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ABSTRACT
In this paper, we model the growth of a virus in an infected
person, taking into account the effect of antivirals and im-
munity of the person. We use discrete dynamical systems
or difference equations to model the situation. Excel is then
used to obtain and visualize numerical solutions.

Keywords
Difference Equation, Recurrence Relation, Virus Concentra-
tion, Discrete Dynamical Systems

1. INTRODUCTION
Hantavirus can cause life-threatening infection which is spread
to humans by rodents. Early symptoms of hantavirus dis-
ease are similar to flu, including chills, fever and muscle
aches [3]. A virus found at a construction site in Rwanda
is similar in behavior to the hantavirus. The virus grows
rapidly from just a single cell, doubling every hour, and re-
mains undetected by the human body until it reaches one
million copies. Once the immune system detects the virus,
it raises the body temperature, lowers the virus replication
rate to 150% per hour and can kill a maximum of 200, 000
copies of the virus per hour. An hourly dose of antivirals
and the immune system together can kill 500, 000, 000 copies
of the virus per hour while keeping the replication rate at
150% per hour. If the number of virus cells reach one bil-
lion before the antivirals are prescribed, the virus cannot be
stopped and the infected person will die when the number
of copies reach one trillion1.

We will model the phases of the disease using discrete dy-
namical systems, analyze them using phase line analysis and
obtain numerical solutions using Excel.

∗Faculty Advisor
1Problem taken from Mathmodels.org [2]
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2. DISCRETE DYNAMICAL SYSTEM

2.1 A Brief Background
A discrete dynamical system consists of a difference equa-
tion or a recurrence relation, along with an initial condition.
A difference equation describes any n + 1th term of a se-
quence using some of the previous n terms. For example,
the difference equation xn+1 = 2xn−1 along with the initial
condition x0 = 2 describes the sequence 2, 3, 5, 9, 17, 33. · · · .
The zeroth term of the sequence x0 = 2 is given and each
subsequent term is obtained by doubling the previous term
and subtracting one from it. Thus we have x1 = 2(2)−1 = 3
and so on.

Observe that for the difference equation above, xn+1 =
2xn − 1, if we started with an initial condition x0 = 1, we
would generate the constant sequence 1, 1, 1, 1, · · · . Such a
value, if it exists, is called an equilibrium or a fixed point.
An equilibrium p of a difference equation is a value such that
if the initial condition is p, all subsequent terms in the gen-
erated sequence are also p. If the initial condition is chosen
close to an equilibrium value and subsequent terms gener-
ated eventually get closer and closer to the equilibrium, then
we say that the equilibrium is stable otherwise it is unsta-
ble. In the example above, xn+1 = 2xn − 1 , if we choose
x0 = 1.1, the subsequent terms are 1.2, 1.4, 1.8 · · · which are
farther from p = 1 than even the initial condition. So p = 1
is an unstable equilibrium.

In general, for a difference equation xn+1 = axn + b, the
equilibrium is given by p = b

1−a
, which exists if a 6= 1; and

any initial point is an equilibrium if a = 1 and b = 0. The
equilibrium p = b

1−a
, if it exists, is stable when |a| < 1 and

unstable when |a| > 1.

2.2 Modeling virus concentration
Let xn denote the number of copies of the virus in the body
at the end of n hours.

2.2.1 Initial Phase/ Phase 1
We assume that a single virus cell has infected a soldier.
Hence, the initial condition is x0 = 1. The virus doubles
every hour. Hence at the end of n + 1 hours, there are
double the number of virus copies of what were at the end
of n hours. This gives the system:
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xn+1 = 2xn (1)

x0 = 1 (2)

This system has the equilibrium point p = 0 and it is unsta-
ble (since |2| > 1). Which means that in the initial phase,
even if a single copy of virus enters the body, the number of
copies of the virus will increase (away from 0). See Figure
1.

We numerically solve this system using Excel and find that
it would take, approximately, 20 hours before the number
of copies of the virus reaches one million, at which time the
immune system begins to respond. See Figure 2.

2.2.2 Response of the Immune System / Phase 2
When the immune system begins to respond, the tempera-
ture of the body rises, the replication rate of the virus re-
duces to 150% per hour and the immune system kills up to
200, 000 copies of the virus per hour. Thus we have,

xn+1 = 1.5xn − 200, 000 (3)

x0 = 1, 048, 576 (4)

This system has the equilibrium point p = 400, 000 and it is
unstable (since |1.5| > 1). See Figure 1. This means that if
the immune system responded before the number of copies
reached 400, 000 (x0 < p), the virus would be cleaned out
of the body, but if the immune system responds after the
number of copies reached 400, 000 (x0 > p), the number of
copies of virus would continue to increase. However, since
the immune system responds after the virus has reached one
million copies, this virus cannot be cleaned out of the body
by the immune system alone. We use the initial condition
x0 = 1, 048, 576 instead of one million, since by the end of 20
hours the virus had reached 1, 048, 576 copies and between
19 and 20 hours, the virus had not crossed one million copies
and to avoid fractional hours.

We numerically solve the system using Excel and find that
it would take, approximately, 19 hours for the number of
copies of virus to cross one billion. Thus, it would take 39
hours since the first copy of virus enters the body, for the
virus to reach one billion copies. See Figure 3.

2.2.3 Administration of Antivirals / Phase 3
When hourly antivirals are administered, the immune sys-
tem along with the antivirals kills 500, 000, 000 copies of the
virus and replication stays at 150%. This gives the difference
equation:

xn+1 = 1.5xn − 500, 000, 000 (5)

This system has an equilibrium p = 1, 000, 000, 000, which
is unstable. See Figure 1. We consider two different initial
conditions.

If the antivirals are started after the virus had reached one
billion copies, the initial condition is x0 = 1, 438, 187, 806,
the number of copies reached at the end of Phase 2, that is
39 hours after being infected. In this case, the replication
process cannot be stopped and the virus reaches one trillion
copies in next 20 hours. This means the person will die in
spite of hourly administration of antivirals. We illustrate
this using Excel. See Figure 4.

If the antivirals are started before the virus has reached one
billion copies, the initial condition is x0 = 958, 925, 204, the
number of copies reached an hour before the end of Phase
2. In this case, the virus can be eradicated from the body
within 8 hours of administering antivirals. We illustrate this
using Excel. See Figure 5.

Thus a person can be saved if antivirals are administered
within 39 hours since the virus has entered the body. If it
is 40 hours since the infection, it is too late. We once again
emphasize that we consider only hourly increments in order
to keep the model simple.

3. AN APPLICATION
Consider a soldier in the field getting infected by the virus
studied in the previous section. At 0200 hours on Tuesday
a soldier’s body temperature soared to 104 degrees. Thinking
quickly back across his day, he realizes that he started feeling
hot and achy at about 2000 hours the previous day. The
soldier cannot receive medicine until 1400 hours the next
day. Is it in time?

Using the model developed and numerical solution obtained
using Excel in the previous sections, we come up with the
following time line. Also see Figures 6 & 7.

• 0600 hours on Monday - Working backwards, since the
immune system responds after about 20 hours, this is
the approximate time that the soldier got infected by
the virus.

• 2000 hours on Monday - soldier felt hot and achy at
this time: The soldier has, 16, 384 copies of the virus
in his body at this time.

• 0200 hours on Tuesday - body temperature soars to
104 degrees : This is the time when immune system
starts responding. At this time there are approxi-
mately 1, 048, 576 copies of virus in the soldier’s body.

• 2100 hours on Tuesday - This is 19 hours after the
immune response has begun; the number of copies of
the virus reaches one billion. Any time after that, the
antivirals will be ineffective.

• 1400 hours on Wednesday - At this time, the number
of copies of the virus reach one trillion and the sol-
dier dies. Unfortunately, this is also the time that the
medicine reaches the camp.

4. CLASSROOM EXPERIENCE
In Spring 2009, this work was first assigned as a project to an
undergraduate math major. The student had prior knowl-
edge of discrete dynamical systems, and spent several weeks
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on solving the entire problem. This student then presented
the results to other students and faculty in the mathematics
department.

In Fall 2011, based on the previous success, this project
was assigned to undergraduate biology majors enrolled in
a mathematical biology class, as an in-class project for 90
minutes. These students had some experience with mod-
eling discrete dynamical systems, determining fixed points
and their stability, and determining numerical solutions us-
ing Excel. At the end of this project, these 12 participants
were surveyed to assess their understanding of fixed points
and stability. The survey also gauged their impression of
whether this project showed them the role of mathematics
in understanding biological phenomenon. The complete sur-
vey is provided in the Appendix.

4.1 Survey Results
Number of respondents = 12

Question % of correct
number responses

1 91.7
2 100
3 66.7
4 50
5 33.3

The first five questions assessed their understanding of an
equilibrium point and its stability. Most of the students
(91.7%) could determine a fixed point of a simple difference
equation and all (100%) of them could determine its stabil-
ity. More than half could visualize the dynamics of an ab-
stract system with a stable fixed point (50-66.7%). However,
only a third (33.3%) understood that if the initial condition
(M0) is a fixed point (even if it is unstable), then there is no
change, and all iterates are the same as the initial condition
(Mt = M0 for all t).

Majority of the students (86.7%) recognized the use of piece-
wise functions in the project (question 6), and all of them
(100%) agreed (or strongly agreed) that discrete dynami-
cal systems (question 7) and using Excel to solve discrete
dynamical systems (question 8) were useful in modeling bi-
ological phenomena. More than half (58.8%) could relate
the stability of an equilibrium point to the stability of the
underlying system (question 9).

Only three comments (question 10) were received: “very use-
ful but takes a lot of abstract thinking to understand”, “if
unfamiliar with math terminology it can be difficult to un-
derstand what solution is being asked for”, and “Good lab
and interesting [application]”.

The problem of predicting the concentration of a virus is a
straight forward application of discrete dynamical systems.
It can easily be done in one or two lab-periods with guidance
from an instructor or over several weeks by students working
independently.
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APPENDIX
Survey Questions

The following questions were asked on the survey given to
students enrolled in a mathematical biology class after they
were done working on the virus concentration project (Fall
2011).

Circle the best option for questions 1 - 9.

1. The equilibrium value of the discrete dynamical system
Mt+1 = 0.75Mt + 1 is

• M∗ = 0

• M∗ = 2.0

• M∗ = 4.0

• does not exist

2. The equilibrium value of the discrete dynamical system
Mt+1 = 0.75Mt + 1 is
stable /unstable/ does not exist?

3. The equilibrium value of a discrete dynamical system
is 3.5 and is known to be stable. If the initial condition
is M0 = 5.0 which of these can be M1?

• M1 = 3.5

• M1 = 4.0

• M1 = −4.25

• M1 = 7

4. The equilibrium value of a discrete dynamical system
is 9.0 and is known to be stable. If the initial condition
is M0 = 5.0 which of these can be M1?

• M1 = 6.0

• M1 = 4.0

• M1 = 5.0

• M1 = 0

5. The equilibrium value of a discrete dynamical system is
4.0 and is known to be unstable. If the initial condition
is M0 = 4.0 which of these can be M1?

• M1 = 3.5

• M1 = 4.0

• M1 = −7

• M1 = 7

6. The virus concentration problem was solved by using
piecewise defined functions since an updating function
was defined for each phase.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly Disagree

7. Discrete dynamical systems are useful in modeling bi-
ological phenomena.
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• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly Disagree

8. Excel is a helpful tool for solving and visualizing solu-
tions to discrete dynamical systems.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly Disagree

9. Stability of an equilibrium point for a discrete dynam-
ical system corresponds to stabilizing of the system to-
wards the equilibrium in the long run, for reasonable
initial conditions.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly Disagree

10. Any other comments:

FIGURES

Figure 1: TOP: Phase line diagram for Phase 1,
showing 0 as an unstable equilibrium. MIDDLE:
Phase line diagram for Phase 2, showing 400, 000 as
an unstable equilibrium. BOTTOM: Phase line di-
agram for Phase 3, showing 1, 000, 000, 000 as an un-
stable equilibrium.
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Figure 2: Initial phase of the infection: It takes about 20 hours for the virus to reach one million copies, at
which time the immune system begins to respond.

Figure 3: Response of the immune system: It takes about 19 hours after the immune response begins for the
virus to reach one billion copies.
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Figure 4: Administration of antivirals not helpful: If antivirals are administered after the virus has reached
one billion copies, it takes about 20 more hours, for the virus to reach one trillion copies, at which time the
infected person will die.

Figure 5: Administration of antivirals is helpful: If antivirals are administered an hour before the virus
reaches one billion copies, it takes about 8 hours, for the virus to be eradicated from the body.
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Figure 6: This table shows the number of copies of the virus in the soldiers body, obtained using MS Excel.
The discrete dynamical systems used are described in phases I and II in the paper. Given that the immune
system responds on Tuesday 0200 hours (in the case described in the paper), we work backwards and estimate
that the infection began on Monday at 0600 hours.
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Figure 7: This graph shows the virus concentration on a log scale. The bend in the graph, is where the immune
system begins to respond, which occurs on Tuesday at 0200 hours for the case described in the paper. The
soldier dies, right as the antivirals arrive at the camp on Wednesday, at 1400 hours. The antivirals would
have been ineffective anytime after Tuesday, 1900 hours.
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ABSTRACT 
Establishing consistent use of computer models and simulations in 
K-12 classrooms has been a challenge for the computational 
science education community.  Scaling successful local efforts has 
been particularly difficult. In this article we describe how a 
training model from one place and time can be translated into a 
training model for another very different place and time if critical 
factors such as school system culture, professional development 
organization, local learning standards and goals, and collaboration 
between STEM disciplines are taken into account. 
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K.3 Computers in Education 

General Terms 
Management, Design, Human Factors 
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Secondary Science Education, Computer Models, Simulations, 
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1. INTRODUCTION 
A recent publication by the National Academy Press, Learning 
Science through Computer Games and Simulations, [1] devotes a 
chapter to the question of how to promote the use of computer 
simulations in science classrooms.  While acknowledging that 
research on their effectiveness still needs additional input, they 
note some of the obstacles to the consistent adoption of computer 
simulations and games in K12 classrooms. One of the constraints 
cited has to do with the fact that teachers do not always possess 
the content knowledge and teaching strategies needed to achieve 
the full potential of the simulation.   

The Maryland Virtual High School of Science and Mathematics 
(MVHS) has over seventeen years of experience working with 
Maryland teachers to help them use computer models and 
simulations as tools to assist their students’ comprehension of 
complex concepts. In 2006, MVHS was invited by the Pittsburgh 
Supercomputing Center (PSC) to bring its training model to the 
Pittsburgh area. Four years later the Math & Science 
Collaborative (MSC) joined the effort to bring computational 
thinking and reasoning into science and math classrooms in 
southwestern Pennsylvania. Through our experiences in two 
neighboring states, we have found that school system culture must 
be taken into account when developing workshops for teacher 
training in computational science. In this article, we describe the 
approaches we have used and the lessons we have learned.  The 
setting for our work in Maryland was 24 school districts which are 
county or city-wide and where statewide learning goals in science 
began to influence local instruction in the mid-90’s.  In contrast, 
in Pennsylvania, 500 local school districts are served by 29 
intermediate units, which are regional educational service 
agencies covering the 67 counties.  Statewide standards in science 
were also established in the 90s in Pennsylvania.  Both states are 
signatories to the new Common Core State Standards [2] in 
mathematics and language arts—which will increase the potential 
for transfer of learning from one state to another. 

2. BACKGROUND 
2.1 Maryland Virtual High School 
MVHS [3] has been working with teachers since 1994 when its 
first grant from the National Science Foundation (NSF) was 
awarded. Over its lifetime, MVHS has demonstrated methods by 
which science teachers can integrate computational science 
projects into their classrooms and, in the process, provide students 
with a modern and compelling introduction to the concepts of 
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science through inquiry-based activities while supporting both 
state and national standards for content. In the beginning, it was 
challenging to get schools involved in computational science since 
Internet connectivity was slow or nonexistent and there were 
barely any secondary school-level appropriate applications 
available. On the other hand, standardized testing had not yet 
taken a stranglehold on the curriculum so innovative teachers 
were free to try new things and their principals were supportive of 
their efforts. 

During MVHS’s first ten years, the focus was on preparing 
teachers to not only use and build computer models and 
simulations to help teach science concepts, but also to become 
trainers themselves so they could disseminate these new methods 
to their colleagues. A community of teachers who were 
comfortable assisting one another as coaches in the classroom was 
developed [4]. According to the final evaluation of MVHS’s 
second NSF grant, CoreModels [5], the successes of MVHS were 
due to these key factors [6]: 

• The close-knit, peer-to-peer structure of the CoreModels 
community of teachers 

• The presence of a core group of relatively senior and 
especially dedicated teachers who were able to act as a 
vanguard in exploring the relative value of student-
driven model construction and open-ended inquiry into 
systems 

• Its sustained, long-term commitment to curriculum 
development, testing and revision 

After CoreModels ended, MVHS used its funding through various 
partners to support the CoreModels teachers as they conducted 
workshops in their own school districts. Although the workshop 
evaluations from the teachers were overwhelmingly positive, 
resources were inadequate to determine how much computational 
science was actually being infused into the classroom outside of 
our CoreModels group. Anecdotal information implied that the 
impact of the computational science innovation varied 
significantly from one district to another.  

2.2 Computation and Science for Teachers 
In 2006, members of the MVHS team were invited to work with 
the Pittsburgh Supercomputing Center to develop a “Core 
Models” type of program within the Pittsburgh area schools. 
Using MVHS’s “train the trainer” model, a series of one-week 
summer workshops with follow-up sessions during the school 
year were developed and delivered.  Known as Computation and 
Science for Teachers (CAST) [7], three cohorts of teachers 
benefitted from the program and responded enthusiastically to the 
CAST workshops. The following comments are representative: 

• “…this workshop provided me with more ideas on how 
to infuse technology in my lessons…” 

• “…I saw connections between data collection and 
modeling, and better connection between math and 
science…” 

• “…I am now thinking more about mathematical 
modeling, not just physical model…I plan to model 
more astronomy and chemistry concepts...” 

Here are the words of one teacher on how CAST affected his 
teaching and his students: 

“The CAST experience has been an invaluable asset in 
my teaching evolution.  Initially it began as a 

completely utilitarian device that allowed me to provide 
students with an alternative to missed lab work, and 
then I began to explore the possibilities of doing labs 
that were either too costly or too dangerous to perform 
in a high school environment, but it has grown into 
something more... 

Systems modeling has fundamentally altered the way I 
teach, and not with just software.  At the heart of 
systems modeling is the notion of connections.  The 
examination of the connections can be done 
independent of the application software without losing 
the scientific and educational relevance.  
Demonstrating to a young mind the relationships that 
exist in nature without the cloud of mathematical 
complexity is crucial in the development of a 
scientifically literate generation.” 

While the enthusiasm of these teachers is encouraging and many 
teachers did develop lessons to use with their students, the overall 
impact of this approach on student learning was difficult to 
measure and continued use by teachers has been limited. The fact 
that few teachers elected to return to the project for advanced 
training in the second and third years made the MVHS leaders 
question their approach. Is it possible for a traveling team of 
trainers (MVHS) to provide enough support to get a true learning 
community off the ground in another state? How can MVHS 
facilitate the integration of the knowledge and skills of the various 
players? The PSC has a vested interest in helping the local math 
and science education community embrace computational science, 
but has limited funding to do so. MVHS leaders are willing to 
share their expertise with others outside Maryland; but, clearly, 
that is not enough. In this article, the lessons learned from the 
adaptation of the Maryland approach to one that better fit 
southwestern Pennsylvania will be examined. 

3. LESSONS LEARNED 
3.1 Understand the State’s Public Education 

Structure 
Maryland is based on a county/city-wide system of public schools 
which means that most school districts have multiple secondary 
schools whose teachers are accustomed to meeting and 
collaborating with their peers. Pennsylvania, on the other hand, 
has over 500 school districts that have a long history of operating 
independently. Some districts are so small that a single teacher 
has responsibility for all biology or all chemistry or even all 
science classes at the high school level. These structural 
differences lead to school culture differences which affect the 
implementation of innovation as the examples below will 
illustrate. 

In 1994, when the MVHS project was started, the Maryland State 
Department of Education (MSDE) was already discussing the 
establishment of core learning goals for science and other subjects 
[8]. When MVHS leaders went to MSDE with a proposal to bring 
Internet connectivity to several high schools for the purpose of 
improving science instruction, MSDE gave its whole-hearted 
support. Since Maryland is based on a county/city-wide model for 
school districts, it was relatively easy to contact 24 
superintendents to explain the project to them. Sixteen middle and 
high schools in thirteen school districts [9] agreed to participate in 
a three year project in which Internet connectivity would be 
established at the school and two or three teachers from the school 
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would receive in-depth training in the use of the Internet as a 
collaborative tool for science.  

At the end of the three years, the participating teachers were 
convinced that Internet connectivity was important, but they 
weren’t sure how to use computational science in their 
classrooms. They had used their connectivity to collaborate with 
each other on projects such as the virtual earthquake, the boiling 
point project, and the Eratosthenes project [10]; but they admitted 
that sustaining such collaboration beyond the end of the project 
was unlikely. Those outcomes led to the formation of the MVHS 
CoreModels Project, another three-year NSF-funded project, 
whose mission was to prepare teachers to create and use computer 
models in their classroom teaching.  

The CoreModels project included 27 high schools from 14 of the 
24 school districts in Maryland. In 1997, there weren’t many 
ready-made models for high school science, so project goals 
included creating a repository of models and lesson plans that 
would address the Maryland State Science Core Learning Goals 
[8]. To enable a system of local support for the teachers, the state 
of Maryland was divided into 3 regions, each with a lead teacher 
who was released half-time from classroom responsibilities to 
provide on-site assistance to the other teachers. In the first year of 
the project, summer workshops and quarterly Saturday workshops 
were held in a central location so that everyone could get to know 
one another and establish a basic level of competency. During the 
second and third years, the lead teachers conducted after-school 
and summer workshops in their own regions to encourage the 
development of learning communities where teachers could 
collaborate and learn from one another. 

The collaboration between MVHS and the PSC began in 2006 
with meetings to establish goals and analyze the availability of 
resources and funding. The PSC was very knowledgeable about 
the politics of their local schools so they carefully selected the 
school districts to be invited to the CAST project. Each district 
superintendent or designated representative attended a kick-off 
meeting where MVHS presented the objectives of the training and 
urged them to recruit two math/science teachers to attend the 
training with the goal of becoming a resource for the district. The 
ten teachers who attended the first year of training [11] were an 
excellent group of educators, but only two of them returned for 
further training. The CAST team hypothesized that the lack of 
local representatives who could travel to the schools to observe 
the teachers in action was a major reason for a lack of 
cohesiveness among the group members. 

The second and third cohorts of teachers were recruited in various 
ways, including through the MSC [12], a regional organization 
charged with providing professional development for math and 
science instruction throughout western Pennsylvania. Again, these 
were excellent educators who enthusiastically embraced the 
computer models we showed them, but the CAST team had 
difficulty maintaining contact with them. Why was that? What 
were the differences between Pennsylvania and Maryland? 

After much discussion, we concluded that the small, independent 
school district structure in Pennsylvania leads to a heightened 
sense of individualism, autonomy, and isolation on the part of the 
teachers. Having only one or two teachers trained in a number of 
geographically dispersed districts made the formation of any type 
of CAST “learning community” almost impossible.  Without the 
support of peers, the teachers were challenged in just feeling 
comfortable using the new techniques, let alone teaching others.  
And when schools are so small that there is only one physics 

teacher (or chemistry or biology) and teachers have not been 
encouraged to collaborate within their own buildings, it is quite a 
culture shift to suggest that those same teachers become peer 
trainers for others. In Maryland, the county-wide school systems 
meant that subject-area teachers across the high schools in the 
district were expected to follow the same curriculum. In 
Pennsylvania, subject area teachers in the high school were likely 
to be free to teach their subject as they saw fit. Once we admitted 
that replicating the Maryland CoreModels experience in 
Pennsylvania was impossible, we were free to think more 
creatively. We realized that the key to working with teachers in 
Pennsylvania was to take advantage of the existing professional 
development infrastructure, the Math & Science Collaborative, 
which leads us to the next lesson. 

3.2 Leverage the Professional Development 
Program at the Local or State Level 

In Maryland, the school districts are large enough to have their 
own central office-based professional development staff who are 
responsible for providing training for teachers. Often these teacher 
trainers are master teachers who have been encouraged to leave 
classroom teaching to share their expertise with others. Since 
Pennsylvania has so many small school districts that cannot afford 
their own dedicated professional development staff, twenty-nine 
regional training sites have been established to provide 
professional development to their schools. The examples below 
illustrate how important it is to include the leaders of the 
professional development program in any teacher training 
initiative. 

During the MVHS CoreModels project, the participating teachers 
were encouraged to keep their department heads and science 
supervisors informed of changes they were making in their 
classrooms. Some of the teachers enjoyed a great deal of support 
from their central office, others worked in a laissez-faire 
environment, and some found their supervisors to be almost 
hostile. In retrospect, it is clear that the CoreModels leadership 
needed to pay more attention to those instructional leaders to be 
sure that they felt valued and informed of the benefits coming into 
their schools.  

However, those teachers who did enjoy the support of their 
districts were able to make a significant impact in their counties. 
In St. Mary’s County, a CoreModels biology teacher rose to 
become the science coordinator where she was influential in 
infusing technology and computer modeling into the science 
curriculum across her district. A CoreModels physics teacher in 
the same county led many district-supported workshops for the 
teachers in his district and was so inspirational to his students that 
he was selected the 2011 Teacher of the Year for his school 
district [13]. In Anne Arundel County, a CoreModels physics 
teacher trained other teachers in his county even after the 
CoreModels project ended. When he retired from full-time 
teaching, he became involved in a NASA-funded project to bring 
systems modeling into a freshman engineering course in the 
county. In Montgomery County, a CoreModels biology teacher 
was hired by the Maryland State Department of Education where 
he has promoted the use of computer models across the science 
curriculum. 

Washington County (WCPS), a semi-rural school district serving 
over 21,000 students (pre-K – grade 12), has experienced the most 
widespread use of computer models across secondary science 
classrooms due to the intersection of two important people – a 
CoreModels teacher with superior content and leadership skills 
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and a science supervisor with vision and patience. Like most 
school districts, WCPS educators struggled with finding the most 
effective ways to use the computer technology that fills their 
buildings. Fortunately, strong and consistent leadership in science 
instruction at the district level has resulted in a climate in which 
secondary science teachers are provided high-quality training and 
support. In particular, since the science supervisor understands the 
value of simulations as one tool among many to help students 
master science concepts, she provides both workshops and in-
class support for the teachers as they learn to seamlessly integrate 
computer models in their teaching. While the CoreModels teacher 
was still full-time in the classroom, she led most of the summer 
workshops. Now that she is an instructional specialist in the 
science supervisor’s office, she is able to work with teachers 
directly in their classrooms, even designing custom simulations to 
meet a teacher’s needs [14]. The benefit of this partnership is that 
while the classroom teacher is building confidence in the effective 
use of the simulation, s/he is also gaining in content knowledge. 

The first three years of CAST demonstrated that a regional 
infrastructure was needed to provide training and support and to 
establish a learning community. The MSC seemed to be the ideal 
partner. Leveraging the existing professional development system 
in southwestern Pennsylvania to bring computational science into 
the curriculum became our goal. We are now in the first year of 
implementing this strategy. 

When the PSC contacted the MSC about including computational 
science modules in their annual training materials, they were very 
interested. At an introductory workshop [15], the MVHS team 
demonstrated three modeling approaches: agent-based, aggregate-
based, and interactive spreadsheets. An interactive spreadsheet 
[16] illustrating coin flipping served as an introduction to the role 
that random numbers play in simulating real world events. 
Shodor’s Forest Fire applet [17] was used to illustrate the role of 
probability in an agent-based model. Then a Vensim model of a 
forest fire spreading [18] was demonstrated to show the 
similarities and differences between a probabilistic and a 
deterministic approach to a problem. Since the role of 
computational thinking in math and science education was already 
being discussed in the MSC through the Math Science Partnership 
Circles, the CAST workshop training model proposed was 
received with open arms. The MSC was as eager to learn how to 
teach computational thinking and reasoning skills to area science 
and math teachers as the CAST team was to help them do so. 

The next step was to define the organizational structure of the 
partnership. The PSC was in charge of fund-raising to make the 
CAST Professional Development Program (CAST-PDP) possible, 
the MSC was to provide the instructional specialists who would 
learn how to train and support teachers in using computational 
science, and MVHS would provide the training materials and the 
initial training to prepare the MSC for their role. Once the PSC 
had obtained funding from two Pittsburgh area foundations (DSF 
Charitable Foundation and the Frick Fund of the Buhl 
Foundation) to support the conversion of CAST workshop 
materials into well-defined modules, the partners began meeting 
to learn how to package the materials to fit the MSC’s standard 
training methodology. After conducting walkthroughs of seven of 
the twelve modules, the MVHS team modified their materials to 
include details that the MSC trainers requested. During the 
summer of 2011, we piloted these modules with groups of 
teachers and trainers to receive more feedback and to further 
refine the modules. 

The twelve CAST modules are designed to be used in various 
configurations to support those who wish to focus on using pre-
built models as well as those who wish to become experts in one 
or more tools. The first group of modules already piloted (1, 2, 3, 
5, 7, 10, and 12) are designed for model users [15]. The remaining 
modules, which focus on model building, will be piloted in 2012. 

The titles of the modules are: 

1. Introduction to Computational Reasoning 
2. Deriving a Mathematical Model:  An Experimental and 

Virtual Approach via Spreadsheets  
3. Turning Multivariable Models into Interactive 

Animated Simulations 
4. Building Interactive Excel Simulations 
5. Introduction to Agent Modeling 
6. Building an Agent Model with NetLogo 
7. Introduction to Systems Modeling 
8. Building a Systems Model with Vensim 
9. Time-Based Models in Excel 
10. Comparing Model Environments 
11. Choosing a Model Environment to Build Your Model 
12. What’s Out There: Readily Available Models 

3.3 Provide Materials Relevant to Local 
Learning Goals 

When MVHS started in 1994, learning goals and expectations 
varied from one science classroom to another. We had to talk to 
the teachers in our project to find out what topics were common 
across all schools and build models addressing the associated 
concepts. Once MSDE established core learning goals for the 
sciences, it became easier to identify the computer models and 
simulations that would be relevant to all science teachers. Thanks 
to the recent release of the Common Core State Standards [2], 
computational science educators can now expect that models and 
simulations developed for one state will be applicable to other 
states. The fact that there are numerous resources available [19] 
means that those wishing to work with K12 school districts have 
numerous models and simulations to draw from. However, going 
to the trouble of finding a selection of models that will have your 
particular audience experiencing “ah-ha” moments will ensure 
that your message is heard and embraced. 

For the CAST-PDP project, the MVHS trainers began by selecting 
pre-built models that had been shown to be classroom relevant 
through their use in other teacher training workshops. These 
models were then linked to specific goals from the Pennsylvania 
Math and Science Standards [20], and they were demonstrated to 
the MSC science and math coordinators to assess their impact. If 
the instructional leaders had “ah-ha” moments, the models were 
deemed worthy of inclusion in the modules. On the other hand, if 
a model seemed too confusing or uninteresting, it was either 
significantly modified or abandoned in favor of a more 
compelling topic. The models currently in use are available at 
http://www.psc.edu/eot/k12/2011yr.php. 

Another challenge in the development of materials to help 
teachers infuse computational science in their classrooms is the 
pedagogy that needs to accompany the models. It isn’t enough to 
know where to find the tools. One also needs to know how to use 
the tool effectively. In the CAST-PDP project, we demonstrate an 
inquiry-based pedagogy with every model we include in our 
modules. Our goal is to prepare teachers to be critical users of 
computational science tools so that they know how to elicit both 
computational and conceptual learning from their students.  
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3.4 Provide Opportunities for STEM 
Teachers to Work Together 

Workshop leaders addressing a mixed audience of science and 
math teachers have a challenging task ahead of them. The silo-
based system of college majors has resulted in a lack of 
communication among biology, chemistry, physics, earth/space 
science, and math teachers except in very small schools where one 
person teaches multiple subjects. But, teachers are like students in 
that they construct their knowledge through interaction with peers, 
applying their ideas in the classroom, discussing results to refine 
their understanding, and extending their learning to new situations 
[21]. Research has shown that richer instruction and improved 
student learning occur when science, math, technology and 
engineering teachers and professionals collaborate [22]. 

The MVHS CoreModels project found that explicit teaching of 
math terminology helped the science teachers to use those terms 
in their classroom, thereby helping their students make a 
connection between math and science. Linear growth, exponential 
growth or a J-curve, bounded growth or an S-curve – all of these 
terms have their place in math and science. It is important to make 
the teachers aware of differences and similarities in terminology 
so they can help their students see the connections. And, science 
teachers were often surprised to learn that similar graph shapes 
were found across their specialty areas. Moreover, the realization 
that similar graph shapes resulted from similar model structures 
was a revelation to them. These crossovers between mathematics 
and the sciences gave the teachers a common ground for 
discussion about issues of pedagogy and student learning 

The current southwest Pennsylvania Math Science Partnership 
(MSP), facilitated by MSC, creates professional learning 
communities (PLCs) both within districts, and regionally.  Via 
MSC, the CAST modules will be introduced within the regional 
learning communities, in order for those leaders to take their 
understandings back to their building based PLCs.  That will 
enable more than 100 teachers, who are already involved in 
strengthening their teaching of mathematics and science to 
consider computer modeling as a new strategy.  These regional 
professional learning communities meet 8 days each school year.  
The schedule for the 2011-2012 school year begins with the 
introductory CAST module, facilitated by MSC coordinators who 
have been trained by the CAST team and who have contributed to 
the module development.  Two additional PLC days will be 
devoted to additional CAST modeling modules, this time 
presented centrally in the context of a regional conference 
bringing all 120 PLC participants to the Carnegie Science Center.  
Those sessions will be presented by the MVHS team, as the MSC 
team continues to build capacity for on-going support.  The other 
five PLC sessions will allow the participants to integrate their 
learning into the on-going strengthening of their practice, 
supported locally by the MSC Coordinators. In addition, ten day 
summer institutes, supported by the MSP funding, will feature 
CAST modules, as an integrated means of exploring life sciences 
with school year follow-up allowing continuing support. 

Our hope is that the science teachers from the school districts in 
the Pittsburgh area will evolve into self-sustaining PLCs in which 
teachers share their methods for using computational science in 
their classrooms. We have already seen a successful example of 
this in the WCPS district in Maryland where science teachers at 
both the middle and high school levels incorporate modeling into 
their instruction. The 2010-11 school year began with a new series 

of middle school science textbooks which directed students to use 
a variety of modeling tools, some free like NetLogo [23], others 
requiring costly GIS software. To enable the full use of the 
textbook without additional expense, the district-level science 
instructional specialist collaborated with the teachers to develop 
interactive web pages incorporating the pertinent NetLogo applets 
along with the GIS capabilities of NetLogo. At various points 
during the year, prior to the units in which the models would be 
used, teachers participated in professional development 
workshops designed to familiarize them with the models and the 
applet format.  When asked, the science specialist co-taught 
lessons with teachers as they were using the model applets with 
students. Based on the statistics option built into the wiki, it is 
clear that teachers and students are using the models on a regular 
basis to support student learning.  

At the high school level, WCPS is seeing the active use of 
simulations across the sciences. Physics teachers use the PhET 
[24] site on a regular basis and some are still using Interactive 
Physics [25] in their classrooms. Biology teachers are using a 
sequence of NetLogo based web pages developed by the science 
specialist to help students with concepts of genetics [14]. This 
kind of systemic change happens only through consistent 
opportunities for collaboration. 

4. CONCLUSION 
Preparing teachers to infuse computational science into their 
classroom instruction is hard work that requires patience, 
persistence, flexibility, creativity and time. To reach beyond the 
subset of teachers who actively seek new learning experiences to 
influence those who are comfortable with the status quo requires 
the confluence of several factors, including motivation to learn 
new skills, access to well-designed training materials, local 
professional development support, and a collaborative 
environment. External motivation in the form of national 
standards is now available through the Common Core State 
Standards which include this goal for grades 11-12 in science: 
“Synthesize information from a range of sources (e.g. texts, 
experiments, simulations) into a coherent understanding of a 
process, phenomenon, or concept, resolving conflicting 
information when possible” [26]. At this time, all but six states 
have adopted these standards [27]. The National Research 
Council’s new K-12 science framework includes systems and 
system models as crosscutting concepts throughout science and 
engineering [28].  The years of experience that MVHS and others 
in the computational science education community have 
accumulated has resulted in an abundance of models, simulations, 
and training methods available for use. The challenge is forging 
the alliances with local professional development leaders so those 
materials can be disseminated more broadly. Finally, as more 
schools embrace the philosophy behind professional learning 
communities [29], teachers will feel empowered to try new 
approaches, knowing that they will have the freedom and support 
to experiment until they have achieved mastery. We believe that 
the time is right for advancing the integration of computational 
science into classroom instruction. 
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ABSTRACT 
For the Blue Waters Undergraduate Petascale Education Program 
(NSF), we developed a computational science module, "Living 
Links:  Applications of Matrix Operations to Population Studies," 
which introduces matrix operations using applications to 
population studies and provides accompanying programs in a 
variety of systems (C/MPI, MATLAB, Mathematica).  The 
module provides a foundation for the use of matrix operations that 
are essential to modeling numerous computational science 
applications from population studies to social networks.  This 
paper describes the module; details experiences using the material 
in two undergraduate courses (High Performance Computing and 
Linear Algebra) in 2010 and 2011 at Wofford College and two 
workshops for Ph.D. students at Monash University in Melbourne, 
Australia, in 2011; and describes refinements to the module based 
on suggestions in student and instructor evaluations. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education - Computer Science Education, Curriculum 

General Terms 
Design, Experimentation, Measurement. 

Keywords 
Computational Science, Matrices, Linear Algebra, Educational 
Modules, High-Performance Computing, Petascale, Blue Waters, 
Undergraduate. 

1. INTRODUCTION 
The Blue Waters Undergraduate Petascale Education Program [1] 
with NSF funding is helping to prepare students and teachers to 
utilize high performance computing (HPC), particularly petascale 
computing, in computational science and engineering (CSE).  
UPEP supports three initiatives: 
• Professional Development Workshops for undergraduate 

faculty 
• Research Experiences for undergraduates 
• Materials Development by undergraduate faculty for 

undergraduates 
The Materials Development initiative has as its goal "to support 
undergraduate faculty in preparing a diverse community of 
students for petascale computing." 
For this program, the authors developed and class tested the 
computational science modules "Living Links:  Applications of 
Matrix Operations to Population Studies," which is available at 
[2] on the UPEP Curriculum Modules site.  This paper describes 
and discusses the module and our experiences using it in the 
courses High Performance Computing and Linear Algebra at 
Wofford College [3] in 2010 and 2011, respectively, and using 
some of the examples, applications, and projects from the module 
in "Quantitative Modelling Using MATLAB:  Introduction," a 
component of two 2011 workshops ("Introduction to 
Computational Thinking" and "Computational Workshop for the 
Life Sciences: Bringing Computation to Life") for Ph.D. graduate 
students, sponsored by the Monash eScience and Grid 
Engineering Laboratory (MeSsAGE Lab) at Monash University in 
Melbourne, Australia [4]. 
Several of the students in the classes at Wofford are obtaining the 
Emphasis in Computational Science (ECS).  Bachelor of Science 
students may obtain an ECS by taking Calculus I, Introduction to 
Programming and Problem Solving (in Python), Data Structures 
(in Python and C++), Modeling and Simulation, and Data and 
Visualization and doing a summer internship involving 
computation in the sciences [5].  Matrices are an important data 
structure in numerous computational models, and introducing 
operations on matrices with population applications provides 
motivation to students in mathematics, computer science, and the 
other the sciences as well as in the Emphasis in Computational 
Science. 
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2. MODULE 
2.1 Pedagogy 
Prerequisites for the module "Living Links:  Applications of 
Matrix Operations to Population Studies" are minimal, requiring 
the maturity to read the material but no programming or calculus 
background.  Students who used the module at Wofford College 
ranged from first- to fourth-year with majors from biology, 
chemistry, physics, mathematics, computer science, and 
undecided.  Those attending the workshops at Monash University 
were mainly Ph.D. science students from such areas as biology, 
chemistry, engineering, mathematics, psychology, pharmacy, and 
medicine.  The module provides the biological background 
necessary to understand the applications, the mathematical 
background needed to complete the exercises and projects, and 
references for further study. Ten (10) multi-part quick review 
questions with answers at the end of the module provide 
immediate feedback. The module also provides seventy-five (75) 
exercises for reinforcement and practice and seven (7) project 
assignments for further exploration using a computational tool.   
To help with implementation of models using matrix operations, 
example solutions involving equivalence testing, vector addition, 
and scalar and matrix multiplication are available for download 
from the UPEP Curriculum Modules site [2] in the following 
systems: MATLAB, Mathematica, and C with MPI for high 
performance computing.  (Blue Waters Student Intern Jesse A. 
Hanley implemented the latter.)  Several datasets for use in 
projects also accompany the module.   

2.2 High Performance Computing in Module 
In line with the aims of UPEP, the module has an introductory 
section on "Population Matrices and High Performance 
Computing" that discusses the need for high performance 
computing (HPC) within the context of an ecological study of 
blue crabs.  One such study has collected over a terabyte of data 
(1012 characters), and the researchers estimate that simulations 
would take about 5.7 years on a sequential computer.  As the 
module points out, "With such massive amounts of data and such 
intensive computations, researchers must used high performance 
computing with multiple computer processors to store the data 
and large matrices and to perform the needed simulations in a 
reasonable amount of time" [6]. 
The section on "Population Matrices and High Performance 
Computing" can be covered for information only, as a starting 
point for class discussion, or as motivation for the students' own 
HPC project development.  Moreover, students can develop 
sequential or high performance computing versions of the 
projects.  For example, three projects use synthetic datasets for the 
activities of the population of Portland, Oregon, generated from 
real data by the Network Dynamics and Science Simulation 
Laboratory (NDSSL) at Virginia Technical University [7].  One of 
the module's projects requires high performance computing to 
process NDSSL's synthetic data involving 1,615,860 people 
having 8,922,359 activities. 

2.3 Module Content and Applications 
Matrices, vectors, and operations involving these data structures 
are essential to many network/graph-based computational science 
models.  Thus, the module introduces the following important and 
foundational mathematical concepts: vectors, vector addition, 
multiplication of vectors by a scalar, dot product, matrices, scalar 
multiplication, matrix sums, matrix multiplication, square 

matrices, and the association of matrices and systems of 
equations. 
These concepts are introduced in an environment of biological 
applications.  As indicated above, the first section motivates the 
study of vectors and matrices and the need for high performance 
computing (HPC) with a discussion of a scientific study of blue 
crabs that includes high performance computing simulations. 
The foundational material includes a discussion of vectors with 
such terms as "element," "size," and "index" and such concepts as 
equality and addition of vectors and multiplication by a scalar.  
Examples involve vectors of simulated changes in populations of 
competing white tip reef sharks and black tip sharks in an area. 
Then, a section on "Dot Product" uses another biological example 
in estimating the number of eggs laid by Hawaiian green sea 
turtles in one year.  As indicated in the module, scientists around 
the world have studied the magnificent green sea turtle and used 
mathematics and computer science to make predictions about their 
populations in efforts to keep these them from extinction. A figure 
features the Caribbean Conservation Corp John H. Phipps 
Biological Field Station Costa Rica for the study of the green sea 
turtle.  The section's example begins:  "We deal with a different 
type of multiplication in estimating the number of eggs laid by 
Hawaiian green sea turtles in one year.  We can consider their life 
cycle to be in five stages with egg layers in two stages, novice 
breeders of age 25 years and mature breeders from age 26 through 
50 years.  On the average, a novice breeder lays 280 eggs in a 
year, and a mature breeder lays 70 eggs per year.  We can 
combine these data in a vector e = (280, 70).  Suppose also that 
there are 291 novice and 9483 mature breeders, which we store in 
the vector b = (291, 9483).  To approximate the total green sea 
turtle egg production in a year, we multiply together 
corresponding terms and add the results, as follows: 
 e · b  = (280, 70) · (291, 9483) 
  = 280 · 291 + 70 · 9483 
  = 81,480 + 663,810 
  = 745,290 eggs 
This type of multiplication, the dot product, involves two vectors 
of the same size and results in a number, not another vector." 
After a discussion of the option of writing a dot product with the 
first term as row vector and the second as a column vector, the 
section concludes with the following quick review question, 
whose answers are in a section at the end of the module: 
"Quick Review Question 4  The first stage in the life of the 
Hawaiian green sea turtle, consisting of eggs and hatchlings, 
occurs during the first year.  Stage 2, juveniles, extends from year 
1 to 16.  Suppose 23% of the hatchlings survive and move to stage 
2, while 67.9% of those in Stage 2 remain in that stage each year.  
In one year, suppose Stage 1 has 808,988 individuals, and Stage 2 
has 715,774 (Green Sea Turtle). 

a. Give a vector, p, with real number elements representing 
the percentages. 

b. Give a vector, s, storing the individuals in Stages 1 and 2. 
c. Using variables p and s, not the data, give the vector 

operation to determine the number of individuals that will 
be in Stage 2 the following year. 

d. Calculate this value." 
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With the foundation of vectors and vector operations, the next 
three sections lead the student carefully through explanations of 
definitions involving matrices, scalar multiplication, matrix sums, 
and matrix multiplication using examples with populations of 
white tip reef sharks and black tip sharks and additional quick 
review questions. 
A subsequent section on "Square Matrices" defines "square 
matrix" and "diagonal element."  These terms are illustrated with 
hypothetical data of the distribution of ABO blood types (A, B, 
AB, O) for mothers and newborns (multiple births omitted) in a 
county over a year.  In another example involving a square matrix, 
a table (Table 1 here) presents similarity measures (specifically, 
Euclidean distances) of the 18S rRNA sequences of pairs of 
animals, where smaller numbers indicate closer relationships.  
Using this example as motivation, the section defines "symmetric 
matrix". 

Table 1. Similarity measures (specifically, Euclidean 
distances) of the 18S rRNA sequences of pairs of animals 

(Table 3 in Lockhart, 1994) 
  Frog Bird Human Rabbit 
 Frog 0 0.316 0.350 0.336 
 Bird 0.316 0 0.130 0.102 
 Human 0.350 0.130 0 0.028 
 Rabbit 0.336 0.102 0.028 0 
 
For the concluding section on "Matrices and Systems of 
Equations," we return to the earlier example involving the dot 
product, where a Hawaiian green sea turtle novice breeder lays an 
average of 280 eggs per year, while a mature breeder only lays 70.  
The material continues, "Instead of specifying the number of 
turtles in each category, let n be the number of novice breeders 
and m the number of mature breeders with b = (n, m).  In general, 
the average annual egg production, a, is computed as follows: 
 e · b = (280, 70) · (n, m) 
  = 280n + 70m = a 
Thus, the dot product translates into one side of a linear equation."  
Moreover, the section indicates that a matrix-vector product 
involving the black-tip/white-tip shark application is equivalent to 
a system of linear equations. 

2.4 Module Exercises and Answers 
After the body of educational material, the module contains a 
section with 75 exercises.  Instructions encourage students to 
check their work with a computational tool, while a subsequent 
section has answers to 15 exercise parts.  Many exercises are 
routine practice problems with vectors and matrices.  However, 
several "word problems" involve applications, such as real 
spectrophotometer readings to indicate the number of bacteria in a 
broth; development of an age-structured model for an animal; a 
threshold matrix; and a dither matrix for enhancement of a digital 
image, such as a medical image from a CT (computerized 
tomography) scan. 

2.5 Module Projects 
After the reinforcement of concepts in the exercises, seven large 
projects are available for students to complete as individuals or 
with a team.  Instructions indicate to use a computational tool, 
optionally with high performance computing except as indicated.  

Three projects consider matrices and vectors as part of network-
based epidemiology simulations. The current module can serve as 
a basis for another Blue Waters module by the authors, "Getting 
the 'Edge' on the Next Flu Pandemic: We Should'a 'Node' Better," 
which develops this graph theory based model in detail [8]. In 
preparation for development of simulations in this subsequent 
module or as stand-alone applications, the three projects lead 
students through various aspects involving vectors and matrices, 
such as formation of vectors of IDs for people and locations and 
of a corresponding people-to-people connection matrix. 
Four projects employ colon crypt data that were output from 
simulations by Ornella Cominetti and the authors. The simulations 
were performed with Chaste (Cancer, Heart and Soft Tissue 
Environment), "a general purpose simulation package aimed at 
multi-scale, computationally demanding problems arising in 
biology and physiology" that a team centered in the 
Computational Biology Group at Oxford University Computing 
Laboratory is developing [9]. Scientists believe that colorectal 
cancer originates in tiny crypts that descend from the colon's 
epithelium into the underlying connective tissue. Projects, which 
use data downloadable from the website [2], are variations of 
those employed in research at Oxford and include plotting the 
trajectory of a cell in the crypt; generating a stacked bar chart of 
the average number of cells in various categories by time; plotting 
the mean migration velocities of cells at different heights in the 
crypt; and plotting the mean spatial correlation of velocity, a 
metric of the amount of coordinated movement of the cells, along 
with standard error bars.  The projects develop the background 
necessary for their completion, and instructions ask the students to 
discuss their results. 

2.6 Blue Waters UPEP Internship 
Involvement 
During the summer of 2010 and following academic year, student 
Jesse Hanley held a Blue Waters UPEP Internship to develop a 
parallel version of a program using C and MPI to support this and 
other modules.  His program accompanying the module is 
available on the NCSI UPEP Curriculum Modules site [2].  Jesse's 
experiences as an intern and program developer enhanced his 
understanding of programming in general and HPC in particular. 

3. TESTING AND EVALUATION 
3.1 Class Testing in High Performance 
Computing 
The first author taught Wofford College's High Performance 
Computing (HPC) course (COSC 365) in the spring of 2010. A 
mixture of Emphasis in Computational Science (ECS) students 
and computer science majors (five students:  one biology/ECS, 
one chemistry/ECS, one computer science/chemistry/ECS, two 
computer science; sophomore to senior level) populated the class.  
All students had taken Data Structures with programming in 
Python and C++ and at least one other computer science or 
computational science course.   
In preparation for discussion of HPC implementation of matrices 
and of applications involving matrices, the class was assigned 
reading of a preliminary version of the "Living Links" module, 
various graded and non-graded exercises from the module, and a 
quiz with questions taken from its Quick Review Questions.  This 
background helped to prepare the students to develop several 
projects, including population dynamics model of skates, which 
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are similar to sharks; performance analyses of sequential and 
parallel programs that raise square matrices of various sizes to a 
range of powers, run on a local cluster, NCSA's Teragrid 
computer Abe (a Dell Intel 64 Linux Cluster), and NICS' Teragrid 
computer Kracken (a 99072-processor Cray XT5 computer) [10]; 
and a social network/individual-based epidemiology simulation 
using another Blue Waters curriculum module by the authors, 
"Getting the 'Edge' on the Next Flu Pandemic: We Should'a 'Node' 
Better" [8].   

3.2 Evaluation in High Performance 
Computing 
The students demonstrated their understanding of the module's 
material with their performance on homework and a major exam.  
Feedback, both formal and informal, from class members about 
the preliminary version of the model helped revisions and 
formulation of the completed version.   

3.3 Class Testing in Linear Algebra 
Linear Algebra at Wofford College is a sophomore-level class 
required of mathematics majors and minors and computer science 
majors.  In spring 2011, after covering the basics of vector 
operations, the instructor, Dr. Joseph Spivey, required that the 
students read the module before discussing matrix multiplication 
and its applications in class. The professor used one 50-minute 
class for the module but mentioned that had he covered everything 
in the module, the material would have taken one-and-a-half to 
two full periods.  After the class, he assigned a number of the 
exercises to be done by hand.   

3.4 Evaluation in Linear Algebra 
Immediately after using the material, students in Linear Algebra 
along with their professor completed a questionnaire about the 
module.  The questionnaires for the Linear Algebra class had the 
students rate the following statements from 1 (strongly disagree) 
to 5 (strongly agree):  
• I understood the science applications in the module. 
• I understood the mathematics in the module. 
• The module was readable. 
• The Quick Review Questions helped me understand the 

material. 
• The exercises helped me understand the material. 
Means of the responses of the 20 students in the class, which were 
between 4.30 and 4.50, reflect favorably on the module (see Table 
2).  For similar questions, the professor gave ratings of all fives 
(5s). 
Table 2.  Means and standard deviations of N = 20 responses 
to rated questions, 1 (strongly disagree) to 5 (strongly agree) 

Question Mean Standard 
Deviation 

I understood the science 
applications in the 
module. 

 
4.30 

 
0.47 

I understood the 
mathematics in the 
module. 

 
4.50 

 
0.69 

The module was   

readable. 
 

4.33 0.69 

The Quick Review 
Questions helped me 
understand the material. 

 
4.38 

 
0.84 

The exercises helped 
me understand the 
material. 

 
4.34 

 
0.68 

 
Students and the faculty member were also asked to elaborate 
about the above scores.  Dr. Spivey commented, "I was impressed 
with how much they understood even before I went over it in 
class. Some students said to me that they learn better through the 
use of applications and that the math was explained very well."  
Student comments reflected the same impressions:  "I felt the 
module was very well put together in a way that was easy to 
follow with just enough breaks in text to keep track of equations 
but not enough to lose track of the subject." "I like the idea of 
using math as a tool to help predict how our actions may affect 
populations or show how past actions did."  "The applications 
allowed for better understanding of the mathematics material 
itself."  
Participants were also asked to indicate what they liked best about 
the module.  The instructor said, "The Quick Review Questions 
were nice, and several students wrote about that in their journal 
entries." Some class members indicated on their questionnaires 
that they liked these best, and one student wrote, "The Quick 
Review Questions served both as a learning tool and a reference 
for the exercises as it gave me practice, and its solutions pages in 
the back showed enough for me to really grasp the processes of 
some problems…."  Other students liked best the "readability" of 
the module, "the explanations," the arrangement of the material, 
and "the real-world applications."  As one student wrote, "What I 
liked most about the module were the real life and science 
applications that involved the topics, many of which I am also 
studying in my science courses. These references kept the topics 
intriguing." 
The questionnaire also asked what they found most difficult about 
the module and to give corrections and suggestions for 
improvement.  For revision, Dr. Spivey suggested, "You may 
want to make it clear at the beginning that the answers to the 
Quick Review Questions are at the end."  In response to this 
comment, we added such a paragraph statement before the first 
question about the location of the answers and how to use the 
Quick Review Questions and answers as a learning tool.  As the 
instructor suggested, we also revised the phrasing of one of the 
exercises and added four matrix multiplication exercises.  Two of 
the students requested a section for answers to selected exercises.  
In response to this suggestion, we added such a section with 
answers to fifteen (15) exercise parts. 
In reply to the questionnaire's request for further comments, Dr 
Spivey summarized, "The students responded well to the material. 
They enjoyed the reading and could follow it easily. They also 
really enjoyed learning about the applications."  Student 
comments were in a similar vein:  "I think the module was 
wonderfully written and everything was explained in an easy-to-
read way."  "Their [The authors'] ability to relate vectors and 
matrices to sea creatures is astounding, and it gives the math an 
entirely new dimension. It shows the reader how widespread the 
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influence of mathematics is, while helping them learn new 
techniques and concepts."  "I wish all math textbooks were easy to 
read and understand like this module!" 

3.5 Workshop Testing 
In February, 2011, Monash eScience and Grid Engineering 
Laboratory (MeSsAGE Lab), directed by Professor David 
Abramson, sponsored two computational science workshops at 
Monash University in Melbourne, Australia, for Ph. D. students.  
Dr. Bob Panoff, Executive Director of the Shodor Foundation 
[11], was the main leader of the first week-long workshop, 
"Introduction to Computational Thinking," which had an 
afternoon session conducted by the authors on "Quantitative 
Modelling Using MATLAB:  Introduction."  Later in the month, 
the authors lead the second week-long workshop, "Computational 
Workshop for the Life Sciences: Bringing Computation to Life," 
in which half the time involved modeling using MATLAB, 
including a similar introduction.  Other topics in this half were 
user-defined functions, looping, decisions, model fitting, and a 
day on parallel programming.  The format of this part of the 
workshop was presentations interspersed with frequent exercises 
for participant pairs to complete.  The presentations and exercises 
included a number of examples, applications, and projects from 
the "Living Links" module.  For example, the class developed 
versions of three projects from the module:  visualizing the 
trajectory of a simulated cell in a colon crypt; plotting the mean 
migration velocities of simulated crypt cells; and modeling a 
network of individuals in a community with matrices and vectors 
and computing in parallel the distribution of the number of 
contacts such individuals have with other people.  Wikis [12] and 
[13] give presentation files, exercises sets, and more details about 
the workshops. 

3.6 Workshop Evaluation 
Questionnaires for the workshops were more general than those 
for the linear algebra class.  With a rating scale of 1 to 4 for Poor 
to Excellent, respectively, two questions for participants in the 
second workshop, "Computational Workshop for the Life 
Sciences: Bringing Computation to Life," seem most relevant to 
module evaluation: "The clarity of the information provided was:" 
and "The program materials were:"  High mean scores and 
participants' comments about the workshop, particularly the 
applications, were gratifying (see Table 3).   
Table 3. Means and standard deviations of N = 18 responses to 
rated questions, 1 (Poor), 2 (Adequate), 3 (Good), 4 (Excellent) 

Question Mean Standard 
Deviation 

The clarity of the 
information provided was: 

3.56 0.62 

The program materials 
were: 

3.56 0.62 

4. CONCLUSION 
"Living Links:  Applications of Matrix Operations to Population 
Studies" and its associated programs in MATLAB, Mathematica, 
and C/MPI are currently available on the UPEP Curriculum 
Modules website [2].  Class testing in High Performance 
Computing (HPC) of a preliminary version of the module helped 
in its development and showed the utility of the module in 
introducing matrices and some of their applications as a 
component of a HPC course.  Class testing in Linear Algebra lead 

to refinement of the module and demonstrated its value in 
introducing matrix and vector operations with numerous 
applications to a mathematics class. Class testing the module as a 
base for workshop lectures, exercises, and projects illustrated its 
value as a resource for a faculty member.  High questionnaire 
scores and enthusiastic comments from undergraduate level 
computer science, mathematics, and computational science 
students and graduate level science workshop participants verify 
the conclusion that "Living Links:  Applications of Matrix 
Operations to Population Studies" can be an effective educational 
module in a variety of classes, levels, and settings. 
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ABSTRACT
CitcomS, a finite element code that models convection in
the Earth’s mantle, is used by many computational geo-
physicists to study the Earth’s interior. In order to allow
faster experiments and greater simulation capability, there
is a push to increase the performance of the code to al-
low more computations to complete in the same amount of
time. To accomplish this we leverage the massively parallel
capabilities of graphics processors (GPUs), specifically those
using NVIDIA’s CUDA framework. We translated existing
functions to run in parallel on the GPU, starting with the
functions where the most computing time is spent. Run-
ning on NVIDIA Tesla GPUs, initial results show an aver-
age speedup of 1.8 that stays fairly constant with increasing
problem sizes. Though many applications can see even or-
ders of magnitude improvement from GPGPU acceleration,
the potential improvement for CitcomS is limited by several
factors, including being bound by MPI collective commu-
nication. With newer GPGPU frameworks such as Fermi,
further performance improvements can be expected, though
a more significant overhaul of the CitcomS code would be
necessary for any significantly better speedup.
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Parallel programming, GPGPU, finite element
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1. INTRODUCTION
Graphics processors are commodity hardware, found in nearly
every modern personal computer, which are highly special-
ized to do all of the computations required to draw pixels on
the screen. For intensive graphics applications such as high-
resolution three-dimensional games, this means transform-
ing, calculating lighting, and mapping and applying textures
on millions of vertices and pixels. To do this, GPUs have
banks of hundreds of small compute cores that process a
stream of data together in parallel. By sacrificing some of
their independence and flexibility, these cores save hugely
on power consumption compared to more general-purpose
CPUs. In addition, in order to keep all of those cores busy,
GPUs have particularly high memory bandwidth.[8]

The high performance computing community has long been
interested in using specialized accelerators to speed up cer-
tain parts of their computations, but these processors were
often prohibitively expensive. In contrast, because of their
commodity nature, GPUs are much cheaper. Instead of sim-
ply drawing graphics on the screen, we are interested in us-
ing these cards for more general purpose work. By using
the massively parallel capabilities of GPUs for computation
across large datasets, applications can see huge performance
improvements. NVIDIA’s CUDA parallel computing archi-
tecture is currently the most popular technology for general
purpose programming of GPUs. Many high performance
applications have seen order of magnitude speedups using
CUDA, including NAMD (nanoscale molecular dynamics)
with a 20x speedup, and Havok FX with 10x speedup for
realtime physics simulation.[10]

In the field of geophysics, CitcomS is used by many to study
convection problems in Earth’s mantle. By accelerating the
application we can enable simulations with finer detail or
more time steps to complete in the same amount of time.
At this time when single cores are not getting any faster,
speedups come from parallelizing computation. CitcomS
already uses Message Passing Interface (MPI) libraries to
split up work across multiple compute nodes. However, the
price of communicating boundary values limits the amount
that the simulation can be split up in this way. To further
parallelize the work done on each node, we use the mas-
sively parallel capabilities of graphics processors (GPUs).
Using NVIDIA’s CUDA programming model, we are able
to parallelize each node’s data-parallel computations using
CUDA-capable GPUs if they are available. This report dis-
cusses the techniques used to accelerate CitcomS, describes
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performance challenges and optimizations, and lists the re-
sults of our experiments showing speedup of the application
as a whole.

2. BACKGROUND
2.1 CitcomS
CitcomS is a finite element code developed and supported by
the Computational Infrastructure for Geodynamics (CIG).
Written in C, it has support for MPI to allow it to be run
in parallel on shared and distributed memory platforms. It
is designed to solve compressible thermochemical convection
problems, but it also support variable viscosity and so can be
used to study the movement of plates. The model consists
of a grid of points arranged in a spherical shell (either a full
sphere or a restricted region). Starting with a set of initial
values including temperature, pressure, and velocity at each
point, it repeatedly solves the momentum and advection-
diffusion equations, giving the new state of the system at
each successive time step. An iterative relaxation scheme is
used to solve the partial differential equations for velocity
and pressure across the grid domain, using either a conju-
gate gradient or multi-grid solver to find solutions for the
equations which are represented as discrete matrices.[12]

As a typical finite element code, with its regular grid and
high spatial locality, CitcomS is characterized as a struc-
tured grid problem as defined by Asanovic and colleagues in
their report. Because CitcomS does not do adaptive mesh
refinement, this means that it should be relatively simple
to parallelize by simply breaking up the grid onto different
nodes and sharing updated boundary values between iter-
ations.[3] In fact, this is precisely what is done using MPI
already, and because each point only relies on its immediate
neighbors in the grid, calculations on chunks distributed to
each node should be able to be parallelized even further.

2.2 CUDA Programming Model
While CUDA aims to make GPUs programmable like CPUs,
the mindset is quite different. Instead of one primary thread
(or a minimal number of software threads) on CPUs, the
idea behind the CUDA programming model is to have hun-
dreds or thousands of hardware threads running the same
kernel function on different pieces of a large data set. In gen-
eral, each GPU thread individually runs slower than on the
CPU, but together, hundreds of threads have a much higher
throughput. Because of the less flexible nature of GPU
cores, these threads also have extremely limited branching
options: no function calls are allowed (except inline) within
a kernel.

In the CUDA model, there is a reference hierarchy to threads
with different localities: a block of threads all run on the
same streaming multiprocessor (SM) which has a number of
compute cores, a bank of registers local to each thread, and
a fast shared memory cache. Thread blocks are organized
in a grid, all running the same kernel and sharing the global
memory bank on the GPU. Only threads within a block can
be synchronized using primitive barrier calls. Because global
synchronization is impossible within a kernel, the algorithm
must have work that can be completely de-coupled.

Porting existing CPU code to CUDA primarily involves find-
ing which parts do a lot of computation on a large set of

Table 1: Profiling Results
(Conjugate Gradient Solver)

% Time Function
78.82 n_assemble_del2_u

4.70 conj_grad

4.06 global_vdot

3.49 assemble_div_u

2.82 get_elt_k

2.12 assemble_grad_p

1.17 regional_exchange_id_d

. . . . . .

data in a serial loop and splitting up that work onto many
threads. However, to get optimum performance, the pro-
grammer must know the intricate details of the hardware
and how they affect performance. Optimization practices in-
clude: managing the severely limited shared memory cache,
coalescing global memory accesses, minimizing in-warp di-
vergence, avoiding bank conflicts, and maximizing thread
occupancy.[9]

3. IMPLEMENTATION
We used the current release of CitcomS, version 3.1.1, as the
basis of our CUDA accelerated version.

3.1 Profiling
Translating the entire application to CUDA would be neither
practical nor desirable. CitcomS consists of a large codebase,
with many different functions for calculating each parameter
of the simulation. Many of these operations, particularly in-
put and output tasks, are simply not conducive to massively
parallel execution. Therefore, in order to maximize our im-
pact on the overall speed of the code, we carefully profiled it
to see where in the code most of the time was being spent.

Using GNU gprof[4], we ran a series of simulations with dif-
ferent grid sizes and input parameters. Shown in Table 1
are results for a typical run using the conjugate gradient
solver. Actual numbers for each function fluctuated slightly
between different simulations, but the trend was consistent.
It was clear that the function n_assemble_del2_u, at 78% of
the overall time, was where we should focus our efforts to im-
prove the conjugate gradient solver. According to Amdahl’s
Law, the theoretical speedup of an algorithm from paral-
lelization is a function of the speedup of the parallelized
part (S) and the proportion of the computation that this
part represents (P ):

1

(1− P ) + P
S

Speedup here simply refers to the ratio of serial execution
time to the parallelized execution time (S = Tserial/Tparallel).
Speeding up only n_assemble_del2_u with P = 79%, as-
suming perfect speedup (S =∞), the maximum theoretical
speedup overall would be 4.72.

Further inspection of the code showed that this function
is used to calculate the Laplacian on the discretized tem-
perature, pressure, and velocity matrices, which correspond
to the size of the spherical grid. As we expected for this
structured grid code, this matrix computation corresponds
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read in value

add to existing value

(a) In the original algorithm, each point added its own
contribution to each of its neighbors’ new values. Con-
currently writing to the same spot in memory from mul-
tiple threads like this leads to nondeterministic behavior
because the reads and writes could happen in any order.

1 2 3 4 5 6 7 8

3 6 9 13 15 18 21 15

3 6 9 13 15 18 21 15
read in neighbors

write total

Input grid points:

Output grid points:

Threads:

(b) To eliminate conflicting read/writes, the algorithm was
restructured so that each thread calculates its own new
value by computing what each of its neighbors would have
contributed based on their current values and storing just
its own value.

Figure 1: Reordering Reads and Writes

to an operation being executed across all points in the spher-
ical grid, marking this as a good candidate for GPU execu-
tion and making this our primary target for translation to
CUDA.

3.2 Translation
The first part of translating n_assemble_del2_u was decid-
ing how to break up the work onto GPU threads. For CUDA,
using as many threads as possible is often the best option.
Each streaming multiprocessor can execute several blocks of
threads. If a large number of threads in the same block make
memory requests, they can queue up waiting for their data
while other threads are executed. Also, if these threads ac-
cess memory local relative to each other, their accesses can
be coalesced into a single global load. Therefore, the more
threads the CUDA scheduler has available in each thread
block, the more opportunities it has to hide memory laten-
cies. On the other hand, once each thread gets its memory,
it ought to have a significant amount of work to do with it,
otherwise all the time used getting the memory there was
wasted.

Taking those factors into consideration, we decided to make
each thread handle a single grid point. This is justified be-
cause the calculation of each point requires aggregating val-
ues from several matrices for each of its neighbors. In the
original CPU code for n_assemble_del2_u, there was a pri-
mary loop that iterated over each point in the grid, so we
simply refactored it into a CUDA kernel, using the thread
and block IDs in place of the loop variable.

However, running iterations of a loop concurrently intro-
duces problems that did not exist when run serially. Threads
running on the GPU have extremely limited synchronization
options. CUDA cards with compute capability of at least 2.0
introduced some atomic store operations but at a significant
performance hit from serialization. Without synchronizing,
it is unsafe for concurrent threads to write to the same spot
in memory, so kernel functions should be designed such that
each thread will have “ownership” of a subset of memory
that only it stores results into. In the case of our kernel,
each thread was straightforwardly responsible for calculat-
ing its own grid point’s future state. However, each iteration
of the original loop had one loop over its neighbors where it
incremented each neighbor’s values based on its own value.
This would have led to multiple threads concurrently incre-
menting the same spots in memory, resulting in nondeter-
ministic behavior. Fortunately it proved possible to reverse
the second loop so that each thread pulled together all the
values that were previously being incremented, resulting in
a working, deterministic CUDA translation, calculation for
calculation. See Figure 1 for an illustration of this.

3.3 Verification
Because our goal is a functionally equivalent refactoring, it
was essential that we verified our function’s output with
the original at every step of development. This was ac-
complished by simply executing both versions each time
n_assemble_del2_u was called. A single array constitutes
the output for the function, so both original and CUDA out-
put were stored, with the following condition used to flag an
error:

|xi − yi|
yi

> 5.0× 10−15

where yi is an element in the original function result and
xi is the corresponding CUDA result. Even though it is
expected that all of the same calculations will be done, some
small floating point precision error is expected due to some
the reordering of calculations and minor differences in how
GPU cores implement floating point operations, but those
errors should be relatively insignificant.

3.4 Optimization
As mentioned before, the CUDA architecture can provide
massive amounts of parallel computation with particularly
high memory bandwidth. However, achieving that maxi-
mum performance is not always possible, and approaching
that limit is what the majority of the novel work for this
project was devoted to. Here we will step through several
major iterations of the CUDA kernel, highlighting the most
relevant performance aspects of each.

The CUDA profiler is a very simple tool which comes bun-
dled with the CUDA framework, but it was particularly use-
ful for diagnosing each of the bottlenecks described below.
The profiler is very simple and supports the output of only
four variables from a list of over 40 options. On systems with
CUDA installed, profiling can be enabled by setting an envi-
ronment flag (CUDA_PROFILE=1) before executing the CUDA
program. Values of each variable for every kernel invoca-
tion is sent to a file (./cuda_profile0.log by default).[7]
Below we will highlight profiling options we used to obtain
information we needed about our kernel’s performance.
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Table 2: Kernel Optimizations
Speedup shown is for the ratio of the original CPU
function’s execution time to the time spent executing the
n_assemble_del2_u kernel itself.

Time (ms) Speedup
Original: 2.00 1.00
Kernel 1: 880 0.0023
Kernel 2: 21.78 0.09
Kernel 3: 0.44 4.55
Kernel 4: 0.29 6.90

Kernel 1: The first working implementation of the kernel
was 400 times slower than the original CPU version. On
the CPU there are several layers of caches that make sure
that successive reads and writes to a chunk of memory are
as fast as possible, which are automatically handled in hard-
ware on most systems. Because access patterns are poten-
tially much more complicated to predict for thousands of
threads, automatic caching is only available for the newest
CUDA architectures. Therefore, in this first kernel, when
each thread accesses its nearest neighbors’ values, it must go
all the way to global GPU memory, an operation that takes
on the order of milliseconds. The GPU memory manager
can coalesce memory accesses, that is load multiple threads’
values all together, if the accesses are sequential and regular.
However, because each thread is accessing each of its neigh-
bors’ values, which are not contiguous, these accesses are
not able to be coalesced, even on newer architectures where
caching is handled automatically. The CUDA Profiler op-
tions gld_incoherent, gld_coherent, gst_incoherent and
gst_coherent show the number of uncoalesced (incoherent)
loads and stores compared to coalesced ones. Ideally, there
should be no incoherent loads or stores, which was achieved
in subsequent kernels.

Kernel 2: Luckily there are closer and faster memory banks
available on each streaming multiprocessor that can be shared
among threads in a block. Moving the most heavily accessed
data in our kernel into this shared memory can easily be
done in a coalesced fashion, and once in this cache, accesses
to the data are comparable to working with registers. In
our kernel, the most heavily used array, which we deter-
mined by counting the number of reads from it in our code,
is Node_map, which holds a map of each grid point to indices
for all of its neighboring points. By explicitly loading all of
the maps for each thread in a block into shared memory at
the beginning of the kernel, the global accesses are regular
and sequential, allowing the loads to be coalesced, and all
subsequent accesses are essentially free. We were able to
observe this on the CUDA cards with compute capability of
1.3 by observing a significant drop in the number of global
loads (gld_incoherent and gld_coherent) from millions of
loads to 40,000-80,000 per invocation (varying depending
on the amount of branching, actually). Note: newer cards
with compute capability greater than 2.0 have the option of
outputting shared memory loads and stores directly.[7] Just
doing this sped up the kernel by 40 times. Clearly even mi-
nor changes to CUDA kernels can either severely damage
performance or greatly improve it.

Kernel 3: Using an array of indices to map into another
array is a common method of saving computation time on

the CPU because it allows for all the neighbors to be cal-
culated once and then simply looked up every subsequent
time they are needed. This made sense on the CPU where
there was a deep cache and only one compute unit. On the
GPU, however, it often makes sense to recompute some val-
ues if it would take less time than waiting on extremely slow
un-cached memory accesses. Once an (x, y, z) location in
the grid is calculated from the thread index, three levels of
nested loops can iterate over all the neighbors by simply os-
cillating on each side of each dimension. This was observed
again as a drastic decrease in the number of global loads
in our profiling results. Eliminating Node_map in this way
improved the performance of the kernel nearly another 50
times.

Kernel 4: With Node_map no longer taking up space in
shared memory, other data was able to take its place. How-
ever, the Tesla generation of CUDA cards have only 16 kilo-
bytes of shared memory per multiprocessor.[8] Even just the
primary input array will not fit completely in shared mem-
ory for typical grid sizes. Because we have such limited
synchronization ability, we must ensure that all values of
the array that might need to be accessed by a thread in a
block are pre-loaded into shared memory. By loading in a 3-
dimensional tile of points surrounding the points referenced
by the current block of threads, we are able to maximize the
amount of caching we can do.

Working off of the final kernel design, there were a number
of minor changes that we tried to maximize our usage of
all of the GPU’s resources. Each multiprocessor can have
up to eight resident blocks, which allows it to hide mem-
ory latencies by scheduling warps from other blocks to run
while some are waiting. This occupancy is determined by
the amount of registers allocated per thread, the number of
threads, and the amount of shared memory that each block
uses. Using the verbose ptxas compiler option, the program-
mer is able to see these parameters, and the CUDA profiler
displays the precise occupancy of each kernel invocation as
well. Using the CUDA Occupancy Calculator, a spreadsheet
available from NVIDIA’s website, developers can put in the
various parameters for their run, such as shared memory
and register usage and it will show what the limiting factor
for occupancy is.[6] Using this and the output of the CUDA
profiler, it was clear to us that the major limiting factor was
the number of registers being used by each thread, which we
were unable to minimize. Instead, we adjusted the number
of threads per block, observing the performance of each ker-
nel and settling on the best configuration. We found that
192 threads per block best balanced the tradeoff between
using too many registers and losing shared memory benefits
by having thread blocks that are too small. However, these
results would not be optimal for other CUDA architectures.
It would have to be retested and optimized for each archi-
tecture to achieve maximum performance.

At this point, even with that primary array taking up all
available space in shared memory, there are still several more
global arrays that are accessed regularly during the compu-
tation. Several large floating point arrays that represent the
stiffness matrix are much too large to for us to cache. As
a result, our threads are constantly waiting on slow global
memory loads instead of making full use of the GPU com-
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pute units. There are a number of other performance issues
that affect kernels at the instruction level, such as branch
divergence when threads executing in lock-step on an SM
take different paths and must be serialized, and bank con-
flicts when shared memory accesses are strided incorrectly.
However, examining and eliminating these kinds of issues
is only useful when the majority of the time is already be-
ing spent executing instructions. Because we are bound by
memory accesses, not by compute resources, there is little
more that can be done to further optimize the kernel.[5]

3.5 Automatic Integration
Not all users will have NVIDIA GPUs available, so we pro-
vide users of CitcomS with the option to use the CUDA-
accelerated version or not. Autoconf and automake are two
tools already being used in the code to automatically find
libraries and configure the build. A simple addition to the
configure script adds an option to build with CUDA support.
However, we also did not want to require that everyone us-
ing CitcomS on a particular cluster would be required to
use the CUDA version, nor did we want to force two ver-
sions to be built for such a small difference in code. When
built with CUDA support, our use_cuda option is added to
the configuration file that is used to specify each simulation,
which can be used to select the CUDA-accelerated version
at runtime with little to no overhead.

4. RESULTS
In the section on Optimization and in Table 2, our speedups
only referred to the computation of the n_assemble_del2_u

function. To see how these results translated into overall
system acceleration, we ran a series of simulations and mea-
sured their runtimes. Each simulation was run twice per
trial, once using the original CPU-only version and once with
the CUDA version. Shown in Figure 2 are average times for
three runs of a typical simulation with varying grid sizes and
number of MPI processes, run using Tesla-generation cards
that were available on Earlham College’s Al-Salam cluster[1]
and NCSA’s Lincoln cluster[2]. Our timings for each setup
had standard deviations of less than 5% of the average times
after 3 trials, with most times varying less than 2.0 seconds
between trials. Because of this consistency, the three tri-
als should be accurate enough to make judgements about.
Similar results were observed for several other simulations
using different physical parameters (varied initial conditions
and viscosity parameters), which was expected because this
function is an integral part of both solvers, so its usage pat-
tern is highly regular.

Seen in Figure 2a, as the problem size was increased, better
speedups were observed. This is because as we increase the
number of grid points, we were able to better take advantage
of the massive parallelism provided by the GPU. However,
the speedup tapered off around 1.8x, which we hypothesize is
because the amount of memory that needs to be transferred
to and from the GPU increases as well. From Figure 2b,
it can be seen that the speedups we observe in the one-
node case do not scale perfectly with increasing number of
MPI processes. However, larger problem sizes still showed
greater speedups. This is to be expected because for the
same problem size, increasing the number of MPI processes
gives each CUDA kernel smaller pieces of the grid to work
with, which was just shown in Figure 2a to make speedup

worse. Therefore overall, the best performance is still to be
had with larger grids because it will give the best CUDA
performance and allow more divisions into MPI processes.

Based on the actual speedup of n_assemble_del2_u, we can
revisit Amdahl’s Law, this time with S = 6.9 and P =
78.82% still. This results in a predicted overall speedup of
3.07. This is obviously less than the theoretical best we
computed of 4.72 which is to be expected because perfect
speedup is obviously impossible. However, it is significantly
better than the 1.8x we actually achieved. This can be partly
explained by the time needed to allocate and copy all of
the memory onto the GPU, which was not included in the
kernel timings because the memory copies are done in several
different places in the code. Despite the high bandwidth to
the GPU, the entire set of data used within the function
must be transferred both ways every time it is called.

5. FUTURE WORK
As the CUDA-accelerated version of CitcomS stands right
now, one function, n_assemble_del2_u, has been success-
fully translated and optimized for NVIDIA Tesla GPUs.

5.1 Multi-grid Solver
As previously stated, n_assemble_del2_u played the great-
est role in the conjugate gradient solver. While it also was
used in the multi-grid solver, another function, gauss_seidel,
was the most time-intensive function there. We spent some
time attempting to translate this function as well so that
both solvers could be significantly accelerated. However, it
proved significantly more difficult than the previous transla-
tion. For n_assemble_del2_u, all of the calculations simply
read from the original array and stored their new values in
the output array. The Gauss-Seidel method is an iterative
relaxation method for solving a linear set of equations. It
is based on the simpler Jacobi method which averages its
nearest neighbors’s current values to compute its own new
value. In order to converge in fewer iterations, Gauss-Seidel
makes use of any new values that are available in calculat-
ing each new value.[11] This is perfectly acceptable in a seri-
ally executed loop, but when loop iterations are run concur-
rently, this causes problems. This meant that we could not
do a functionally equivalent translation of gauss_seidel.
We made several attempts to write a Jacobi function that
would operate in the same way as gauss_seidel but simply
required more iterations to converge. However, everything
we tried caused issues when run as part of the multi-grid
solver, causing the solutions to never converge or to end
up at infinity. At this time, the code has been left out of
the production version of our CUDA-accelerated CitcomS.
Perhaps with more experience with numerical methods we
would be able to find the places where our Jacobi method
failed to duplicate what the Gauss-Seidel function was doing.
It might be that future work could be done to re-implement
the multi-grid solver from the ground up in CUDA.

5.2 MPI Communication Barriers
Beyond the Gauss-Seidel/Jacobi issues, the most obvious
course for future work would be to continue translating more
of CitcomS’s code to CUDA. However, there is a limit to the
amount that patchwork translation such as this can be used
to improve overall performance. The existing MPI commu-
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Figure 2: Speedup Results
Timing results used for speedup calculations are each averages of at least 3 separate runs.
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nication pattern in CitcomS frequently does collective op-
erations sharing updated boundary values among all of the
processes to keep the individual pieces of the grid synchro-
nized. These MPI calls are an absolute barrier to what can
be computed uninterrupted on the GPU. Prior to commu-
nication, the kernel must complete and the values must be
copied back to main memory from the GPU’s memory. Once
communication is complete, the data can be copied back to
the GPU and the kernel resumed. With these hard bar-
riers in place, even if all data-parallel computations were
done by the GPU, the limiting factor would be all the mem-
ory movement. A more complete rewrite of the CitcomS
codebase might be able to minimize the amount of commu-
nication needed and perhaps coalesce it into a single update
per step. However, with current cluster architectures where
all inter-node communication goes through CPU nodes, the
communication will likely still be a major limiting factor.

5.3 Other Directions
Future work on accelerating CitcomS could go several direc-
tions. If a version that will work across different vendors
is desired, an OpenCL version of the current translation
should be straightforward because the basic kernel model re-
mains largely unchanged between the two. Along the same
vein, the current version has certain parameters, such as
the number of threads per block, hand-optimized and hard-
coded into the source. Running optimally on even the newer
Fermi generation of GPUs, which have larger shared mem-
ory caches among many other improvements, would require
adjusting these parameters based on experimental results.
For other GPU architectures similar adjustments would need
to be made. Perhaps some future work could be done to

automate this optimization task, for CitcomS or for CUD-
A/GPGPU applications in a more general sense. Because
GPU acceleration is a highly popular area of research right
now, it is likely that many new tools will soon be available
to potentially be applied to CitcomS.

6. REFLECTIONS
This project was not only a scientific venture attempting to
enhance geophysicists’ tools. As part of the Undergraduate
Petascale Internship Program, the goal is also to enhance
undergraduate education, so here I will reflect on my own
experience and how it can be duplicated for other under-
graduates.

Working on this project has given me a great deal of expe-
rience working on a number of different high performance
clusters. The two-week workshop at the beginning of the
summer kickstarted my work, but through the process of
studying, translating, and optimizing, I have gotten much
more comfortable with it all. I have become adept at de-
bugging all kinds of issues with building, installing, and run-
ning all manners of programs. In working with CUDA for
the last year, I have come to understand the architecture in
great depth, and I have a feeling for a wide variety of pro-
gramming problems and performance issues. Because of my
experience with CUDA and connections through the UPEP
instructors, I have gotten the opportunity to help as an as-
sistant instructor at an intermediate parallel programming
workshop, as well as at this year’s Blue Waters UPEP Insti-
tute. These teaching experiences have further reinforced my
understanding of all of the parallel programming techniques
that are taught there. I think getting undergraduates to

Volume 2, Issue 1 Journal Of Computational Science Education

26 ISSN 2153-4136 December 2011



spend a summer digging down into real scientific code and
get their hands dirty writing real high performance code will
give them experience that will be invaluable to them in pur-
suing a research career later.

While working at the extremely low-level of CUDA opti-
mization has helped me understand the architecture and
programming model quite well, I have recognized that the
amount of time it took me to get better at this is simply
not efficient for the majority of programmers to do. In
the coming age of computing, it is likely that, in order to
continue to scale in performance without excessive power
expenditure, computing will become increasingly heteroge-
neous, with specialized processors such as GPUs playing an
important role. It is already infeasible to expect every pro-
grammer to become an expert in all of the different kinds
of accelerator hardware that are available now. My work
hand-tooling CUDA code and optimizing it by experimen-
tation and often guesswork has made it obvious to me that
new programming models need to be explored.

I am interested in finding out how to separate the mechani-
cal processes, such as finding the optimal number of threads
per block or managing limited shared memory space, from
the creative ones, such as thinking of the best way to par-
allelize the algorithm. The mechanical tasks could be ac-
complished in many different ways, either by the compiler
at build time, by a runtime system, or one of many other
techniques. Another interesting area of research would be
to better facilitate the creative part so that programmers
can effectively represent their ideas in a way that compilers
and the rest can take advantage of the available compute
resources.

In the interest of pursuing these research directions, I will
be attending graduate school at the University of Washing-
ton. My planned research goal stems from these issues with
programming in CUDA: I am interested in applying aspects
of programming languages, compilers, runtime systems, and
software engineering tools to assist programmers in devel-
oping applications for the heterogeneous parallel computers,
smart phones, or other ubiquitous computing devices that
will need software in the future.
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ABSTRACT
The Human Immunodeficiency Virus type 1 protease (HIV-1
PR) performs a vital role in the lifecycle of the virus, specifi-
cally in the maturation of new viral particles. Therefore, de-
laying the onset of AIDS, the primary goal of HIV treatment,
can be achieved by inhibiting this protease[2]. However, the
rapidly mutating virus quickly develops drug resistance to
current inhibitors, thus novel protease inhibitors are needed.

Here, 100ns molecular dynamics (MD) simulations were con-
ducted for the wild type and two mutant proteases to gain
insight into the mechanisms by which the mutations con-
fer drug resistance. Several different metrics were used to
search for differences between the wild type and mutant pro-
teases including: flap tip distance and root-mean-square de-
viation (RMSD), mutual information, and Kullback-Leibler
divergence. It was found that at the 100ns timescale there
were no large differences in the structure, flexibility and
motions of the wild type protease relative to the mutants,
and longer simulations may be needed to identify how the
structural changes imparted by the mutations affect the pro-
tease’s functionality.

General Terms
Measurement, Experimentation, Design

Keywords
Blue Water Undergraduate Petascale Internship, HIV-1 Pro-
tease, Parallel Computing, Molecular Dynamics Simulation

1. INTRODUCTION
Currently, there is a considerable effort being put into the
development of novel drugs to combat HIV by many re-
searchers around the world. Part of that work focuses on
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Figure 1: A cartoon representation of the 198 amino
acid wild type HIV-1 PR bound to indinavir. The
flap tips are colored magenta.

designing drugs that inhibit the homodimeric, aspartyl HIV-
1 PR. This enzyme, one of only a handful of targets for HIV
treatment, serves a key role in the lifecycle of HIV by pro-
cessing gag-pol polyproteins into discrete, functional pro-
teins. Inhibiting the protease prevents it from performing
proteolysis, resulting in immature and noninfectious virus
particles[2]. Therefore, inhibition of the protease can delay
the onset of AIDS; however, mutations rapidly develop in it
from one viral generation to the next in response to antiviral
treatment[4]. These mutations often lead to the formation
of antiviral drug resistance.

By using MD simulations to gain insight into the mecha-
nism by which drug resistance occurs, we hope to aid in the
development of adaptive inhibitors which show high activ-
ity towards both wild type and mutant proteases. Because
a protease inhibitor could be designed to take advantage of
conserved regions vital for the protease’s function, there is
hope adaptive inhibitors can be developed.

After being selected to take part in the Blue Waters Un-
dergraduate Petascale Education Program (BW-UPEP), I,

Volume 2, Issue 1 Journal Of Computational Science Education

28 ISSN 2153-4136 December 2011



Christopher Savoie, was given the opportunity to partici-
pate in this research project. The BW-UPEP began with a
two week intensive training workshop held at the National
Center for Supercomputing Applications on the University
of Illinois at Urbana Champaign campus. The workshop
was both a hands on learning experience and a survey of
high performance computing and parallel programing. It
provided an introduction to using MPI for running parallel
programs along with an overview of how to use programs
such as VMD and biomolecular simulation software, among
other things. Following the workshop I returned the Uni-
versity of New Orleans where this research project was per-
formed under the guidance of my mentor, Dr. David Mobley.

2. RESEARCH PLAN
2.1 Goals and Milestones
Our chief goal is to understand how mutations in the pro-
tease’s amino acid sequence adversely affect ligand binding.
By looking at inhibitors’ binding affinities relative to the
wild type and the mutants, we commonly see at least an or-
der of magnitude decrease in the mutant’s binding affinity,
resulting from a single amino acid substitution[15, 11]. To
understand why this occurs, we planned to setup, run, and
analyze MD simulations of known HIV-1 PR variants with
several ligands. Experimentally, each protease and ligand
pair we chose shows varying degrees of affinity loss when
mutations are introduced in the wild type[11].

To set up the simulations, we began with protein structures
taken from the Protein Data Bank (PDB)[3] with mutations
introduced as needed using PyMOL’s mutagenesis tools [14].
After the models were built, the system was benchmarked
to determine an efficient number of nodes to run it on. That
is, we wanted to know how many nodes would give us the
best value in terms of the wall clock time and the computa-
tional expense associated with that wall clock time. Because
eventually the additional reduction in wall clock time from
using an additional node becomes relatively small, adding
more computing resources to the simulation becomes coun-
terproductive at some point.

To accomplish our main goal, we planned to analyze the sim-
ulations’ trajectories, using several methods to gauge how
the mutations alter the function of the wild type protease.
First, because we hypothesized that the relatively flexible
flap tip region of the protease might show differences across
HIV-1 PR variants, we chose to monitor the flap tip distance
and RMSD. This flexible flap tip region of the protease is
vital for a functional protease as well as ligand binding. As
a result, changes in the interactions between the flap tips
along with changes in their mobility and flexibility are im-
portant in the develop of novel inhibitors.

While hydrophobic interactions are primarily responsible for
stabilizing a protein in solution, hydrogen bonds play an
important role in fine tuning the structure. Because of this,
we also wanted to explore the hydrogen bonding between the
flap tips to see what effect mutations have there. Finally,
we wanted to study correlated motions in the protease using
mutual information, and we planned to see how mutations
alter the torsional degrees of freedom at side chain dihedrals
by comparing the distributions of angles from the wild type
and mutant using Kullback-Leibler (KL) divergence.

Because of the amount of work involved and to provide a
measure of progress, we formulated several milestones for the
project with the majority of the work taking place during the
summer. The four main milestones were as follows: (1) set
up the various protease/ligand combinations and scripts for
running the simulations, then submit the jobs for the first
set of simulations to the queue; (2) write Python scripts
utilizing GROMACS tools to perform a structural analy-
sis by making measurements of flap tip hydrogen bonding,
distance, and RMSD; (3) while running the second set of
simulations, begin structural studies of the first by review-
ing the initial analysis results and by producing plots of the
data; and (4) perform additional structural studies using KL
divergence and mutual information to look for patterns of
change introduced by the drug resistance mutations.

2.2 Simulation Setup
Simulations were performed on the wild type HIV-1 PR and
two variants. The first variant of HIV-1 PR contains the
mutation I50V which is located in the protease’s flap tips.
The second variant has mutations V82F and I84V which
are located towards the catalytic dyad in the center of the
protein. Moreover, lopinavir and indinavir were simulated in
the presence of the wild type and I50V proteases while riton-
avir was simulated with the wild type and I82F/I84V pro-
tease. Experimentally, these mutants dramatically reduce
inhibitor binding affinities[11]. For example, the V82F/I84V
HIV-1 PR mutant nearly shows a 400 fold decrease in affin-
ity for ritonavir and the I50V HIV-1 PR mutant shows a
roughly 600 fold decrease in affinity for lopinavir[11].

The wild type protease’s crystallographic structure was ob-
tained from the PDB file 2BPX. From this structure, all
attached water molecules were removed. Next, using Py-
MOL’s Mutagenesis Wizard, the above mentioned muta-
tions were inserted and the two resulting structures stored
along with the wild type’s. Following this, the three protein
structures were protonated using Muti-Conformation Con-
tinuum Electrostatics (MCCE)[13, 1]. Following protona-
tion, it was confirmed that both catalytic, aspartyl residues
(25D and 25D’) retained a neutral protonation state. It has
been suggested that correct protonation state prediction at
these residues is necessary for accurately calculating binding
free energies[18].

As a starting point for simulating the bound protease, the
binding mode for indinavir, lopinavir, and ritonavir was de-
rived respectively from the PDB files: 2BPX, 1MUI, and
1HXW. Next, AM1-BCC partial charges were assigned for
each ligand. Then a Generalized AMBER Force Field (GAFF)
was used for ligand paramaters[16, 17] and ffamber99sb force
field parameters for the protein[6]. After the force fields for
the ligand and protein were selected and applied to the sys-
tem, a simulation box was set up. A dodecahedral shaped
box with edges 1.2nm from the solute was used and applied
to the models using the GROMACS tool editconf. Finally,
bulk TIP3P water was inserted to fill the simulation box
using the GROMACS program genbox.

Finally, using GROMACS 4.0.7 in conjunction with MPI, we
performed energy minimization, equilibration and dynamics
on our system[5]. A steepest decent minimization of 500
steps was performed. Next, constant pressure and constant
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volume equilibration was carried out on the system. While
this was occurring, the system’s temperature was raised to
300K and the pressure was adjusted to 1atm. Equilibration
steps were carried out for a total of 1100ps. Finally, during
the production stage, we used a 2fs timestep for our simula-
tions which were ran to 100ns, and we recorded data every
picosecond. Ultimately, two duplicate simulations were ran
for each protein and ligand pair.

3. CHALLENGES AND OPPORTUNITIES
As a Chemistry major, I do not have an extensive back-
ground in computer programming, having had only one for-
mal programming course in C++. In addition, I had little
experience with scientific computing environments such as
Linux. To be successful in reaching the set milestones, I
had to first become familiar with Linux, learning how to
navigate the new environment. In addition, I had to learn
Python scripting skills to run most of the analysis tools on
the simulation data. At times, some Perl and R were nec-
essary, and a level of understanding had to be achieved to
move forward.

Human error guarantees that mistakes will be made when
scripting, therefore skills must be developed to find and cor-
rect bugs to again move forward. Troubleshooting is not
only limited to scripting errors; and occasionally, this project
required looking for errors in environmental variables to en-
sure a script had access to the required modules.

An additional challenge was learning how to deal with such
a large problem. One way this was done was using a re-
ductionist approach. Large problems, such as the central
question of this project, can’t be solved as a single problem.
Instead, it was broken down into many smaller problems.
Learning how to break large assignments like this down to
smaller pieces that could be handled day-to-day was key to
success.

Overall, reaching this project’s main goal was a challenge,
requiring the development of new skills ranging from script-
ing to troubleshooting. However, it clearly provided many
opportunities to advance my skills as a researcher. That is,
it fostered my ability reduce large problems down to ones of
workable size and taught me how to work with others in a
research setting.

4. ANALYSIS AND RESULTS
4.1 Flap Tip Distance, RMSD and Hydrogen

Bonding
Searching for clues to give us insight into the mechanism
by which drug resistance arises, we first investigated several
structural and chemical features of the flap tips. A list of the
tools used in this analysis and the properties they measure
are given in Table 1. The flap tips are relatively dynamic
compared to the rest of the protease, moving between closed,
semi-open, and open states when binding ligands. Thus,
their distance of separation may be important for gauging
their activity towards a given inhibitor. The flap tip distance
was defined as the distance between the centers of mass of
residues 50 and 50’. There were not any large differences
in the flap tip distance between mutant and wild type pairs
in many cases as seen in Figures 2-3. And, there was not

Tool Property
g dist Flap tip distance
g rms Flap tip RMSD
g hbond Number of hydrogen bonds
MutInf Mutual information and KL divergence

Table 1: Analysis tools used and properties mea-
sured

a consistent pattern of the mutant or wild type proteases
displaying a larger distance of separation between the flap
tips on average. Moreover, while the flap tip distance in the
mutant in Figure 3 does appear to have more mobility, this
is not consistently seen in other simulations.

For each protein and ligand pair that was simulated, the
RMSD of the flap tips was determined to give us more insight
into the behavior of the flap tips. Included in the RMSD
measurement were residues numbered 46-55 and 46’-55’. As
seen in Figures 4-5 for one particular wild type and mutant
set, there is not a large large difference in the ending value
of the RMSD. That is, the flap tips in both the mutant
and wild type end up displaying nearly the same about of
flexibility. While the flap tips do show greater flexibility in
some of the mutant cases, this is offset by an equal number
of wild type cases showing a higher RMSD.

Another possible effect of mutations on the protease was hy-
pothesized to be a decrease in the interflap hydrogen bond-
ing. Therefore, the number of hydrogen bonds between the
flap tips over time was also used as a metric for identifying
differences between the wild type proteases and the mutants.
Residues 48-53 and 48’-53’ were included in the calculation;
other residues in the flap are too far away from the opposing
flap to form hydrogen bonds. Thus, they were not included
in the calculation. Overall, the results do not show either
the mutants or wild type proteases having more hydrogen
bonds between flap tips on average at this timescale.

While we did not see a difference in the overall amount of
hydrogen bonding between the flap tips in the protease and
wild type proteases, we wanted to know if the mutations pos-
sibly interfered or changed the network of hydrogen bonds
between the flap tips. Moreover, it has been suggested in
the literature that the stability of particular hydrogen bonds
there plays a key role in governing the transitions of the flap
tips from a closed to semi-open conformation[9]. Therefore,
the number of hydrogen bonds between specific pairs of in-
terflap residues was calculated as a function of time. From
our simulations, however, there is no clear change in the hy-
drogen bonding pattern in the flap tips. Specifically, across
cases containing the wild type protease we do not see con-
sistent hydrogen between particular interflap residues which
may suggest the structure and properties of the ligand alter
the dynamics there. However, comparing duplicate simula-
tions of the same wild type/ligand pair, we again did not see
any agreement in the pattern of interflap hydrogen bonding
from one copy to the other. After we completed our analy-
sis using the above three mentioned metrics and having not
found significant structural differences between the wild type
and mutant proteases, we decided to explore the correlations
and patterns of motion within the protease.
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Figure 2: A running average of the flap tip distance
verses time in the wild type HIV-1 PR with lopinavir
bound.
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Figure 3: A running average of the flap tip dis-
tance verses time in the I50V HIV-1 PR mutant
with lopinavir bound.
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Figure 4: A running average of the flap tip RMSD
verses time in the wild type HIV-1 PR with indi-
navir bound.
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Figure 5: A running average of the flap tip RMSD
verses time in the I50V HIV-1 PR mutant with in-
dinavir bound.

4.1.1 Mutual Information
One way we sought to quantify the degree of correlation
between a pair of residues was to measure their mutual in-
formation. This metric communicates to us the degree to
which two random variables are linked; for example, high
mutual information indicates a low uncertainty in one ran-
dom variable given information about the other, and zero
mutual information between two random variables implies
the two variables are independent[8].

4.2 Correlation patterns
Using MutInf, a tool for measuring the mutual informa-
tion between pairs of residues, we were able to put together
mutual information matrices showing the degree to which
one residue’s dihedral movements are correlated to another’s
[10]. This was done by comparing the distribution of angles
for each torsional degree of freedom for each residue to those
of each other residue. Once we identified which residues were
correlated in each simulation with MutInf and put together
matrices showing that information using the R statistical
package, we sought to see how the correlations were affected
by the presence of mutations[12].

Identifying differences between wild type and mutant mutual
information matrices cannot be achieved by simply taking
the difference between two matrices because of a high level
background noise. This was found by taking the difference
between matrices from duplicate simulations of the same
protease and ligand pair. As a result, we found it more use-
ful to look at residues exhibiting a correlation above a cut off
of 1.2kT in each case. This cutoff was the maximum correla-
tion in the I82F/I84V HIV-1 PR variant bound to ritonavir
in the first set of simulations, and it was the smallest corre-
lation we found in all the cases we examined. This helped by
eliminating correlated, adjacent residues from consideration
which are not very interesting. One would expect two adja-
cent residues with bulky side chains to show some degree of
correlation since steric hindrance by one residue’s side chain
may influence when the other’s can and cannot move.

Once we identified the pairs of residues showing a high de-
gree of correlation, the ones sharing a common residue were
grouped together. We then compared the groups of cor-
related residues in the wild type protease to those in the
mutant protease. We saw a high degree of variability in the
location of the groups as well as the number of groups in
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Figure 6: HIV-1 PR with residues found to have
a 5% or greater mutation probability during drug
treatment colored red[11].

most cases. Moreover, comparing the results from copies of
the same case to one another, we again do not see much
overlap between the locations of the groups of correlated
residues. Further, in some cases, we had very few groups to
use as a basis for comparison because of the chosen cut off
value.

4.2.1 Mutation Sites and Correlated Residues
We also thought it interesting to explore whether drug in-
duced mutations in the protease arise in correlated residues
more often than not. It has been determined experimentally
that 44 residues in the protease show a mutation probability
greater than 5% in patients undergoing treatment for AIDS
with protease inhibitors[11]. These 44 residues are shown in
Figure 6. We calculated a 39% probability that a residue
in a random picked pair would be at a mutation site. Next,
when we determined the percentage of residues in correlated
groups that are at mutation sites for each case, and we did
not find a large deviation from that percentage. This sug-
gests that these mutations do not occur at residues with
correlated motions more often than other sites.

4.3 Kullback-Leibler divergence
A final analysis was done using Kullback-Leibler (KL) di-
vergence. This analysis compared the overlap between a
distribution of dihedral angles for each residue in the wild
type protease to the corresponding residue in the mutant
protease, according to equation 1. Ideally, this would allow
one to identify areas where mutations alter the flexibility and
motions of the protease. Before we performed this analysis,
the simulation trajectory data from duplicate simulations of
the same protein/ligand case was combined.

DKL(P ||L) =

∫
P (i) log

P (i)

Q(i)
(1)

Our results show large differences between the wild type and
mutants’ distributions of dihedral angles for residues at the

mutation sites as expected. However, the KL divergence at
other residues, which were not mutated, is more interesting.
In the second HIV-1 PR variant with mutations V82F and
I84V, we still see a significant divergence in several of the
flap tip residues as shown in Figure 7. Perhaps, the motions
of these residues are transferred though the ligand to the
residues at the flap tips.

5. CONCLUSIONS
In summary, we do not see significant structural differences
between the wild type and mutant proteases at the 100ns
timescale. Specifically, both mutants and the wild type do
not largely differ with respect to their flap tip distance and
RMSD on average. Also, we did not observe any patterns
in the interflap hydrogen bonding in the same case

duplicate simulations, making it hard to identify alterations
in the hydrogen bonding network induced by mutations.
Next, using the results of a mutual information analysis to
group correlated residues, we did not observe consistent pat-
terns in the location of the correlated groups. And, there was
not a correlation between the location of correlated residues
and mutation sites. Finally, we preformed a KL divergence
analysis which showed the mutated residues do have signif-
icantly different distributions of torsional angles. However,
only in one case involving the V82F/I84V HIV-1 PR variant
do we see the mutations possibility altering the motions of
residues elsewhere in the protease. Moreover, it is seen that
the residues in the flap tips also show a high KL divergence
from the wild type in this case, suggesting the motions of
residues 82, 84, 82’, and 84’ may be transferred though the
ligand to the flap tips.

Despite the lack of large structural differences between wild
type and mutant strains of the HIV-1 PR observed in our
simulations, there is hope that future studies may reveal
key changes conferred by the mutations onto the protease
thereby lending insight into the mechanism by which resis-
tance arises. One strategy may be to run simulations of the
unliganded HIV-1 PR variants at the same timescale, since
large scale flap tips conformational change has been observed
to occur spontaneously on the nanosecond timescale by oth-
ers[7]. Alternately, for the ligated enzyme, longer simula-
tions on the microsecond timescale may be needed.

6. IMPACTS
This undergraduate research internship has helped motivate
my decision to go to graduate school to study computational
chemistry. While I considered going to graduate school a
possibility prior to participating in this internship, the in-
ternship helped reaffirm my interest in it by providing the
opportunity to participate in real research, proving it can be
quite a rewarding experience.

In graduate school, I hope to continue my study of computa-
tional chemistry and learn more about different simulation
methodologies and how they can be applied to solving real
world problems. To further my abilities in this area, I plan
to take courses in statistical mechanics, protein chemistry,
and chemical kinetics and dynamics.
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Figure 7: Putty representation of HIV-PR showing KL divergence for three variants. From left to right: a.)
V82F/I84V, b.) I50V, and c.) wild type. Thicker putty indicates a greater divergence. Color also is used to
indicate each residue’s KL divergence with black indicating zero divergence followed by blue (low divergence)
progressing to red (high divergence).

7. RECOMMENDATIONS
The Blue Waters Undergraduate Petascale Education Pro-
gram provided a great introduction to the world of scien-
tific computing. At the workshop, each intern was provided
an abundance of resources, ranging from notes on different
HPC architectures to information on topics specific for that
interns project. Moreover, this workshop served a vital role
in providing skills necessary to successful utilize high perfor-
mance computing resources. Furthermore, the BW-UPEP
provided excellent training for someone with little prior ex-
perience in HPC, making parallel computing concepts read-
ily understood.

Unfortunately, the limited time of the two week workshop
only allows so many topics to be covered. One way to maxi-
mize the benefit to each intern may be to schedule times were
the interns are separated into groups based on their project’s
area. For example, groups could be centered around the life
sciences, physical sciences and engineering, and computer
science. When the groups meet, topics taught would relate
only to the relevant subject area.
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