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ABSTRACT 
An ab initio density functional theory based method that has a 
long history of dealing with large complex systems is the 
Orthogonalized Linear Combination of Atomic Orbitals 
(OLCAO) method, but it does not operate in parallel and, while 
the program is empirically observed to be fast, many components 
of its source code have not been analyzed for efficiency. This 
paper describes the beginnings of a concerted effort to modernize, 
parallelize, and functionally extend the OLCAO program so that it 
can be better applied to the complex and challenging problems of 
materials design. Specifically, profiling data were collected and 
analyzed using the popular performance monitoring tools TAU 
and PAPI as well as standard UNIX time commands. Each of the 
major components of the program was studied so that parallel 
algorithms that either modified or replaced the serial algorithm 
could be suggested. The program was run for a collection of 
different input parameters to observe trends in compute time. 
Additionally, the algorithm for computing interatomic interaction 
integrals was restructured and its performance was measured. The 
results indicate that a fair degree of speed-up of even the serial 
version of the program could be achieved rather easily, but that 
implementation of a parallel version of the program will require 
more substantial consideration.   

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – performance measures.  

General Terms 
Algorithms, Measurement, Performance. 
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Density functional theory, atomic orbitals 

 

 

1. INTRODUCTION 
Advanced materials have played a pivotal role in recent 
technological progress, often causing the demand for designer 
characteristics or novel properties to outpace our ability to 
understand these complex materials at a fundamental level. This 
pressure to master materials at the nanoscale has pushed forward 
the development of many theoretical approaches and the 
implementation of many computational methods. A particular area 
of interest includes structures with defects that are on the order of 
10 nanometers in size because many bulk structural and electronic 
properties of materials are dominated by the properties of the 
defect. Density functional theory (DFT) based approaches 
represent the current state of the art for the application of theory to 
materials problems that require both high accuracy and high 
efficiency. This is a position somewhat between the larger scale 
molecular dynamics methods and the smaller scale but often more 
accurate quantum chemical methods. Some of the issues that DFT 
is well suited to deal with include catalysis processes [15], 
configuration of ultra-dilute dopants in crystal structures [27], and 
the determination of the tensile strength of bioceramics [5]. DFT 
is a computational, quantum mechanical framework for the 
modeling of materials and it is being actively applied with much 
success across a wide breadth of fields within a growing number 
of scientific domains. Density functional theory was created in a 
sequence of two papers by Hohenberg and Kohn [14] and Kohn 
and Sham [17]. They presented the method as one that reduces the 
problem of determining the many-body ground state wave 
function to one of determining only the charge density. For a 
system of N interacting electrons this reduces the problem from a 
space of 3N dimensions down to a space of just three. A type of 
mean-field approach is used that solves a one-electron problem 
where the potential is derived from the charge density distribution 
of all the electrons in the system. A self-consistent field (SCF) 
cycle iterates through determination of the wave-function, the 
charge density distribution, and the potential until there is no 
change in these terms.  Since its original inception, much work 
has been done to enhance this method, and a review of the theory 
can be found in a paper written by Peter Blöchl [1]. Presently, 
there exist a variety of different implementations of DFT that can 
be divided into a few prominent camps based on the choice of 
basis functions used to expand the system wave function, the 
representation of the potential function, and the representation of 
the charge density [20]. Each of the main approaches to DFT has 
its own set of advantages and disadvantages that make it 
particularly applicable to one range of materials and problems or 
another. 
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Although DFT provides an incredible simplification of the 
quantum mechanical many-body problem while still retaining 
excellent accuracy, the types of problems that are of the most 
interest still require prohibitive amounts of time for even the 
fastest computer processor to solve. Hence, parallel processing 
has become an invaluable tool and many DFT program codes 
have been adapted to take advantage of this high performance 
computing (HPC) capability. Interestingly though, the 
programming style required to develop parallel algorithms is 
significantly different from the approach of serial algorithms 
which sometimes makes it difficult to parallelize an existing code 
and gain as much efficiency as is desired. Therefore, when 
parallelizing an existing serial application, performance analysis 
of the existing algorithm lends some helpful insight about which 
sections of a program are the most computationally expensive and 
why. This could be used to determine whether the algorithm 
should be simply modified for a parallel execution environment or 
if it needs to be totally rewritten. 
 
This paper describes the beginnings of a concerted effort to 
modernize, parallelize, and functionally extend a particular DFT 
based program so that it can be applied to the complex and 
challenging problems of materials design. Specifically, profiling 
data was collected and analyzed using widely available and 
portable external libraries and standard UNIX/Fortran time 
commands. Then, each of the major components of the program 
was studied so that parallel algorithms could be suggested that 
either modified or replaced the serial algorithm. 

2. METHODS 
The primary focus of this development work is the 
Orthogonalized Linear Combination of Atomic Orbitals 
(OLCAO) method [29]. This is a density functional theory based 
method that uses Gaussian based atomic orbitals in the solid state 
wave function expansion and atom centered Gaussian functions 
for an analytical description of the potential and charge density 
distribution functions. OLCAO has found particular application in 
the study of the electronic structure, bonding, and spectroscopic 
properties of large and complex materials systems ranging from 
amorphous solids [9–11,	
  16] and complex crystals [3,	
  18,	
  19,	
  30] 
to those containing large scale structures such as grain boundaries 
(GBs) [6,	
  21,	
  23], intergranular glassy films (IGFs) [7,	
  8,	
  25], and 
passive defects [4,	
  24].  Of particular interest to the development 
work that was started as a part of the Blue Waters – 
Undergraduate Petascale Education Program (BW-UPEP) 
Internship is the capability of the OLCAO method with regard to 
performing core level spectroscopic calculations such as x-ray 
absorption near edge structure or electron energy loss near edge 
structure (XANES/ELNES) [12,	
  13,	
  24,	
  27]. An extension of the 
normal spectral calculation is being developed within OLCAO 
whereby spectra are computed for every atom in a model and then 
brought together to form an image that correlates spectral features 
with atomic structure [24]. This spectral imaging technique will be 
quite computationally intensive and while the OLCAO program is 
efficient and capable of being used to compute the 
XANES/ELNES spectra of rather large systems it is still a serial 
application and thus the calculation times can be quite lengthy, 
sometimes lasting more than a few days. There are two key 
mathematical operations that are performed in OLCAO. The first 
is the analytic calculation of a set of integrals between atomic 
orbitals in various forms given for s-type orbital in Equations 1-4. 
 

(1) 
 

 
(2) 

 
 

(3) 
 
 

(4) 
 
Equation 1 represents the overlap of two s-type Gaussian orbitals. 
Equation 2 also shows integration of s-type Gaussians but with the 
Laplacian operator for the computation of the kinetic energy. 
Equation 3 accounts for the contribution of the nuclear interaction 
to the total potential. Equation 4 is a three center integral between 
s-type Gaussians that is used for determining the Coulombic 
electron – electron contribution to the total potential. Higher 
angular momentum integrals can be derived from these equations 
via repeated differentiation making progressively more 
complicated formulas [29]. The second major operation is the 
processes of solving the eigenvalue problem that obtains the wave 
function expansion coefficients and associated energy 
eigenvalues. This requires the complete diagonalization of a large 
matrix. Some key parameters that affect the cost of these 
operations are the number of atoms in the system, the number of 
basis functions used for each atom (typically identified as either a 
minimal, full, or extended basis), the number of k-points 
(Brillouin zone integration sampling points), and the number of 
terms used to describe the potential function. Parallelization of 
these operations could significantly decrease the calculation time 
or, if the calculation time is maintained, it would allow for the 
study of much larger systems. 
 
In addition to the time stamps given by OLCAO, we used tools 
such as the Tuning and Analysis Utilities (TAU) [26] and the 
Performance Application Protocol Interface (PAPI) [2]. TAU and 
PAPI exist as a set of library function calls that are instrumented 
into the source code of a program to track a wide variety of 
information ranging from simple subroutine runtimes to the 
number of times that specific CPU events, such as a cache miss or 
an execution branch, occur. The TAU package is described as a 
“portable profiling and tracing toolkit for performance analysis of 
parallel programs.”[28] However, it does have particular uses in 
the analysis of serial programs as well. PAPI, similar to TAU, is a 
portable kit that accesses hardware performance counters 
physically present on modern microprocessors. The aim of PAPI 
is “to see, in near real time, the relation between software 
performance and processor events.” [22] Memory access overhead 
and branching performance were of particular interest in this 
study to understand where bottlenecks in OLCAO may exist. 
Memory access overhead is a fundamental problem, especially for 
HPC, because the processors often operate at data rates that are 
much faster than the data transfer rates to memory so that if the 
CPU is not well supplied with data it will sit idle. Understanding 
the cache performance of a program can help the programmer 
reorganize data structures to provide more efficient memory 
access. Conditional branch prediction is another important area 
because modern CPUs maintain a pipeline of operations and when 
a branch is mispredicted the pipeline must be flushed and refilled 
at substantial cost to efficiency. These were the primary tools that 
were used to explore the characteristics and efficiency of the 
algorithms in the OLCAO program suite. 
 
The first step to parallelizing OLCAO is to develop a base line 
understanding of its serial execution performance in terms of the 
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compute time for different sections of the code under different 
conditions. To do this, a series of different materials systems were 
selected and parameters that control the computational cost of the 
calculation were varied systematically. Two machines were used 
to collect the performance data, a local workstation using the 
commercially available AMD Phenom II X6 1090T processor and 
the Pittsburg Supercomputing Center’s Blacklight machine which 
uses the Intel Xeon X7560 processor. Smaller system calculations 
were performed on the local workstation while the larger system 
calculations made use of Blacklight. The performance trends were 
observed using a variety of tools. Specifically, timing data for 
different sections of the OLCAO program were collected first by 
using Fortran write statements that recorded the current time. This 
gave an initial understanding of the effects of parameter changes 
and did not require any modifications to the program code 
because such write statements already existed. Then, particular 
sections of the code were identified and studied with TAU and 
PAPI because they are more fine grained tools for understanding 
the reason why a particular algorithm behaves as it does. The data 
that was collected using TAU and PAPI included the rate of 
branching misprediction for the combination of different compiler 
flags and changes in the algorithm for a particular section of code. 
The code in the select section was restructured with the intent of 
reducing the number of conditional statements encountered 
overall. 

3. RESULTS AND DISCUSSION 
The profiling techniques described in section 2 were applied to the 
OLCAO program for three different material systems with a 
systematic variation of parameters. The systems used in the study 
were a 907 atom model of an IGF within crystalline β-Si3N4, a ten 
base pair periodic model of DNA with 650 atoms (computed on 
Blacklight), and a series of supercells of pure Al (computed with a 
local workstation). Details of the key structural parameters of each 
system are provided in Table 1 and an illustration of each system 
is provided in Figure 1. 
 
Table 1: Crystal Structure Details 

	
   IGF	
   DNA	
   Al	
  Full	
  Cell	
  

a	
  (Å)	
   14.533	
   30.000	
   4.050	
  

b	
  (Å)	
   15.225	
   30.000	
   4.050	
  

c	
  (Å)	
   47.420	
   39.208	
   4.050	
  

α	
  (°)	
   90	
   90	
   90	
  

β	
  (°)	
   90	
   90	
   90	
  

γ	
  (°)	
   90	
   90	
   90	
  

#	
  of	
  Atoms	
   907	
   650	
   4	
  

#	
  of	
  Electrons	
   4288	
   2220	
   12	
  

Matrix	
  
Dimension	
  

9111	
  
(Full	
  Basis)	
  

4740	
  
(Full	
  Basis)	
  

52	
  
(Full	
  Basis)	
  

Elements	
   Si,	
  N,	
  O	
  
C,	
  H,	
  N,	
  Na,	
  

O,	
  P	
  
Al	
  

 
The IGF and DNA material systems were specifically chosen as 
representatives of particular classes of materials that are of current 
research interest and therefore represent the types of systems 
likely to be encountered by the OLCAO program in practice. 
Also, these systems possess specific features that can make their 
comparison helpful. The IGF and DNA models both have a 
relatively large number of atoms but the dimension of the 

interaction matrices for the IGF and the number of electrons is 
larger in it compared to the DNA model by a factor of about two. 
The dimension is larger because the Si in the IGF includes 
unfilled 3d atomic orbitals in its basis while the DNA model has 
no atoms with 3d orbitals in its basis. The number of electrons is 
larger because the IGF contains no H and thus every atom has 
more electrons. For the IGF and DNA models it is also possible to 
easily and realistically alter the number of independent terms in 
the potential function representation. This is done by changing the 
threshold criteria for how similar two atoms need to be with 
respect to their local environment before they can share the same 
potential function values. This “sharing of values” between 
potential sites means that fewer terms are used in the potential 
function and thus that fewer independent interaction matrices need 
to be created. This issue is a particular characteristic of the 
representation of the potential function in OLCAO and is not 
generally applicable to all DFT based methods. 
 

 
 

 
 
The first level of analysis was done with a simple measurement of 
the amount of time that different segments of the OLCAO 
program took to run calculations on the IGF model and the DNA 
model when the number of terms in the potential function was 
modified. In particular, two key sections, identified as "Setup" and 
"Main," were analyzed to find the most time expensive parts of 
their code.  The "Setup" (integrals, electrostatics, exchange-
correlation) and "Main" (Secular Equation [preparation, solution], 
and everything else) programs comprise the self-consistent field 
(SCF) implementation of OLCAO. These programs and their 
components are illustrated schematically in Figure 2. 
 

(c) 

(a) 

(b) 

Figure 1:  Ball and stick models of the material systems 
studied. (a) An intergranular glassy film model in β-
Si3N4; (b) A ten base pair periodic model of DNA with Na 
counter ions; (c) A sequence of three crystalline Al 
supercells 5×5×1, 5×5×2, and 5×5×3. 
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The runtime analysis of these components is show in Figure 3. In 
the IGF system, the ratio of the calculation time for the integrals 
compared to the rest of the setup calculation is quite large (Figure 
3a). We also see that the long-range coulomb and exchange 
correlation calculations are almost unaffected by the number of 
potential terms, with the majority of the time being spent with the 
interaction integrals. In the sections of main we see that as the 
number of terms increases the preparation time of the secular 
equation quickly grows to be much larger than the time it takes to 
solve the secular equation. In this case the preparation is simply 
the task of reading the packed matrix data stored on disk by setup, 
unpacking it, and applying a coefficient to each matrix before 
accumulating it. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
When the same type of analysis is done for the DNA system, as 
shown in Figures 3c and 3d, we see a similar trend to that of the 
IGF system, where the interaction integrals grow more costly as 
the number of potential terms increases. Also, the long-range 
Coulomb calculations have more of a presence here due to the 
larger cell size and thus a larger number of reciprocal space cells 
needed for the convergence of the Ewald summation series. 
Considering the run length of the program “Main”, the trend is 
similar to the case of the IGF. The similarity of the trend is 

expected, but a comparison of the two systems presents some 
confusion. The total time of even the longest run of Setup for the 
DNA model (about 260 minutes with 512 terms in the potential 
function) is less than the shortest IGF model run with only 48 
terms in the potential function (about 815 minutes). This is likely 
due in large part to the larger size of the interaction matrix for the 
IGF model (i.e. it has many more basis functions), but there may 
also be something more subtle at work. That is, the number of 
nearest neighbors for a given atom in the DNA model is, on 
average, less than that of the IGF model because DNA is a 
molecule with exposed surface boundaries and lots of H. This will 
substantially reduce the number of interaction integrals that will 
need to be calculated resulting in an interaction matrix that is not 
only smaller, but also sparser. 
  
The pure Al model was chosen because of its simplicity and for 
the fact that we could vary specific parameters with less worry 
about how the innate characteristics of the model might mask the 
effect of a change in other parameters such as the number of k-
points or the choice of a full, minimal, or extended basis. The 
results of the timing runs for a constant number of terms in the 
potential function are shown in Figure 4. 
 

 

 
 
In the study of the Al runtime performance we see that OLCAO is 
more sensitive to changes in the basis than to increases in the 
number of k-points. When k-points are added the effect is 
multiplicative so that doubling the number of k-points effectively 
doubles the cost of the calculation while when the basis size is 
increased a non-linear trend is observed. For the 300 atom case, 
an approximate doubling of the basis size from full to extended 
more than doubles the cost of the calculation for both Setup and 
Main. This is expected because the basis size affects the 
interaction integrals matrix size which scales as the square of the 
dimension. This is clear in the "Main" section because it shows an 
increase in calculation time for the extended basis that is 
approximately four times greater than for the full basis. In setup 
this change was much less exaggerated with only about a three 

Figure 4:  Illustration of the execution time for 
calculations of various sections of the OLCAO Setup and 
Main programs for three Al supercell models with 
variation in the number of k-points and the size of the 
basis set. (a) Setup and k-points; (b) Main and k-points; 
(c) Setup and basis size; (d) Main and basis size. 
 

Figure 3:  Illustration of the execution time for the IGF 
and DNA models for various sections of the OLCAO 
Setup and Main programs and various number of 
potential terms as measured by Fortran time records.  (a) 
Setup and IGF; (b) Main and IGF; (c) Setup and DNA; 
(d) Main and DNA. 
 

Figure 2:  Schematic of the components of the SCF 
portion of the OLCAO program.  (a) Setup; (b) Main. 
 

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 37



times increase. One important note is that as the system size 
increases the number of k-points needed for a high resolution 
calculation decreases. Because OLCAO is typically used for large 
and complex systems, the number of k-points is often just equal to 
one. 
 
Beyond the crude timing data, a series of calculations were 
performed to study the performance of some of the most costly 
components of the program using TAU and PAPI. The 
multicenter interaction integrals take a significant portion of the 
overall time which is typical for all atomic orbital based methods. 
Another component that is more specific to the OLCAO program 
is the orthogonalization procedure. This modifies the resultant 
interaction matrix to force the valence orbitals to be orthogonal to 
the core orbitals. For large systems this could be a costly step 
because a sequence of matrix-matrix multiplications is required. 
The program code for computing those integrals and for doing the 
orthogonalization has performed well for decades, but it has also 
not been evaluated for efficiency in just as long. Hence a 
concerted effort is underway to evaluate and possibly improve this 
aspect of the program. 
 
For the analysis of the OLCAO program using TAU and PAPI a 
different set of Al supercells was used. They were 1×1×1, 2×2×2, 
and 3×3×3 supercells of the full cell so that the models had 4, 32, 
and 108 atoms respectively. The goal of the orthogonalization 
subroutine analysis was simply to count the number of branches 
encountered by the program for a given compiler optimization 
level. The collected data is shown in Table 2. For level two 
compiler optimization (obtained using the –O2 compiler flag) the 
branch misprediction rate was slightly better than that obtained 
with level three optimization. However the total number of 
branches encountered by the program under level two 
optimization was significantly greater than that encountered under 
level three optimization. This result may have been expected, but 
an unusual second result was that the misprediction rate for the 
2×2×2 supercell for both levels of optimization was significantly 
higher than for both of the other two supercells. This exercise 
indicates that interpreting the results of higher level code analysis 
can have important subtleties that can be easily overlooked. 
 
Table 2: Al Supercell Orthogonalization Subroutine 
Branching Data 

Cell	
  and	
  
Optimization	
  

Miss-­‐	
  

Predicted	
  (%)	
  

Correctly	
  

Predicted	
  (%)	
  
Total	
  

1x1x1	
  -­‐O2	
   3.92	
   96.06	
   7748064	
  

1x1x1	
  -­‐O3	
   3.97	
   96.03	
   7749479	
  

2x2x2	
  -­‐O2	
   6.52	
   93.48	
   62052410	
  

2x2x2	
  -­‐O3	
   6.81	
   93.19	
   59604903	
  

3x3x3	
  -­‐O2	
   3.01	
   96.99	
   1222164262	
  

3x3x3	
  -­‐O3	
   3.86	
   96.14	
   957394561	
  

The analysis of the integration subroutine was also performed as a 
comparison between level two and level three compiler 
optimization, and it was also performed for the case of a 
modification in the algorithm versus the unmodified algorithm. 
The essential modification is that depending on the particular 
atoms it may be necessary to perform only s-type with s-type 
integration, or perhaps s-type with p-type or only up to p-type 
with p-type. In other cases the integral may need to include all the 
way up to the complicated d-type with d-type integral. The 

subroutine that performs the integrals checks along the way to 
determine which integrals to do, but it was observed that this 
sequence of “if-else” blocks in the code was repetitive such that if 
the section was rewritten one block could replace a sequence of 
three or four. This replacement option was present multiple times 
in the algorithm. The data from the sequence of TAU and PAPI 
runs are shown in Tables 3 through 6.  The different types of 
integrals correspond to those given in Equations 1 through 4 plus 
all of the similar integrals of the higher angular momentum 
orbitals. Again, the trend is clear. The higher level of optimization 
had a higher percentage of branch miss-predictions, but the total 
number of branches was significantly less. When the comparison 
is between the old and the new algorithm the total number of 
branches drops in all cases, but again the branch miss-prediction 
percentage increases. 
 
Table 3: Original Integration Subroutine With –O2 
Optimization. 

Integral	
  

Type	
  

Miss-­‐	
  

Predicted	
  (%)	
  

Correctly	
  

Predicted	
  (%)	
  
Total	
  

1	
   1.00	
   99.00	
   53795827	
  

2	
   1.09	
   98.91	
   67004191	
  

3	
   1.44	
   98.58	
   208187973	
  

4	
  (Avg.)	
   1.35	
   98.65	
   310677930	
  

 
Table 4: Original Integration Subroutine With –O3 
Optimization. 

Integral	
  

Type	
  

Miss-­‐	
  

Predicted	
  (%)	
  

Correctly	
  

Predicted	
  (%)	
  
Total	
  

1	
   1.95	
   98.08	
   9767131	
  

2	
   2.58	
   97.42	
   9766631	
  

3	
   2.37	
   97.63	
   63389710	
  

4	
  (Avg.)	
   2.04	
   97.96	
   66161685	
  

 
Table 5: Modified Integration Subroutine With –O2 
Optimization. 

Integral	
  

Type	
  

Miss-­‐	
  

Predicted	
  (%)	
  

Correctly	
  

Predicted	
  (%)	
  
Total	
  

1	
   0.92	
   99.08	
   53415195	
  

2	
   0.99	
   99.01	
   66378834	
  

3	
   1.16	
   98.84	
   207903892	
  

4	
  (Avg.)	
   1.24	
   98.76	
   310464531	
  

 
 
Table 6: Modified Integration Subroutine With –O3 
Optimization. 
Integral	
  

Type	
  

Miss-­‐	
  

Predicted	
  (%)	
  

Correctly	
  

Predicted	
  (%)	
  
Total	
  

1	
   1.96	
   98.04	
   8988970	
  

2	
   2.75	
   97.25	
   9140602	
  

3	
   2.92	
   97.08	
   60653657	
  

4	
  (Avg.)	
   2.40	
   97.60	
   57420935	
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4. CONCLUSION 
The sections of the OLCAO program associated with the SCF 
calculation were analyzed for their performance characteristics 
using both simple timers and more complicated instrumented 
performance monitoring tools. The results confirm some 
previously held beliefs about the relative computational cost of 
various components of the setup and main programs and also 
introduced some new and as yet unexplained results. Clear results 
include the fact that the computation of the interaction integrals is 
generally the most expensive but that preparing the Ewald 
summation data structures can become time consuming when the 
cell size becomes large. The overall cost of the interaction 
integrals calculation scales primarily with the number of terms in 
the potential function. The calculation cost scaled linearly with an 
increase in the number of k-points while it increased super-
linearly (quadratically) with an increase in the size of the basis. 
Generally, the timing data was observed to be crude but it was 
also good at giving a big picture of the behavior of the program 
and so a key conclusion is that sometimes it is not necessary to 
apply highly sophisticated methods to get a good initial 
understanding. However, it is often difficult to totally isolate one 
particular variable, especially when attempting to model realistic 
calculation performance. This may be because multiple effects are 
correlated or because the model under study has characteristics 
that are not apparent simply in terms of the number of atoms, 
potential terms, matrix dimension, etc. This was exemplified by 
the smaller average atom density in the DNA model compared to 
the IGF model. The conclusion is that extreme care must be taken 
when interpreting any profiling results as it may be possible for 
subtle effects to skew the data. 
 
Additional profiling data was obtained for the specific subroutines 
that involve the interaction integrals computed in OLCAO. The 
results indicated that even a simple attempt at code restructuring 
was able to produce noticeable results. We can conclude from this 
that while the algorithm may be fast because of its analytic nature, 
it is quite likely that significant improvements can be obtained by 
implementing a better approach to the calculation. The reasoning 
is that if even a straightforward modification can produce such 
dramatic results, then it is likely that a deeper degree of 
consideration will produce more substantial results. This also 
demonstrates that even though the profiling mission was to set the 
stage for later parallelization, it is entirely possible that the 
analysis will spark a deeper understanding of a subroutine or 
algorithm that will remain entirely serial but which may have a 
significant effect on the overall efficiency. 
 
Another important conclusion that can be drawn from this study is 
that good profiling must come from the intelligent application of 
multiple tools, both crude and advanced. The fine grained 
advanced tools can often help provide the insight needed to 
understand why a particular algorithm behaves the way it does, 
but crude measurements can provide the appropriate context in 
which to interpret that data. It is not possible to naively apply a 
powerful tool kit and expect it to do all the work and provide clear 
results. Rather, deep consideration is required to sort out the 
significance of the results for the variety of probing techniques. 
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