

for storing the graphs. 

 

3.2 Algorithm 
The algorithm we used was a naïve algorithm.  The algorithm 

tested the first 335,544,320,000 (which is between 238 and 239) 

graphs of the 2990 graphs that need to be tested to determine if 

R(5, 5) ≥ 46.  We refer to the algorithm as naïve for two reasons.  

The first reason is that the algorithm is a brute force approach to 

tightening the lower bound on the value of R(5, 5).  Even more 

importantly, the algorithm was not optimized for running on the 

GPUs.  For many applications, it is possible to get significantly 

better performance on algorithms that are optimized to run on 

GPUs.  However, we were more concerned with the speedup that 

could be obtained with minimal effort.     
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In the version of the code that the CPU ran and the version that 

the GPUs ran, each of the n processing cores was given the value 

of n and assigned 1/nth of the graphs to test by being given a 

Figure 1. A Five Vertex Graph and Its Adjacency Matrix 

 

 

 

Figure 2. Flattening the Two-Dimensional Array to a One-Dimensional Array Keeping Only the Necessary Information 

 

 
decimal value that the core converted into a binary number, 

corresponding to the first graph in the range of graphs to test.  The 

cores were then able to calculate the number of graphs they 

needed to test.  The algorithm we used to test a graph to see if it 

contains a red or blue K5 cycles through all of the possible sets of 

five vertices until it finds a set that forms a red or blue K5 or until 

it has determined that no set of five vertices can contain a red or 

blue K5. Once a K5 is found, the graph is discarded and the next 

graph is generated by adding 1 to the binary representation of the 

discarded graph to obtain the next graph to test.  In the OpenMP 

version of the code for the CPU, whenever a core found a graph 

with neither a red or blue K5, it was supposed to print out the 

graph, but this situation never arose.  In the CUDA version of the 

code, whenever a core found a graph with neither a red or blue K5, 

it was supposed to write the graph to a shared memory location 

and set a flag in shared memory.  When the cores were all 

finished, the flag was copied to the CPU and if a graph with no K5 

had been found, then the shared memory with the graph’s 

information would be copied to the host system and printed out. 

 

4. METHODOLOGY 
We did our testing on an upgraded Gateway GT5674 computer 

with an AMD Phenom 9500 2.2 GHz quad-core CPU, 4 GB of 

RAM, and a 650 watt power supply.  The computer ran the 

Windows Vista operating system.  The GPUs we used ranged 

from a low end home user card (GeForce 9500 GT) to a high end 

home user card (GeForce GTX 480) to a high end workstation 

card (Quadro FX 5800).  The GPUs had varying numbers of 

CUDA cores, multiprocessors, memory, and different compute 

capabilities, as shown in Table 1. 

In order to determine the performance improvement we could 

obtain by using the GPUs, we first ran a version of the code using 

OpenMP on the system using 1, 2, and 4 cores.  We then ported 

the code to CUDA such that it would not use the CPU cores for 

testing any graphs, thus using the CPU minimally, and ran it on 

each GPU shown in Table 1. 

 

For the performance testing, we chose to have the program test 

335,544,320,000 graphs.  That number was chosen because it was 

a multiple of the number of cores in every one of the GPUs we 

used and the algorithm took about an hour to test that many 

graphs using all 4 CPU cores.  By picking a value that took the 

CPU a long time, we expected to see what, if any, performance 

gains we could reasonably expect under normal conditions of the 

cores having a huge number of graphs to test, which is what we 

would encounter if we tried to solve the problem with GPUs or 

CPUs.   

 

Our only effort to tune the CUDA version of the application in an 

attempt to achieve better performance was to run the tests on each 

card using several different numbers of threads per block.  In 

order to achieve high performance and scalability, NVIDIA GPUs 

divide the threads for a multithreaded CUDA program into groups 

of threads called blocks [16].  Each block runs on a streaming 

multiprocessor, so the number of blocks that can run 

simultaneously and thus the performance of an NVIDIA GPU 
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Table 1. Specifications for GPUs Used 

GPU CUDA Cores Streaming 
Multiprocessors 

Memory (GB) Compute Capability 

GeForce 9500 GT 32 4 1 1.1 [15] 

GeForce GT 240 96 12 0.5 1.2 [15] 

GeForce GTS 450 192 4 1 2.1 [15] 

Quadro FX 5800 240 30 4 1.3 [15] 

GeForce GTX 480 480 15 1.5 2.0 [15] 

 

 

scales with the number of streaming multiprocessors [16].  One 

can adjust the number of threads that run in each block to try to 

obtain better performance by using more blocks, to a maximum of 

512 threads per block on GPUs with compute capability 1.x and 

1024 threads per block on GPUs with compute capability 2.x [16].  

Since we had GPUs with both 1.x and 2.x compute capabilities, 

we chose to limit the threads per block to 512 for all of our testing 

for consistency.  Because some people have suggested that the 

number of threads per block should be at least 64 as well as being 

a multiple of 64 [17] and others have found that 128 to 256 

threads per block resulted in the best performance for their 

applications [18], we also ran tests with 64, 128, and 256 threads 

per block in addition to 512 threads per block.  The GeForce 9500 

GT which was unable to run the code using 512 threads per block 

due to hardware limitations, so we were only able to test it with 

64, 128, and 256 threads per block on that GPU.  We discuss the 

results of these tests in Section 5. 

 

In order to try to take full advantage of the GPU for computing 

rather than also for updating the computer’s display, we explored 

the possibility of using a second graphics card dedicated to the 

display in our test system.  The GPUs with compute capability 1.x 

were compatible with a second NVIDIA graphics card, an 

NVIDIA GeForce 6200 that is not CUDA-enabled.  This allowed 

us to use the GeForce 6200 for the display, freeing up the CUDA 

cards to do only the computations.  The cards with compute 

capability 2.x did not work with the second graphics card.  

Therefore, we tested all the GPUs without the GeForce 6200.  We 

also tested cards with compute capability 1.x while using the 

GeForce 6200 for the display.  This allowed us to determine if 

using a GPU for both computations and to run the display had a 

significant impact on the performance of the cards.  We discuss 

the results of these tests in Section 5. 

 

5. RESULTS 
We conducted a test consisting of 10 trials where each of the 

devices (CPU-only using 1, 2, and 4 cores and GPU-only with 

each GPU) tested 335,544,320,000 graphs.  Each test was 

repeated for each GPU using each number of threads per block 

except 512 threads per block for the GeForce 9500 GT.  For the 

GPUs that were compatible with the second graphics card, we 

conducted 10 trials using the second graphics card to drive the 

display with each number of threads per block other than 512 

blocks for the GeForce 9500 GT.  After analyzing the results of 

10 trials for each test, we concluded that the range of the results 

for each GPU and for each number of CPU cores used was 

sufficiently small to conclude that 10 trials was sufficient to be 

confident that we were getting accurate results.  In 24 of the 30 

GPU tests, the range between the values obtained from the 10 

trials was 2 seconds or less.  In the remaining 6 tests, the ranges 

were one of 3 seconds (test average 603 seconds), one of 5 

seconds (test average 2241 seconds), two of 6 seconds (test 

averages 634 seconds and 3167 seconds), one of 10 seconds (test 

average 2258 seconds), and one of 13 seconds (test average 637 

seconds).  The only GPUs that had a range of more than 1 second 

for the 10 trials in any given test were the GeForce 9500 GT and 

the GeForce GT 240, which are the lower end home GPUs.  For 

the CPU core tests, the ranges for the tests were 36 seconds (test 

average 3254 seconds) for 4 cores, 88 seconds (test average 6846 

seconds) for 2 cores, and 130 seconds (test average 13,226 

seconds) for 1 core. 

 

5.1 Effects of Using the GPU to Drive 

Display 
We observed that using the GPU to drive the system’s display in 

addition to testing the graphs did increase the amount of time 

taken to finish testing the graphs, as shown in Table 2.  The least 

powerful GPU (the GeForce 9500 GT) consistently suffered the 

biggest performance loss in terms of additional time to finish 

testing the graphs.  However, when taking the additional time as a 

percentage of the time to test the graphs when not using the GPU, 

the most powerful GPU (the Quadro FX 5800) suffered the 

biggest performance loss.  The increase in time required to test the 

graphs was only an additional 2.5% or less of the time taken to 

complete the computations without using the GPU for the 

system’s video output.  Therefore, we do not believe using the 

GPUs to run the systems video is a significant detriment to the 

performance of the GPU on the computations. 

 

5.2 Effect of Using Different Numbers of 

Threads Per Block 
As discussed in the Section 4, the number of threads per block can 

have an impact on the performance of the GPUs, so we ran the 

tests using 64, 128, 256, and 512 threads per block for each card 

except 512 for the GeForce 9500 GT.  We found that there was a 

significant variation on the running time of the algorithm using 

different numbers of threads per block, as shown in Figure 3.   

The data shown in Figure 3 only shows the variation based on 

threads per block for the GPUs when the second graphics card 

was not in the system for consistency, but we observed that the 

data from the tests where the second graphics card was used 

demonstrated analogous results.  In Table 3, we show the percent 

increase in time required to test the graphs from the tests using the 

number of threads per block that produced the fastest time to the 

tests using the number of threads per block that produced the 

slowest time.  The increase in the time required to test all the 

graphs ranged from 8% to 54% based on the GPU.  Although we 
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observed the least impact on the GPU with the most memory, the 

GPU with the least memory had the second smallest impact which 

was significantly less than the other GPUs, so the magnitude of 

the impact was not simply based on the amount of memory of the 

GPU.  128 threads per block produced the best results with the 

GeForce GT 240, Quadro FX 5800, and GeForce GTX 480.  The 

GeForce 9500 GT performed best with 64 threads per block, but 

was only 4 seconds faster than it was with 128 threads per block.  

The GeForce GTS 450 performed best with 256 threads per block, 

but only 10 seconds better than with 128 threads per block.  

Therefore, when comparing the performance of the GPUs, we use 

the performance from the test with the number of threads per 

block that was most commonly the best for the GPUs.  We note 

the difference between the speedup obtained by using the 

performance when the GPUs used 128 threads per block and the 

performance from the best number of threads per block would be 

negligible. 

Table 2. Performance Comparison of GPUs When Used for Video vs. When Not Used for Video 

GPU Threads 

Used 
Per 

Block 

Average Time 

(seconds) When Using 
GPU for Video 

Average Time 

(seconds) When 
Not Using GPU 

for Video 

Additional 

Time Taken 
(seconds) 

Additional Time as Percent 

Difference from Average Time 
When Not Using GPU for Video 

GeForce 9500 GT 512 ------ ------ ------ ------ 

GeForce 9500 GT 256 3167.4 3156.3 11.1 0.4 

GeForce 9500 GT 128 2257.8 2242.4 15.4 0.7 

GeForce 9500 GT 64 2253.9 2241.3 12.6 0.6 

GeForce GT 240 512 636.9 634.0 2.9 0.5 

GeForce GT 240 256 538.0 531.2 6.8 1.3 

GeForce GT 240 128 524.3 521.4 2.9 0.6 

GeForce GT 240 64 604.7 604.1 0.6 0.1 

Quadro FX 5800 512 297.6 292.4 5.2 1.8 

Quadro FX 5800 256 289.0 283.8 5.2 1.8 

Quadro FX 5800 128 275.8 269.1 6.7 2.5 

Quadro FX 5800 64 277.1 272.3 4.8 1.7 

 

5.3 Speedups 
 

The speedups attained by using the GPUs over using one, two, 

and four cores of the CPU in our quad core system are shown in 

Table 4.  We note that it is strange that slightly greater than linear 

speedup was observed when running the program on the CPU 

only with all 4 cores.  One would expect that there would be a 

small performance loss, rather than performance gain in that 

situation.  We suspect that there might have been some process 

running on the computer such as antivirus software or a regularly 

scheduled task from the operating system that did not occur 

during the time the program was run with 4 cores, but did occur 

when the program was run with one core and two cores.  The 

GPU with the fewest cores attained a small speedup of 1.44 over 

using all of the cores of the CPU, meaning it would take about 

1.44 identical quad core systems to test the graphs in the same 

amount of time that GPU did.  In contrast, a high-end GPU 

(GeForce GTX 480) attained a speedup of greater than 21 over the 

quad-core system using all of the cores of the CPU, meaning it 

would take over 21 identical quad core systems to test the graphs 

in the same amount of time that GPU did.   

 

6. CONCLUSIONS 
Our results have shown that a brute force solution to the party 

problem would be greatly speeded up running on GPUs, as our 

fastest GPU did the same amount of work as our host system in a 

fraction of the time.  It would take more than 21 of our quad core 

systems or about 88 of the CPU cores in our host computer to do 

the same amount of work as the GPU in the same amount of time.  

We note that although faster CPUs are now available, they should 

still be significantly outperformed by the single GPU.  Also, with 

systems available that can run up to 8 GPUs and with faster GPUs 

available, it appears that using GPUs would be a good way to 

make progress on the party problem.  However, while we have 

seen the great potential of GPUs to speed up the process of 

making progress on the party problem, we have two concerns.  

Our program only tested graphs that allowed the cores to run 

continuously in parallel.  When certain graphs much further along 

in the set of graphs to test begin to be tested, due to the GPU 

architecture, the code of our algorithm will have to branch in 

various places, which will force it to run sequentially at times, 

decreasing the performance gains we got from the GPUs.  An 

issue that is much more problematic than the branching is that the 

brute force solution requires us to test 2990 graphs to raise the 

lower bound on R(5, 5) to 46 or to move the upper bound to 46.   

Our idea of using GPUs does not scale sufficiently by itself to 

accomplish this in a reasonable amount of time.  While we were 

able to test more than 238 graphs in 2.5 minutes using a small 

quantity of hardware available to any consumer, a back of the 

envelope calculation suggests that it would take more than a year 

on the Titan supercomputer which has 18,688 GPUs to test just 

the first 266 graphs, leaving us too far from completing the tests 

we need to solve the problem [19].  Even a new generation of 

supercomputers with many times the number of GPUs as current 

supercomputers where the GPUs were also many times faster and 

had many times the number of cores as the current GPUs would 

still not let us solve the problem.  Therefore, to devise a workable 

method to solve the party problem in a 
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Figure 3. Comparison of Running Time of GPUs Using Various Numbers of Threads per Block 

 

 

 

 

Table 3. Comparison of Percent Increased Time Required by GPUs to Test Graphs with Best and Worst Numbers of Threads Per 

Block 

GPU Percent Time Increase  

Quadro FX 5800 8 

GeForce GT 240 21 

GeForce GTX 480 36 

GeForce GTS 450 41 

GeForce 9500 GT 54 

 

 

reasonable amount of time, we will need to devise a better 

algorithm than just the naïve brute force algorithm.  If the 

algorithm is amenable to running on GPUs, perhaps using GPUs 

will help us solve the problem in the future. 

 

7. FUTURE WORK 
There are several possible opportunities for future work related to 

this research.  The first strategy we could try is to use a more 

intelligent algorithm than the brute force algorithm our program 

employed.  Using mathematics, we could decrease the set of 

graphs to test by eliminating classes of graphs that can be shown 

will contain a red K5 or blue K5 subgraph.  This may require us to 

devise a significantly more complicated algorithm to run on the 

GPUs, as the GPU cores may no longer be able to generate the 

next graph to test using the efficient method our current algorithm 

employed. We could also expand upon work that for a CPU-based 

system, used a breadth first search technique that employed 

pruning to try to search the tree of all possible graphs to generate 

only graphs with at least 43 vertices that contain neither a red or 

blue K5 [20].   
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Table 4. Speedup of Devices 

Device Average Time (seconds) Speedup Over 
Single Core 

Speedup Over 
Quad Core System 

 

CPU using 1 core 13226 -------- --------  

CPU using 2 cores   6846   1.93 --------  

CPU using 4 cores   3254   4.06 --------  

GeForce 9500 GT   2258   5.86   1.44  

GeForce GT 240     524 25.22   6.20  

GeForce GTS 450     468 28.26   6.95  

Quadro FX 5800     276 47.92 11.79  

GeForce GTX 480     150 88.18 21.69  

 

 

Another opportunity to explore this problem in more depth is to 

determine the binary representation of the first graph that causes 

the CUDA code we wrote to branch and thus run sequentially.  

We also would like to measure the performance of the cards 

during the period when the graphs cause the code to branch and 

compare it to the performance of the OpenMP version of the code 

running on just the CPU cores for the same set of graphs. 
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field of computer science and parallel computing. I knew this 

internship would be the opportunity of a lifetime for me to get my 

foot into the door of the computer science world. Over the course 

of the internship, I learned more than I ever imagined and have 

gained experience that will be valuable to me for years to come. I 

am now confident in my abilities to handle issues related to HPC 

and computationally intense problems. 

 

My Blue Waters Undergraduate Petascale Education Program 

internship began with a two-week trip to attend Blue Waters 

Undergraduate Petascale Institute at NCSA at the University of 

Illinois Urbana-Champaign to learn about High Performance and 

Parallel Computing. There I met new students from around the 

country who were also awarded the internship to conduct research 

at their respective universities and colleges. During those two 

weeks we underwent intense educational sessions everyday 

learning the methodologies and ideologies of High Performance 

Computing and methods used to develop and debug code on 

parallel computers and clusters. From this boot camp experience, I 

took back with me the knowledge and ability to conduct my 

research for this project and future work, as well as new 

friendships I had formed. 

 

The bonus of my BWUPEP internship and the culmination of all 

my hard work involved a free trip to SC11 in Seattle, Washington 

to work as a student volunteer and participant in the education 

program with the other student interns and volunteers. I created a 

poster to be presented at the resource fair about my research 

experience as well as the research I conducted over the summer 

for this project.  Going to SC11 was an eye-opening experience 

and I hope to attend more of the SC conferences in the future. I 

got the chance to meet many students in multiple disciplines of 

computation as well as network with professors and major 

companies who are involved in supercomputing. 

 

This internship has provided me with the tools and knowledge I 

need to move forward and continue work and research in the field 

of high performance and parallel computing. Over the course of 

the internship, I have learned the basics of a computer's hardware 

and architecture and how the hardware works along with the 

operating system to conduct multiprocessing and parallel 

computing. I have been exposed to multiple ways to parallelize 

code using OpenMP, MPI, and CUDA. The mentors at the boot 

camp in Illinois instilled in me the ideologies of high performance 

computing and taught me the systematic methods to successfully 

debug parallelized code. I experienced hands on learning by 

creating several small-scale local clusters on my own with the 

resources I had available at my home institution. I also learned 

about Graph Theory, Ramsey Theory, and the mathematics they 

involve, catching a glimpse of the numerous computationally 

intense problems of today. 

 

This internship has given me the opportunity to experience first 

hand the process of research in an academic environment, which I 

will continue to use in my future work. This experience as a 

whole has provided me with the knowledge, tools, and experience 

to be successful in future endeavors. My research work with my 

mentor, Dr. David Toth, has opened doors for me that I never 

knew existed. The work I have done for this project has sparked 

my interest for more computationally intense problems that might 

hold some potential for me to work on using HPC in the future. 
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