
November 2025
Volume 16 Issue 2

Contents Volume 16, Issue 2

Introduction to Volume 16 Issue 2 .. 1
David Joiner, Editor

Scaling Instructional Workflows in Data Science Education using JupyterHub and Otter-Grader 2
Sai Annapragada.

Coding through Storytelling: Narrative Reasoning and Software Engineering Education .. 5
S. Charlie Dey, Jeaime H. Powell, Victor Eijkhout, Joshua Freeze, and Susan Lindsey

Classroom Applications of Question Formulation to Support Problem-Solving in Computer Science 10
James Quinlan and Michael Todd Edwards

Enhancing HPC Education through Virtual Cluster Administration and Benchmarking ... 16
Charles Ross Lindsey, Jeffrey Valdez, Aaron Jezghani, Will Powell, and Richard Vuduc

Facilitating Academic Research with FPGA Support in a University Data Center .. 22
Jeevesh Choudhury, Thomas Jennewein, and Gil Speyer

A Novel 3D Recurrent R-CNN for Medical Imaging Feature Detection: A Case Study for Coronary
Calcium Detection .. 29
Vikas Sarvasya, Robert Gotwals, and Liam Butler

Introduction to Volume 16, Issue 2
David Joiner, Editor

Kean University
djoiner@kean.edu

Journal of Computational Science Education Volume 16, Issue 2

November 2025 1

This issue of our journal features six new contributions that show-
case current advances in computational science education, data
science pedagogy, high-performance computing, and applied ma-
chine learning. Together, these papers demonstrate the continued
evolution of computational thinking as a cornerstone of modern
education and research practice.

This issue’s featured articles are as follows:
Sai Annapragada presents Scaling Instructional Workflows in

Data Science Education using JupyterHub and Otter-Grader, de-
scribing the implementation of a scalable instructional workflow at
the University of California, Merced. By integrating JupyterHub,
Otter-Grader, and GitHub, the approach streamlines notebook dis-
tribution and automated grading, reducing administrative overhead
and improving reliability for large data science courses.

S. Charlie Dey, Jeaime H. Powell, Victor Eijkhout, Joshua
Freeze, and Susan Lindsey introduce Coding through Storytelling:
Narrative Reasoning and Software Engineering Education. This
paper explores a pedagogical model that encourages students to
“tell the story” of their code—using narrative reasoning to enhance
debugging, metacognitive awareness, and clarity of expression in
software development.

James Quinlan and Michael Todd Edwards share Classroom
Applications of Question Formulation to Support Problem-Solving
in Computer Science, describing the use of the Question Formula-
tion Technique (QFT) to help students learn to ask more effective
questions. The authors report improvements in engagement and
critical thinking, offering practical prompts and reflections for edu-
cators seeking to strengthen inquiry in computing instruction.

Charles Ross Lindsey, Jeffrey Valdez, Aaron Jezghani, Will
Powell, and Richard Vuduc present Enhancing HPC Education
through Virtual Cluster Administration and Benchmarking, detail-
ing the use of a hardware-agnostic “Virtual Cluster” environment to
teach system administration and performance benchmarking. Their
approach provides students with authentic, hands-on experience in
HPC configuration and management while lowering infrastructure
barriers.

Jeevesh Choudhury, Thomas Jennewein, and Gil Speyer
describe Facilitating Academic Research with FPGA Support in a
University Data Center. The paper examines strategies employed
at Arizona State University to make FPGA-based research more
accessible, highlighting efforts to integrate high-level synthesis

tools and lower the expertise threshold for sustainable, energy-
efficient high-performance computing.

Vikas Sarvasya, Robert Gotwals, and Liam Butler present A
Novel 3D Recurrent R-CNN for Medical Imaging Feature Detection:
A Case Study for Coronary Calcium Detection. This student-led
research project introduces a deep learning model capable of ac-
curately identifying coronary structures and estimating calcium
scores in non-gated chest CT scans, demonstrating the growing
role of computational methods in medical image analysis.

We encourage you to submit your work to the Journal of Com-
putational Science Education. Computational science is an increas-
ingly important interdisciplinary field, offering insights into com-
plex systems, accelerating discovery, and helping to solve diverse
problems. We welcome high-quality papers describing instructional
materials, successful projects, or research on instructional efficacy.
Whether you are faculty or a student, your contributions are valu-
able to advancing computational science education. Additionally, if
you have expertise in computational science, consider volunteer-
ing as a reviewer to support our peer review process. Together,
we can share successes and inspire others to develop and adopt
computational science in education.

Finally, this issue is dedicated to the memory of Dr. Robert M.
Panoff, whose life and work profoundly shaped our community. I
first met Bob in October of 1999, as a nearly-newly-minted Ph.D.
applying for a position at Shodor. For me personally, he became
both a mentor and a friend, and my years working with him shaped
me more than I can say. His unwavering belief that anyone could be-
come a scientist, coupled with his empathy and deep understanding
of those around him, were truly legendary. Bob founded the Shodor
Education Foundation in 1994 and led it for three decades, building
a national community of educators who brought computational
science into their classrooms. Through Shodor and the National
Computational Science Institute, he trained thousands of teachers
and faculty and helped inspire an entire generation of computa-
tional thinkers. He was also one of the guiding voices in founding
this journal and a member of the editorial board from its creation.
For so many of us, the work we continue to do carries forward in
his honor and memory.

Sincerely, Dave Joiner

Scaling Instructional Workflows in Data Science Education using
JupyterHub and Otter-Grader

Sai Annapragada
University of California, Merced
sannapragada@ucmerced.edu

ABSTRACT
At the University of California, Merced (UCM), an instructional
workflow was adopted t o support t he t eaching o f data science
at scale. This workflow integrated JupyterHub, Otter-Grader, and
GitHub to facilitate browser-based notebook execution, simplify as-
signment distribution, and automate grading. Initially built around
a shared-folder model—where instructors placed course materials
in a shared-readwrite directory that automatically appeared as a
read-only shared directory for all students—the system transitioned
to a GitHub-based setup using nbgitpuller. This shift allowed in-
structors to distribute assignments and course materials through
direct links, removing the need for students to navigate the shared
folder manually. By doing this, the need for admin privileges was
removed, reducing the risk of accidental deletion of course con-
tent from the shared read-write folder. This paper presents our
instructional strategy, key challenges addressed, implementation
experience, and insights for educational institutions seeking to
adopt similar models.

KEYWORDS
Data Science Education, JupyterHub, Otter-Grader, GitHub,
Educational Workflows, Scalable Instruction

1 NATURE OF THE TRAINING OR
EDUCATION PROGRAM

The pilot implementation, initiated by the Department of Applied
Mathematics, introduced the use of JupyterHub in computational
courses during the Fall 2023 and Spring 2024 semesters. The pi-
lot implementation was carried out in Data Science (DSC 008), an
introductory data science course, with student enrollments averag-
ing between 50-100 students per term. The coursework included
weekly assignments, labs, and a term project, with an emphasis on
interactive, code-based exploration of datasets. The data science
Python package, initially developed by UC Berkeley, was adopted
to make programming more accessible to students from diverse
backgrounds. As a pedagogical tool, it allows students to carry out
basic data science tasks–such as loading, summarizing, and visu-
alizing data without needing to first learn more complex libraries
like pandas or matplotlib. With this pilot implementation, several
issues related to JupyterHub were identified and resolved, and it

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2025 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/16/2/1

helped establish a walkthrough for teaching and sharing course
materials using JupyterHub and nbgitpuller.

Jupyter Notebooks allow students to write and execute code
directly in their browsers, eliminating the need for individual soft-
ware installation. Faculty can deliver assignments and instructional
content using this unified interface. The environment was designed
to promote reproducibility, modular coding practices, and collabo-
rative learning. The need for a scalable and standardized approach
became evident as multiple instructors and teaching assistants were
involved in managing large classrooms. Consequently, the work-
flow was expanded to address these operational and pedagogical
requirements.

2 STRATEGY
In the pilot implementation, JupyterHub was deployed as a cen-
tralized computing environment to host course notebooks and
assignments. Faculty members and instructors were granted ad-
ministrative access, allowing them to upload teaching materials
to a shared read-write directory. Students had access to a shared
read-only folder from which they could copy content into their
own workspace.

While this methodwas simple to implement, it soon led to several
challenges:

• Instructors with administrative privileges could unintention-
ally overwrite or delete each other’s course content.

• Teaching assistants, who were also enrolled in other courses
as students, had access to confidential materials such as
solution notebooks.

To mitigate these issues and establish clearer boundaries be-
tween access roles, we introduced nbgitpulle—a browserbased open-
source tool that integrates with JupyterHub and GitHub. In the
revised workflow, instructors maintained two separate Git reposito-
ries: one private repository containing answer keys and test cases,
and a public repository containing only the student-facing materi-
als. Using nbgitpuller, faculty can generate custom links that point
to specific repositories and branches, which students could access
directly from Cat-Courses (LMS) or email. Upon clicking the link,
JupyterHub would launch automatically and pull the necessary files
into the student’s home environment.

This approach eliminated the need for a shared folder and re-
moved administrative access for instructors and teaching assistants.
It also ensured that every student received an identical copy of the
materials in an isolated environment, thereby reducing compatibil-
ity issues. Larger datasets, where file sizes exceeded GitHub’s 25
MB limit, were handled separately by having RISI engineers upload
them to the shared folder upon request.

Volume 16, Issue 2 Journal of Computational Science Education

2 November 2025

https://doi.org/10.22369/issn.2153-4136/x/x/x

3 ASSESSMENT OR EVALUATION TECHNIQUE
The effectiveness of this workflow was evaluated using a combi-
nation of technical observations and feedback from faculty and
teaching staff. During both the pilot phase and the actual imple-
mentation phase, each user was initially allocated 1GB of RAMwith
2 CPU cores. However, for the Data Science course, additional com-
putational power was required to complete assignments efficiently.
Upon consultation with faculty, it was decided to offer users the
option to choose between 1 GB and 2 GB of RAM, depending on
the complexity and computational needs of each assignment. This
adjustment helped instructors and students avoid notebook crashes
while working on resource-intensive tasks.

Faculty surveys and informal interviews indicated a high level
of satisfaction. Once instructors began using JupyterHub and nbgit-
puller, the JupyterHub infrastructure team consistently reached out
to faculty to check for any issues related to the newly adopted pro-
cess of distributing and grading notebooks. This included commu-
nication through emails, visits to their offices based on availability,
and attending classes where JupyterHub was used—particularly in
data science-related courses. These direct interactions helped iden-
tify challenges faced by instructors and students during instruction.
Based on this feedback, the RISI engineer provided on-the-spot tech-
nical support to address issues and improve the overall classroom
experience.

Moreover, the number of support requests related to software
setup and assignment access saw a significant decline. The volume
of grading queries was also reduced due to the successful imple-
mentation of Otter-Grader. As part of this implementation, course
notebooks were converted into an Otter-Grader–compatible format.
Otter-Grader is a Python-based package that enables instructors
to design assignments and projects directly within notebooks by
embedding test cases and solutions and assigning marks to each
question. When a student answers a question, Otter-Grader allows
them to check their response against the expected output, and if
there are any errors, it can generate hints based on the provided so-
lutions. This approach not only helps students verify their work in
real time but also allows instructors to automate the grading process
through integration with CatCourses(LMS) and Gradescope.

4 EVALUATION OF ITS SUCCESS
The transition to a Git-based, reproducible workflow brought about
measurable improvements in operational efficiency and instruc-
tional quality. Stability of the JupyterHub environment improved
markedly following the RAM upgrade. Administrative challenges
were eliminated by removing elevated access privileges for non-
technical users. With the integration of Otter-Grader and Grade-
scope, instructors were able to automate grading workflows, par-
ticularly in large classes where manual grading would otherwise
have been time-consuming and error-prone. During the pilot phase,
Otter-Grader-based Jupyter Notebooks were introduced to help
instructors create assignments and projects with embedded test
cases, predefined solutions, and marks. These notebooks allowed
students to check their work in real time and receive hints based
on the provided solutions.

Gradescope, an online grading platform, was then integrated
with CatCourses (LMS) using the LTI 1.3 protocol. This integration

enabled students to submit their notebooks digitally, and instructors
or teaching assistants could grade them automatically using the
test cases created within Otter-Grader. The system supported both
scanned paper-based submissions and digital notebooks, thereby
streamlining the grading process and improving efficiency.

As a result of the combined implementation of JupyterHub in-
frastructure, Otter-Grader, nbgitpuller, and Gradescope integration,
students no longer faced setup-related issues for data science course-
work. The infrastructure was reliably available and accessible 24/7,
and there was no need for students to install packages manually.
This allowed them to focus entirely on the learning objectives. Ad-
ditionally, faculty and teaching assistants were relieved from setup
and grading burdens, allowing them to spend more time supporting
students with course content and concepts.

5 LESSONS LEARNED
5.1 Risks of Shared Administrative Access
One of the primary lessons learned was that shared environments
with administrative access pose risks to content integrity and pri-
vacy. Moving to a version-controlled system using GitHub and
nbgitpuller provided a clear separation of responsibilities and im-
proved accountability. However, this transition required faculty to
undergo basic training in Git, including branch management and
version control. It was also observed that even faculty members
with prior experience using Git and related tools were not always
following best practices, leading to inconsistencies in content shar-
ing and collaboration.

5.2 Need for Controlled Package Installation
During the rollout, it became evident that instructors required
various Python and R packages to support their coursework. To
streamline package installation and ensure reliability, a staging
JupyterHub environment was introduced. This allowed the infras-
tructure team to test new packages before deploying them to the
production hub, maintaining stability and compatibility.

5.3 Standardizing the Package Request Process
To formalize and simplify the package request process, a Servi-
ceNow request workflow was implemented, and a knowledge base
article was developed to guide instructors through the steps. This
provided a traceable and standardized process for requesting pack-
ages, reducing ad hoc installations and improving coordination
between faculty and the support team.

5.4 Adoption of Otter-Grader and Gradescope
Setting up Otter-Grader required an initial investment of time to
define test cases and structure the notebooks accordingly. However,
once established, the tool provided long-term benefits by enabling
automated grading. CatCourses (LMS) integration with Gradescope
also required careful configuration but proved effective in delivering
a fully automated grading pipeline.

5.5 Development of JupyterHub Documentation
To support faculty and teaching assistants in using these tools ef-
fectively, a dedicated documentation website was developed for

Journal of Computational Science Education Volume 16, Issue 2

November 2025 3

JupyterHub. This site includes detailed sections on distributing
notebooks using GitHub and nbgitpuller, designing assignments
with Otter-Grader, and grading them through Gradescope. The
documentation has proven helpful in onboarding new instructors,
reducing repeated support queries, and promoting consistent work-
flows across multiple courses.

6 REPRODUCIBILITY OF INSTRUCTIONAL
JUPYTERHUB SETUP AND RESOURCE
ALLOCATION PROCESS

All tools utilized in this workflow—JupyterHub, GitHub, Otter-
Grader, Gradescope, and nbgitpuller—are open-source or institu-
tionally supported platforms. The setup is reproducible by institu-
tions with access to basic cloud or server infrastructure.

At UCMerced, the JupyterHub solution is deployed on a Kubernetes-
based cloud platform. For institutions aiming to replicate this envi-
ronment, a reasonable starting point for minimum server require-
ments for JupyterHub on Kubernetes includes 2 CPUs, 4 GB of
RAM, and 16 GB of disk space. Storage for each user generally
starts at 10 GB and can be adjusted based on specific course needs.
However, actual resource requirements will vary depending on the
number of users, usage patterns, and the nature of notebooks being
executed.

For smaller classes or individual departments, an alternative
solution such as The Littlest JupyterHub (TLJH) can be considered.
TLJH can be deployed on a user’s own virtual machine or physical
server. The server must have at least 1 GB of RAM, with 128 MB
reserved for TLJH and associated services.

Template repositories and configuration guides are being devel-
oped to support reuse and expansion of the setup. The approach
requires minimal technical overhead for students, as they access the
environment through their browser. Faculty and support staff need
moderate technical skills to maintain Git repositories and prepare
Otter-based assignments. The modular nature of this workflow
allows for easy extension across academic terms and disciplines.

7 RELEVANCE TO THE BROADER RANGE OF
TRAINING OR EDUCATION TOPICS

By setting up an infrastructure like the one described in this paper,
institutions can adopt tools such as JupyterHub, GitHub, and Otter-
Grader for instructional use in a structured and scalable manner.
These platforms, widely used in research environments, can be
configured to support teaching by providing a unified and accessible
environment for coding, analysis, and evaluation.

The browser-based nature of JupyterHub significantly lowers
the barrier to entry for students, especially those who are new to
programming or do not have access to high-end computing devices.
As no local installation is required, students can concentrate on the
coursework without technical distractions. Faculty and teaching
assistants benefit from consistent workflows that simplify content
delivery and assignment management across multiple courses. This
instructional model can be extended beyond data science to support
computational topics in engineering, biology, economics, and other
fields that require hands-on coding and analysis.

8 CONCLUSION
The instructional JupyterHub setup at UCMerced has demonstrated
a successful model for scaling data science education through inte-
grated technology and workflows. By transitioning from a shared-
folder approach to a Git-based system using nbgitpuller, the solu-
tion addressed critical issues around content management, access
control, and distribution.

The implementation of Otter-Grader streamlined assessment
processes, allowing instructors to automate grading and provide
immediate feedback to students. This approach has significantly
reduced the administrative burden on faculty while enhancing the
student learning experience through consistent access to computa-
tional resources and educational materials.

The infrastructure choices made—specifically the Kubernetes-
based JupyterHub deploymentwith appropriate resource allocation—
have proven to be reliable and scalable for supporting classes of
varying sizes. For institutions with different needs or resources,
The Littlest JupyterHub offers a more lightweight alternative. The
lessons learned from this implementation highlight the importance
of clear access controls, standardized processes for package man-
agement, and comprehensive documentation. These insights can
inform similar initiatives at other educational institutions seeking
to scale their computational teaching environments.

As computational methods continue to expand across disciplines,
the approach described in this paper offers a model that can be
adapted beyond data science to support diverse educational needs
where interactive, code-based learning is beneficial. The browser-
based, standardized environment reduces technical barriers for
students and allows faculty to focus on teaching rather than trou-
bleshooting.

ACKNOWLEDGEMENTS
Anthropic AI tool Claude Consensus was used in the authoring of
this paper as a research tool.

A APPENDIX: ADDITIONAL RESOURCES
The following resources provide more information about the tools
and platforms discussed in this paper:

• JupyterHub: https://jupyter.org/hub
• The Littlest JupyterHub: https://tljh.jupyter.org/
• Otter-Grader: https://otter-grader.readthedocs.io/
• Data Science Python Package: https://www.data8.org/datascience/
• Gradescope: https://www.gradescope.com/
• nbgitpuller: https://nbgitpuller.readthedocs.io/en/latest/link.
html

• UC Merced JupyterHub: https://jupyterhub.ucmerced.edu/
• UC Merced Grading Documentation: https://ucm-it.github.
io/hpc_docs/docs/jupyter/canvas

• Canvas-Gradescope Integration: https://guides.gradescope.
com/hc/en-us/articles/23586543164173-Using-Gradescope-LTI-
1-3-with-Canvas-as-an-Instruct

Volume 16, Issue 2 Journal of Computational Science Education

4 November 2025

https://jupyter.org/hub
https://tljh.jupyter.org/
https://otter-grader.readthedocs.io/
https://www.data8.org/ datascience/
https://www.gradescope.com/
https://nbgitpuller.readthedocs.io/en/ latest/link.html
https://nbgitpuller.readthedocs.io/en/ latest/link.html
https://jupyterhub.ucmerced.edu/
https://ucm-it. github.io/hpc_docs/docs/jupyter/canvas
https://ucm-it. github.io/hpc_docs/docs/jupyter/canvas
https://guides.gradescope.com/hc/en-us/articles/
https://guides.gradescope.com/hc/en-us/articles/

Coding through Storytelling: Narrative Reasoning and Software
Engineering Education

S. Charlie Dey
Texas Advanced Computing Center

fcharlie@tacc.utexas.edu

Jeaime H. Powell
Omnibond Systems

fjeaime@omnibond.com

Victor Eijkhout
Texas Advanced Computing Center

feijkhout@tacc.utexas.edu

Joshua Freeze
Texas Advanced Computing Center

fjfreeze@tacc.utexas.edu

Susan Lindsey
Texas Advanced Computing Center

fslindsey@tacc.utexas.edu

ABSTRACT
To become a successful software engineer, technical competence
alone is not enough. Students must learn to reason about their
code, articulate their intentions, and locate errors with clarity and
confidence. This paper introduces a pedagogical approach rooted
in the metaphor of “telling a story.” By encouraging students to
narrate their code—identifying protagonists (variables), plotlines
(control flow), and conclusions (outputs)—we promote a practice
of self-explanation that strengthens metacognitive awareness and
debugging skills. Drawing from experiences in the classroom, we
show how storytelling helps students pinpoint bugs, communicate
intent, and ultimately write more understandable code. We connect
these practices with existing research on metacognition, program
comprehension, and human-centered computing, and describe how
this narrative approach provides a scalable, inclusive, and transfer-
able tool for future computational engineers and scientists.

KEYWORDS
Metacognition, Human-centered programming, teaching coding

1 INTRODUCTION
In undergraduate high-performance computing (HPC) program-
ming courses, a common challenge is students’ difficulty in articulat-
ing the context of their code during debugging sessions. Typically,
students focus narrowly on specific syntactic, semantic, or logical
errors, omitting the broader purpose of their program, which hin-
ders effective instructor guidance. Traditional prompts like “walk
me through your code” often prove challenging as students simul-
taneously navigate the problem domain, programmatic issues, and
the syntax of a new programming language. To address this, a
pedagogical approach grounded in narrative reasoning—a cogni-
tive framework that leverages humans’ natural ability to process
sequences and causality—has been adopted [2]. This method, imple-
mented through a storytelling exercise, encourages students to shift
from a micro-level focus on errors to a macro-level observation of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2025 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/16/2/2

their code’s logical narrative, aligning with constructivist learning
principles.

1.1 Classroom Implementation
The storytelling approach involves prompting students to “tell the
story of your code,” often with a playful opener like “Once upon a
time. . . ” This shifts their perspective from being immersed in tech-
nical details to viewing their code as a narrative with characters
(variables), plot (control structures), and resolution (outputs). For
example, a student might describe a variable as a character navigat-
ing a dataset, making decisions based on conditions, and collecting
results. When the narrative falters—such as when a student cannot
logically continue the story—it often signals a misunderstanding of
a function, algorithm, or logical flow, pinpointing the bug’s location.
This process also reveals syntactic errors, like missing punctuation
or misnamed variables, as students verbalize their logic in a human-
readable format.

This paper argues that narrative reasoning—a natural human
faculty for explaining sequences, causality, and change—can be
harnessed as a powerful tool in software engineering education.
Specifically, it supports:

• Self-explanation during coding and debugging
• Improved program comprehension through structured rea-
soning

• Communication and collaboration via shared narrative fram-
ing

Through classroom observations, existing research, and pro-
posed curricular strategies, we introduce a narrative framework
that promotes reflective practice among novice programmers.

2 DISCUSSION
Grounded in constructivist learning theory, the storytelling ap-
proach encourages learners to actively build mental models by
narrating the structure and intent of their code. We present a
model that maps programming constructs to narrative elements—
such as characters, setting, and plot—to promote comprehension,
self-explanation, and reflective practice. Supported by research
in metacognition, program comprehension, and learner-centered
design, this approach not only improves debugging and problem-
solving skills but also fosters engagement and communication,
particularly among novice and diverse learners. Together, these
foundations establish storytelling as both an effective teaching tool

Journal of Computational Science Education Volume 16, Issue 2

November 2025 5

https://doi.org/10.22369/issn.2153-4136/x/x/x

and a cognitive scaffold for navigating the complexities of program-
ming.

2.1 Educational Framework: Constructivism
This approach is rooted in the constructivist learning framework,
which posits that learners actively construct knowledge through
experience and reflection [9]. By narrating their code, students
externalize their mental models, making assumptions and errors
explicit, which facilitates refinement of their understanding. The
narrative structure serves as a scaffold, connecting new program-
ming concepts to familiar storytelling patterns, thus enhancing
comprehension and retention.

2.2 Model Overview
The educational model for “coding through storytelling” is a narra-
tive pedagogy that encourages students to conceptualize code as a
story with narrative elements: characters (variables and objects),
plot (control flow), setting (initial conditions), conflict (conditionals
or loops), and resolution (outputs or goals). Grounded in construc-
tivism, which posits that learners actively construct knowledge
through experience and reflection [9], this model integrates sev-
eral pedagogical practices to foster metacognition, problem-solving,
and communication skills. It aligns with research on program com-
prehension as storytelling [2] and metacognition in programming
[5].

2.3 Benefits of the Storytelling Approach
The narrative-based pedagogy offers several educational benefits,
supported by empirical research:

(1) Improved Debugging: Narrating code shifts students’ fo-
cus to the program’s logical flow, revealing inconsistencies
or misunderstandings that pinpoint bugs. This aligns with
findings on self-explanation, which show that verbalizing
thought processes enhances problem-solving [8].

(2) Enhanced Metacognition: The act of storytelling fosters
metacognitive awareness, encouraging students to reflect
on their understanding and problem-solving strategies, a
critical skill in programming education [5].

(3) Increased Engagement: The playful prompt “Once upon
a time. . . ” adds levity to debugging, making it more ap-
proachable, particularly for diverse learners, as supported
by learner-centered computing education principles [4].

(4) Better Communication: Narrating code helps students articu-
late their intent clearly, a vital skill for collaborative software
development, aligning with broader educational goals [4].

(5) Enhanced ProgramComprehension: Framing code as a narra-
tive improves understanding by leveraging natural cognitive
tendencies to process stories, as evidenced by research on
program comprehension [2].

2.4 Academic Foundations
The storytelling approach is supported by several areas of comput-
ing education research:

• Narrative Reasoning: A systematic review highlights story-
telling’s role in software development, noting its benefits in

planning, requirements elicitation, and prototyping, provid-
ing a theoretical basis for its use in education [2].

• Self-Explanation: Verbalizing thought processes during pro-
gramming improves learning outcomes, as demonstrated in
a randomized experiment with self-explanation assignments
[8].

• Metacognition: Metacognitive strategies, such as reflection
and self-regulation, are essential for programming novices,
and storytelling prompts such reflection [5].

• Program Comprehension: Understanding code as a narra-
tive enhances comprehension by aligning with cognitive
processes for processing sequences and causality [1].

• Learner-Centered Design: Storytelling makes programming
more accessible and engaging, particularly for diverse stu-
dent populations, aligning with learner-centered educational
approaches [4].

2.5 Metacognition and Self-Explanation
Metacognition—thinking about one’s own thinking—is a critical
skill in learning to program. Studentswho engage in self-explanation
while coding are more likely to detect misunderstandings and re-
fine their mental models of how code behaves. Loksa et al. [5]
describe self-regulation strategies in novice programmers, includ-
ing planning, monitoring, and debugging as metacognitive acts that
enhance learning outcomes.

Narration is one such form of self-explanation. By “telling the
story” of what a program does, students externalize their reasoning
process—making it easier to spot contradictions, misconceptions,
or gaps in understanding.

2.6 Code as Story
Ciancarini et al. [2] explored the idea that program comprehension
can be improved by treating code as a narrative structure. They
liken variables to characters, control flow to plot, and comments to
narration—a framing that helps learners understand not just what
the code does, but why. This aligns with how expert programmers
often read code: not linearly, but semantically—constructing a story
that explains behavior.

Recent neuroscience also supports this framing. Peitek et al.
[6] used fMRI to show how code complexity and vocabulary bur-
den working memory during comprehension, aligning with story-
telling’s role in structuring mental load.

2.7 Debugging, Deconstruction, and Literacy
Debugging as hypothesis testing is a narrative act—imagining what
should happen, then identifying where the story breaks. Griffin [3]
advocates for "deconstructionist" learning, where reading, tracing,
and debugging come before code writing, aligning well with our
approach.

Storytelling in teaching also supports literacy, creativity, and
critical thinking. Satriani [7] found storytelling enriched vocabulary,
engagement, and comprehension in literacy classrooms—benefits
that transfer to code comprehension as well.

Volume 16, Issue 2 Journal of Computational Science Education

6 November 2025

3 THE NARRATIVE PEDAGOGY
3.1 Characters, Plot, and Purpose
In the classroom, we frame code as a story with:

• Protagonists: Variables, objects, or agents that change or act
• Setting: Initial conditions and inputs
• Plot: Control flow — how the story unfolds step-by-step
• Conflict: Conditionals or loops that create decision points
• Resolution: Output, state changes, or goals achieved

This structure helps students identify the logical and conceptual
components of a program more intuitively. By mapping code to
familiar storytelling elements, students create a mental schema that
aids in both comprehension and retention.

We often begin exercises by giving students a blank narrative
framework and asking them to fill it in with elements from a given
code snippet or problem description. This reverse-engineering of
story from code builds analytical skills, while designing stories
before writing code builds synthesis.

3.2 Writing the Story Before the Code
While debugging often reveals where the narrative breaks down,
equally powerful is the practice of writing the story first. Before
any code is written, students are encouraged to map out the “story
arc” of their program:

• Who are the characters? (variables, inputs, actors)
• What is the setting? (initial conditions or assumptions)
• What is the problem/conflict? (what needs to be solved or
computed)

• What is the plot? (algorithm or logical steps)
• How does the story end? (output or goal)

This pre-coding narrative acts as a mental simulation of the
algorithm and guides students away from immediately jumping into
syntax. It shifts the focus from what code to write to what problem
to solve—a critical reframe, especially for novice programmers.

This practice also aligns with professional software design prin-
ciples, such as:

• Test-driven development, where the tests represent the ex-
pected outcomes of the story

• Design-first thinking, where logic is mapped out before im-
plementation

• Algorithm sketching, used in pseudocode or flowchart form
to visualize intent

By embedding storytelling at the design stage, we encourage fore-
sight, structure, and intentionality in programming. It also supports
better communication in team settings, as students can articulate
the purpose and logic of their code before implementation.

3.3 Finding the Bug Through the Broken Story
In debugging exercises, students are asked to “read aloud the story”
of their code. Where the story breaks—where they pause, contradict
themselves, or say “I’m not sure what this part does”—is almost
always the bug’s location.

This technique externalizes cognition,making theirmentalmodel
visible. It also mirrors professional practices: code reviews and pair

programming sessions often revolve around shared narrative ex-
planations of what code is doing.

We also incorporate peer-debugging activities where students
exchange code and provide narrative explanations of what the code
is “supposed” to do. This collaborative storytelling not only builds
comprehension but fosters peer support and critical dialogue.

4 CLASSROOM IMPLEMENTATION
4.1 “Storytelling Debugging” Sessions
In small-group help sessions, office hours, or lab time, instructors
and TAs engage students in live storytelling about their code. These
sessions begin with the student walking through their program line
by line, describing what each part is supposed to do, in their own
words. Interruptions or breakdowns in the narrative usually signal
areas of confusion or bugs. The instructor can then prompt deeper
reflection with questions like:

• What’s the role of this variable here?
• What happens next in the story?
• Does the ending make sense given the plot so far?

This Socratic approach encourages self-correction and metacog-
nitive awareness. These sessions are particularly effective in early-
course projects where logic may be simple, but the storytelling gap
is often large.

4.2 Reflective Journals and Pair Storytelling
To reinforce the storytelling practice outside structured help ses-
sions, students maintain reflective journals where they document
the story of their code weekly. These can include narrative de-
scriptions, flow diagrams, or even short paragraphs written as if
explaining their solution to a non-programmer. Prompts might
include:

• What was the goal of my code this week?
• Who were the main characters (variables/functions)?
• What surprised me in the process?

In “pair storytelling,” students take turns reading and retelling
each other’s code in small groups. This not only strengthens their
understanding of syntax and semantics but also develops critical
peer review skills. When a peer can’t explain a section clearly, it
becomes a clue for the author to refine either the code or their
internal logic.

4.3 Rubrics and Evaluation
Assessment in storytelling-based instruction can include narrative
clarity as a rubric category. Instructors can evaluate:

• The completeness and coherence of a student’s narrative
explanation

• The alignment between the intended story and actual code
behavior

• The student’s ability to identify turning points or conflicts
in the logic

These assessments don’t replace functional correctness but en-
rich it, allowing instructors to gain deeper insight into student
thinking and development.

Journal of Computational Science Education Volume 16, Issue 2

November 2025 7

4.4 Integration with Curriculum
The narrative framework is not a standalone technique—it can be
scaffolded across the curriculum. Early weeks can introduce story-
telling as a reflection tool. By mid-semester, storytelling becomes a
design strategy before implementation. In later projects, students
use it collaboratively for design proposals and team check-ins. Em-
bedding narrative reasoning throughout ensures it’s internalized
as part of the student’s cognitive toolkit.

4.5 Example Activities
Consider a student debugging a parallel computing program de-
signed to process large datasets. When asked to explain their issue,
they might initially point to a specific line causing a runtime error.
By prompting them to “tell the story of your code,” the instruc-
tor encourages a narrative: “Once upon a time, a variable named
data_chunk set out to process a portion of the dataset. It entered a
loop to compute averages, but then it got stuck because the loop
never ended.” This narrative might reveal that the student mis-
understood the termination condition of the loop, highlighting a
logical error. As the student continues, they might notice a miss-
ing semicolon that disrupted the syntax, which becomes apparent
when explaining the code’s flow. This example illustrates how sto-
rytelling shifts the student’s perspective, enabling them to identify
both logical and syntactic issues. Examples include:

• The Delivery Bot: Debugging broken logic by following the
story of a package.

• Game Storyboarding: Mapping input, flow, and outcome in
games like Rock-Paper-Scissors.

• Data Visualization Stories: Connecting data interpretation
with narrative.

• Peer Storytelling: Retelling and debugging a partner’s code
to highlight clarity and intent.

4.5.1 Example 1: The Delivery Bot (Narrative Debugging). Stu-
dents are given the following function:
def setDeliveryTime(package):

if not package['priority'] and package['weight'] > 10:
return "afternoon"

else:
return "morning"

They are asked to tell the story of what happens to each package:
package1 = {'priority': True, 'weight': 12}
package2 = {'priority': False, 'weight': 8}
package3 = {'priority': False, 'weight': 15}

They identify that a priority package might still go in the morn-
ing even if it’s very heavy—an unintended outcome. This prompts
a redesign:
def setDeliveryTime(package):

if package['priority']:
return "morning"

elif package['weight'] <= 10:
return "morning"

else:
return "afternoon"

4.5.2 Example 2: Game Mechanics as Story (Design-First Sto-
ryboarding). Before coding a Rock-Paper-Scissors game, students
storyboard the interaction:

• Who are the players?
• What events trigger the next move?
• How does the system declare a winner?

Students present the story visually before implementing any
logic. This helps identify branching conditions and user interaction
flow.

4.5.3 Example 3: Data Storytelling with Visualization (Narrative
Reflection). After analyzing a dataset and creating a visualization,
students write a brief narrative explaining:

• What the data shows
• What question their code answers
• What story the visualization tells

This aligns narrative structure with data reasoning.

4.5.4 Example 4: Explaining a Peer’s Code (Peer Storytelling).
Students swap programs and narrate each other’s code out loud.
Prompts include:

• What is the goal of the program?
• What are the key steps along the way?
• Where is a potential flaw in the story?

This activity strengthens code readability, testing comprehen-
sion, and fosters collaborative debugging.

5 LIMITATIONS AND FUTUREWORK
While promising, narrative pedagogy has limitations. Students with
less fluency in English or those more familiar with mathematical
abstractions may find storytelling unnatural at first. Additionally,
there is a risk of oversimplifying technical concepts if too much
emphasis is placed on metaphor over precision. Instructors must
strike a balance between promoting narrative clarity and ensuring
computational correctness.

This approach also requires additional instructional time and
scaffolding that may not be feasible in all classroom contexts. Larger
courses may face challenges integrating personalized storytelling
activities or giving feedback on reflective work like journals.

Another limitation is the potential variance in how students
interpret and construct stories. While diversity of thought can be
an asset, it can also lead to misaligned mental models if not guided
carefully. Further research is needed to explore how cultural and
linguistic backgrounds influence narrative construction in program-
ming education.

Future work will investigate how narrative practices scale in
larger courses, how they integrate with peer programming and
automated assessment tools, and whether they foster long-term
improvement in code quality and debugging efficiency. Controlled
studies comparing narrative and non-narrative cohorts could val-
idate impact on learning outcomes. There is also opportunity for
tool development—intelligent IDEs or tutoring systems that can
prompt students to articulate their story during code construction.

Moreover, the emergence of AI and large languagemodels (LLMs)
presents an interesting new frontier. Narrative-based pedagogymay

Volume 16, Issue 2 Journal of Computational Science Education

8 November 2025

inform the development of smarter educational prompts, explain-
able AI code assistants, and curriculum-aware LLMs that can co-
construct stories with learners. By studying how students tell code
stories, we may also improve how machines understand, generate,
and teach code narratives—paving the way for more collaborative,
human-centered computing.

6 CONCLUSION
While promising, the storytelling approach faces challenges, such as
objectively assessing narrative quality and scaling it to large classes,
which requires instructor training. Some students may initially find
narrating code awkward, particularly if they lack confidence. Future
research could quantify the approach’s impact through controlled
studies and explore tools to integrate storytelling into programming
environments, as suggested by related work [2].

Storytelling is a universal human tool for reasoning through
complexity. By treating code as a story, students learn to explain
their thinking, debug more effectively, and write clearer programs.
This paper presented a narrative pedagogy that maps program-
ming constructs to storytelling elements—variables as characters,
control flow as plot, and output as resolution. Such framing sup-
ports student understanding, especially when reinforced through
narrative-based planning and story-first design strategies outlined.

We explored classroompractices that support storytelling, includ-
ing reflective journaling, peer code narration, and live debugging as
story deconstruction. These methods empower students to identify
and resolve logic gaps, communicate their intent, and grow into
thoughtful engineers. As software becomes more embedded in ev-
ery discipline, helping students become reflective, communicative,

and narrative-driven coders prepares them not only for technical
success but also for collaborative, human-centered innovation.

As software becomes more embedded in every discipline, helping
students become reflective, communicative, and narrative-driven
coders prepares them not only for technical success but also for
collaborative, human-centered innovation.

REFERENCES
[1] Ruven Brooks. 1983. Towards a theory of the comprehension of computer

programs. International Journal of Man-Machine Studies 18(6) (1983), 543–554.
https://doi.org/10.1016/S0020-7373(83)80031-5

[2] Paolo Ciancarini, Mirko Farina, Ozioma Okonicha, Marina Smirnova, and Gian-
carlo Succi. 2023. Software as storytelling: A systematic literature review. Computer
Science Review 47 (2023), 113–120. https://doi.org/10.1016/j.cosrev.2022.100517

[3] Jean Griffin. 2016. Learning by taking apart: Deconstructing code by reading,
tracing, and debugging. In Proceedings of the 17th Annual Conference on Information
Technology Education (SIGITE ’16). Association for Computing Machinery, Boston,
Massachusetts, 148–153. https://doi.org/10.1145/2978192.2978231

[4] Mark Guzdial. 2015. Learner-Centered Design of Computing Education: Research
on Computing for Everyone. Synthesis Lectures on Human-Centered Informatics
8(6) (2015), 1–165. https://doi.org/10.2200/S00684ED1V01Y201511HCI033

[5] Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, Paul Denny,
Raymond Pettit, and James Prather. 2022. Metacognition and self-regulation in
programming education: Theories and exemplars of use. ACM Transactions on
Computing Education 22(4) (2022), 1–37. https://doi.org/10.1145/3487050

[6] Norman Peitek, Sven Apel, Chris Parnin, and Andre Brechmannand Janet Sieg-
mund. 2021. Program comprehension and code complexity metrics: An fMRI study.
In IEEE/ACM 43rd International Conference on Software Engineering (ICSE). Madrid
Spain, 524–536. https://doi.org/10.1109/ICSE43902.2021.00056.

[7] Intan Satriani. 2019. Storytelling in teaching literacy: Benefits and challenges.
English Review: Journal of English Education 8 (2019), 113–120. https://doi.org/10.
25134/erjee.v8i1.1924

[8] Arto Vihavainen, Craig S. Miller, and Amber Settle. 2015. Benefits of self-
explanation in introductory programming. In Proceedings of the 46th ACMTechnical
Symposium on Computer Science Education (SIGCSE ’15). Association for Comput-
ing Machinery, Kansas City, Missouri, 284–289. https://doi.org/10.1145/2676723.
2677260

[9] Ernst von Glasersfeld. 1989. Cognition, construction of knowledge, and teaching.
Synthese 80 (1989), 121–140.

Journal of Computational Science Education Volume 16, Issue 2

November 2025 9

https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1016/j.cosrev.2022.100517
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.2200/S00684ED1V01Y201511HCI033
https://doi.org/10.1145/3487050
https://doi.org/10.1109/ICSE43902.2021.00056.
https://doi.org/10.25134/erjee.v8i1.1924
https://doi.org/10.25134/erjee.v8i1.1924
https://doi.org/10.1145/2676723.2677260
https://doi.org/10.1145/2676723.2677260

Classroom Applications ofQuestion Formulation to Support
Problem-Solving in Computer Science

James Quinlan
University of Southern Maine
james.quinlan@maine.edu

Michael Todd Edwards
Miami University

edwardm2@miamioh.edu

ABSTRACT
Questions are an integral part of the teaching and learning process.
As students ask questions, they explore complex ideas, challenge
assumptions, and confront contradictions. Too often, however, stu-
dents do not knowwhat questions to ask. They are hesitant to reveal
their misunderstandings in front of their classmates. Other stu-
dents don’t participate because they are not invested in the course
content. This paper presents the Question Formulation Technique
(QFT), a teaching method designed to provide computer science
students with targeted instruction on question-posing. As students
learn to ask better questions, they become more confident in their
abilities as learners. In this experience report, we provide a frame-
work and implementation process, highlighting key steps and po-
tential outcomes. Drawing on instructor observations, we report
improvements in student engagement and critical thinking, while
also discussing the limitations of anecdotal evidence and outlining
directions for future research. Through in-class examples, we dis-
cuss the method’s strengths and limitations while offering sample
prompts that can be adapted for classroom use.

KEYWORDS
inquiry, student questioning, computer science education

1 INTRODUCTION
Undergraduate computer science departments experience high fail-
ure and dropout rates in introductory programming courses (IPCs)
[14]. If students drop out of an IPC, they are unlikely to enroll in
subsequent computer science courses [27]. Too often, instructors
in IPCs emphasize syntax and semantics over problem-solving and
collaboration [13], discouraging students who may be interested in
computer science but needmore programming experience. Students
without such experience must learn syntax and problem-solving
simultaneously, a daunting task for many undergraduates.

How can we better support such students? One approach is to
provide them with more meaningful opportunities to learn from
each other and by asking (and answering) questions. Indeed, asking
questions is central to learning, in general, [1, 5, 6, 10, 15] and
is a key component in problem-solving [4]. When students ask
questions, they tend to experience improved learning outcomes [2].
Moreover, students develop a growth mindset [7] towards learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2025 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/16/2/3

Asking questions helps students become more confident in their
ideas and abilities. Students begin to see themselves as knowledge
creators rather than passive participants [19]. When students hone
their questioning skills, they are better prepared outside the QFT
context to ask questions, for instance, at professional meetings and
in interviews [16, 20, 23]. Given the many benefits of questioning,
it is surprising how little time is devoted to question-posing in
computer science classrooms.

How might you encourage your students to ask more thoughtful,
computer science-related questions in the classes you teach? In the
sections that follow, we discuss the application of Rothstein and
Santana’s Question Formulation Technique (QFT) [22] in computer
science classrooms. QFT is a pedagogical method to promote and
advance students’ questioning skills. The technique has been suc-
cessfully applied in various subjects, including English [6], biology
[10], electrical circuits [16], and mathematics [5]. QFT is a versatile
method that can introduce students to a new topic, assess their
knowledge and understanding of previously taught content, or
wrap up a topic to evaluate their growth. Research across educa-
tional settings has demonstrated the efficacy of QFT in promot-
ing student inquiry, curiosity, and engagement. In mathematics
education, Mannion [18] reported measurable improvements in
students’ performance on open-ended, written-response questions
after exposure to QFT. Similarly, Summers et al. [24] found that
undergraduate students developed questioning, creativity, and col-
laboration skills through regular use of the technique, as evidenced
by assessment data. LeBlanc et al. [16] showed that QFT stimulated
curiosity and technical question formulation in engineering courses.
Research in college classrooms also highlights increased agency
and engagement, with students demonstrating greater ownership
of their learning [11]. Comprehensive reviews further support QFT
as a research-based practice to engage learners in various sub-
jects [15, 17, 26].

These findings suggest that QFT is a robust, evidence-based
approach for enhancing learning outcomes across various disci-
plines. While the present report relies on instructor observation,
the broader literature provides a formal evaluation of QFT’s effec-
tiveness in promoting active learning and inquiry.

In the following sections, we share how we have used QFT with
undergraduates enrolled in an IPC. In Section 2, we outline the steps
of the QFT framework, with a significant emphasis on constructing
high-quality prompts (see Subsection 2.1). Student-centered steps
are covered in Subsections 2.2, 2.3, 2.4, 2.5, and 2.6. In Section 3, we
provide a brief discussion of limitations and offer implementation
tips (see Section 3.2). In addition to the limitations, Section 3.1
includes ideas for future work to address the limitations.

Volume 16, Issue 2 Journal of Computational Science Education

10 November 2025

https://doi.org/10.22369/issn.2153-4136/x/x/x

2 THE QFT FRAMEWORK
Six general steps comprise the QFT process [22, p. 4].

(1) Design Question Focus: The teacher designs a prompt for
students. This is referred to as the “QFocus.”

(2) Generate Questions: Students generate a list of questions
about the QFocus.

(3) Revise Questions: Students revise questions, enhancing their
readability and making them more conducive to further in-
vestigation.

(4) Prioritize and Select Question: Students discuss which ques-
tions seem most engaging.

(5) Investigation/Implementation: Students apply their question(s)
to a classroom assignment such as a homework problem, a
code experiment, or a lab project.

(6) Reflection: In small groups and whole-class presentations,
students share their end products and discuss what they
learned through the six steps of the QFT process.

Steps 2–6 may be shortened or altered to accommodate various
needs or preferences. For example, students may work in groups in-
stead of individually. Educational contexts, such as online distance
learning situations or novel course scheduling, may also neces-
sitate modifications. In the remainder of this section, we discuss
the six steps in the QFT Process in greater detail, illustrating an
implementation of QFT in an IPC classroom using a case study
approach.

2.1 Design Question Focus
In the first step of the QFT process, the instructor designs and
shares a question focus (QFocus) with students. As the Right Ques-
tion Institute [21] notes:

The QFocus is a stimulus, a springboard, that students
will use to ask questions. The QFocus can be a sentence,
phrase, image, or situation that will be the “focus” for
generating questions (p. 3).

The QFocus is not a question itself—its purpose is to stimulate
student questions. Since the QFocus sets the stage for the rest of
the QFT experience, its importance cannot be overstated.

Early in our IPC courses a brief QFocus, “programming lan-
guages," helps us ascertain our students’ pre-existing knowledge
of programming languages. Later on, when we seek to deepen our
students’ understanding of more elaborate topics, we provide a QFo-
cus that requires students to consider ideas from different vantage
points. For instance, when our students study recursion, we present
the QFocus “recursion and iteration” to students to encourage them
to think more deeply about the relationships between recursion
and iteration.

The QFocus should be narrowly focused to draw students’ atten-
tion in specific directions. Vague or broad prompts make it difficult
for students to formulate meaningful questions. Developing a suit-
able QFocus is challenging, so it’s helpful to keep the following
criteria in mind when designing them:

(1) The QFocus should not be a question.
(2) The QFocus should produce different lines of questioning.
(3) The QFocus should be simple, yet not overly simplistic [12].

Note that the QFocus can be graphical rather than purely textual.
We’ve provided objects, images, word clouds, hashtags, and ani-
mated GIFs as QFoci. Consider, for instance, the flowchart depicted
in Figure 1.

Figure 1: A flowchart of the Collatz conjecture as a visual
QFocus.

This visually engaging representation is designed to capture stu-
dents’ attention and motivate them to think about coding and syn-
tax, as well as the functionality of the code, its potential applications,
and the process of revision.

Moreover, note the mathematical context embedded within the
flowchart—namely, the Collatz conjecture. We find it beneficial to
include mathematics in introductory computer science courses, sim-
ilar to, but opposite of Friend et al. [9], who advocates for including
computer science ideas in mathematics coursework. In general,
we find it helpful to “hide” mathematical topics in our QFoci as
this approach connects computer science ideas to content (e.g.,
mathematics), which is arguably more familiar to IPC students. Ad-
ditionally, the method provides robust topics that lend themselves
to student questioning.

Figure 2 illustrates a different visual QFocus designed to engage
students in recursive thinking through the mathematics of the
Tower of Hanoi puzzle. The prompt encourages students to consider
how the problem might be solved using code. With this prompt,
students have asked questions about loops, decision structures,
syntax, recursion, and code efficiency. This is a great prompt for
small groups of 3 to 4 students.

Journal of Computational Science Education Volume 16, Issue 2

November 2025 11

B CA

Figure 2: Move all disks from A to C without letting a larger
disk be on top of a smaller disk, moving only one disk at a
time.

2.1.1 More Examples of QFoci Prompts. The following is a list of
QFoci we have presented to our students. The QFoci are presented
in italics with brief commentary.

• Increase in surface area of a sphere to increased radius. This
QFocus could be used to develop problem-solving and rein-
force arithmetic operations in a specific programming lan-
guage.

• The Harmonic series,

∞∑
𝑘=1

1
𝑛
.

Students are confrontedwith how to implement a summation
with infinite terms and infinite loops. This might lead to
questions regarding convergence, as well as round-off errors
in floating-point systems.

• The limit,

lim
𝑥→0

sin(𝑥)
𝑥

.

This prompt encourages students to consider loops and syn-
tax more carefully. Moreover, depending on the program-
ming language (e.g., Python), students may need to import
standard math libraries to implement their code.

• Primes of the form 4𝑘 + 1 and 4𝑘 + 3. In 1853, Russian math-
ematician Pafnuty Chebyshev hypothesized that there are
more primes of the form 4𝑘 + 3 than of the form 4𝑘 + 1,
up to the same limit [3]. We’ve used Chebyshev’s conjec-
ture to launch student discussions about modular arithmetic,
cardinality, branching, and looping.

• Sorting large datasets. This QFocus can prompt students to
formulate questions about algorithmic complexity, runtime
efficiency, memory usage, and the practical trade-offs be-
tween different sorting methods.

• Facial recognition software. Although slightly outside the
typical scope of an IPC, this prompt effectively engages stu-
dents, as most have existing opinions or experiences, thus
encouraging questions that extend beyond purely technical
aspects of computer science.

2.2 Generate Questions
After presenting the QFocus, students typically work individually
or break into small groups to generate questions. This step is the
most crucial for students.

We provide 10 minutes to generate questions for the first few
QFT exercises. After repeated practice, this step requires less time.
Assigning this step as homework is another possibility, providing
more time for students to generate questions.

We provide the following “rules of engagement” to our students
each time we employ QFT, following [22].

(1) Ask lots of questions.
(2) Do not discuss, judge, or answer questions.
(3) Record questions precisely as initially stated.
(4) Change statements into questions.
We have found it beneficial to model words or behaviors that are

“judging” in a whole-group setting before breaking students into
smaller groups. Additionally, depending on your class, providing
students with time to generate questions individually may be valu-
able before sharing them with others, as it can support equitable
participation. This is particularly practical for students with limited
English proficiency or less computer science experience.

We ask groups to generate at least ten questions. In our experi-
ence, the number of questions is somewhat inversely proportional
to their quality. When we require too many, students tend to “pad”
their list with trivial questions to meet the minimum requirement.
We also encourage students to ask any questions that come to mind
and remind them that the “best" questions will be selected from
their list later in the process (see Sections 2.3 and 2.4).

Ultimately, students sift through the questions they generate
and select a handful for further investigation. For instance, after
examining the flowchart of the Collatz conjecture from Figure 1,
students generate questions such as the following:

(1) Why study the Collatz conjecture?
(2) What is the Collatz conjecture, and how is it formulated?
(3) How can we store intermediate iterates?
(4) Which loop is appropriate for implementing the Collatz con-

jecture as code?
(5) Does the input need to be a positive integer?
(6) What if we do not input an integer?
(7) What is the code corresponding to the logic of this flowchart?
(8) What are the longest-known sequences?
(9) Can all flowcharts be reduced to code? Can a flowchart rep-

resent all code?
(10) What happens if the update formulas for 𝑛 are changed?
(11) What if we made more than two update conditions? For

example, what happens if we change from mod 2 to mod 3?
Note the variation in the questions. Some indicate previous experi-
ence with computer science concepts, while others aren’t specific
to computer science at all. Some will require significant work to
answer, while others require only a one-word response, such as
“Yes” or “No.”

In the next section, we discuss the next step of the QFT Process—
namely, revising questions. We provide tips to help your students
assess and adjust first-draft questions for maximum impact. Ulti-
mately, in subsequent phases of the QFT, each student will construct
and select a question to explore in more detail.

Volume 16, Issue 2 Journal of Computational Science Education

12 November 2025

2.3 Revise Questions
Revision leads to higher-quality questions. After the brainstorming
phase, students revisit their questions for clarity. Additionally, we
ask students to transform any “closed” questions into “open” ones.
Using the following definitions, we explain that open questions are
better suited for exploration and research.

• Closed questions have a single correct answer, such as ‘yes’
or ‘no’, or other factual information. For example, “Do we
have to use a loop?”, “Is there only one way to implement
branching?”

• Open questions have multiple right answers and come in two
flavors: interpretive and evaluative. Interpretive questions
must be supported with evidence. For example, “Which code
has the fastest runtime, and why?” Evaluative questions ask
for opinions, beliefs, or points of view and have no wrong
answers. “Do particular integers have common sequence
characteristics?"

Open questions are preferable for teaching and learning because
they elicit expanded thinking and processing of information [8]. We
have our students classify their questions by placing an “O” next to
their open questions and a “C” next to their closed questions [21].

Next, we model the transformation of a closed question into an
open one. For instance, closed questions may be “opened” by adding
‘how’ or ‘why’ to the beginning. We ask students to brainstorm
other techniques and post their list on the classroom whiteboard
for reference.

At this point, students revise their questions. We collect students’
revisions to understand their thinking process better and assess
their understanding of open and closed questions. Consider, for
instance, the fourth question about the Collatz conjecture.

Which loop is appropriate for implementing the Collatz
conjecture as code?

It is closed since this question can be answered with a simple re-
sponse (e.g., “for loop” or “while loop”). However, a slight modifica-
tion makes it open—namely, adding “how” to the query: “How does
one determine which type of decision structure is best for implement-
ing the Collatz conjecture as code?” Similarly, question 5, “Does the
input need to be a positive integer?”, can be converted to an open
question by rephrasing it to be, “why does the input need to be a
positive integer?”

2.4 Selecting Questions
Once students have revised their questions, they determine which
will generate the most productive exploration of course concepts.
We stipulate that individuals, or groups, generate a “top 5 list" of
their best questions. For each selected question, students write a
brief (1-2 sentence) rationale justifying its inclusion in the "top 5."

The following prompts may help students prioritize questions
for possible exploration:

(1) Is the question suitably narrow? In other words, is the topic
narrow enough that one could reasonably be expected to
answer the question within the timeframe of the assignment?

(2) Is the topic properly connected to the QFocus and the instruc-
tional objectives of our course?

(3) Will the topic help you strengthen your understanding of a
particular area of computer science? In other words, what
capacity does the question have to push your learning and
understanding of computer science?

We have students answer the prompts for each question in their "top
5 list" to help them make a final selection. Once they’ve selected a
question, students are ready to begin the next stage of the process,
namely Investigation/Implementation.

2.5 Investigation/Implementation
As University of Michigan notes [25], students could use their
questions as a starting point to:

• Develop a lab experiment.
• Design a product or process.
• Write a research paper.
• Deliver a presentation.
• Prepare for an in-class discussion or debate.

In general, we’ve found it advantageous to introduce QFT with
relatively short, low-stakes projects—such as writing pseudo-code
for a short practice program or preparing for an in-class topic
discussion. Using QFT in the first fewweeks of class allows students
to learn the process without worrying about a class grade.

For the Collatz conjecture, many of our introductory program-
ming students focus on writing code to explore the topic (e.g.,
finding sequences of a particular length). Those with more coding
experience often opt to learn more about the conjecture or compare
various code implementations (e.g., “bit hacks”).

In one class, we asked students to summarize the findings from
their question in a “one-pager” (e.g., one page of code or a short
research report of 250-500 words) and include a bibliography and
inline citations from peer-reviewed sources. We’ve found that re-
stricting their writing to one page encourages students to concen-
trate on the selected question without diverging into unrelated
topics.

At the next class meeting, students share their one-pagers, high-
lighting key ideas and solutions they uncovered as part of the
research process. As students share their findings, they gain confi-
dence in their capabilities as self-directed learners and benefit from
considering content from multiple points of view—rather than from
the instructor’s view alone.

2.6 Reflection
In the Reflection phase, students can produce a summary docu-
ment showcasing what they (or their group) learned through the
QFT process. Although our students typically present their results
in writing, findings can be disseminated through oral presenta-
tions or coding demonstrations. In addition to sharing content with
classmates, students often share thoughts about the QFT process.
Typically, sentiments include recognition of classroom engagement
and confidence in posing questions. As students share their ques-
tions and corresponding answers or solutions, they demonstrate
their grasp of the topic, their ability to think critically, and their
proficiency in applying programming concepts.

During the reflection phase, it’s essential to consider group dy-
namics if working in a group. To ensure that all students are actively
engaged, it is important to assign each group member a defined

Journal of Computational Science Education Volume 16, Issue 2

November 2025 13

role. This promotes balanced participation, encourages equitable
contribution, and supports individual accountability. For instance,
we assign a leader for each group, who submits a link to a sin-
gle document (e.g., a Google Doc) for their group. This document
consists of a cover page and one additional page for each group
member (i.e., a one-pager for each group member). The cover page
includes the following:

• The group’s initial list of questions, along with revisions.
• Markings indicating questions that were initially open (“O”)
or closed (“C”).

• A summary paragraph that discusses what the group collec-
tively learned from the QFT experience.

Other roles have included a scribe to document group decisions
and a presenter to share findings with the class. Colleagues who
frequently incorporate group work into their instruction have also
employed roles such as ‘devil’s advocate’, ‘prioritizer’, ‘diverger’ (to
encourage divergent thinking), and ‘converger’ (to support conver-
gent thinking).

3 DISCUSSION AND LIMITATIONS
We observed several notable improvements in student learning
and engagement after implementing the QFT in our introductory
programming courses. Moreover, we also observed that students’
ability to formulate questions extended beyond the QFT session to
regular class discussions and problem-solving activities.

Active Learning and Engagement. Based on instructor obser-
vations, students responded positively to QFT sessions, showing
increased engagement, frequently volunteering to participate, and
expressing enthusiasm during group activities. This was evident in
the volume and quality of student participation, as students took
ownership by generating, refining, and exploring their questions
about course topics. While some students offered positive com-
ments informally, we did not implement a systematic evaluation or
survey regarding the technique.

Development of Critical Thinking. Instructor observations
revealed that students moved beyond superficial or factual queries
to ask more analytical and open-ended questions. For example,
students were observed debating the efficiency of different coding
strategies, seeking to understand not only “what” but “why” a
particular approach worked. This deepened their exploration of
programming concepts and promoted higher-order thinking skills.

Curiosity and Intellectual Exploration. Students’ curiosity
was demonstrated by their willingness to pose follow-up questions
and explore “what if” scenarios beyond the initial prompt. For
instance, some students asked about alternative ways to solve a
problem or proposed modifying existing code to test new hypothe-
ses. These behaviors reflected a genuine interest in understanding
the material and a desire to experiment with their learning.

Teamwork and Communication. QFT sessions fostered a col-
laborative classroom environment. Students worked together to
develop questions, compare perspectives, and present their find-
ings. Through group discussions and peer presentations, students
practiced articulating their ideas clearly and responding to feed-
back, thereby improving their communication and collaborative
problem-solving skills.

3.1 Limitations and Future Work
We acknowledge that the findings reported in this study are based
solely on instructor observation and informal classroom feedback;
no formal surveys, quantitative assessments, or systematic data
collection were conducted during the implementation of QFT in
our courses. As a result, while we observed improvements in stu-
dent engagement, critical thinking, curiosity, and teamwork, these
observations are anecdotal and should be interpreted with caution.

To more rigorously assess the impact of QFT, future research
should employ comprehensive evaluation methods. For example,
controlled experiments could compare students exposed to QFT
with those who are not, using pre- and post-assessments to measure
changes in questioning skills, critical thinking, and programming
knowledge. Qualitative data from interviews, focus groups, or open-
ended surveys can offer deeper insights into students’ experiences
and perceptions of QFT. Another promising direction for future
research would be to replicate the analysis conducted by Summers
et al. [24], which examined students’ questions, feedback, and re-
flections to trace the evolution of their questioning throughout the
QFT process.

By conducting such systematic assessments, we can more pre-
cisely determine the effects of QFT and further refine strategies
to promote active, student-centered learning in computer science
education.

Additional avenues for future work include exploring optimal
QFT implementation in online or hybrid environments, investi-
gating its effectiveness across programming languages and course
levels, and integrating QFT with other active learning strategies.
Another promising direction involves exploring how generative
AI tools might assist instructors in creating QFoci or help students
refine their questions during the revision phase.

3.2 Tips for Implementing
Based on our experience, we provide several implementation sug-
gestions.

• Allocate specific class times: Dedicate regular periods or por-
tions for QFT sessions. This can help establish a routine and
signal to students the importance of question formulation. In
a CS1 course, we allocated 15-20 minutes every class period
for Steps 2, 3, and 4. Consider adopting a flipped classroom
model if the time spent on QFT activities limits the coverage
of course content.

• Assign parts as homework: Steps 5 and 6 of the QFT process
can be assigned as homework. This can also maximize in-
class time for more collaborative aspects, like improving or
prioritizing questions.

• Gradual integration: Instead of implementing the full QFT
process immediately, consider introducing it gradually through-
out the course. Start with simpler QFT activities and build up
to more complex ones as students become more comfortable
with the technique.

• Model the process: Demonstrate the QFT process yourself by
modeling how to formulate, improve, and prioritize ques-
tions related to the course content.

Volume 16, Issue 2 Journal of Computational Science Education

14 November 2025

• Encourage self-evaluation: Incorporate opportunities for stu-
dents to self-evaluate their questions, reflect on their ques-
tioning skills, and set goals for improvement.

• Collaborate and share: Encourage students to collaborate in
small groups during QFT sessions, allowing them to share
and build upon each other’s questions.

• Provide feedback: Offer constructive feedback on students’
questions, highlighting strengths and areas for improvement
in their question formulation abilities.

REFERENCES
[1] Ester Aflalo. 2021. Students generating questions as a way of learning. Active

Learning in Higher Education 22, 1 (2021), 63–75.
[2] William S. Carlsen. 1991. Questioning in Classrooms: A Sociolinguistic Perspec-

tive. Review of Educational Research 61, 2 (1991), 157–178. http://www.jstor.org/
stable/1170533

[3] Pafnuty Lvovich Chebyshev. 1853. Lettre de M. le Professeur Tchébychev á M.
Fuss sur un nouveaux théorème relatif aux nombres premiers contenus dans les
formes 4𝑛 + 1 et 4𝑛 + 3. Bull. Classe Phys. Acad. Imp. Sci. St. Petersburg 11 (1853),
208.

[4] Christine Chin and Jonathan Osborne. 2008. Students’ questions: a potential
resource for teaching and learning science. Studies in science education 44, 1
(2008), 1–39.

[5] Paul Davis. 1994. Asking Good Questions about Differential Equations. The
College Mathematics Journal 25, 5 (1994), 394–400. http://www.jstor.org/stable/
2687504

[6] Ken Donelson. 2008. The Art of Asking Questions: Two Classes That Changed
My Teaching Life. The English Journal 97, 6 (2008), 75–78. http://www.jstor.org/
stable/40503416

[7] Carol Dweck. 2015. Carol Dweck revisits the growth mindset. Education week
35, 5 (2015), 20–24.

[8] Cornell University Center for Teaching Innovation. 2020. Using effective
questions: Center for Teaching Innovation. https://teaching.cornell.edu/
fall-2020-course-preparation/engaging-students/using-effective-questions

[9] Michelle Friend, Andrew W Swift, Betty Love, and Victor Winter. 2023. A Wolf
in Lamb’s Clothing: Computer Science in a Mathematics Course. In Proceedings
of the 54th ACM Technical Symposium on Computer Science Education V. 1. ACM,
256–262.

[10] L. Goodman and G. Berntson. 2000. The Art of Asking Questions: Using Directed
Inquiry in the Classroom. The American Biology Teacher 62, 7 (2000), 473–476.
http://www.jstor.org/stable/4450954

[11] Martha Higginbotham. 2023. Teaching students to ask questions: The role of
question formulation technique in building agency and student engagement in the
college classroom. Ph.D. Dissertation. Rider University.

[12] The Right Question Institute. [n.d.]. Designing the question focus (QFOCUS) -
right question institute. https://rightquestion.org/wp-content/uploads/2019/05/
RQI-Resource-An-Introduction-to-QFocus-Design-PDF.pdf

[13] Sohail Iqbal and Om Kumar Harsh. 2013. A self review and external review
model for teaching and assessing novice programmers. International Journal of
Information and Education Technology 3, 2 (2013), 120.

[14] Sohail Iqbal Malik and Jo Coldwell-Neilson. 2017. Impact of a new teaching and
learning approach in an introductory programming course. Journal of Educational
Computing Research 55, 6 (2017), 789–819.

[15] Todd Larsen. 2020. Using Student-Generated Questions to Promote Curiosity
and Student Learning. (2020).

[16] Heath J LeBlanc, Kundan Nepal, and Greg S Mowry. 2017. Stimulating curiosity
and the ability to formulate technical questions in an electric circuits course using
the question formulation technique (QFT). In 2017 IEEE Frontiers in Education
Conference (FIE). IEEE, IEEE, New York, NY, 1–6.

[17] Cristo Leon. 2024. Empowering Inquiry: The Transformative Power of the
Question Formulation Technique in Education. (2024).

[18] Jessica MMannion. 2019. The effectiveness of the question formulation technique
on open-ended, written response questions in mathematics. (2019).

[19] Barbara L McCombs and Robert J Marzano. 1990. Putting the self in self-regulated
learning: The self as agent in integrating will and skill. Educational Psychologist
25, 1 (1990), 51–69.

[20] Kaitie O’Bryan. 2017. Using QFT to prepare students for new experiences. Kalei-
doscope: Educator Voices and Perspectives 1, 4 (2017), 29–31.

[21] The Right Question Institute. [n.d.]. Experiencing the question formula-
tion techniqueTM (QFTTM). https://condor.depaul.edu/tps/resources/level1/
experienceqft.pdf

[22] Dan Rothstein and Luz Santana. 2011. Make just one change: Teach students to
ask their own questions. Harvard Education Press.

[23] Luz Santana. 2015. Learning to Ask Questions: A Pathway to and through College
for Students in Low–Income Communities. About Campus 20, 4 (2015), 26–29.

[24] Mindi Summers, Jordann Fernandez, Cody-Jordan Handy-Hart, Sarah Kulle, and
Kyla Flanagan. 2024. Undergraduate Students Develop Questioning, Creativity,
and Collaboration Skills by Using the Question Formulation Technique. The
Canadian Journal for the Scholarship of Teaching and Learning 15, 2 (2024).

[25] LSA University of Michigan. [n.d.]. Question Formulation Technique - University
of Michigan. https://sites.lsa.umich.edu/inclusive-teaching/wp-content/uploads/
sites/853/2021/09/Question-Formulation-Technique-Draft.pdf

[26] Jackie Acree Walsh and Beth Dankert Sattes. 2016. Quality questioning: Research-
based practice to engage every learner. Corwin Press.

[27] SusanWiedenbeck, Deborah Labelle, and Vennila NR Kain. 2004. Factors affecting
course outcomes in introductory programming.. In PPIG. 11.

Journal of Computational Science Education Volume 16, Issue 2

November 2025 15

http://www.jstor.org/stable/1170533
http://www.jstor.org/stable/1170533
http://www.jstor.org/stable/2687504
http://www.jstor.org/stable/2687504
http://www.jstor.org/stable/40503416
http://www.jstor.org/stable/40503416
https://teaching.cornell.edu/fall-2020-course-preparation/engaging-students/using-effective-questions
https://teaching.cornell.edu/fall-2020-course-preparation/engaging-students/using-effective-questions
http://www.jstor.org/stable/4450954
https://rightquestion.org/wp-content/uploads/2019/05/RQI-Resource-An-Introduction-to-QFocus-Design-PDF.pdf
https://rightquestion.org/wp-content/uploads/2019/05/RQI-Resource-An-Introduction-to-QFocus-Design-PDF.pdf
https://condor.depaul.edu/tps/resources/level1/experienceqft.pdf
https://condor.depaul.edu/tps/resources/level1/experienceqft.pdf
https://sites.lsa.umich.edu/inclusive-teaching/wp-content/uploads/sites/853/2021/09/Question-Formulation-Technique-Draft.pdf
https://sites.lsa.umich.edu/inclusive-teaching/wp-content/uploads/sites/853/2021/09/Question-Formulation-Technique-Draft.pdf

Enhancing HPC Education through Virtual Cluster
Administration and Benchmarking

Charles Ross Lindsey
Georgia Institute of Technology

clindsey8@gatech.edu

Jeffrey Valdez
Georgia Institute of Technology

valdez@gatech.edu

Aaron Jezghani
Georgia Institute of Technology

ajezghani3@gatech.edu

Will Powell
Georgia Institute of Technology

ajezghani3@gatech.edu

Richard Vuduc
Georgia Institute of Technology

ajezghani3@gatech.edu

ABSTRACT
The rapid advancement in high-performance computing (HPC)
poses significant challenges for the HPC community. Current HPC
training approaches often are too generic or too customized to local
environments, limiting their applicability and impact. Often, these
shortcomings are due to the limited accessibility, excessive cost,
and specialized support necessary to provide HPC environments
for teaching. To address these challenges, we introduce Virtual
Cluster, a hardware-agnostic platform designed to provide an easy-
to-configure, generalizable, and scalable approach to HPC system
management for training and education in computational research
alongside production system configurations. We implemented this
platform in a virtually integrated project (VIP) course aimed at
training undergraduates for HPC cluster building. Drawing from
our experience from the VIP course, we advocate for the integration
of more comprehensive educational and training approaches, such
as HPC Virtual Cluster, to better support HPC.

KEYWORDS
HPC, virtual cluster, training, virtually integrated project

1 INTRODUCTION
Recent years have seen an acceleration in the development of novel
hardware, software, and workflows in the field of High Performance
Computing (HPC), and more generally for the broad spectrum of
efforts under the blanket of Research Computing and Data (RCD).
Fueled especially by the generative artificial intelligence (or gener-
ative AI) boom, vendors have halved their hardware release cycles
[9], with each subsequent generation costing increasingly more
[14] and requiring more electricity and heat dissipation to operate
[7, 13]. Consequently, computing clusters across the spectrum of
academia, industry, and government all face the mounting chal-
lenge of ever-increasing capital and operational costs, and thus
necessitate capable researchers to efficiently utilize resources and
administrators to optimally configure and support these systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2025 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/16/2/4

Naturally, computer science and engineering students have the
strongest theoretical background to understand the nuances of HPC
clusters, with core curriculum focused on systems architectures,
networking, and parallel and distributed computing frameworks.
The natural sciences have built upon a foundation of experimenta-
tion to find empirical validation for demonstrating theory as well
utilizing HPC resources. For example, students can easily observe
the principals of evolution in practice through nearly half a century
of E. Coli cultures [10], or find validation for Einstein’s Theory of
General Relativity with the results from the LIGO collaboration [2].
However, current HPC training approaches at colleges and univer-
sities, particularly in undergraduate education, are lacking, either
too generic, tailored to local environments and limiting their gen-
eralizability, or limited to graduate education. Part of the reasons
for this have to do with cost for access to HPC environments, with,
by necessity, require funding through research and provides little
opportunity for training undergraduate students for future careers
in research, ultimately hurting progress in the HPC research com-
munity. Although consumer-grade hardware is relatively affordable
and thus accessible in a classroom setting, the specialized hardware
in HPC clusters is much more costly, with entry-level costs for
systems alone hitting $10k in 2009 [1], and support personnel and
infrastructure tacking on considerably more.

These recent challenges leave HPC in a precarious state, espe-
cially with the onset of rapid architectural overturn in support of
AI. End users looking to utilize HPC cluster resources to pursue
research careers in science or engineering suffer because they lack
expertise necessary and robustness in experience to navigate tran-
sitions into and throughout careers. HPC practitioners that stay on
an academic path require time to adapt to the next system, which is
problematic in the face of short evaluation cycles such as postdoc-
toral positions and pre-tenure evaluations. For example, a recent
assessment of user activity on Georgia Tech research clusters found
that since 2015, the average period of activity from first to last job
submission is only 1.38 years (see Figure 1).

HPC practitioners that turn to industry may initially fare better
due to robust onboarding and training into company workflows and
teams, but, lacking foundational knowledge in HPC in their under-
graduate education, may find themselves vulnerable to downsizing
that has become more common with tech companies in recent years
[12]. More urgent is the growing need for a workforce ready for the
challenges of configuring, tuning, and maintaining HPC systems

Volume 16, Issue 2 Journal of Computational Science Education

16 November 2025

https://doi.org/10.22369/issn.2153-4136/x/x/x

Figure 1: The average active period for users on Georgia Tech
clusters was recently determined to be 1.38 years. Active
period is defined as the time between first and last job sub-
mission, with the data spanning 2015 through present. The
short period to engage researchers highlights the importance
of effective training and education programs.

as part of their companies’ Informational Technology (IT) infras-
tructure, which can affect whole organizations and their ability to
execute computational research and development.

Consequently, this all points to a need for more comprehensive
educational and training approaches in support of HPC. To address
these challenges, we introduce HPC Virtual Cluster, a hardware-
agnostic platform designed to provide an easy-to-configure, gen-
eralizable, and scalable approach to HPC system management for
training and education in computational research alongside pro-
duction system configurations.

2 VERTICALLY INTEGRATED PROJECTS
Since the late 1990s, the Vertically Integrated Projects (VIP) Program
enhances core curriculum through research projects [8]. Ideally,
VIP teams should be comprised of 10 or more students from multi-
ple campus departments, and they should participate for three or
more semesters to provide a spectrum of academic ranks and expe-
rience. Assessment is designed to facilitate these aspects of team
composition, with a third of the students’ final grades coming from
documentation, teamwork, and accomplishments/contributions.
Undergraduate students find the VIP program attractive because
some colleges such as the College of Computing offer VIP in lieu
of the traditional junior design course, while masters students can
use it to satisfy elective credits. Currently, Georgia Tech hosts 97
VIP teams exploring topics such as technology-enhanced arts, AI-
driven engineering, and Smart infrastructure based on expansive
telemetry and automated intelligence.

2.1 Team Phoenix VIP
Originally, Team Phoenix was a participating team in the 2017 Su-
percomputing Student Cluster Competition (SCC). In Spring 2020,
Team Phoenix was reborn as a VIP course under advisement by
academic and research faculty from the College of Computing and
the Partnership for an Advanced Computing Environment (PACE).
Each semester, students progress through a series mini projects
to further their knowledge of parallel and distributed computing
on an HPC cluster, including resource management, building and
configuring drivers and software, and benchmarking applications
using various architectures and techniques. Students in the fall
have submitted applications for the International Supercomput-
ing High Performance Conference (ISC) SCC, while students in
the spring have applied to the Supercomputing SCC and IndySCC
competitions.

In addition to the assigned projects, students are exposed to
the cluster design, procurement, and support processes. Vendors
are brought in to discuss emerging hardware and platforms, and
tours of the campus data centers are conducted to familiarize them
with enterprise operations. A particular favorite among students
is the “Build-a-Bear server dissection,” where a production server
is brought in and disassembled to foster an understanding of the
interplay between hardware and software, as seen in the screen
capture in Figure 2.

Figure 2: Screen capture of the hybrid class recording show-
ing a class-favorite activity, “Build-a-Bear” Server Break-
down/Reassembly. Using a surplus V100GPU server, students
actively disassemble the server, review all of the components,
and then reassemble the system.

2.2 The Missing Middle
Historically, the conversation of a “missing middle” in HPC largely
centered on businesses or scientists who could have experienced a
boon if given access to a cluster network [4]. The barrier to entry
was insurmountable, unfortunately, for some potential users who
i) could not acquire a supercomputer or purchase access, ii) lacked
computing knowledge, and/or iii) failed to program a cluster to
tackle their problem set [4]. In education, undergraduate students
not only experience similar roadblocks but are faced with a lack

Journal of Computational Science Education Volume 16, Issue 2

November 2025 17

of curriculum necessary to bridge the gap between student and
researcher.

Additionally, Team Phoenix was designed to address the “miss-
ing middle” [5] in education by filling in the gap in curriculum
between foundational undergraduate courses in programming, ar-
chitectures, and networking and specialized graduate topics such
as AI methodologies, HPC systems, and advanced architectures.
As a team-based, project-focused course, students collaboratively
work through the process of building, configuring, and running
applications for a stronger foundation in topics like parallel and
distributed computing, communications frameworks, and software
engineering. The multi-semester approach and promotion to lead-
ership roles within the team provides further reinforcement, and
the subsequent discourse facilitates a richer understanding of the
underlying computer science principles.

Students enrolled in Team Phoenix are provided access to multi-
ple cluster systems, one of which is detailed in this report. Once
given access to a cluster, undergraduates are imparted with knowl-
edge pertaining to Linux command-line fundamentals for system
administration, use of build systems and compilers, job schedul-
ing, file systems configuration, and other topics in HPC. Lastly,
our cohort is provided hands-on instruction with scientific and
benchmarking applications. Having met the wants of the historical
“missing middle,” Team Phoenix provides a workforce-development
opportunity through participation in cluster competitions which
test undergraduates on cluster building/management and utiliza-
tion.

2.3 Current State of Team Phoenix
Since Team Phoenix’s inaugural year, enrollment has increased
144%, from a total of 9 students to 22 in the present term, as pre-
sented in Figure 3. Furthermore, Figure 4 shows that retention rate
among students, remains high with roughly 64% completing at
least two semesters (one academic year). By building and retain-
ing undergraduates, Team Phoenix has begun to fulfill its mission
of building the “missing middle” by advancing course alumni to
industry positions in Wall Street, Sandia, and NVIDIA. Addition-
ally, students who have completed our VIP course have entered
undergraduate or graduate HPC research at Georgia Tech.

In reviewing the demographics of students as reported in Ta-
ble 1, a few trends quickly become apparent. Despite the multidis-
ciplinary focus of the VIP program, and particularly the ubiquitous
nature of computational research across all fields of science, stu-
dents enrolling in the VIP are almost exclusively CS or CSE majors.
Furthermore, females comprise roughly 10% of the total enrolled
students, compared to the average of 20% in CS and Engineering
degree programs [3], while minority participation sits well below
averages, with Black/African American and Hispanic enrollment
amounting to 3% and 6% compared to 8% and 12%, respectively
[11]. In particular, it would be beneficial to develop and implement
strategies to more effectively recruit and promote diversity within
the Team Phoenix VIP.

3 INSTRUCTIONAL CLUSTERS
There are multiple HPC clusters that are available at Georgia Tech
which the students have access to as students in the VIP Team

Figure 3: Team Phoenix VIP course enrollment by semester.
Since its creation in the Spring 2020 semester, enrollment
has increased 144% to 22 students in the current semester.

Figure 4: The count of students by numebr of semesters
enrolled in the Team Phoenix VIP course. The vertically-
integrated aspect of the VIP course hinges on students re-
turning for successive semesters, and to date, Team Phoenix
has seen roughly 64% come back for at least one additional
semester.

Phoenix course. All clusters listed here use similar job schedulers
(Slurm) in a Linux environment, and can be accessed using a shell
environment or Open On-Demand. Table 2 summarizes the avail-
able node counts and hardware on each of the clusters.

3.1 PACE-Supported Clusters
The two clusters used by the VIP Team Phoenix course students
include the Instructional Cluster Environment (ICE) and Phoenix
clusters. The ICE cluster resources offer an educational environment
that matches that of our research clusters and provides thousands of
graduate and undergraduate students at Georgia Tech opportunities
to gain first-hand experience with HPC. The Phoenix cluster is our
research cluster.

For the VIP course, students typically use the ICE and Phoenix
clusters to install and run examples in parallel computing, including
running the LINPACK benchmark and parallel computing examples.
However, using these clusters does require continual maintenance
by the PACE team through Maintenance Periods and other updates,

Volume 16, Issue 2 Journal of Computational Science Education

18 November 2025

Table 1: Breakdown of enrolled student demographics in Team Phoenix VIP.

Category Number of Students

Total Student Count 69
Student-reported Gender M: 62 F: 7

Student-reported Race Asian: 38 White: 31 Hispanic: 4 Black or AA: 2
Two or more: 5 Unknown: 2

Student Major Comp Sci: 52 Comp Eng: 6 Math: 4 Mech Eng: 1
Elec Eng: 1 Comp Media: 2 Bio: 1 Elec Comp Eng: 1

and requires lectures and workshops throughout the semester for
proper cluster usage.

3.2 CRNCH-Supported Cluster
The Rogues Gallery is a heterogeneous test bed of HPC servers
maintained by the Center for Research into Novel Computing Hier-
archies (CRNCH) for research in novel computing environments.
For VIP Team Phoenix uses the Rogues Gallery for access to the
Frozone cluster, a set of nodes which include two A100 GPUs. Dur-
ing the “Build-A-Bear” workshop, students actively disassemble
and reassemble a GPU server, and afterword test HPC and GPU
benchmarks on the cluster that the server is part of for the VIP
course.

3.3 VIP Cluster
The Pho cluster is a test bed of HPC servers purchased usingGeorgia
Tech’s technology fee grant for instructional courses to provide VIP
Team Phoenix course students hands-on experience with setting
up and cutomizing their own cluster environment. This system
is a 9-node system that includes two GPU nodes, each with an
A100 GPU; two high-memory nodes with 1.5 TB 2933 MHz DDR4
RAM; two Intel Optane nodes with 4x128 GB Optane Persistent
Memory 100 series modules; two high-storage nodes with 12x4TB
hard drives; and one general-purpose node.

4 BUILD-A-CLUSTER ASSIGNMENT
4.1 KVM Cluster Virtualization on the Pho

Cluster
For the Build-A-Cluster assignment, we used Kernel-based Virtual
Machines (KVMs), an open-source virtualization included with
Linux, for cluster virtualization on the Pho cluster. This use of KVMs
allows for flexible deployment of cluster nodes for periodic refreshes
(i.e., changes between users between academic years and semesters),
quick configuration updates for new projects or assignments during
the semester, or quick resets of cluster environments in case of
issues.

Each of the 9 nodes in the Pho cluster included common hard-
ware, with differences in hardware between nodes to add additional
capabilities to the cluster. All nodes in the cluster include the fol-
lowing hardware: dual-socket Intel Cascade Lake Gold 6226R (2.9
GHz clock speed, 16C/32T), 192 GB 2933 MHz DDR4 RAM, Cisco
VIC 1387 with 40 GB Ethernet, and 960 GB SSD, mirrored SW RAID.
The two storage nodes include an additional 12x4 TB hard disk
drive for additional storage. The two high-memory nodes include

1.5 TB 2933 MHz DDR4 RAM instead of 192 GB. The two Optane
nodes include an additional 4x128 GB Optane PMem 100 series
memory. The two GPU nodes include an additional NVIDIA A100
GPU for each node. Centos Stream 8 was the Linux distribution
installed on all of the nodes.

The KVM images built for HPC instructionwere installed on each
of the nodes and configured to utilize CPU, memory, and storage
resources in the hardware, with some differences depending on the
node type. Each of the KVMs was installed with Centos Stream 8,
and configured to use all of the CPU resources (32 cores across dual-
socket CPUs) and 50 GB of disk space. The memory used across
the nodes varied depending on the node type (84 GB to 1360 TB).
For this initial pilot, the GPU nodes were not configured to use the
NVIDIA A100 GPUs but will be used in future projects.

For accessing the KVMs when running on the network, Mac
addresses assigned on KVM setup were recorded so that they could
be reused and re-mapped to a set virtual machine hostname and IP
address on the network upon subsequent re-installations.

4.2 Alternatives
Compared to other solutions, such as the configurable cloud envi-
ronment for large-scale HPC research, Chameleon Cloud [6], our
KVM cluster virtualization has multiple advantages. First, our ap-
proach is on-demand and can be reconfigured as needed. Second,
because KVMs are part of Linux, no special infrastructure is re-
quired to support it, and so any available hardware can be leveraged.
A corollary to this detail is that as much as older hardware can be
utilized, if newer hardware becomes available, it can also readily
be supported. Thus, for Team Phoenix, or any other group looking
to replicate this work, they can just as easily utilize surplus servers
as well as the cutting edge systems supporting research.

Furthermore, the lightweight nature of the approach lends itself
naturally to providing a secure sandbox in which students can build
a cluster from scratch, without risk of irreversibly breaking the
system. Ultimately, the intent is to run this setup atop a production
cluster, which is discussed in greater detail in Section 6, to provide
a sustainable solution that can accommodate the bursty nature
of instructional cluster use while leveraging available cycles from
critical infrastructure.

4.3 Build-A-Cluster Project in HPC Virtual
Cluster

This Build-a-Cluster project that we assigned as the last project
for the Team Phoenix VIP course for the Spring 2024 semester,

Journal of Computational Science Education Volume 16, Issue 2

November 2025 19

Table 2: A summary table of the clusters accessible to students in the Team Phoenix VIP.

Cluster Node Count CPU Cores GPU Count

Phoenix (PACE) 1,407 36,104 V100 (120), RTX6000 (148), A100 (32),
H100 (32), L40S (64)

ICE (PACE) 117 4,352 V100 (40), RTX6000 (8), A40 (4), A100 (8),
H100 (160), L40S (32), MI210 (4)

Rogues Gallery (CRNCH) 61 2,772 A30 (8), A100 (17), H100 (1), H200 (6),
MI210 (2), Max1100 (2)

Pho (COC) 9 288 A100 (2)

we sought to provide students with an HPC Virtual Cluster using
KVMs on Linux servers in order to prepare for Supercomputing
(or High-Performance Computing, HPC) student competitions. Our
goal for this project was for students to get hands-on experience
with:

• Working on hardware (or KVMs) on the HPC Virtual Cluster
that would be similar to working on multi-node clusters used
in the real world or student cluster competitions.

• Installing, configuring, and optimizing software typically
used for essential infrastructure for an HPC cluster (Ansible,
Slurm scheduler, compilers, MPI).

• Installing, configuring, and optimizing scientific and simula-
tion software used for HPC research.

For this last Spring semester, we divided the class into two teams
of six students to work on two separate HPC Virtual Clusters. For
this initial pilot, an HPC Virtual Cluster was comprised of a 3-
node cluster corresponding to 3 KVMs (i.e., pho-storage1-vm, pho-
highmem1-vm, and pho-optane1-vm for Team 1). Each KVM was
built from scratch, and storage mounted from an NFS partition on
a corresponding bare-metal storage nodes. MAC address assigned
from the initial creation of the KVM were noted for hostname and
IP address assignment and for future re-installation of the KVM.

We divided this project into different sections, where we would
start by 1. introducing the students to the HPC Virtual Clusters
they would be working with, continue to software infrastructure
setup and job scheduler installation on the 2. login/head and 3.
compute nodes, and then move to 4. installing software, which
included installing GCC, Open MPI, Intel oneAPI MKL, and HPL.
Other optional steps that we wanted to include but realized we
did not have time for in Spring 2024 included 5. installing Lua
and Lmod to load software configurations and 6. installing Ansible
and developing Ansible playbooks to repeat the initial setup and
software installation steps after completing all of the previous steps
one time manually.

5 ASSIGNMENT OUTCOMES
For the Spring 2024, both teams encountered challenges due to time
constraints near the end of the semester, so we were not able to
proceed past the “Initial Setup for Login/Head Node” and “Initial
Setup for Compute Nodes” of the original project plan. However,
we were not able to get to the “Install Additional Software” step
as we intended with the original time frame. While we were not
able to get to the point of installing software like HPL for LINPACK

benchmarking, we did have other projects with HPL and Mr. Bayes
earlier in the Spring 2024 semester. In this upcoming Fall 2024,
we are starting at the beginning of the semester with an updated
version of the Spring 2024 project that should include the optional
steps, including installing additional software, utilizing Lua and
Lmod to reload software configurations with ‘module,’ and utilizing
Ansible for quick rebuilds of the virtual cluster.

6 FUTUREWORK
In the future, we have additional ideas we plan to implement to im-
prove this virtual cluster approach to HPC instruction. The first idea
we plan to implement is using Slurm on the bare-metal machines
to launch job batch files that deploy the virtual clusters on-demand.
Using the host cluster Slurm’s suspend & resume framework, which
was originally intended for cloud node management, we can launch
our minimal VM images or a full production machine as needed. In
this way, we can operate parasitically atop the production cluster,
providing a more sustainable solution to support Team Phoenix and
other classes that may want to explore cluster building projects.

The second idea we plan to integrate is a section on file systems
for HPC systems, and how selecting different approaches and opti-
mizing file systems could improve HPC benchmark performance.
We plan to add mini project explaining the current state-of-the-art
for file systems in HPC clusters, with a workshop to illustrate some
of the setup involved with our current file system in the virtual
cluster. In the future, we could also look into what would be re-
quired to add newer parallel file system hardware to the Pho cluster
that students could set up, configure, and test HPC benchmark
performance.

The third idea would be to look at newer, more advanced hard-
ware to utilize with this virtual cluster approach, perhaps even to
optimize it for better deployment in instructional settings such as
this. Currently, the Pho servers use Cisco remote system manage-
ment that makes it difficult for us to reconfigure the bare-metal
servers easily. With the aforementioned suspend & resume frame-
work, we could look at using the novel hardware available in the
Rogues Gallery, or even consider a larger scale project using ICE
compute nodes.

7 CONCLUSION
Amyriad of hurdles present a barrier for entry into HPC, a field cru-
cial to research in academia and industry in areas that include natu-
ral sciences, engineering, and computing. These roadblocks include,

Volume 16, Issue 2 Journal of Computational Science Education

20 November 2025

Figure 5: HPC Virtual Cluster Project Sections

but are not limited to, i) access to HPC infrastructure, ii) mainte-
nance support consisting of advanced and niche knowledge, and iii)
costly hardware. To fill this knowledge and personnel gap within
the HPC industry, higher education institutions should invest in the
training and teaching of supercomputing concepts for their students.
To overcome traditional and academic challenges prevalent in HPC,
we believe theHPC Virtual Cluster provides a hardware-agnostic
platform designed to provide an easy-to-configure, generalizable,
and scalable approach to HPC system management for training and
education.

REFERENCES
[1] 2009. Is HPC going to cost me a fortune? https://insidehpc.com/hpc-basic-train

ing/is-hpc-going-to-cost-me-a-fortune
[2] B. P. Abbott and et al. 2016. Observation of Gravitational Waves from a Binary

Black Hole Merger. Phys. Rev. Lett. 116 (Feb 2016), 061102. Issue 6. https:
//doi.org/10.1103/PhysRevLett.116.061102

[3] Sapna Cheryan, Allison Master, and Andrew Meltzoff. 2022. There Are Too Few
Women in Computer Science and Engineering. https://www.scientificamerican.c
om/article/there-are-too-few-women-in-computer-science-and-engineering/

[4] Nicole Hemsoth. [n. d.]. Engaging the Missing Middle in HPC. https://www.hp
cwire.com/2010/06/07/engaging_the_missing_middle_in_hpc/

[5] A. Jezghani, J. Young, W. Powell, R. Rahaman, and J. Coulter. 2023. Future
Computing with the Rogues Gallery. In 2023 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE Computer Society,
Los Alamitos, CA, USA, 262–269. https://doi.org/10.1109/IPDPSW59300.2023.0
0051

[6] Kate Keahey, JasonAnderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. 2020. Lessons
Learned from the Chameleon Testbed. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association.

[7] Tobias Mann. [n. d.]. A closer look at Nvidia’s 120kW DGX GB200 NVL72 rack
system. https://www.theregister.com/2024/03/21/nvidia_dgx_gb200_nvk72/

[8] Stephen Marshall, Edward Coyle, James V Krogmeier, Randal T Abler, Amos John-
son, and Brian E Gilchrist. 2014. The vertically integrated projects (VIP) program:
leveraging faculty research interests to transform undergraduate STEM educa-
tion. In Transforming Institutions: 21st Century Undergraduate STEM Education
Conference.

[9] Nvidia. 2023. NVIDIA Investor Presentation October 2023. https://investor.nvi
dia.com/events-and-presentations/presentations/presentation-details/2023/NV
IDIA-Investor-Presentation-October-2023/default.aspx

[10] Elizabeth Pennisi. 2013. The Man Who Bottled Evolution. Science 342, 6160
(2013), 790–793. https://doi.org/10.1126/science.342.6160.790

[11] Parth Sarin. 2023. Levers for Improving Diversity in Computer Science. https:
//cset.georgetown.edu/article/levers-for-improving-diversity-in-computer-sci
ence/

[12] Emily Sayegh. 2024. The Great Tech Reset: Unpacking the Layoff Surge of 2024.
https://www.forbes.com/sites/emilsayegh/2024/08/19/the-great-tech-reset-u
npacking-the-layoff-surge-of-2024/

[13] Anton Shilov. 2024. Intel’s 1500W TDP for Falcon Shores AI processor confirmed
— next-gen AI chip consumes more power than Nvidia’s B200. https://www.to
mshardware.com/pc-components/gpus/intels-1500w-tdp-for-falcon-shores-a
i-processor-confirmed-consumes-more-power-than-nvidias-b200

[14] Anton Shilov. 2024. Nvidia’s next-gen Blackwell AI Superchips could cost up to
$70,000 — fully-equipped server racks reportedly range up to $3,000,000 or more.
https://www.tomshardware.com/pc-components/gpus/nvidias-next-gen-bla
ckwell-ai-gpus-to-cost-up-to-dollar70000-fully-equipped-servers-range-up-t
o-dollar3000000-report

Journal of Computational Science Education Volume 16, Issue 2

November 2025 21

https://insidehpc.com/hpc-basic-training/is-hpc-going-to-cost-me-a-fortune
https://insidehpc.com/hpc-basic-training/is-hpc-going-to-cost-me-a-fortune
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://www.scientificamerican.com/article/there-are-too-few-women-in-computer-science-and-engineering/
https://www.scientificamerican.com/article/there-are-too-few-women-in-computer-science-and-engineering/
https://www.hpcwire.com/2010/06/07/engaging_the_missing_middle_in_hpc/
https://www.hpcwire.com/2010/06/07/engaging_the_missing_middle_in_hpc/
https://doi.org/10.1109/IPDPSW59300.2023.00051
https://doi.org/10.1109/IPDPSW59300.2023.00051
https://www.theregister.com/2024/03/21/nvidia_dgx_gb200_nvk72/
https://investor.nvidia.com/events-and-presentations/presentations/presentation-details/2023/NVIDIA-Investor-Presentation-October-2023/default.aspx
https://investor.nvidia.com/events-and-presentations/presentations/presentation-details/2023/NVIDIA-Investor-Presentation-October-2023/default.aspx
https://investor.nvidia.com/events-and-presentations/presentations/presentation-details/2023/NVIDIA-Investor-Presentation-October-2023/default.aspx
https://doi.org/10.1126/science.342.6160.790
https://cset.georgetown.edu/article/levers-for-improving-diversity-in-computer-science/
https://cset.georgetown.edu/article/levers-for-improving-diversity-in-computer-science/
https://cset.georgetown.edu/article/levers-for-improving-diversity-in-computer-science/
https://www.forbes.com/sites/emilsayegh/2024/08/19/the-great-tech-reset-unpacking-the-layoff-surge-of-2024/
https://www.forbes.com/sites/emilsayegh/2024/08/19/the-great-tech-reset-unpacking-the-layoff-surge-of-2024/
https://www.tomshardware.com/pc-components/gpus/intels-1500w-tdp-for-falcon-shores-ai-processor-confirmed-consumes-more-power-than-nvidias-b200
https://www.tomshardware.com/pc-components/gpus/intels-1500w-tdp-for-falcon-shores-ai-processor-confirmed-consumes-more-power-than-nvidias-b200
https://www.tomshardware.com/pc-components/gpus/intels-1500w-tdp-for-falcon-shores-ai-processor-confirmed-consumes-more-power-than-nvidias-b200
https://www.tomshardware.com/pc-components/gpus/nvidias-next-gen-blackwell-ai-gpus-to-cost-up-to-dollar70000-fully-equipped-servers-range-up-to-dollar3000000-report
https://www.tomshardware.com/pc-components/gpus/nvidias-next-gen-blackwell-ai-gpus-to-cost-up-to-dollar70000-fully-equipped-servers-range-up-to-dollar3000000-report
https://www.tomshardware.com/pc-components/gpus/nvidias-next-gen-blackwell-ai-gpus-to-cost-up-to-dollar70000-fully-equipped-servers-range-up-to-dollar3000000-report

Facilitating Academic Research with FPGA Support in a
University Data Center

Jeevesh Choudhury
Arizona State University

jchoudh3@asu.edu

Thomas Jennewein
Arizona State University

tjennewe@asu.edu

Gil Speyer
Arizona State University

speyer@asu.edu

ABSTRACT
Field Programmable Gate Arrays (FPGAs) offer a practical solu-
tion that balances computational power with energy efficiency,
which could address the growing demand for sustainable high-
performance computing (HPC). Moreover, because they can be re-
configured and optimized for specific applications, FPGAs open up
numerous possibilities for adaptive, high-performance workloads.
However, the substantial expertise required to deploy FPGA designs
has traditionally been daunting, requiring proficiency in Hardware
Description Languages (HDL) such as SystemVerilog or VHDL. To
address this accessibility barrier, the field has shifted toward high-
level synthesis (HLS), which allows developers to program FPGAs
using familiar languages like C++ and Python — mirroring the
evolution seen in GPU programming.

In this paper, the resources available on the Sol HPC cluster at
Arizona State University (ASU) [8] and the strategies employed to
support and encourage researchers and instructors working with
these nodes are examined. The practical challenges of using FPGAs,
the integration of tools and libraries in the development workflow,
and efforts to lower the expertise threshold required for effective use
are explored. By sharing this experience, the aim is to contribute to
the growing body of knowledge around accessible and sustainable
FPGA development in HPC environments.

KEYWORDS
FPGA, HPC, Facilitation

1 INTRODUCTION
With the advent of the exascale era of high-performance computing,
accelerators have become vastly more expansive and heterogeneous
and often include various novel architectures besides GPUs, such as
FPGAs, Vector Engines (VEs), Wafer-Scale Engines (WSEs), and In-
telligence Processing Units (IPUs). Among such accelerators, FPGAs
have often served as the platform to design, prototype, experiment,
and deploy novel architectures that accelerate applications while
leveraging a balance between computational speed and power ef-
ficiency. The versatility of FPGAs allow them to be used both as
computational and network accelerators, as shown in Microsoft’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2025 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/16/2/5

Project Catapult [12], and they can be connected in varying con-
figurations as shown in Lant, et al. [9] to exploit various compute
advantages.

Due to the FPGA’s low power and programmability features,
implementation of edge computing designs has gained wide popu-
larity. In the context of the data center, this use case would seem
out of place. However, at a university, the development of projects
on a reliable, well-supported datacenter platform can become an
attractive alternative to local labs for both research teams and FPGA
course instructors.

Nevertheless, deploying FPGAs in HPC clusters comes with its
own set of challenges and impediments as illustrated in Chen et al.
[4] and for scalability, FPGAs need to be connected to the data center
network directly as shown in Weerasinghe et al. [13]. Another
barrier to using FPGAs and similar heterogeneous accelerators is
that their workflow and software stack is significantly dissimilar
and non-standardized when compared to GPU or CPU workflows.
Furthermore, depending on the vendor, these accelerators work
with different software stacks as well, in spite of them implementing
a similar workflow methodology.

Broadly speaking, development flow on an FPGA can be classified
as:

• Register-Transfer Level (RTL) Design Development:
This is the classical development flow on an FPGA where
a researcher writes hardware description language (HDL)
code using Verilog or VHDL which is synthesized onto the
FPGA through an appropriate development suite such as
Xilinx Vivado or Intel Quartus Prime. HDL Design requires
greater expertise and is more relevant to VLSI engineers and
microarchitecture researchers. FPGAs facilitate ASIC proto-
typing by serving as a platform to design, test, and optimize
custom integrated circuits. This development workflow can
possibly exploit cloud FPGAs with the important caveat that
the final test on the FPGA of a compiled design bitstream
may not be viable; an FPGA board often needs a complete
power cycle to update the onboard design, and power cycle
privileges may not be granted to every user.

• C/C++ Application Development: With advancing tech-
nologies, FPGA programming has been shifting to a para-
digm similar to that of GPU programming. This development
workflow splits the design into two code files: the kernel
code that runs on the FPGA and the host code that runs
on the host CPU and leverages the kernel code. High Level
Synthesis (HLS) compilers convert C/C++ code into FPGA
designs, thereby improving the approachability of FPGA pro-
gramming. A user would only need a base understanding of
C code to get started with this workflow, and the complete

Volume 16, Issue 2 Journal of Computational Science Education

22 November 2025

https://doi.org/10.22369/issn.2153-4136/x/x/x

flow consists of a minimum of four steps to get a design
running on the FPGA. These can be specified as:

(1) Compile the host code using any C/C++ compiler.
(2) Compile the kernel code into an HLS package.
(3) Link the HLS package into a binary file.
(4) Execute the compiled host code with the binary file.
This flow is easily deployable on HPC clusters, and applica-
tions made using this workflow do not require any height-
ened privileges for the user on the FPGA nodes.

• Hybrid Development: The aforementioned development
flows can also be combined at various stages. Designs made
in HDL code can be packaged into HLS modules and further
linked to a design binary, thereby creating a combined work-
flow where traditional RTL projects can be deployed on HPC
clusters with the C/C++ development flow without having
to provide users increased administrator privileges on the
node.

The tools required for these workflows vary, resulting in a suite
of software tools, drivers, and resources available to the user for
a comprehensive testbed environment. The development method-
ology is modular with multiple intermediate results in the design
process, thereby implying that all stages need not be compiled,
executed, and tested on the same resource, resulting in an inherent
parallelism available to the workflow itself.

2 FPGA AS A SERVICE (FAAS)
With the increasing heterogeneity of HPC systems, FPGA resources
have become popular as an extension to the pool of available re-
sources offered by cloud services. Project Catapult by Microsoft
and Amazon’s AWS EC2 F2 instances are two examples of this
growing trend. As mentioned earlier, the inherent heterogeneity of
the FPGA node configuration requires a suite of software resources
and modules to go from design to deployment. Creating and sus-
taining this development environment as a resource for a multitude
of online users has its own challenges, but an added incentive to
deploying such an environment on the cloud is that these resources
are often self-contained suites that offer a wider breadth of features.
Furthermore, they are designed in a modular fashion, enabling
system administrators to upgrade or downgrade these integrated
development environments (IDEs) as required. Therefore, the pri-
mary classification that inhibits cross-compatibility between IDEs
generally boils down to the choice of software offerings. Intel and
AMD are the prominent vendors in this field, as of this writing, and
hence, the choice is between them as their FPGA software products
are functionally similar.

In terms of performance benchmarks, the FPGA as a Service
(FaaS) model has been evaluated to show better performance for
compute-intensive workloads compared to CPU and GPU imple-
mentations while also leveraging relatively less power consumption
as evaluated in Perepelitsyn et al. [11].

2.1 Compute and Software Resources
ASU’s Sol has FPGA nodes available through the SLURM scheduler.
However, while the OpenCL workflow from design to deployment
is straightforwardy available to all users, full re-programmability

of the cards and driver access is restricted by administrator per-
missions to prevent users from accidentally bricking the hardware.
Providing elevated permissions to FPGA researchers is one possi-
ble solution for this. Bare metal servers are the ideal method for
deploying FPGA resources on the cloud, as they allow researchers
to fully exploit the re-programmability of FPGA hardware, and the
possibility of such special access nodes on Sol is being explored.

Currently, Sol has two FPGA nodes with the following FPGAs:
(1) Alveo U280 with an AMD UltraScale+ XCU280 FPGA and

8GB of HBM2 memory [1].
(2) Bittware 520N-MX with an Intel Stratix 10 FPGA and 16GB

of HBM2 memory [3].
Since the two FPGAs are from separate vendors, the requisite

software environment for development on either can be easily
provisioned for each, with AMD Xilinx Vivado being one of the
available development environments and Intel Quartus Prime as
its complement.

2.1.1 AMD Xilinx Resources.

(1) AMD Xilinx Vivado: Vivado is a comprehensive suite for
the traditional FPGA workflow using HDL, and it supports
Verilog, SystemVerilog, and VHDL. On Sol, Vivado 2022.1
Standard Edition is available as amodulewhich can be loaded
on any node and used accordingly. Vivado is a comprehen-
sive IDE for RTL design, and most of its components can
be used from any node on Sol to work from RTL design to
bitstream generation. All boards supported in the Standard
Edition are available for development with the edition on Sol.
Consequently, within the cloud working environment, Sol
offers the capability of offloading the design and testing of
experimental VLSI architectures in a datacenter environment
to researchers, thereby reducing the need for local machines
required to run the same software.
While, with some effort, RTL design does allow users to
use the full reconfiguration of an FPGA, significant domain
expertise is necessary to competently exploit the resources
available on an FPGA. ASU’s Sol allows researchers to design,
develop, and generate their custom architecture bitstreams
with Vivado on any node, but deploying the bitstream on the
Alveo U280 is restricted due to the partial reconfigurability
feature of the board. As such, any design would require a
debug core to be interfaced into them so as to not brick
the Alveo U280 once its onboard design memory is updated.
The card also needs a power cycle to update itself once a
bitstream has been deployed, and, therefore, as a security
measure, full reconfigurability is not granted to all users.
Since Vivado is compatible with various other FPGA design
platforms, it is always plausible for researchers to simply
use the software on any node on Sol to develop a design for
any other FPGA of their choice. Any design files can always
be easily transferred between the cloud and another local
environment.

(2) AMD Xilinx Vitis: Vitis is an IDE designed for working with
HLS using C/C++. The Vitis workflow involves splitting the
code into the CPU/Host component and the Kernel/FPGA
component, akin to specifying the CPU and GPU kernels

Journal of Computational Science Education Volume 16, Issue 2

November 2025 23

while workingwith HIP or CUDA code. The host code is com-
piled using a g++ compiler while the kernel code is compiled
using Vitis v++ which translates the C/C++ implementation
into an FPGA binary. The v++ compiler maps the code to
a specific platform, and hence a .xpfm or .xsa platform file
must be included when running the compiler command. This
platform file can be the provided default for a specific board,
or it can be custom made through Vivado. Vitis has various
sub-components as well which can be used for timing analy-
sis, code debugging, platform generation, and more. Figure
1. shows how the CPU and FPGA codes interact with each
other.

Figure 1: CPU-FPGA Code Interaction in Vitis [6]

(3) Xilinx Runtime (XRT): XRT is a software stack composed of a
mix of userspace and kernel driver components. It contains
the collection of API keys that allows the host system to suc-
cessfully communicate with PCIe based FPGA accelerators.
The tools provided in this software stack not only help in
synthesizing code to be deployed on the FPGA but also allow
users to monitor and test the FPGA directly through a bash
shell without having to go through Vivado or Vitis. Figure 2.
shows the software stack structure of the XRT libraries.

Figure 2: XRT Software Stack [14]

Figure 3. shows the software stack for XRT on Alveo based
platforms such as the Alveo U280.

Figure 3: PCIe Stack for Alveo Platforms [14]

Figure 4: Compilation flow with XRT [14]

Figure 4. shows the compilation and execution workflow
whenworkingwith XRT libraries to run kernels on the FPGA.
It illustrates how the host code working on the host system
CPU interacts with the compiled kernel binary deployed on
the FPGA platform.

2.1.2 Intel Altera Resources.
(1) Intel Quartus Prime: Intel Quartus Prime is the comprehen-

sive FPGA development suite available for Intel/Altera FP-
GAs. On Sol, there are multiple versions of Quartus Prime
that are available, ranging between the Standard, Pro, and
Lite edition. The recommended version is Intel Quartus
Prime Pro 23.4 as that is the version that works ideally with
the Bittware 520N-MX hardware that is available on Sol.
Quartus Prime is similar to Vivado in that it boasts a compre-
hensive suite of tools, such as Quartus Programmer, Platform
Designer, Timing Analyzer etc., which are designed to ac-
commodate the many possible aspects of designing on Intel
FPGAs. Unlike Vivado, which has separated off the Xilinx
HLS components onto Vitis, Quartus Prime comprehensively
includes the Altera HLS Compiler which acts as the working
suite for compiling higher level code into its RTL equivalent
for Intel FPGAs. The HLS Compiler is available in the Pro
and Standard editions of Quartus Prime with the primary
difference being the devices supported by those editions.
Questa is also provided with Quartus Pro, which serves as
an effective HDL simulator for behavioral verification of RTL
modules.

Figure 5: Intel FPGAWorkflow [7]

Volume 16, Issue 2 Journal of Computational Science Education

24 November 2025

Figure 5. shows a comprehensive workflow and the various
file types involved in different stages of design and compila-
tion for an Intel FPGA. While dissimilar in some aspects, the
overall design philosophy and process is quite reminiscent
of working with Xilinx FPGAs and thereby suggests that,
while the tools may be different, RTL or C++ designs could
possibly be ported from one vendor platform to another as
long as the hardware resources supported the design.

(2) Intel FPGA SDK for OpenCL: OpenCL support for Intel FPGAs
is provided through this package made available by default
on the Bittware node on Sol. The Altera OpenCL (AOCL)
utility can diagnose, program, and validate the FPGA, and
it provides easy access without having to resort to working
through Quartus. While AOCL has become a legacy tool as
of writing this article, it is still readily compatible with many
HLS design tools that allow extended programmability of
the Intel FPGA. It is analogous to the XRT stack on Xilinx
FPGAs and offers similar utilities for real-time hardware
diagnostics.

(3) Intel OneAPI : Intel’s OneAPI is a unified programming frame-
work to write code for Intel FPGAs, CPUs, and GPUs. It
is the current framework for programming Intel FPGAs
through HLS built around C++ with SYCL. Multiple ver-
sions of OneAPI compilers and libraries are available on Sol
with OneAPI 2023.2.1 being the most recent one. The OneAPI
base toolkit is available as a module while its FPGA add-on is
pre-installed on the Intel FPGA node, allowing for a seamless
workflow with OneAPI tools.

Overall, both the AMDXilinx and the Intel Altera resources provide
tools for implementing the same design workflow and philosophy.
Both vendors provide tools to facilitate RTL designs with Verilog
and VHDL, and they also provide for the HLS design workflow
which is much simpler and easier to learn with its similarities to
GPU kernel programming.

2.2 Workflow
As mentioned above, modern FPGA programming is gradually
shifting towards, and becoming unified with, GPU programming,
often even using similar libraries, tools, and compilers. While the
intricacies may be vendor specific, the overall design philosophy
tends to remain the same, with the primary differences arising with
the choice of coding language. In this section, we will attempt to
codify the workflow based on HDL and C++ to create an abstract
but comprehensive route from initial design to final deployment.

2.2.1 RTL Development Workflow.

(1) HDL Block Design: The preliminary stage of any RTL design
project begins with an abstract overview of the many func-
tional modules to be implemented and how they should be
interconnected and controlled. This stage involves a very
high-level overview of the possible functional blocks, the
state machines required for each block or groups of blocks,
and the pipeline stages that will be incorporated into the
design. These designs are then described in an appropriate
HDL as per the discretion of the user. This design is then
verified functionally and behaviorally with an associated
testbench to ensure that the design is working as intended.

(2) Synthesis: Using an appropriate compiler, the HDL code pre-
pared in the earlier stage is used to formulate a gate-level
representation of the same code. This gate level netlist is a
low level design using only primitive circuit components,
representing the code with simple logic gates. It is then fur-
ther optimized for timing, power, and performance according
to the constraints and requirements as defined by the user.
Functional and behavioral verification are usually executed
using the earlier testbench once again to ensure that the
translation from RTL code to the gate-level netlist did not
create any behavioral anomalies.

(3) Implementation: Once the gate-level netlist is compiled and
functional verification is done, the next step is to map these
primitive components to the physical resources that are avail-
able on the FPGA. This step often uses a platform file or a
board support package which contains the configuration and
details of various blocks available on the FPGA for which the
design is being implemented. Place and Route is the primary
phase of this step where;
• Place: Logic cells, required by the design, are placed at
appropriate points on the FPGA board mapped by the
compiler and,

• Route: The connections for the placed logic cells aremapped
to each other to form a complete circuit to implement the
overall design.

The placement and routing of the circuit is done in congru-
ence with an appropriate platform and constraints files. Var-
ious verification methods pertaining to Design Rule Checks
(DRC) are carried out in this phase as well to ensure that the
designed circuit is in accordance with the physical resources
available.

(4) Timing Analysis: Static Timing Analysis (STA) is the standard
method for timing closure which analyzes the propagation
delay through all relevant timing paths. In this context, slack
is the margin by which the timing is met or violated. Setup
slack indicates that the signal is not propagating too slowly,
while hold slack signifies that the signal is not arriving too
early. Positive slack implies that the circuit is meeting the
timing constraint and that a faster clock can be achieved de-
pending on the magnitude of the slack, while negative slack
implies a timing violation. Achieving the highest operating
frequency (lowest clock period) while maintaining timing
closure is the ultimate goal of this step.
Implementation and Timing Analysis are repeated iteratively
until the timing violations in the circuit have been elimi-
nated. Once all relevant timing paths have met timing and
constraint requirements the design is ready to be exported
to a bitstream.

(5) Hardware Validation: The implemented design is then ex-
ported to a device-specific binary configuration formatwhich
is used to program the physical hardware. Verification of the
design is done by testing out the programmed FPGA in a
real-time environment with an appropriate testbench. This
step includes various design-specific tests to ensure that the
hardware is performing well under various conditions and
that there are no discrepancies between the simulated and
implemented design and the final design on hardware.

Journal of Computational Science Education Volume 16, Issue 2

November 2025 25

Figure 6: RTL Development Workflow [5]

Figure 6. shows an abstract and comprehensive overview of the
aforementioned RTL workflow.

2.2.2 C/C++ Application Workflow.

(1) C/C++ Algorithm Design: First and foremost, the overall algo-
rithm for implementing a design is formulated. This involves
separating out the steps of the algorithm which can be com-
puted on a host machine (usually with a multi-purpose CPU)
and the steps that can be computed as an FPGA kernel. De-
pending upon the complexity and depth of the design to be
implemented, the interaction between the host and FPGA
kernel can range from simple function calls to more complex
multi-stage data transfer and streaming operations. Once
the overall algorithm is codified, functional verification is
carried out with an appropriate testbench to ensure that
the code is working as needed. This results in two primary
components of the code:
• The host code running on the CPU and,
• The kernel code running on the FPGA
The kernel code is optimized further and then later recom-
piled to a full binary configuration which is deployed onto
the FPGA in the proceeding steps.

(2) HLS Optimization: Once the algorithm is verified function-
ally, various HLS directives and pragmas are employed to
optimize the kernel code for efficient hardware implementa-
tion. These optimizations include selecting appropriate data
types (fixed-point vs. floating-point), loop pipelining and
unrolling, array partitioning, dataflow optimizations, and
interface specifications. The goal is to maximize throughput
while minimizing resource utilization and meeting timing
constraints.

(3) RTL Generation and Co-Simulation: After the functional veri-
fication and optimization of the kernel and host algorithm
is done, the kernel code is compiled into an RTL module
description. This is a synthesizable RTL representation of
the algorithm which is useful in describing the datapath, con-
trol logic, and interfaces in a more hardware-centric manner.

Co-simulation is then performed using the software test-
benches to verify that the generated RTL produces identical
functional behavior to the software reference, ensuring no
behavioral discrepancies were introduced during the HLS
compilation process.
Once it is verified that there are no functional anomalies,
power, performance, and area analysis of the design can be
conducted. HLS optimization and RTL generation and co-
simulation can be carried out iteratively until the desired
performance is achieved. Thus, these two steps act as a de-
sign exploration stage of the algorithm where performance
bottlenecks, timing estimates, pipelining techniques, and
memory partitioning and data flow can be tested and evalu-
ated before the implementation of the full design.

(4) Export and Testing: Once the kernel module has been suffi-
ciently tested and optimized, it can be compiled into a com-
plete binary configuration for the FPGA. It is noteworthy
that binaries from the HLS workflow are not interchange-
able with those from the RTL workflow. HLS-generated bi-
naries typically include additional metadata, such as kernel
interfaces, scheduling, and pipelining information, provid-
ing more insight into the implemented design. In contrast,
RTL workflows provide direct control over hardware imple-
mentation details. While HLS workflows offer higher-level
abstraction and include runtime frameworks that facilitate
simpler system integration, the resource efficiency of either
approach depends primarily on the design quality and opti-
mization effort rather than the source methodology itself.
Generation of the binary in this workflow takes a significant
amount of time, typically above 3 hours. This is often be-
cause the HLS compilers carry out similar steps as in the RTL
workflow, such as place and route, timing analysis, area re-
ports, and resource optimizations, effectively going through
the implementation and timing analysis steps repeatedly
until an optimal design is achieved. The design summary
and performance reports are also generated and exported
during this step, which can be used for deeper analysis of
the generated binary.
After the binary has been generated, it can be leveraged by
the host code to be deployed onto the FPGA. Therefore, the
host code can be a testbench to run simulations on the gen-
erated design to verify that functionality and performance
have been preserved over the whole process, or it can be the
primary algorithm interface to implement the overall design
on the FPGA.

3 DISCUSSION
• Cross-Compatibility of Workflows: The workflows elab-
orated upon in Sections 2.2.1 and 2.2.2 are meant to be ab-
stract overviews of the whole process. Each step is often
self-contained and with various possible implementations.
With the increasing diversity of FPGA tools and resources
being made available to researchers, cross-compatibility be-
tween workflows is also becoming more straightforward.
AMD Xilinx Vivado supports this cross-compatibility by

Volume 16, Issue 2 Journal of Computational Science Education

26 November 2025

virtue of the IP Packaging Tool built into it, which can pack-
age an RTL design into a kernel module and which can
be compiled into an application binary through Vitis HLS.
While this approach can be employed to port older and sim-
pler RTL designs to HLS binaries, the complexity of porting
these designs mirrors the complexity of the RTL design itself.

• Open-Source Resources: Apart from the AMD and Intel
tools mentioned in Sections 2.1.1 and 2.1.2, there are also
many open source tools available to develop on FPGAs as
well. Two open source tools deployed on Sol are OpenHLS
[10] and ScaleHLS [16]. Both of these libraries are available
as mamba environments on Sol. OpenHLS is a project that
translates PyTorch neural network models to synthesizable
RTL code and supports the Alveo U280 on the Sol cluster.
The ScaleHLS project aims at compiling PyTorch code to its
HLS C++ equivalent compatible with AMD Vitis.

• Pre-Compiled Binaries: To help researchers ease into the
development workflow on Sol FPGAs, some pre-compiled
projects have been made publicly available. These include:
– Simple vector addition projects for the AMD and Intel
nodes.

– Custom and original implementations of the traveling
salesman problem based on AMD’s Vitis Tutorials [15].

– An OpenCL implementation of a 2D FFT Accelerator for
the Bittware 520N-MX based on Bittware’s white paper
[2].

These projects contain the compiled kernel binaries, sum-
mary reports of the design, and host binaries to easily run
the designs on the FPGA.

• RunTime Benchmarking: An important factor to consider
when providing FPGA resources for the research community
is program run time and card utilization. Table 1 presents
some initial run time benchmarking and utilization for some
basic programs.
– The vector addition program simply adds two vectors of
size 65536 to each other.

– The prime number program calculates all prime numbers
between 0 and 4095 and returns them in an output vector.

– The triangular numbers program calculates the first trian-
gular number to have over 500 divisors.

– The second triangular numbers program was an attempt
to solve the problem with a different method. It involved
storing all divisors in an array and then iterating through
the array when checking new numbers. This led to incred-
ibly slow performance and the program did not finish in
emulation or on hardware, even after eight hours.

4 RESULTS
To summarize, FPGAs have emerged as reconfigurable accelera-
tors for specialized workloads in datacenters. They offer a unique
balance between performance, flexibility, and energy efficiency
tailored to specific applications. They perform well on compute-
intensive tasks where parallelization and custom datapaths provide
significant advantages. Despite these advantages, FPGAs have faced

Kernel
linking
time
(emu.)

Kernel
Linking
time
(HW)

Comp.
time
(emu.)

Comp.
time
(HW)

Util.

Vector
add.
(65536
array)

13m 5s 1h 36m
49s

115.35s 9052𝜇s 0%

Prime
#s (4096
array)

13m 2s 1h 59m
0s

543s 5634𝜇s 0%

Triang.
#s

0h 41m
43s

4h 24m
11s

12849s 102524𝜇s ∼1.5%

Triang.
#s
(Array
method)

0h 41m
48s

1h 22m
16s

DNF DNF N/A

Table 1: Some performance numbers on the Alveo U280 with
the XRT Compilation Flow

adoption challenges with long development cycles being a major
hurdle. However, recent methods such as HLS and frameworks
like XRT and OneAPI have been enabling wider deployment of
FPGAs by allowing researchers to work with a wider arsenal of
programming languages.

The codified workflows presented above offer a consistent plat-
form to implement different projects as well as to reproduce results
for similar projects. The workflows offer an accessible on-ramp
for the onboarding of researchers onto FPGA projects on Sol and
the versatility of the workflow imparts the capability for auto-
tailorization of the flow with continued development.

The primary dichotomy between the workflows, as of this writ-
ing, arises not because of the overall development methodology
with C/C++ and RTL, but rather due to the difference in vendors
of the FPGAs. Open source tools are democratizing this barrier
slowly but pragmatically, staying within one vendor’s development
environment does not seem to hamper the interchangeability of
workflows significantly.

The datacenter FPGA landscape continues evolving with ad-
vances in memory integration (HBM2 and above), higher-speed
interfaces (PCIe 5.0, CXL), multi-processor platforms (AMD Versal
and ZynqMPSoCs), and improved development tools. As workloads
become more specialized and energy efficiency becomes increas-
ingly critical, FPGAs are positioned to play an expanding role in
heterogeneous datacenter architectures, complementing CPUs and
GPUs in optimized computing solutions.

ACKNOWLEDGEMENTS
The authors acknowledge Research Computing at Arizona State
University for providing resources that have contributed to the
results reported within this paper.

REFERENCES
[1] Advanced Micro Devices, Inc. 2024. Alveo U280 Data Center Accelerator Card

User Guide. https://docs.amd.com/r/en-US/ug1314-alveo-u280-reconfig-accel.

Journal of Computational Science Education Volume 16, Issue 2

November 2025 27

https://docs.amd.com/r/en-US/ug1314-alveo-u280-reconfig-accel

[2] BittWare. 2021. Accelerating 2D FFTs Using HBM2 and oneAPI on Stratix 10 MX.
Technical Report. BittWare. https://www.bittware.com/resources/hbm2-2d-fft
-oneapi/ White Paper.

[3] BittWare, Inc. 2024. 520N-MX FPGA Accelerator Card. https://www.bittware.c
om/products/520n-mx/.

[4] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and
Kun Wang. 2014. Enabling FPGAs in the cloud. In Proceedings of the 11th ACM
Conference on Computing Frontiers (CF ’14). Association for ComputingMachinery,
New York, NY, USA, Article 3, 10 pages. https://doi.org/10.1145/2597917.2597929

[5] Bruno Da Silva, An Braeken, and Abdellah Touhafi. 2018. FPGA-Based Architec-
tures for Acoustic Beamforming with Microphone Arrays: Trends, Challenges
and Research Opportunities. Computers 7, 3 (2018). https://doi.org/10.3390/co
mputers7030041

[6] Héctor Gutiérrez Arance, Luca Fiorini, Alberto Valero Biot, Francisco Hervás Ál-
varez, Santiago Folgueras, Carlos Vico Villalba, Pelayo Leguina López, Arantza
Oyanguren Campos, Valerii Kholoimov, Volodymyr Svintozelskyi, and Jiahui
Zhuo. 2025. Porting MADGRAPH to FPGA Using High-Level Synthesis (HLS).
Particles 8, 3 (2025). https://doi.org/10.3390/particles8030063

[7] Intel Corporation. 2024. Intel® Quartus® Prime Pro Edition User Guide. Intel
Corporation. https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
Document ID: 766292.

[8] Douglas Jennewein et al. 2023. The Sol Supercomputer at Arizona State Uni-
versity. In Practice and Experience in Advanced Research Computing (PEARC ’23).
Association for Computing Machinery, New York, NY, USA, 6. (in press).

[9] Joshua Lant, Javier Navaridas, Mikel Luján, and John Goodacre. 2020. Toward
FPGA-Based HPC: Advancing Interconnect Technologies. IEEE Micro 40, 1 (2020),
25–34. https://doi.org/10.1109/MM.2019.2950655

[10] Maksim Levental, Arham Khan, Ryan Chard, Kazutomo Yoshii, Kyle Chard,
and Ian Foster. 2023. OpenHLS: High-Level Synthesis for Low-Latency Deep

Neural Networks for Experimental Science. arXiv:cs.AR/2302.06751 https:
//arxiv.org/abs/2302.06751

[11] Artem Perepelitsyn and Vitaliy Kulanov. 2025. Methods of Deployment and
Evaluation of FPGA as a Service Under Conditions of Changing Requirements
and Environments. Technologies 13, 7 (2025). https://doi.org/10.3390/technologi
es13070266

[12] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hor-
mati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope,
Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A re-
configurable fabric for accelerating large-scale datacenter services. In 2014
ACM/IEEE 41st International Symposium on Computer Architecture (ISCA). 13–24.
https://doi.org/10.1109/ISCA.2014.6853195

[13] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herkers-
dorf. 2015. Enabling FPGAs in Hyperscale Data Centers. In 2015 IEEE 12th Intl
Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on
Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Com-
puting and Communications and Its Associated Workshops (UIC-ATC-ScalCom).
1078–1086. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199

[14] Xilinx. 2021. Xilinx Runtime (XRT) Documentation. https://xilinx.github.io/X
RT/2021.1/html/index.html

[15] Xilinx. 2022. Vitis-Tutorials. https://github.com/Xilinx/Vitis-Tutorials
[16] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen

Neuendorffer, and Deming Chen. 2022. Scalehls: A new scalable high-level
synthesis framework on multi-level intermediate representation. In 2022 IEEE
international symposium on high-performance computer architecture (HPCA). IEEE,
741–755.

Volume 16, Issue 2 Journal of Computational Science Education

28 November 2025

https://www.bittware.com/resources/hbm2-2d-fft-oneapi/
https://www.bittware.com/resources/hbm2-2d-fft-oneapi/
https://www.bittware.com/products/520n-mx/
https://www.bittware.com/products/520n-mx/
https://doi.org/10.1145/2597917.2597929
https://doi.org/10.3390/computers7030041
https://doi.org/10.3390/computers7030041
https://doi.org/10.3390/particles8030063
https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://doi.org/10.1109/MM.2019.2950655
http://arxiv.org/abs/cs.AR/2302.06751
https://arxiv.org/abs/2302.06751
https://arxiv.org/abs/2302.06751
https://doi.org/10.3390/technologies13070266
https://doi.org/10.3390/technologies13070266
https://doi.org/10.1109/ISCA.2014.6853195
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199
https://xilinx.github.io/XRT/2021.1/html/index.html
https://xilinx.github.io/XRT/2021.1/html/index.html
https://github.com/Xilinx/Vitis-Tutorials

A Novel 3D Recurrent R-CNN for Medical Imaging Feature
Detection: A Case Study for Coronary Calcium Detection

Vikas Sarvasya
University of Pennsylvania
sarva@seas.upenn.edu

Robert Gotwals
North Carolina School of Science and

Math
gotwals@ncssm.edu

Liam Butler
Wake Forest University School of

Medicine
liabutle@wakehealth.edu

ABSTRACT
Deep neural networks (DNNs), when trained on high-quality, noise-
free images, often underperform when applied to images with dis-
tortions or noise [22]. A key challenge lies in the architecture of
convolutional neural networks (CNNs), where the layers are struc-
tured to prioritize features detected at the final layers, treating
earlier features as latent or redundant [5]. This design hinders the
ability of CNNs to effectively detect small, dynamic, and complex
structures in images, thereby limiting their adaptability to image
variations [5].

The primary objective of this study was to develop a novel net-
work architecture capable of accurately detecting the bounding
boxes of coronary arteries and subsequently calculating a calcium
score. The model’s bounding boxes were validated against manually
annotated arterial outlines, and the calcium score was compared
to clinician-adjudicated values. The proposed network introduced
an innovative propagation mechanism, coupled with various de-
rived algorithms and modifiers, to mitigate the impact of motion
distortions on coronary artery tracking and detection.

Results demonstrated exceptional performance, with the testing
set achieving an average Mean Squared Error (MSE) of less than 2%,
and a deviation of less than 1.5 pixels for each coordinate within a
128x128-pixel image. The calcium score derived from the network’s
bounding boxes exhibited a strong correlation of R2 = 0.921, with
a region of interest (ROI) accuracy of 88% across all calcium score
ranges. In contrast, a standard CNN used as a control struggled,
yielding an 𝑅2 = 0.0091 and an ROI accuracy of just 10%.

This student research project presents a pioneering network
that utilizes specialized algorithms and propagation techniques to
accurately identify small, dynamic structures in non-gated chest
CT scans. The model’s ability to provide reliable calcium scores
enhances the clinical utility of chest CT scans, offering a promising
tool for improving the diagnosis of coronary artery disease and
optimizing the management of cardiac disease risk [19].

KEYWORDS
Deep neural networks, Convolutional neural networks, Bounding
box regression, Backpropagation algorithm, CT scan, Coronary
Artery Calcium score, Artery detection, Distortion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2025 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/16/2/6

1 INTRODUCTION
Coronary calcium is calcium that builds up in coronary arteries. A
substantial buildup of calcium deposits (calcium plaques) is called
atherosclerosis and can narrow arteries and can be brought about
by high blood pressure, obesity, diabetes, and high blood choles-
terol [19]. A Coronary Artery Calcium (CAC) score of 0 shows
that the individual has no coronary calcium buildup while an in-
creasing calcium score (with virtually no limit) increases the risk
of cardiovascular disease (CVD) [6]. Atherosclerosis is “the under-
lying cause of about 50% of all deaths in westernized society due
to heart attacks, stroke, and peripheral arterial disease” [19]. CAC
scores help clinicians assess risk of, amongst other cardiac diseases,
heart attacks and stroke [19]. When CAC scores are moderate-high,
clinical attention for disease prevention and/or treatment would
be required. Cardiac gated computed tomography (CT) scans are
conventionally used to calculate CAC. Gated CT scans may require
specific drugs to slow down a patient’s heart rate and imaging of
the heart is done only during the mid to end diastolic phase, when
cardiac movement is minimized [6]. This ensures that the gated CT
contains no motion distortions and clearly highlights important
features, such as coronary arteries [6]. This means that gated CT
scans correct coronary motion and provide accurate values for the
CAC score, since it is extremely easy to detect the coronary arteries
[6].

Gated CTs aremuchmore expensive than non-gated CTs [17] due
to the use of drugs to modulate the heart rate. Consequently, cardiac
gated CT scans are done very infrequently and only on patients
who have already been diagnosed with some measure of CVD [7].
Roughly a quarter of patients who have heart attacks suffer from
sudden cardiac death [16]. Of these patients, 80% have atheroscle-
rosis, making it the most reliable indicator of cardiac arrest [26].
Therefore, it is imperative that better predictive tools are available
in a larger group of patients to detect coronary atherosclerosis.
Unlike gated CTs, non-gated chest CTs are more readily available
and are routinely performed for a much wider range of pathologies
other than coronary artery disease [13]. For example, chest CTs are
used for detecting pulmonary embolism in patients presenting to
the emergency room for trouble breathing.

If these non-gated CTs could be accurately evaluated for coronary
artery disease, there would be less undiagnosed CVD patients, who
could then be prescribed risk-reducing treatments and decrease the
rate of instantly fatal heart attacks [13]. Non-gated CTs do not use
drugs to modulate the heart rate and simply take cross-sectional
images sequentially. Because images are taken during different
stages of the heartbeat, these images contain motion distortion of
the heart. In non-gated CTs, the coronary arteries are still in the
field of view of the image, but the distortion of the image precludes

Journal of Computational Science Education Volume 16, Issue 2

November 2025 29

https://doi.org/10.22369/issn.2153-4136/x/x/x

accurately identifying the arteries, making calculations of a CAC
difficult [14]. This reduces the overall usability of these types of
CTs for such cases. When non-gated CTs are used, the CAC score
for these imaging scans is manually assigned into three categories:
mild, moderate, and severe, rather than providing a numerical value
[9]. This creates some issues, mostly due to variation and bias
between physicians [9]. This unstandardized system also doesn’t
account for important factors such as age, gender, or race, making it
unfeasible to use for diagnosis and treatment [8]. A mild CAC score
for an elderly woman can be severe for a man in his 20s. There
is a need for automated accurate coronary artery detection and
CAC quantification, which can be achieved by the new 3D CNN’s
[24]. This is helpful for risk prediction and identifying patients
who are at high-risk of cardiac diseases and require risk-reducing
treatments [14].

Artificial Intelligence (AI) has made substantial advancements
in its application within the medical field due to an increase in
data availability. Deep learning methods have gained prominence
in the use of medical imaging methods, such as magnetic reso-
nance imaging (MRI) and computed tomography (CT) to develop
AI-based prediction and detection models of multiple cardiovascu-
lar diseases. However, there remain caveats in their accuracy and
generalizability, mostly due to the quality of the images used as
inputs.

The literature into neural networks and brain structure suggests
that this can be improved by altering the network to allow stacking
maps on top of each other [1, 15]. Through each layer of a CNN,
the filters contained in its nodes are applied to images to produce
feature maps. By creating multiple sections of CNNs on top of each
other, each layer will produce a set of stacked feature maps that
can be analyzed sequentially and whose differences can be used to
identify small and specific features. By using this approach, the CNN
has more data it can train on (such as maps applied with sharpened
kernels and sequentially subtracted images) but can process and
find more features and increase the detail of examination when
detecting features in an image [10, 21]. The overarching aim of this
project is to address common issues in image regression within
CNNs, which are distortion and variance in quality, size, and shape
[11].

Traditionally, 3D Convolutional Neural Networks (CNNs) have
been designed to handle RGB images by splitting the channels and
training three distinct networks to learn features from each channel
independently. This approach allowed each network to focus on
a different set of criteria. However, by extending this methodol-
ogy to more complex structures—such as networks with multiple
stacks—our model can process grayscale or single-channel images
effectively. This strategy increases the model’s versatility, allowing
it to handle not only color images but also those from modalities
like MRI scans, which typically produce grayscale images.

This student research project proposed a novel backpropagation
algorithm which would allow for the training of the 3D matri-
ces/filters that build convolutional layers. This algorithm would
advance current scientific knowledge on how to scale up stacked
networks and how to isolate specific changes throughout numerous
different variables used, allowing for more specific detected features
and kernel changes. This novel method is superior to the current
2D CNNs for medical image analysis because of their inability to

adapt to different complex structures while 3D CNNs will be able to
make accurate arterial detection possible despite motion distortion
in non-gated CTs [5].

In this project, we seek to apply a novel algorithm to radiological
scans to isolate image sections of increased coronary calcification
and output a calcium score. More specifically this research addresses
the following aims:

(1) Develop a novel backpropagation neural network algorithm
to allow 3D image processing

(2) Mathematically explain how this recurrent convolutional
neural network (RCNN) can be integrated with this algo-
rithm

(3) Maintain a higher accuracy level for the 3D CNN compared
to 2D CNNs

2 METHODS
The data for this experiment consisted of 76 non-gated chest CT
scans containing over 8,000 images in total. 53 of the 76 scans
contained coronary calcium, while 23 did not. The 76 scans were
divided into 80% training dataset and 20% testing dataset for 60
training scans and 16 testing scans. Of the training dataset, there
were 41 with coronary calcium and 19 without. Of the testing
dataset, there were 12 with coronary calcium and 4 without.

2.1 Backpropagation Algorithm
2.1.1 Forward Pass and Loss Function. The forward pass in a

CNN involves propagating data through the layers, where each
layer consists of weights (filters) and biases that are adjusted during
training. The output of each layer is a feature map that represents
certain patterns or features in the input data. The loss function,
typically quantified using cross-entropy or mean squared error,
measures the deviation between the predicted output and the true
label of the input data [3]. In this case, the loss function is repre-
sented by Equation 1, shown below.

𝐿 =
1

𝑋𝑌𝑍

𝑋,𝑌,𝑍∑︁
𝑥,𝑦,𝑧=1

(
𝑣 − 𝑃𝑥𝑦𝑧

)2 (1)

where 𝑥 , 𝑦, and 𝑧 are the input variables (pixels or features), 𝐿
is the loss value, 𝑣 is the result of the forward pass, and 𝑃 is the
predicted value. The deviation from the true values is calculated by
computing the partial derivatives of the loss function with respect
to each of the input variables, shown in Equation 2.

𝛿𝐿

𝛿𝑥
,
𝛿𝐿

𝛿𝑦
,
𝛿𝐿

𝛿𝑧
(2)

These derivatives indicate the sensitivity of the loss function
to changes in the input values, providing crucial information for
adjusting filters and weights during backpropagation. Next, we
have the convolution operation. The central operation in CNNs is
the convolution, where an input matrix (image) is convolved with a
filter to generate an output matrix (feature map). The convolution
is performed by multiplying corresponding elements of the input
matrix and filter, summing these products, and sliding the filter over
the image to generate the output matrix O, calculated by Equation
3 [4].

Volume 16, Issue 2 Journal of Computational Science Education

30 November 2025

𝑂11 =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑋𝑖 𝑗𝐹𝑖 𝑗 (3)

where 𝑛 is the size of the convolution kernel, 𝐹 is the filter ,and
𝑋 is the input matrix/image. A similar convolution operation is
repeated for the rest of the input matrix, generalizing the previous
equation to make Equation 4.

𝑂𝑘𝑙 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑋𝑖+𝑘,𝑗+𝑙𝐹𝑖 𝑗 (4)

The convolution operation extracts local features from the input
image, which are then passed through activation functions like
ReLU to introduce non-linearity and allow the network to learn
complex patterns.

2.1.2 Backward Pass. The backpropagation algorithm relies on
the chain rule of calculus to compute gradients of the loss function
with respect to the network parameters. Specifically, we need to
calculate the derivative of the loss function with respect to the out-
put of the convolution operation. This can be achieved by summing
up the product of the partial derivatives of the loss with respect to
the individual components of the output.

𝛿𝐿

𝛿𝑂
=
∑︁(

𝛿𝐿

𝛿𝑣
· 𝛿𝑣
𝛿𝑂

)
(5)

In Equation 5, 𝑣 represents the loss function, and 𝑂 is the result
of the convolution applied to the image. These partial derivatives
help in adjusting the weights and biases of the network during
training, ensuring that the network learns from the error at each
layer. With these variables, we derive the gradient with respect to
the filter. Then, we compute the gradient of the loss function with
respect to the filter. The derivative provides the information needed
to adjust the filter weights. The gradient is calculated as the sum
of the input values multiplied by the gradient with respect to the
filter in Equation 6.

𝛿𝑂

𝛿𝐹
=
∑︁

𝑋𝑖 𝑗 · Δ𝑓 (𝑥,𝑦, 𝑧) (6)

This step calculates how much the output of the convolution
operation changes when the filter is modified, guiding the net-
work to adjust the filter for better feature extraction in subsequent
iterations.

The modification of the backpropagation algorithm to improve
CNN performance is well-supported in the literature. Several stud-
ies have explored enhancing the convolution operation and back-
propagation process to optimize feature extraction, especially in
the context of medical imaging [6, 7]. A major challenge in medical
image analysis is the presence of noise and distortions due to fac-
tors like patient movement and varying scan quality. One effective
approach to overcoming these issues is with image augmentation
techniques, which artificially expand the training dataset by apply-
ing transformations such as rotation, translation, and scaling to
the input images [15]. Image augmentation helps prevent overfit-
ting, improves generalization, and ensures that the network learns
robust features even in the presence of distortions.

Moreover, research has shown that incorporating additional lay-
ers in CNNs, such as 3D convolutional networks, can significantly

Figure 1: Types of Propagation. The blue cubes indicate
forward propagation, which generates predictions. The red
cubes indicate backpropagation, which is the method used
by neural networks to learn and improve. The green cubes
represent lateral propagation, or exchange of information
between slices in the same layer, leading to augmentation
and feature addition in consecutive image slices.

improve the model’s ability to handle complex structures in medi-
cal images, like the detection of coronary artery calcium (CAC) in
CT scans [9]. By stacking filters and applying them sequentially
across multiple layers, the network can better capture hierarchical
patterns in the data and identify smaller, more specific features.
The proposed modification of the backpropagation algorithm and
convolution operation is consistent with these findings, as it aims
to enhance the network’s ability to process noisy, distorted images
with high sensitivity and specificity.

2.2 Network Structure
The second objective of this research centers around the devel-
opment and functional integration of a novel Recurrent RCNN
architecture. This new structure is designed to fully exploit all
three spatial dimensions (𝑥,𝑦, 𝑧), which significantly enhances its
ability to process and analyze complex 3D medical images. This
three-dimensional approach is detailed in Figures 1 and 2, where
each individual line represents a separate network processing one
slice of the image set, and each “dot” in the broken line corresponds
to a complete layer of the network, encompassing the entire 𝑥 , 𝑦,
and 𝑧 dimensions.

Prior work in 3D convolutional neural networks (3D CNNs) has
demonstrated the potential of extending traditional 2D CNNs to
three dimensions for tasks such as medical image segmentation,
object detection, and classification. Algorithms like 3D U-Net and
3D ResNet have significantly advanced volumetric data analysis
[25].

Journal of Computational Science Education Volume 16, Issue 2

November 2025 31

These models utilize 3D convolutions to capture spatial relation-
ships across adjacent image slices, which is essential for understand-
ing structures in volumetric medical data. However, these earlier
models typically focus on applying convolution layers indepen-
dently across slices, without fully exploiting inter-slice information
or the potential benefits of recurrent connections [3].

The proposed 3D Recurrent CNN structure, in contrast, inte-
grates not only the spatial dimensions (𝑥,𝑦, 𝑧) but also introduces a
novel recurrent mechanism to enable lateral propagation, a feature
not commonly seen in traditional 3D CNNs. As shown in Figure 1,
the red arrows represent the outward flow of data from the central
image, while the blue arrows indicate the inward movement of
data during backpropagation. This highlights the conventional for-
ward and backward propagation steps within the training process,
which are fundamental to most CNN architectures [1]. However,
unlike standard models, the recurrent structure incorporated into
our design allows for information to be shared laterally across
neighboring nodes. This lateral propagation facilitates more com-
plex interactions between adjacent layers, enabling the network
to leverage contextual information from both the current slice and
neighboring slices in the 3D volume.

The green cubes in Figure 1 illustrate the development of the
recurrent state, where the core innovation of our approach is imple-
mented. This recurrent mechanism allows the network to continu-
ously refine its understanding of spatial relationships across the 3D
volume, which is particularly valuable in medical imaging where
subtle spatial dependencies between structures are crucial for accu-
rate diagnosis. Previous work has explored recurrent networks in
the context of medical image analysis, showing that recurrent con-
nections can improve the network’s ability to maintain long-term
dependencies and capture contextual information across time-series
data [25].

Beyond forward propagation, the new RCNN architecture em-
ploys lateral propagation between nodes during the prediction
process, enabling a more robust exchange of information across
layers. This allows the model to leverage techniques traditionally
not possible in single-image or 2D CNN-based models, such as
Intersection over Union (IoU) analysis, parity coloring, and feature
overlap detection. For example, IoU, commonly used in object de-
tection, can be more accurately applied in 3D volumes by taking
advantage of the network’s enhanced ability to assess spatial over-
laps across slices. Similarly, parity coloring assigns higher values to
pixels that are closer to corresponding pixels in the original image,
further enhancing the model’s sensitivity to fine-grained spatial
patterns. Feature overlap, identified through Region Proposal Net-
works (RPNs), enables the network to focus on potential object
areas, improving its detection performance in complex, highly di-
mensional datasets [20].

While previous algorithms for 3D CNNs have established a
strong foundation for volumetric image analysis, the introduction
of recurrent connections in our proposed RCNN structure offers
a new approach to capturing and refining spatial dependencies
across the entire 3D volume [1]. By combining forward and lateral
propagation, as well as advanced image set techniques like IoU,
parity coloring, and feature overlap, our model provides a more
robust framework for handling the complexities of medical image
data.

2.3 Modifiers
While the new backpropagation algorithm ensures that the network
structure operates correctly while training on the stacked maps,
the network training has not yet been optimized. One of the main
issues with using 2D CNNs to detect these kinds of small, complex
objects is that CNNs can only detect a singular feature or match a
singular criterion for what it detects. Detecting a coronary artery
in a chest CT scan requires the identification of several criteria to
determine it as an artery, as shown in Figure 3 [24].

Figure 2: Arterial Conditions. Due to the complexity and
variance of arteries, all the conditions labeled in the figure
must be considered to detect an artery for feature detection.

2.3.1 Events with States & Plane Recurrence. Events with States
is a mathematical framework designed to explore how sets of num-
bers and probabilities influence each other. In the context of this
research, the technique treats each image layer as a separate set
and works across five layers, represented as Images = (𝐴, 𝐵,𝐶, 𝐷, 𝐸),
where each component corresponds to a distinct section of the net-
work. As the algorithm progresses through these sets, a similarity
coefficient is computed (Eq. 8). Here, 𝐴 and 𝐵 represent two sample
images, and 𝑖and 𝑗 are the pixel coordinates of these images. The
calculation follows these key steps:

Logarithmic Normalization:
1
2

(
𝐴𝑖 𝑗 + 𝐵𝑖 𝑗

255

)
The term computes the average pixel intensity of corresponding

pixels from both images, normalized by the maximum intensity
value (255 for standard 8-bit images). Applying the natural loga-
rithm (ln) ensures that brighter regions of the image receive higher
precedence. This helps highlight important features, especially in
medical imaging, where lighter structures (like bones or lesions)
are often crucial for analysis.

Absolute Pixel Difference:
𝐴𝑖 𝑗 − 𝐵𝑖 𝑗

𝐴𝑖 𝑗 + 𝐵𝑖 𝑗

The absolute difference measures the pixel-level variance be-
tween the two images, revealing how much the pixel intensities
differ. This term is then divided by their sum to normalize the
difference, so that variations are on a similar scale for all compar-
isons. Squaring this difference amplifies larger discrepancies more,
ensuring that significant differences between images (such as the

Volume 16, Issue 2 Journal of Computational Science Education

32 November 2025

presence of abnormal features) are emphasized. Once the pixel-
level similarity has been calculated for each pair of images, the total
similarity coefficient for the image set is obtained by summing the
individual pixel-wise similarities and normalizing the total number
of pixels. Where 𝑁 is the total number of pixels across all layers (im-
ages), and is the similarity measure between corresponding pixels
in images 𝐴A and 𝐵, the coefficient becomes:

𝑁∑︁
𝑖, 𝑗=0

𝑠 (𝐴, 𝐵,𝐶, 𝐷, 𝐸) (7)

This coefficient quantifies how similar the images are and is
used as a feedback mechanism during training. During the forward
pass of the network, the calculated similarity coefficients are aggre-
gated for each image. This approach helps the network learn more
complex interrelationships between different layers and variations
of images. In addition to forward propagation, plane recurrence
facilitates the exchange of information between layers during back-
propagation, refining the model’s understanding of spatial features
across the 3D image. This recurrence ensures that the network
doesn’t treat each slice in isolation but instead considers the rela-
tionships between slices, promoting a more holistic understanding
of the image data.

The determinant of the filter matrix is key to establishing connec-
tions between nodes in different layers. During backpropagation,
the filter matrices are adjusted by calculating their determinants
to ensure that high-importance features are transferred effectively
between layers. The relationship between nodes can be mathemati-
cally modeled.

𝐹𝑙,𝑎𝑑 𝑗 . =
𝐹

| |𝐹 | |

(5∑︁
𝑘=1

(−1)𝑙−𝑘 | |𝐹𝑘 | |
2𝑙−𝑘

)
(8)

Figure 3: Network Architecture. The base layers are similar
to an extended CNN architecture. The convolutional filters
and feature maps are 3D, and there are modifiers applied to
the network structure.

By adjusting filters based on the determinant, the network can
more accurately identify and pass significant features across layers,
enhancing the detection and segmentation of complex structures
in medical images.

2.3.2 Calcium Score Calculation. The original images were in
DICOM format, theywere extracted and then converted into PNG to
allow for better manipulation. This was done by setting the window
level (center pixel value) and width (range of pixel intensities). Then,
only the desired intensities on the DICOM image are saved. By

narrowing the range, finer details are shown to give a more detailed
image [17].

The Hounsfield Units (HU) of DICOM images are often used for
CAC scoring. Since such values cannot be obtained from converted
PNG images, a new calcium scoring algorithm must be developed
based upon two values: threshold (𝑡) and increment (𝑖). The usual
calcium score algorithm is as follows: each lesion of calcium de-
tected is assigned a certain scaling factor, based on its maximum
intensity. If the maximum intensity was between 130 HU and 200
HU, it was assigned a factor of 1 [12]. Between 200 HU and 300 HU
was given a factor of 2, between 300 HU and 400 HU was given a
factor of 3, and anything above 400 HU was assigned a factor of
4 [12]. For HU values, it has an equivalent threshold 𝑡 = 130 and
varying increment 𝑖 = 70 or 100. To find the 𝑡 and 𝑖 values for PNG,
we had to test out all possible combinations to find the optimal one.

2.3.3 Network Validation. The network was validated with 76
non-gated chest CTs, of which the first 60 were designated as the
training dataset and the last 16 as the testing dataset. These images
were non-contrast and originally 512 by 512 pixels. They were later
shrunk down through max pooling to 128 by 128 pixels, which is
the size they were input into the network. The images were all
taken from the same source (Wake Forest Baptist Medical Center)
and had standardized values for the kilovoltage peak (KVP) of 120.
The field of view was also noted for each scan for accurate calcium
scoring.

For validation of the bounding boxes, each image from each
patient was taken and annotated for the location of the Left Ante-
rior Descending (LAD) artery, the artery that was detected in this
project. Four-pixel values were assigned per coordinate: the Left
X, Right X, Top Y, and Bottom Y, with the location of the artery
being determined by these four measurements and the tuple (0, 0,
0, 0) being given if the artery was not located. After validation with
bounding boxes, the network used the calcium scoring algorithm
on its generated bounding boxes to create a calcium score that was
validated against a manually calculated one.

This project was undertaken using the Python programming
language, and the files were held in two places: an Ubuntu 20
virtual machine stored on a local disk and a personal account to the
Bridges2 Pittsburgh Supercomputer. The virtual machine was used
for most of the debugging, data analysis, data curation, and initial
writing of the code, while these files were transferred to Bridges2
to utilize its parallel processing capabilities. The library mpi4py
and its submodule Message Passing Interface (MPI) were used to
implement parallel processing with 80 processors on the Python
network scripts, allowing the network to run at six seconds per
image sample.

2.4 Standard Network
The standard CNNused as a control was built using the Keras/TensorFlow
libraries. It used the optimizer Adam, trained on the training set
for 20 epochs and had the following architecture:
Input Layer
Convolutional Layer (64 Filters of 5x5) with ReLU Activation
Max Pooling (2x2)
Convolutional Layer (16 Filters of 5x5) with ReLU
Max Pooling (2x2)

Journal of Computational Science Education Volume 16, Issue 2

November 2025 33

Convolutional Layer (4 Filters of 5x5) with ReLU
Max Pooling (2x2)
Flattening Layer
Dense (Fully Connected) Output Layer

3 RESULTS
3.1 Results of the Modified Network

3.1.1 Bounding Box Accuracy. To evaluate the spatial accuracy
of the model, we assessed predicted bounding box coordinates using
two primary metrics: the Mean Squared Error (MSE) and absolute
coordinate-wise deviations from the ground truth.

Figure 4: Annotated & Predicted Arterial Bounding Boxes in
the Absence of Calcification. The green boxes are the anno-
tated boxes, and the red are the network-generated predic-
tions.

Coordinate deviations were defined as DLTX (Left X), DLTY
(Top Y), DRBX (Right X), and DRBY (Bottom Y). As expected with
neural network optimization, the accuracy of bounding box pre-
dictions improved progressively over the course of training. Final
correlation coefficients reached 0.87 for DLTX, 0.80 for DLTY, 0.97
for DRBX, and 0.96 for DRBY, indicating high spatial alignment be-
tween predicted and annotated regions. Linear regression analyses
further demonstrated the reliability of the model’s predictions. The
regression slopes were calculated as follows:

Left X: 𝑦 = 1.0083𝑥
Top Y: 𝑦 = 1.0136𝑥
Right X: 𝑦 = 0.9955𝑥
Bottom Y: 𝑦 = 0.9931𝑥
These results indicate that the predicted coordinates consistently

deviate from the ground truth by less than 1.5%, with the largest
deviation observed in the Top Y coordinate. The mean deviation
across all four coordinates was within 1% of the ideal 𝑦 = 𝑥 line,
underscoring the model’s high precision in spatial localization. On
average, this is a two-pixel difference in each measurement. This is
a variance of eight pixels in the perimeter and 74 pixels in the area,
or an 11% decrease in the predicted area.

On a per-image basis, the average positional error between the
predicted and true bounding boxes was approximately three pixels.
Considering the input image resolution of 512×512 pixels and that
the region of interest (i.e., the LAD artery) typically occupies a
100×100 pixel subregion, this error represents a highly accurate

localization. Moreover, the model demonstrated robustness across
variations in cardiac orientation, field of view, and anatomical dif-
ferences, consistently producing bounding boxes within two pixels
of ground truth in most cases. Visual examples of this performance
are shown in Figure 4, where the model’s predicted boxes closely
overlap with manually annotated references, even under varying
image conditions.

3.1.2 Calcium Scoring Accuracy. Beyond anatomical localiza-
tion, the model’s clinical relevance was assessed through automated
calcium scoring, using predicted bounding boxes as the basis for
score calculation. Based on the method described earlier, threshold
and increment parameters were set to 𝑡=141 and 𝑖=25, respectively.
Predicted calcium scores were compared to ground truth values
obtained through a validated algorithm, with results summarized
in Figures 7 and 8. The null hypothesis for the data is that they are
correlated significantly, and not just because of random chance.

Clinically, calcium scores are stratified into risk categories: 0,
1–10, 11–100, 101–400, and >400. The model accurately placed
over 90% of test cases into their correct risk category. Among mis-
classified cases, the average percent error remained below 20%,
suggesting that even when a score was placed outside its true bin,
it remained clinically proximate. Correlation analysis between pre-
dicted and true calcium scores yielded an 𝑅2 value of 0.921 with a
𝑝-value of 0.86, indicating a strong and statistically robust relation-
ship. Since the 𝑝-value threshold for significance is 0.05, we fail to
reject the null hypothesis.

Together, these results highlight the model’s high spatial pre-
cision in localizing coronary artery calcification and its ability to
generate clinically meaningful calcium scores. The minimal pixel-
level error in bounding box regression, combined with strong agree-
ment in score stratification, supports the utility of this approach
for automated cardiovascular risk assessment.

3.2 Comparison to Standard Network
3.2.1 Bounding Box Comparison. The standard network had an

average bounding box deviance of 25 pixels per measurement, and
100 pixels in the perimeter. This led to an average difference of
1200 pixels in the area, an increase of 171%. While the modified
network had a net decrease in area, indicating that the network was
too precise with its detection, the standard network was unable to
properly identify the complex structures surrounding the artery and
often defaulted to simply encompassing all of the nearby structures,
including valves, coronary veins, and the aorta. These structures can
also contain calcium, resulting in diseases such as aortic stenosis,
and muddle the measure of the arterial calcium.

Since the coronary arteries have a general area where they move
throughout during a CT scan, the standard network was able to
create bounding boxes in a reasonable region. However, it strug-
gled to follow and detect longer segments of the artery. It would
recognize the artery well at the beginning but was unable to track
it throughout the slices and instead identified alternative structures
that moved into the place where coronary arteries were before. For
example, the Left Anterior Descending artery (LAD) splits in the
lower slices, with the main segment moving to the dorsal side of
the heart, while the circumflex (CX) branch takes its place. The
standard network would continually identify the CX branch in the

Volume 16, Issue 2 Journal of Computational Science Education

34 November 2025

Figure 5: Actual v. Network Calcium Scores. The left graph shows calcium scores under 100, generally defined as mild or
moderate. The right graph shows calcium scores above 100, defined as severe. The scores under 100 are 84% accurate, while
those above 100 are 99% accurate. The scores are in the correct bin more than 90% of the time.

Figure 6: Analyzing the area of ROIs generated by the Stan-
dard and Modified Network. The Standard Network had the
tendency to inflate bounding boxes, especially for small, pre-
cise arteries and therefore has a correlation close to 0, indi-
cating that it was highly inaccurate. The Modified Network
has a high correlation of 0.992 but does deflate the bounding
boxes to 87.9% of their original size.

LAD section, and was unable to correctly identify the CX section
during the CX detection process.

3.2.2 Calcium Scoring Comparison. Unlike the modified net-
work, the standard network also fails in classifying scores into
bins. The network frequently outputted a 100+ score for below 100
scores, a major issue since 100 is often used as the threshold for
determining severity, especially in older patients. The network also
fails for the lower scores: it is incredibly important to correctly
determine 0 scores, since the presence of any arterial calcium is
highly detrimental for younger patients and give false diagnoses
for congenital heart disease or require unnecessary further imaging
or procedures.

Figure 7: The arterial calcium scores of the scans, accompa-
nied by the generated values from each network. Of the 14
scans in the testing set, the modified network fails to classify
the score into the correct bin in 2 scans and the standard fails
in 10 scans.

3.2.3 Reasoning for Improvements. Themodified network demon-
strated significantly improved performance in both artery detection
and coronary calcium scoring compared to the standard architec-
ture. These improvements were particularly evident in cases involv-
ing motion-distorted data, where the standard network consistently
underperformed due to its inability to robustly account for anatom-
ical variability and motion artifacts.

Specifically, the standard network exhibited a tendency to accu-
rately localize arterial bounding boxes within the initial few slices;
however, its performance degraded rapidly in subsequent slices.
This inconsistency suggests a failure to model the temporal and
spatial continuity of arterial structures across the imaging volume.

Journal of Computational Science Education Volume 16, Issue 2

November 2025 35

Figure 8: Comparison of Calculated Calcium Scores. The stan-
dard network had an average calcium error of 90.7%, com-
pared to the modified network error of 24.7%. Correlation
analysis between the standard score and actual score gave
an 𝑅2 value of 0.814 and a 𝑝-value of 0.408. Since the 𝑝-value
threshold for significance is 0.05, we reject the null hypothe-
sis.

In contrast, the modified network leveraged plane recurrence to
maintain coherence across slices, enabling it to more reliably track
arterial trajectories even in the presence of significant motion.

A key limitation of the standard convolutional neural network
(CNN) approach lies in its reliance on structural uniformity. CNN
filters are typically optimized to detect patterns that are consistent
in size, shape, and intensity—an assumption that fails in the context
of cardiac imaging where arterial geometries are often distorted
due to cardiac motion. This inherent nonuniformity contributed
to the standard network’s inability to detect and delineate arteries
accurately.

To address these challenges, the modified network incorporated
the Events with States mechanism, which facilitates dynamic model-
ing of structural similarity across a five-slice window. This approach
allows the network to infer and model patterns of motion-related
distortion, thereby improving its ability to localize arteries despite
significant inter-slice displacement. While the network does not
generate a full parametric mask of the distortion, it effectively con-
textualizes the motion and compensates for it during inference.

Furthermore, the Events with States module enhances spatial
awareness by prompting the network to evaluate the anatomical
context surrounding candidate arterial regions. By incorporating
constraints such as proximity to cardiac and pulmonary structures,
relative intensity, and geometric orientation (as illustrated in Figure
3), the network applies a more rigorous spatial validation process.
This not only increases detection precision but also reduces false
positives in regions with overlapping intensities or ambiguous
morphology.

4 DISCUSSION
This study attempted to identify coronary arteries using novel 3D
networks and propagation algorithms. In addition to accurately

identifying the coronary arteries, it automatically calculated a cal-
cium score. Additionally, it correctly identified patients with cal-
cium scores less than 100 and greater than 100. The results from
this research demonstrate the potential of such 3D networks. These
networks are capable of filtering through noisy and cluttered data
and detecting objects, such as arteries, despite changes in orienta-
tion, position, and field of view, and can even account for distortion
[20]. The innovative techniques described in this research as well
as the novel structure that account for this accuracy are byprod-
ucts of the expansion to three dimensions modeling. We also show
that the network can improve its results by using several images
at once. This network is capable of accurately detecting bounding
boxes of small, mobile, complex image components and can have
substantial and important use in the medical field for quick and
reliable analyses as part of routine care, helping in clinical decision
making and health management.

While the bounding boxes around arteries (in each image) pro-
vide an extremely high level of accuracy, there can be improvement
in the calcium score algorithm. Most of the observed limitations
are due to the use of a new calcium score calculation algorithm
since the network requires PNG images instead of full-resolution
DICOM files. In a clinical setting, the network would run on the
DICOM images taken straight from the scan, so the calcium score
calculation could be more accurate due to its overall higher reso-
lution. Consequently, this research can be further enhanced in a
large-scale study with higher Graphical Processing Unit capacities,
which can allow the network to continue learning using DICOM
files. However, the accuracy achieved in this research when us-
ing PNG files has some merits. Predominantly, using the current
model with PNG images allows for many more scans to be passed
through the algorithm and generate calcium scores simultaneously.
This is because the chest CT scans used are somewhat cheaper and
much more commonly performed compared to cardiac CT scans,
which are currently used for calcium score estimation. Not only
does this research showcase a potential tool for clinicians to use
while diagnosing a patient, but it also expands to a more general
patient population that could receive a calcium score test, reducing
potential underdiagnosis. Since chest CTs are taken on patients
often reporting cardiac, pulmonary, or abdomen-related issues or
symptoms [23], the calcium score could reveal an underlying dis-
ease or unnoticed atherosclerosis, helping clinicians find problems
fast and more accurately, enabling them to provide more effective
care [16].

The precision of the calcium scores maintaining the same nu-
merical bin and the accuracy reducing the average percent error
means that this network not only succeeds in detecting arteries
within the image but can also identify hotspots of dense calcifica-
tion [8]. These capabilities not only enable it to provide a useful
calcium score but use many of the factors used in the calcium score
calculation to identify parts of the artery that require the most
focus and decide on which coronary bioimplants can be used for
maximum effect. For example, two cases may have similar calcium
scores, but different distributions of fatty plaque. A more spread-out
plaque (possibly reducing its visibility) distribution along a long
segment of the artery would most likely warrant the use of a stent
to minimize the partial blockages and maintain the long-distance
blood flow [18]. However, if the plaque was highly concentrated

Volume 16, Issue 2 Journal of Computational Science Education

36 November 2025

Figure 9: The Effect of Atherosclerotic Plaque on Arterial
Blood Flow. Plaque buildup causes the artery to narrow, forc-
ing blood flow to be constricted, increasing blood pressure.
Even small deposits of plaque can cause disruptions in blood
flow.

in a few completely blocked portions, bypass surgery would be
much more effective [18]. The detection of the artery bounding
boxes can be used beyond calcium scores to create 3D models of the
artery through the chest and find narrow points or measure rate of
blood flow, which can be used to prescribe a variety of life-saving
medications such as Statins, blood thinners or beta blockers.

The implications of this research extend far beyond just CT
scans and could be instrumental in revolutionizing computer vi-
sion applications in general practice. While the work focused on
CT images, the approach can be generalized to a wide variety of
imaging modalities, such as MRI, X-ray, and even ultrasound. In
medical imaging, several common challenges, including distortion,
obstruction, variance in shape, and size, can significantly degrade
the quality of automated diagnoses. The algorithm developed in this
research can help address these issues, particularly through transfer
learning. By training on a diverse set of images, the model improves
its robustness, making it more capable of handling variations inher-
ent in medical imaging. A particularly promising extension of this
research is the application to MRI scans, where images are taken
from multiple angles (360 degrees) around the organ of interest.

In such cases, enabling the neural network to process images
from any angle greatly expands the dataset and enhances the depth
of learning during the training phase. This adaptability leads to
more accurate models capable of interpreting complex anatomical
structures from various perspectives, resulting in improved diag-
nostic reliability. In cases involving rare diseases or conditions with
limited patient samples, a small dataset can hinder the network’s
ability to make informed decisions [22]. However, by increasing the
dataset’s variance through angle diversity and data augmentation,
the model’s robustness improves, allowing it to make more reliable
and precise predictions [22]. This approach also facilitates the de-
velopment of multi-modal models, capable of integrating different

imaging techniques, such as combining CT with MRI or ultrasound,
further enhancing diagnostic capabilities [24].

An essential feature of the proposed model is its ability to handle
multiple images at once without slowing down the training process.
The system can incorporate various perspectives simultaneously,
making it more efficient while expanding its knowledge base. This
multi-image processing approach allows different sections of the
network to specialize in different aspects, such as varying angles or
distinct image features, contributing to a more refined and accurate
understanding of the data. The speed and scalability of training are
maintained even as the dataset grows, which is particularly crucial
in real-world applications.

This research also demonstrates the potential of combining mul-
tiple network structures to address challenges like artery detection
and calcium scoring in chest CT scans. These tasks have tradition-
ally been difficult to automate due to the complexity and variability
of the anatomical features. The novel network architecture pro-
posed here—by integrating different image perspectives and apply-
ing advanced backpropagation techniques—has shown promising
results, particularly in bounding box regression accuracy. This sug-
gests that the network, although still in its early stages, holds signif-
icant potential for real-world clinical applications, where precision
in detecting subtle features like arterial calcifications can directly
impact patient care.

One of the core innovations of this research lies in its attempt
to guide neural networks in navigating complex environments by
incorporating advanced image segmentation techniques [5]. The
primary goal was to assist the neural network in recognizing spe-
cific patterns rather than relying solely on trial-and-error learning
[5]. Through the implementation of advanced training algorithms,
we provided the network with concrete guidance, helping it better
understand the intricacies of arterial structures in CT scans.

While the methods employed here are promising, they repre-
sent only a fraction of the possible algorithms that could further
optimize artery detection. Future work could involve exploring the
potential of hybrid models that combine CNNs with other machine
learning techniques, such as reinforcement learning or attention-
based models, which are already showing promise in other areas
of medical imaging. Additionally, cross-validation with other algo-
rithms could provide a clearer comparison of performance, ensuring
that the most efficient and accurate methods are chosen for clinical
deployment.

This research also introduced a new optimizer and a modified
backpropagation algorithm to improve the training process. The
flexibility of the network structure allowed for adjustments between
different stack sections and creates opportunities for fine-tuning
performance for specific imaging tasks. Furthermore, the incorpo-
ration of parallel processing methods enhances the computational
efficiency of the network, enabling it to scale across larger datasets
and handle more complex tasks in real time.

The strong Pearson correlations across all four bounding box
coordinates and sub-1% average deviation from ground truth trends
support the spatial robustness of the network. Moreover, the re-
gression slopes approaching unity confirm that the model is not
systematically under- or over-estimating any specific boundary.
These findings compare favorably to prior literature in anatomical
detection using CNNs or object detection networks, which often

Journal of Computational Science Education Volume 16, Issue 2

November 2025 37

exhibit reduced localization precision when applied to small or
irregular targets like coronary arteries [13]. Our network’s superior
accuracy may be attributed to task-specific training, optimized loss
functions, and the constrained spatial variability of the LAD within
the dataset.

Importantly, the model’s performance remained consistent de-
spite physiological and positional variations, including changes in
heart orientation, image noise, and field of view shifts across test
images. This robustness suggests strong generalization capacity,
an essential feature for clinical deployment where real-world data
often present with high variability.

From a clinical perspective, automated coronary calcium scoring
remains a crucial yet underutilized component of cardiovascular
risk assessment. Traditional methods rely on manual segmentation
and measurement, which are time-intensive and subject to interob-
server variability. Our model demonstrated high concordance with
conventional calcium scoring methods, with an 𝑅2 value of 0.921
and over 90% bin-level accuracy in clinical calcium score categories.
These results align with or exceed those reported in other auto-
mated calcium scoring systems, particularly in terms of stratifying
risk within accepted clinical thresholds (e.g., 0, 1-10, 11-100, 101-400,
>400) [2].

Notably, the model maintained an average score deviation of less
than 20% even when misclassified, highlighting its potential utility
not only in screening but also in longitudinal risk monitoring. These
findings are significant, given the growing recognition of calcium
scoring as an independent predictor of cardiac events, particularly
in asymptomatic patients or those with equivocal risk profiles based
on traditional metrics [3].

In summary, this work lays the foundation for a new generation
of neural networks capable of handling a diverse range of medical
imaging challenges. The adaptability of the network, combinedwith
the ability to process multi-perspective images and apply advanced
training methods, promises to improve the speed, accuracy, and
scalability ofmedical diagnoses, particularly in environments where
data is sparse or complex.

5 LIMITATIONS AND FUTURE WORK
The limitations of this study include training on only one artery:
the Left Anterior Descending (LAD) instead of all four available ar-
teries: the RCA, LAD, CX, and LM. Training on these arteries would
make the model more robust and versatile. The second limitation
is that the proof-of-concept model architecture was developed to
run on PNG, not DICOM images. While the process of window
leveling tried to ensure that the PNG image kept most of the impor-
tant cardiac features in the DICOM images, testing on the DICOM
images is still necessary to either increase the models’ accuracy
and/or assess whether there are any differences when using PNGs
vs DICOMs.

Additionally, the dataset used, while diverse in anatomy and im-
age orientation, was limited to a single imaging modality and may
not reflect the full range of acquisition protocols seen in broader
clinical practice. Another limitation was inaccuracy in the ground
truth annotations: they were manually curated and, while reviewed

by experts, remain subject to human bias. Incorporating multi-
institutional datasets with broader demographic and imaging diver-
sity could further strengthen model generalizability.

Future directions for this project include expansion to all four
coronary arteries, a larger dataset of chest CT scans, the addition
of more convolutional layers, and the implementation of new tech-
niques to further optimize the network. These adjustments would
improve and optimize the network; however, it is computation-
ally expensive. To further improve the network, images can be
augmented through the application of convolutional kernels such
as sharpening or modulating the relative intensity of surrounding
structures, the network is able to explore in a wider range of images
and environments to become better optimized and robust [10].

On CT scans, there is also the possibility of calculating the risk
of valve disease. This type of network would specifically be helpful
in datasets with continuous data, such as a functional MRI in the
medical field. Beyond medicine, this could have wide-ranging ap-
plications in real-time detection and imaging by utilizing its third
dimension to analyze images over time [25]. Another focus is inte-
grating this detection module into a larger end-to-end diagnostic
framework capable of processing raw DICOM images, performing
artery segmentation, calcium quantification, and risk prediction
without the need for manual intervention.

6 CONCLUSION
This project created a three-dimensional R-CNN to address com-
mon issues with 2D CNNs with respect to distortion and variance
in size and shape. Through techniques such as new optimizers or
events with states as well as alterations in the network structure
and propagation, a five-section 3D CNN was created to train on
non-gated chest CT scans, which contain distorted coronary artery
motion, making it an example of the improvement of 3D CNNs over
2D CNNs. The network was used to identify bounding boxes of
arteries in the chest CT scan and use those boxes to calculate a coro-
nary artery calcium score. Both the network-generated bounding
boxes and calculated calcium scores showed high accuracy, making
this network capable of detecting small complex structures and
providing meaningful clinical info. Applications of this network
include datasets with multiple continuous images, such as a func-
tional MRI or real-time camera data, especially in a setting with
high variance and movement. The expansion of an AI network to
3D analysis using stacked images would further advance medical
imaging analysis knowledge by providing information on how to
analyze hyper-specific differences between consecutive images to
quantify both shared and isolated features. The stacked feature
maps may lead to new experiments with deriving different feature
maps in the same convolutional layer. This leads to better feature
isolation and a wider range of proposed features.

7 STUDENT REFLECTION
This project provided an opportunity to develop both technical and
organizational skills. One of the main challenges was managing all
aspects of the project independently, from planning and research
to execution and problem-solving. Time management became cru-
cial, as balancing the workload with other commitments required
careful prioritization. A key solution was setting clear milestones

Volume 16, Issue 2 Journal of Computational Science Education

38 November 2025

and breaking the project into smaller, manageable tasks, which
helped maintain focus and ensure steady progress. The experience
enhanced my ability to work autonomously, making me more confi-
dent in my problem-solving and decision-making abilities. From an
educational perspective, it was a valuable exercise in applying the-
oretical concepts to practical situations. Specifically, I was inspired
by concepts I learned in my classes for Multivariable Calculus and
Linear Algebra, both taught by Dr. Michael Lavigne. This project
demonstrated my initiative and capacity to handle complex tasks
independently.

ACKNOWLEDGEMENTS
This work used Bridges-2 at Pittsburgh Supercomputing Center
through allocation CHE160071 from the Advanced Cyberinfras-
tructure Coordination Ecosystem: Services & Support (ACCESS)
program, which is supported by National Science Foundation grants
#2138259, #2138286, #2138307, #2137603, and #2138296 [2].

REFERENCES
[1] Luís A. Alexandre. 2014. 3D Object Recognition Using Convolutional Neural

Networks with Transfer Learning Between Input Channels. In Intelligent Au-
tonomous Systems 13 - Proceedings of the 13th International Conference IAS-13,
Padova, Italy, July 15-18, 2014 (Advances in Intelligent Systems and Computing),
Emanuele Menegatti, Nathan Michael, Karsten Berns, and Hiroaki Yamaguchi
(Eds.), Vol. 302. Springer, 889–898. https://doi.org/10.1007/978-3-319-08338-4_64

[2] Shawn T. Brown, Paola Buitrago, Edward Hanna, Sergiu Sanielevici, Robin Scibek,
and Nicholas A. Nystrom. 2021. Bridges-2: A Platform for Rapidly-Evolving
and Data Intensive Research. In Practice and Experience in Advanced Research
Computing 2021: Evolution Across All Dimensions (PEARC ’21). Association for
Computing Machinery. https://doi.org/10.1145/3437359.3465593

[3] Giuseppe Pio Cannata. 2025. Backpropagation in fully convolutional networks
(fcns). https://towardsdatascience.com/backpropagation-in-fully-convolutional
-networks

[4] Kevin Clark. [n. d.]. Natural language processing with deep learning [Lecture
Notes]. https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/
lecture5.pdf

[5] Laya Das, Abhishek Sivaram, and Venkat Venkatasubramanian. 2020. Hidden
representations in deep neural networks: Part 2. Regression problems. Computers
& Chemical Engineering 139 (2020). https://doi.org/10.1016/j.compchemeng.2020
.106895

[6] Benoit Desjardins and Ella A. Kazerooni. 2004. ECG-Gated Cardiac CT. American
Journal of Roentgenology 182, 4 (2004), 993–1010. https://doi.org/10.2214/ajr.182.
4.1820993

[7] Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim Tatarchenko, and Thomas
Brox. 2017. Learning to Generate Chairs, Tables and Cars with Convolutional
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 4 (2017), 692–705. https:
//doi.org/10.1109/TPAMI.2016.2567384

[8] Philip Greenland, Michael J Blaha, Matthew J Budoff, Raimund Erbel, and Karol E
Watson. 2018. Coronary calcium score and cardiovascular risk [review]. Journal
of the American College of Cardiology 72.4 (2018): 434-447. 72, 4 (2018), 434–447.
https://doi.org/10.1016/j.jacc.2018.05.027

[9] Harvey S. Hecht, Paul Cronin, Michael J. Blaha, Matthew J. Budoff, Ella A. Kaze-
rooni, Jagat Narula, David Yankelevitz, and Suhny Abbara. 2017. 2016 SCCT/STR
guidelines for coronary artery calcium scoring of noncontrast noncardiac chest
CT scans: A report of the Society of Cardiovascular Computed Tomography and
Society of Thoracic Radiology. Journal of Cardiovascular Computed Tomography

11, 1 (2017), 74–84. https://doi.org/10.1016/j.jcct.2016.11.003
[10] Alex Hernández-García and Peter König. 2018. Further Advantages of Data Aug-

mentation on Convolutional Neural Networks. In Artificial Neural Networks and
Machine Learning – ICANN 2018, Věra Kůrková, Yannis Manolopoulos, Barbara
Hammer, Lazaros Iliadis, and Ilias Maglogiannis (Eds.). Springer International
Publishing, 95–103.

[11] Hossein Hosseini, Baicen Xiao, Mayoore Jaiswal, and Radha Poovendran. 2017.
On the Limitation of Convolutional Neural Networks in Recognizing Negative
Images. In 2017 16th IEEE International Conference on Machine Learning and
Applications (ICMLA). 352–358. https://doi.org/10.1109/ICMLA.2017.0-136

[12] Abdul Rahman Ihdayhid, Nick S. R. Lan, Michelle Williams, David Newby, Julien
Flack, Simon Kwok, et al. 2023. Evaluation of an artificial intelligence coronary
artery calcium scoring model from computed tomography. Cardiac 33 (2023),
321–329. https://doi.org/10.1007/s00330-022-09028-3

[13] Ivana Išgum, Annemarieke Rutten, Mathias Prokop, Marius Staring, Stefan Klein,
Josien P. W. Pluim, Max A. Viergever, and Bram van Ginneken. 2010. Automated
aortic calcium scoring on low-dose chest computed tomography. Medical Physics
37, 2 (2010), 714–723. https://doi.org/10.1118/1.3284211

[14] Ivana Išgum, Annemarieke Rutten, Mathias Prokop, and Bram van Ginneken.
2007. Detection of coronary calcifications from computed tomography scans
for automated risk assessment of coronary artery disease. Medical Physics 34, 4
(2007), 1450–1461. https://doi.org/10.1118/1.2710548

[15] Scott P. Johnson, J. Gavin Bremner, Alan Slater, Uschi Mason, Kirsty Foster,
and Andrea Cheshire. 2003. Infants’ perception of object trajectories. Child
Development 74, 1 (2003), 94–108. https://doi.org/10.1111/1467-8624.00523

[16] Nicole Karam, Sophie Bataille, Eloi Marijon, Muriel Tafflet, Hakim Benamer,
Christophe Caussin, et al. 2019. Incidence, mortality, and outcome-predictors
of sudden cardiac arrest complicating myocardial infarction prior to hospital
admission. Circulation: Cardiovascular Interventions 12, 1 (2019), e007081. https:
//doi.org/10.1161/CIRCINTERVENTIONS.118.007081

[17] Andrew Murphy. 2023. Cardiac gating (CT). Radiopaedia (2023). https://radiop
aedia.org/articles/cardiac-gating-ct?lang=us

[18] Khurram Nasir and Miguel Cainzos-Achirica. 2021. Role of coronary artery
calcium score in the primary prevention of cardiovascular disease. BMJ (2021).
https://doi.org/10.1136/bmj.n776

[19] Roma Pahwa and Ishwarlal Jialal. 2023. Atherosclerosis. Statpearls Publishing.
https://www.ncbi.nlm.nih.gov/books/NBK507799/

[20] K. Raju, B. Chinna Rao, K. Saikumar, and Nalajala Lakshman Pratap. 2022. An
optimal hybrid solution to local and global facial recognition through machine
learning. Springer International Publishing, 203–226. https://doi.org/10.1007/97
8-3-030-76653-5_11

[21] Jia Shijie, Wang Ping, Jia Peiyi, and Hu Siping. 2017. Research on data augmen-
tation for image classification based on convolution neural networks. In 2017
Chinese Automation Congress (CAC). 4165–4170. https://doi.org/10.1109/CAC.20
17.8243510

[22] Daniel Soukup. 2020. The necessity and pitfall of augmentation in deep learning:
Observations during a case study in triplet learning for coin images. In Proceedings
of the 9th International Conference on Pattern Recognition Applications andMethods
- Volume 1 (ICPRAM 2020). SciTePress, 387–394. https://doi.org/10.5220/000891
0303870394

[23] Conrad Wittram, Michael M. Maher, Albert J. Yoo, Mannudeep K. Kalra, Jo-
Anne O. Shepard, and Theresa C. McLoud. 2004. CT angiography of pulmonary
embolism: Diagnostic criteria and causes of misdiagnosis. RadioGraphics 24
(2004). https://doi.org/10.1148/rg.245045008

[24] Guanyu Yang, Yang Chen, Xiufang Ning, Qiaoyu Sun, Huazhong Shu, and Jean-
Louis Coatrieux. 2016. Automatic coronary calcium scoring using noncontrast
and contrast CT images. Medical Physics 43, 5 (2016), 2174–2186. https://doi.or
g/10.1118/1.4945045

[25] Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu.
2017. Convolutional neural networks for time series classification. Journal of
Systems Engineering and Electronics 28, 1 (2017), 162–169. https://doi.org/10.216
29/JSEE.2017.01.18

[26] Douglas P Zipes and Hein JJ Williams. 1998. Sudden cardiac death. Circulation
98, 21 (1998). https://doi.org/10.1161/01.CIR.98.21.2334

Journal of Computational Science Education Volume 16, Issue 2

November 2025 39

https://doi.org/10.1007/978-3-319-08338-4_64
https://doi.org/10.1145/3437359.3465593
https://towardsdatascience.com/backpropagation-in-fully-convolutional-networks
https://towardsdatascience.com/backpropagation-in-fully-convolutional-networks
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture5.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture5.pdf
https://doi.org/10.1016/j.compchemeng.2020.106895
https://doi.org/10.1016/j.compchemeng.2020.106895
https://doi.org/10.2214/ajr.182.4.1820993
https://doi.org/10.2214/ajr.182.4.1820993
https://doi.org/10.1109/TPAMI.2016.2567384
https://doi.org/10.1109/TPAMI.2016.2567384
https://doi.org/10.1016/j.jacc.2018.05.027
https://doi.org/10.1016/j.jcct.2016.11.003
https://doi.org/10.1109/ICMLA.2017.0-136
https://doi.org/10.1007/s00330-022-09028-3
https://doi.org/10.1118/1.3284211
https://doi.org/10.1118/1.2710548
https://doi.org/10.1111/1467-8624.00523
https://doi.org/10.1161/CIRCINTERVENTIONS.118.007081
https://doi.org/10.1161/CIRCINTERVENTIONS.118.007081
https://radiopaedia.org/articles/cardiac-gating-ct?lang=us
https://radiopaedia.org/articles/cardiac-gating-ct?lang=us
https://doi.org/10.1136/bmj.n776
https://www.ncbi.nlm.nih.gov/books/NBK507799/
https://doi.org/10.1007/978-3-030-76653-5_11
https://doi.org/10.1007/978-3-030-76653-5_11
https://doi.org/10.1109/CAC.2017.8243510
https://doi.org/10.1109/CAC.2017.8243510
https://doi.org/10.5220/0008910303870394
https://doi.org/10.5220/0008910303870394
https://doi.org/10.1148/rg.245045008
https://doi.org/10.1118/1.4945045
https://doi.org/10.1118/1.4945045
https://doi.org/10.21629/JSEE.2017.01.18
https://doi.org/10.21629/JSEE.2017.01.18
https://doi.org/10.1161/01.CIR.98.21.2334

November 2025

Volume 16 Issue 2

Volume 16, Issue 2 Journal of Computational Science Education

40 November 2025

	Annapragada.pdf
	Abstract
	1 NATURE OF THE TRAINING OR EDUCATION PROGRAM
	2 STRATEGY
	3 ASSESSMENT OR EVALUATION TECHNIQUE
	4 EVALUATION OF ITS SUCCESS
	5 LESSONS LEARNED
	5.1 Risks of Shared Administrative Access
	5.2 Need for Controlled Package Installation
	5.3 Standardizing the Package Request Process
	5.4 Adoption of Otter-Grader and Gradescope
	5.5 Development of JupyterHub Documentation

	6 REPRODUCIBILITY OF INSTRUCTIONAL JUPYTERHUB SETUP AND RESOURCE ALLOCATION PROCESS
	7 RELEVANCE TO THE BROADER RANGE OF TRAINING OR EDUCATION TOPICS
	8 CONCLUSION
	A Appendix: Additional Resources

	Dey.pdf
	Abstract
	1 INTRODUCTION
	1.1 Classroom Implementation

	2 DISCUSSION
	2.1 Educational Framework: Constructivism
	2.2 Model Overview
	2.3 Benefits of the Storytelling Approach
	2.4 Academic Foundations
	2.5 Metacognition and Self-Explanation
	2.6 Code as Story
	2.7 Debugging, Deconstruction, and Literacy

	3 THE NARRATIVE PEDAGOGY
	3.1 Characters, Plot, and Purpose
	3.2 Writing the Story Before the Code
	3.3 Finding the Bug Through the Broken Story

	4 CLASSROOM IMPLEMENTATION
	4.1 ``Storytelling Debugging'' Sessions
	4.2 Reflective Journals and Pair Storytelling
	4.3 Rubrics and Evaluation
	4.4 Integration with Curriculum
	4.5 Example Activities

	5 LIMITATIONS AND FUTURE WORK
	6 CONCLUSION
	References

	quinlan.pdf
	Abstract
	1 Introduction
	2 The QFT Framework
	2.1 Design Question Focus
	2.2 Generate Questions
	2.3 Revise Questions
	2.4 Selecting Questions
	2.5 Investigation/Implementation
	2.6 Reflection

	3 Discussion and Limitations
	3.1 Limitations and Future Work
	3.2 Tips for Implementing

	References

	Lindsey.pdf
	Abstract
	1 Introduction
	2 Vertically Integrated Projects
	2.1 Team Phoenix VIP
	2.2 The Missing Middle
	2.3 Current State of Team Phoenix

	3 Instructional Clusters
	3.1 PACE-Supported Clusters
	3.2 CRNCH-Supported Cluster
	3.3 VIP Cluster

	4 Build-a-Cluster Assignment
	4.1 KVM Cluster Virtualization on the Pho Cluster
	4.2 Alternatives
	4.3 Build-A-Cluster Project in HPC Virtual Cluster

	5 Assignment Outcomes
	6 Future Work
	7 Conclusion
	References

	Choudhury.pdf
	Abstract
	1 Introduction
	2 FPGA as a Service (FaaS)
	2.1 Compute and Software Resources
	2.2 Workflow

	3 Discussion
	4 Results
	References

	Chaudhury.pdf
	Abstract
	1 Introduction
	2 FPGA as a Service (FaaS)
	2.1 Compute and Software Resources
	2.2 Workflow

	3 Discussion
	4 Results
	References

	Sarvasya.pdf
	Abstract
	1 INTRODUCTION
	2 METHODS
	2.1 Backpropagation Algorithm
	2.2 Network Structure
	2.3 Modifiers
	2.4 Standard Network

	3 RESULTS
	3.1 Results of the Modified Network
	3.2 Comparison to Standard Network

	4 DISCUSSION
	5 LIMITATIONS AND FUTURE WORK
	6 CONCLUSION
	7 STUDENT REFLECTION
	References

