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ABSTRACT

Deep neural networks (DNNs), when trained on high-quality, noise-
free images, often underperform when applied to images with dis-
tortions or noise [22]. A key challenge lies in the architecture of
convolutional neural networks (CNNs), where the layers are struc-
tured to prioritize features detected at the final layers, treating
earlier features as latent or redundant [5]. This design hinders the
ability of CNNss to effectively detect small, dynamic, and complex
structures in images, thereby limiting their adaptability to image
variations [5].

The primary objective of this study was to develop a novel net-
work architecture capable of accurately detecting the bounding
boxes of coronary arteries and subsequently calculating a calcium
score. The model’s bounding boxes were validated against manually
annotated arterial outlines, and the calcium score was compared
to clinician-adjudicated values. The proposed network introduced
an innovative propagation mechanism, coupled with various de-
rived algorithms and modifiers, to mitigate the impact of motion
distortions on coronary artery tracking and detection.

Results demonstrated exceptional performance, with the testing
set achieving an average Mean Squared Error (MSE) of less than 2%,
and a deviation of less than 1.5 pixels for each coordinate within a
128x128-pixel image. The calcium score derived from the network’s
bounding boxes exhibited a strong correlation of R* = 0.921, with
a region of interest (ROI) accuracy of 88% across all calcium score
ranges. In contrast, a standard CNN used as a control struggled,
yielding an R? = 0.0091 and an ROI accuracy of just 10%.

This student research project presents a pioneering network
that utilizes specialized algorithms and propagation techniques to
accurately identify small, dynamic structures in non-gated chest
CT scans. The model’s ability to provide reliable calcium scores
enhances the clinical utility of chest CT scans, offering a promising
tool for improving the diagnosis of coronary artery disease and
optimizing the management of cardiac disease risk [19].
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1 INTRODUCTION

Coronary calcium is calcium that builds up in coronary arteries. A
substantial buildup of calcium deposits (calcium plaques) is called
atherosclerosis and can narrow arteries and can be brought about
by high blood pressure, obesity, diabetes, and high blood choles-
terol [19]. A Coronary Artery Calcium (CAC) score of 0 shows
that the individual has no coronary calcium buildup while an in-
creasing calcium score (with virtually no limit) increases the risk
of cardiovascular disease (CVD) [6]. Atherosclerosis is “the under-
lying cause of about 50% of all deaths in westernized society due
to heart attacks, stroke, and peripheral arterial disease” [19]. CAC
scores help clinicians assess risk of, amongst other cardiac diseases,
heart attacks and stroke [19]. When CAC scores are moderate-high,
clinical attention for disease prevention and/or treatment would
be required. Cardiac gated computed tomography (CT) scans are
conventionally used to calculate CAC. Gated CT scans may require
specific drugs to slow down a patient’s heart rate and imaging of
the heart is done only during the mid to end diastolic phase, when
cardiac movement is minimized [6]. This ensures that the gated CT
contains no motion distortions and clearly highlights important
features, such as coronary arteries [6]. This means that gated CT
scans correct coronary motion and provide accurate values for the
CAC score, since it is extremely easy to detect the coronary arteries
[6].

Gated CTs are much more expensive than non-gated CTs [17] due
to the use of drugs to modulate the heart rate. Consequently, cardiac
gated CT scans are done very infrequently and only on patients
who have already been diagnosed with some measure of CVD [7].
Roughly a quarter of patients who have heart attacks suffer from
sudden cardiac death [16]. Of these patients, 80% have atheroscle-
rosis, making it the most reliable indicator of cardiac arrest [26].
Therefore, it is imperative that better predictive tools are available
in a larger group of patients to detect coronary atherosclerosis.
Unlike gated CTs, non-gated chest CTs are more readily available
and are routinely performed for a much wider range of pathologies
other than coronary artery disease [13]. For example, chest CTs are
used for detecting pulmonary embolism in patients presenting to
the emergency room for trouble breathing.

If these non-gated CTs could be accurately evaluated for coronary
artery disease, there would be less undiagnosed CVD patients, who
could then be prescribed risk-reducing treatments and decrease the
rate of instantly fatal heart attacks [13]. Non-gated CTs do not use
drugs to modulate the heart rate and simply take cross-sectional
images sequentially. Because images are taken during different
stages of the heartbeat, these images contain motion distortion of
the heart. In non-gated CTs, the coronary arteries are still in the
field of view of the image, but the distortion of the image precludes
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accurately identifying the arteries, making calculations of a CAC
difficult [14]. This reduces the overall usability of these types of
CTs for such cases. When non-gated CTs are used, the CAC score
for these imaging scans is manually assigned into three categories:
mild, moderate, and severe, rather than providing a numerical value
[9]. This creates some issues, mostly due to variation and bias
between physicians [9]. This unstandardized system also doesn’t
account for important factors such as age, gender, or race, making it
unfeasible to use for diagnosis and treatment [8]. A mild CAC score
for an elderly woman can be severe for a man in his 20s. There
is a need for automated accurate coronary artery detection and
CAC quantification, which can be achieved by the new 3D CNN’s
[24]. This is helpful for risk prediction and identifying patients
who are at high-risk of cardiac diseases and require risk-reducing
treatments [14].

Artificial Intelligence (AI) has made substantial advancements
in its application within the medical field due to an increase in
data availability. Deep learning methods have gained prominence
in the use of medical imaging methods, such as magnetic reso-
nance imaging (MRI) and computed tomography (CT) to develop
Al-based prediction and detection models of multiple cardiovascu-
lar diseases. However, there remain caveats in their accuracy and
generalizability, mostly due to the quality of the images used as
inputs.

The literature into neural networks and brain structure suggests
that this can be improved by altering the network to allow stacking
maps on top of each other [1, 15]. Through each layer of a CNN,
the filters contained in its nodes are applied to images to produce
feature maps. By creating multiple sections of CNNs on top of each
other, each layer will produce a set of stacked feature maps that
can be analyzed sequentially and whose differences can be used to
identify small and specific features. By using this approach, the CNN
has more data it can train on (such as maps applied with sharpened
kernels and sequentially subtracted images) but can process and
find more features and increase the detail of examination when
detecting features in an image [10, 21]. The overarching aim of this
project is to address common issues in image regression within
CNNs, which are distortion and variance in quality, size, and shape
[11].

Traditionally, 3D Convolutional Neural Networks (CNNs) have
been designed to handle RGB images by splitting the channels and
training three distinct networks to learn features from each channel
independently. This approach allowed each network to focus on
a different set of criteria. However, by extending this methodol-
ogy to more complex structures—such as networks with multiple
stacks—our model can process grayscale or single-channel images
effectively. This strategy increases the model’s versatility, allowing
it to handle not only color images but also those from modalities
like MRI scans, which typically produce grayscale images.

This student research project proposed a novel backpropagation
algorithm which would allow for the training of the 3D matri-
ces/filters that build convolutional layers. This algorithm would
advance current scientific knowledge on how to scale up stacked
networks and how to isolate specific changes throughout numerous
different variables used, allowing for more specific detected features
and kernel changes. This novel method is superior to the current
2D CNN s for medical image analysis because of their inability to
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adapt to different complex structures while 3D CNNs will be able to
make accurate arterial detection possible despite motion distortion
in non-gated CTs [5].

In this project, we seek to apply a novel algorithm to radiological
scans to isolate image sections of increased coronary calcification
and output a calcium score. More specifically this research addresses
the following aims:

(1) Develop a novel backpropagation neural network algorithm
to allow 3D image processing

(2) Mathematically explain how this recurrent convolutional
neural network (RCNN) can be integrated with this algo-
rithm

(3) Maintain a higher accuracy level for the 3D CNN compared
to 2D CNNs

2 METHODS

The data for this experiment consisted of 76 non-gated chest CT
scans containing over 8,000 images in total. 53 of the 76 scans
contained coronary calcium, while 23 did not. The 76 scans were
divided into 80% training dataset and 20% testing dataset for 60
training scans and 16 testing scans. Of the training dataset, there
were 41 with coronary calcium and 19 without. Of the testing
dataset, there were 12 with coronary calcium and 4 without.

2.1 Backpropagation Algorithm

2.1.1 Forward Pass and Loss Function. The forward pass in a
CNN involves propagating data through the layers, where each
layer consists of weights (filters) and biases that are adjusted during
training. The output of each layer is a feature map that represents
certain patterns or features in the input data. The loss function,
typically quantified using cross-entropy or mean squared error,
measures the deviation between the predicted output and the true
label of the input data [3]. In this case, the loss function is repre-
sented by Equation 1, shown below.

1 XY Z
= m (U _nyz)2 (1)

x,y,z=1

L

where x, y, and z are the input variables (pixels or features), L
is the loss value, v is the result of the forward pass, and P is the
predicted value. The deviation from the true values is calculated by
computing the partial derivatives of the loss function with respect
to each of the input variables, shown in Equation 2.
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These derivatives indicate the sensitivity of the loss function
to changes in the input values, providing crucial information for
adjusting filters and weights during backpropagation. Next, we
have the convolution operation. The central operation in CNNs is
the convolution, where an input matrix (image) is convolved with a
filter to generate an output matrix (feature map). The convolution
is performed by multiplying corresponding elements of the input
matrix and filter, summing these products, and sliding the filter over
the image to generate the output matrix O, calculated by Equation
3 [4].
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where n is the size of the convolution kernel, F is the filter ,and

X is the input matrix/image. A similar convolution operation is

repeated for the rest of the input matrix, generalizing the previous

equation to make Equation 4.
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The convolution operation extracts local features from the input
image, which are then passed through activation functions like
ReLU to introduce non-linearity and allow the network to learn
complex patterns.

2.1.2  Backward Pass. The backpropagation algorithm relies on
the chain rule of calculus to compute gradients of the loss function
with respect to the network parameters. Specifically, we need to
calculate the derivative of the loss function with respect to the out-
put of the convolution operation. This can be achieved by summing
up the product of the partial derivatives of the loss with respect to
the individual components of the output.

oL 6L v
525 5] )
In Equation 5, v represents the loss function, and O is the result
of the convolution applied to the image. These partial derivatives
help in adjusting the weights and biases of the network during
training, ensuring that the network learns from the error at each
layer. With these variables, we derive the gradient with respect to
the filter. Then, we compute the gradient of the loss function with
respect to the filter. The derivative provides the information needed
to adjust the filter weights. The gradient is calculated as the sum
of the input values multiplied by the gradient with respect to the
filter in Equation 6.

20 = 3 Xy A2 ©

This step calculates how much the output of the convolution
operation changes when the filter is modified, guiding the net-
work to adjust the filter for better feature extraction in subsequent
iterations.

The modification of the backpropagation algorithm to improve
CNN performance is well-supported in the literature. Several stud-
ies have explored enhancing the convolution operation and back-
propagation process to optimize feature extraction, especially in
the context of medical imaging [6, 7]. A major challenge in medical
image analysis is the presence of noise and distortions due to fac-
tors like patient movement and varying scan quality. One effective
approach to overcoming these issues is with image augmentation
techniques, which artificially expand the training dataset by apply-
ing transformations such as rotation, translation, and scaling to
the input images [15]. Image augmentation helps prevent overfit-
ting, improves generalization, and ensures that the network learns
robust features even in the presence of distortions.

Moreover, research has shown that incorporating additional lay-
ers in CNNs, such as 3D convolutional networks, can significantly
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Figure 1: Types of Propagation. The blue cubes indicate
forward propagation, which generates predictions. The red
cubes indicate backpropagation, which is the method used
by neural networks to learn and improve. The green cubes
represent lateral propagation, or exchange of information
between slices in the same layer, leading to augmentation
and feature addition in consecutive image slices.

improve the model’s ability to handle complex structures in medi-
cal images, like the detection of coronary artery calcium (CAC) in
CT scans [9]. By stacking filters and applying them sequentially
across multiple layers, the network can better capture hierarchical
patterns in the data and identify smaller, more specific features.
The proposed modification of the backpropagation algorithm and
convolution operation is consistent with these findings, as it aims
to enhance the network’s ability to process noisy, distorted images
with high sensitivity and specificity.

2.2 Network Structure

The second objective of this research centers around the devel-
opment and functional integration of a novel Recurrent RCNN
architecture. This new structure is designed to fully exploit all
three spatial dimensions (x, y, z), which significantly enhances its
ability to process and analyze complex 3D medical images. This
three-dimensional approach is detailed in Figures 1 and 2, where
each individual line represents a separate network processing one
slice of the image set, and each “dot” in the broken line corresponds
to a complete layer of the network, encompassing the entire x, y,
and z dimensions.

Prior work in 3D convolutional neural networks (3D CNNs) has
demonstrated the potential of extending traditional 2D CNNs to
three dimensions for tasks such as medical image segmentation,
object detection, and classification. Algorithms like 3D U-Net and
3D ResNet have significantly advanced volumetric data analysis
[25].
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These models utilize 3D convolutions to capture spatial relation-
ships across adjacent image slices, which is essential for understand-
ing structures in volumetric medical data. However, these earlier
models typically focus on applying convolution layers indepen-
dently across slices, without fully exploiting inter-slice information
or the potential benefits of recurrent connections [3].

The proposed 3D Recurrent CNN structure, in contrast, inte-
grates not only the spatial dimensions (x, y, z) but also introduces a
novel recurrent mechanism to enable lateral propagation, a feature
not commonly seen in traditional 3D CNNs. As shown in Figure 1,
the red arrows represent the outward flow of data from the central
image, while the blue arrows indicate the inward movement of
data during backpropagation. This highlights the conventional for-
ward and backward propagation steps within the training process,
which are fundamental to most CNN architectures [1]. However,
unlike standard models, the recurrent structure incorporated into
our design allows for information to be shared laterally across
neighboring nodes. This lateral propagation facilitates more com-
plex interactions between adjacent layers, enabling the network
to leverage contextual information from both the current slice and
neighboring slices in the 3D volume.

The green cubes in Figure 1 illustrate the development of the
recurrent state, where the core innovation of our approach is imple-
mented. This recurrent mechanism allows the network to continu-
ously refine its understanding of spatial relationships across the 3D
volume, which is particularly valuable in medical imaging where
subtle spatial dependencies between structures are crucial for accu-
rate diagnosis. Previous work has explored recurrent networks in
the context of medical image analysis, showing that recurrent con-
nections can improve the network’s ability to maintain long-term
dependencies and capture contextual information across time-series
data [25].

Beyond forward propagation, the new RCNN architecture em-
ploys lateral propagation between nodes during the prediction
process, enabling a more robust exchange of information across
layers. This allows the model to leverage techniques traditionally
not possible in single-image or 2D CNN-based models, such as
Intersection over Union (IoU) analysis, parity coloring, and feature
overlap detection. For example, IoU, commonly used in object de-
tection, can be more accurately applied in 3D volumes by taking
advantage of the network’s enhanced ability to assess spatial over-
laps across slices. Similarly, parity coloring assigns higher values to
pixels that are closer to corresponding pixels in the original image,
further enhancing the model’s sensitivity to fine-grained spatial
patterns. Feature overlap, identified through Region Proposal Net-
works (RPNs), enables the network to focus on potential object
areas, improving its detection performance in complex, highly di-
mensional datasets [20].

While previous algorithms for 3D CNNs have established a
strong foundation for volumetric image analysis, the introduction
of recurrent connections in our proposed RCNN structure offers
a new approach to capturing and refining spatial dependencies
across the entire 3D volume [1]. By combining forward and lateral
propagation, as well as advanced image set techniques like IoU,
parity coloring, and feature overlap, our model provides a more
robust framework for handling the complexities of medical image
data.
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2.3 Modifiers

While the new backpropagation algorithm ensures that the network
structure operates correctly while training on the stacked maps,
the network training has not yet been optimized. One of the main
issues with using 2D CNNss to detect these kinds of small, complex
objects is that CNNs can only detect a singular feature or match a
singular criterion for what it detects. Detecting a coronary artery
in a chest CT scan requires the identification of several criteria to
determine it as an artery, as shown in Figure 3 [24].

\ Lung Proximity
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o - Heart Chamber Proximity

g

Shape: Circular

Size: Roughly 23 Pixels
Absolute Intensity: 196 Grayscale
Relative Intensity: 431 Grayscale

Figure 2: Arterial Conditions. Due to the complexity and
variance of arteries, all the conditions labeled in the figure
must be considered to detect an artery for feature detection.

2.3.1 Events with States & Plane Recurrence. Events with States
is a mathematical framework designed to explore how sets of num-
bers and probabilities influence each other. In the context of this
research, the technique treats each image layer as a separate set
and works across five layers, represented as Images = (A, B,C, D, E),
where each component corresponds to a distinct section of the net-
work. As the algorithm progresses through these sets, a similarity
coefficient is computed (Eq. 8). Here, A and B represent two sample
images, and iand j are the pixel coordinates of these images. The
calculation follows these key steps:

N o1 (Ai j+Bi j)
Logarithmic Normalization: — [ ———
2 255

The term computes the average pixel intensity of corresponding
pixels from both images, normalized by the maximum intensity
value (255 for standard 8-bit images). Applying the natural loga-
rithm (In) ensures that brighter regions of the image receive higher
precedence. This helps highlight important features, especially in
medical imaging, where lighter structures (like bones or lesions)
are often crucial for analysis.

A; jt+ B;j j

The absolute difference measures the pixel-level variance be-
tween the two images, revealing how much the pixel intensities
differ. This term is then divided by their sum to normalize the
difference, so that variations are on a similar scale for all compar-
isons. Squaring this difference amplifies larger discrepancies more,
ensuring that significant differences between images (such as the

Absolute Pixel Difference:
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presence of abnormal features) are emphasized. Once the pixel-
level similarity has been calculated for each pair of images, the total
similarity coefficient for the image set is obtained by summing the
individual pixel-wise similarities and normalizing the total number
of pixels. Where N is the total number of pixels across all layers (im-
ages), and is the similarity measure between corresponding pixels
in images AA and B, the coefficient becomes:

N
Z s(A,B,C, D, E) @
i,j=0

This coefficient quantifies how similar the images are and is
used as a feedback mechanism during training. During the forward
pass of the network, the calculated similarity coefficients are aggre-
gated for each image. This approach helps the network learn more
complex interrelationships between different layers and variations
of images. In addition to forward propagation, plane recurrence
facilitates the exchange of information between layers during back-
propagation, refining the model’s understanding of spatial features
across the 3D image. This recurrence ensures that the network
doesn’t treat each slice in isolation but instead considers the rela-
tionships between slices, promoting a more holistic understanding
of the image data.

The determinant of the filter matrix is key to establishing connec-
tions between nodes in different layers. During backpropagation,
the filter matrices are adjusted by calculating their determinants
to ensure that high-importance features are transferred effectively
between layers. The relationship between nodes can be mathemati-
cally modeled.

F (o, ool
Flaqj. = m(kzzl(—l)l kﬂ) (®)

Events with States Output

Input

v ") Plane Recurrence
-—

122
v olution pooling
—

Figure 3: Network Architecture. The base layers are similar
to an extended CNN architecture. The convolutional filters
and feature maps are 3D, and there are modifiers applied to
the network structure.

By adjusting filters based on the determinant, the network can
more accurately identify and pass significant features across layers,
enhancing the detection and segmentation of complex structures
in medical images.

2.3.2  Calcium Score Calculation. The original images were in
DICOM format, they were extracted and then converted into PNG to
allow for better manipulation. This was done by setting the window
level (center pixel value) and width (range of pixel intensities). Then,
only the desired intensities on the DICOM image are saved. By
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narrowing the range, finer details are shown to give a more detailed
image [17].

The Hounsfield Units (HU) of DICOM images are often used for
CAC scoring. Since such values cannot be obtained from converted
PNG images, a new calcium scoring algorithm must be developed
based upon two values: threshold (t) and increment (i). The usual
calcium score algorithm is as follows: each lesion of calcium de-
tected is assigned a certain scaling factor, based on its maximum
intensity. If the maximum intensity was between 130 HU and 200
HU, it was assigned a factor of 1 [12]. Between 200 HU and 300 HU
was given a factor of 2, between 300 HU and 400 HU was given a
factor of 3, and anything above 400 HU was assigned a factor of
4 [12]. For HU values, it has an equivalent threshold ¢ = 130 and
varying increment i = 70 or 100. To find the t and i values for PNG,
we had to test out all possible combinations to find the optimal one.

2.3.3  Network Validation. The network was validated with 76
non-gated chest CTs, of which the first 60 were designated as the
training dataset and the last 16 as the testing dataset. These images
were non-contrast and originally 512 by 512 pixels. They were later
shrunk down through max pooling to 128 by 128 pixels, which is
the size they were input into the network. The images were all
taken from the same source (Wake Forest Baptist Medical Center)
and had standardized values for the kilovoltage peak (KVP) of 120.
The field of view was also noted for each scan for accurate calcium
scoring.

For validation of the bounding boxes, each image from each
patient was taken and annotated for the location of the Left Ante-
rior Descending (LAD) artery, the artery that was detected in this
project. Four-pixel values were assigned per coordinate: the Left
X, Right X, Top Y, and Bottom Y, with the location of the artery
being determined by these four measurements and the tuple (0, 0,
0, 0) being given if the artery was not located. After validation with
bounding boxes, the network used the calcium scoring algorithm
on its generated bounding boxes to create a calcium score that was
validated against a manually calculated one.

This project was undertaken using the Python programming
language, and the files were held in two places: an Ubuntu 20
virtual machine stored on a local disk and a personal account to the
Bridges2 Pittsburgh Supercomputer. The virtual machine was used
for most of the debugging, data analysis, data curation, and initial
writing of the code, while these files were transferred to Bridges2
to utilize its parallel processing capabilities. The library mpidpy
and its submodule Message Passing Interface (MPI) were used to
implement parallel processing with 80 processors on the Python
network scripts, allowing the network to run at six seconds per
image sample.

2.4 Standard Network

The standard CNN used as a control was built using the Keras/TensorFlow

libraries. It used the optimizer Adam, trained on the training set
for 20 epochs and had the following architecture:

Input Layer

Convolutional Layer (64 Filters of 5x5) with ReLU Activation

Max Pooling (2x2)
Convolutional Layer (16 Filters of 5x5) with RelLU
Max Pooling (2x2)
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Convolutional Layer (4 Filters of 5x5) with RelU
Max Pooling (2x2)

Flattening Layer

Dense (Fully Connected) Output Layer

3 RESULTS
3.1 Results of the Modified Network

3.1.1 Bounding Box Accuracy. To evaluate the spatial accuracy
of the model, we assessed predicted bounding box coordinates using
two primary metrics: the Mean Squared Error (MSE) and absolute
coordinate-wise deviations from the ground truth.

Figure 4: Annotated & Predicted Arterial Bounding Boxes in
the Absence of Calcification. The green boxes are the anno-
tated boxes, and the red are the network-generated predic-
tions.

Coordinate deviations were defined as DLTX (Left X), DLTY
(Top Y), DRBX (Right X), and DRBY (Bottom Y). As expected with
neural network optimization, the accuracy of bounding box pre-
dictions improved progressively over the course of training. Final
correlation coefficients reached 0.87 for DLTX, 0.80 for DLTY, 0.97
for DRBX, and 0.96 for DRBY, indicating high spatial alignment be-
tween predicted and annotated regions. Linear regression analyses
further demonstrated the reliability of the model’s predictions. The
regression slopes were calculated as follows:

Left X: y = 1.0083x

Top Y:y = 1.0136x

Right X: y = 0.9955x

Bottom Y: y = 0.9931x

These results indicate that the predicted coordinates consistently
deviate from the ground truth by less than 1.5%, with the largest
deviation observed in the Top Y coordinate. The mean deviation
across all four coordinates was within 1% of the ideal y = x line,
underscoring the model’s high precision in spatial localization. On
average, this is a two-pixel difference in each measurement. This is
a variance of eight pixels in the perimeter and 74 pixels in the area,
or an 11% decrease in the predicted area.

On a per-image basis, the average positional error between the
predicted and true bounding boxes was approximately three pixels.
Considering the input image resolution of 512x512 pixels and that
the region of interest (i.e., the LAD artery) typically occupies a
100x100 pixel subregion, this error represents a highly accurate
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localization. Moreover, the model demonstrated robustness across
variations in cardiac orientation, field of view, and anatomical dif-
ferences, consistently producing bounding boxes within two pixels
of ground truth in most cases. Visual examples of this performance
are shown in Figure 4, where the model’s predicted boxes closely
overlap with manually annotated references, even under varying
image conditions.

3.1.2  Calcium Scoring Accuracy. Beyond anatomical localiza-
tion, the model’s clinical relevance was assessed through automated
calcium scoring, using predicted bounding boxes as the basis for
score calculation. Based on the method described earlier, threshold
and increment parameters were set to t=141 and i=25, respectively.
Predicted calcium scores were compared to ground truth values
obtained through a validated algorithm, with results summarized
in Figures 7 and 8. The null hypothesis for the data is that they are
correlated significantly, and not just because of random chance.

Clinically, calcium scores are stratified into risk categories: 0,
1-10, 11-100, 101-400, and >400. The model accurately placed
over 90% of test cases into their correct risk category. Among mis-
classified cases, the average percent error remained below 20%,
suggesting that even when a score was placed outside its true bin,
it remained clinically proximate. Correlation analysis between pre-
dicted and true calcium scores yielded an R? value of 0.921 with a
p-value of 0.86, indicating a strong and statistically robust relation-
ship. Since the p-value threshold for significance is 0.05, we fail to
reject the null hypothesis.

Together, these results highlight the model’s high spatial pre-
cision in localizing coronary artery calcification and its ability to
generate clinically meaningful calcium scores. The minimal pixel-
level error in bounding box regression, combined with strong agree-
ment in score stratification, supports the utility of this approach
for automated cardiovascular risk assessment.

3.2 Comparison to Standard Network

3.2.1 Bounding Box Comparison. The standard network had an
average bounding box deviance of 25 pixels per measurement, and
100 pixels in the perimeter. This led to an average difference of
1200 pixels in the area, an increase of 171%. While the modified
network had a net decrease in area, indicating that the network was
too precise with its detection, the standard network was unable to
properly identify the complex structures surrounding the artery and
often defaulted to simply encompassing all of the nearby structures,
including valves, coronary veins, and the aorta. These structures can
also contain calcium, resulting in diseases such as aortic stenosis,
and muddle the measure of the arterial calcium.

Since the coronary arteries have a general area where they move
throughout during a CT scan, the standard network was able to
create bounding boxes in a reasonable region. However, it strug-
gled to follow and detect longer segments of the artery. It would
recognize the artery well at the beginning but was unable to track
it throughout the slices and instead identified alternative structures
that moved into the place where coronary arteries were before. For
example, the Left Anterior Descending artery (LAD) splits in the
lower slices, with the main segment moving to the dorsal side of
the heart, while the circumflex (CX) branch takes its place. The
standard network would continually identify the CX branch in the
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Figure 5: Actual v. Network Calcium Scores. The left graph shows calcium scores under 100, generally defined as mild or
moderate. The right graph shows calcium scores above 100, defined as severe. The scores under 100 are 84% accurate, while
those above 100 are 99% accurate. The scores are in the correct bin more than 90% of the time.
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Figure 6: Analyzing the area of ROIs generated by the Stan-
dard and Modified Network. The Standard Network had the
tendency to inflate bounding boxes, especially for small, pre-
cise arteries and therefore has a correlation close to 0, indi-
cating that it was highly inaccurate. The Modified Network
has a high correlation of 0.992 but does deflate the bounding
boxes to 87.9% of their original size.

LAD section, and was unable to correctly identify the CX section
during the CX detection process.

3.22 Calcium Scoring Comparison. Unlike the modified net-
work, the standard network also fails in classifying scores into
bins. The network frequently outputted a 100+ score for below 100
scores, a major issue since 100 is often used as the threshold for
determining severity, especially in older patients. The network also
fails for the lower scores: it is incredibly important to correctly
determine 0 scores, since the presence of any arterial calcium is
highly detrimental for younger patients and give false diagnoses
for congenital heart disease or require unnecessary further imaging
or procedures.
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Predicted Predicted
Actual  Modified Standard
Scan Score Score Score
83 369 566.932 1898.117
84 361 425.294  610.465
85 0 0 23.204
86 338 318.859  480.779
87 0 0 4.397
88 86 80.124  142.551
89 1954 2004.065 2783.224
90 0 0 2.395
91 205 226.524  451.141
92 13 7.987 7.368
93 78 83.304  166.157
94 61 7.471 174.446
95 22.1 26.448 56.637
96 0 0 0
97 10.3 24.782 40.183
99 39.3 37.079 102.235

Figure 7: The arterial calcium scores of the scans, accompa-
nied by the generated values from each network. Of the 14
scans in the testing set, the modified network fails to classify
the score into the correct bin in 2 scans and the standard fails
in 10 scans.

3.2.3  Reasoning for Improvements. The modified network demon-
strated significantly improved performance in both artery detection
and coronary calcium scoring compared to the standard architec-
ture. These improvements were particularly evident in cases involv-
ing motion-distorted data, where the standard network consistently
underperformed due to its inability to robustly account for anatom-
ical variability and motion artifacts.

Specifically, the standard network exhibited a tendency to accu-
rately localize arterial bounding boxes within the initial few slices;
however, its performance degraded rapidly in subsequent slices.
This inconsistency suggests a failure to model the temporal and
spatial continuity of arterial structures across the imaging volume.
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Figure 8: Comparison of Calculated Calcium Scores. The stan-
dard network had an average calcium error of 90.7%, com-
pared to the modified network error of 24.7%. Correlation
analysis between the standard score and actual score gave
an R? value of 0.814 and a p-value of 0.408. Since the p-value
threshold for significance is 0.05, we reject the null hypothe-
sis.

In contrast, the modified network leveraged plane recurrence to
maintain coherence across slices, enabling it to more reliably track
arterial trajectories even in the presence of significant motion.

A key limitation of the standard convolutional neural network
(CNN) approach lies in its reliance on structural uniformity. CNN
filters are typically optimized to detect patterns that are consistent
in size, shape, and intensity—an assumption that fails in the context
of cardiac imaging where arterial geometries are often distorted
due to cardiac motion. This inherent nonuniformity contributed
to the standard network’s inability to detect and delineate arteries
accurately.

To address these challenges, the modified network incorporated
the Events with States mechanism, which facilitates dynamic model-
ing of structural similarity across a five-slice window. This approach
allows the network to infer and model patterns of motion-related
distortion, thereby improving its ability to localize arteries despite
significant inter-slice displacement. While the network does not
generate a full parametric mask of the distortion, it effectively con-
textualizes the motion and compensates for it during inference.

Furthermore, the Events with States module enhances spatial
awareness by prompting the network to evaluate the anatomical
context surrounding candidate arterial regions. By incorporating
constraints such as proximity to cardiac and pulmonary structures,
relative intensity, and geometric orientation (as illustrated in Figure
3), the network applies a more rigorous spatial validation process.
This not only increases detection precision but also reduces false
positives in regions with overlapping intensities or ambiguous
morphology.

4 DISCUSSION

This study attempted to identify coronary arteries using novel 3D
networks and propagation algorithms. In addition to accurately
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identifying the coronary arteries, it automatically calculated a cal-
cium score. Additionally, it correctly identified patients with cal-
cium scores less than 100 and greater than 100. The results from
this research demonstrate the potential of such 3D networks. These
networks are capable of filtering through noisy and cluttered data
and detecting objects, such as arteries, despite changes in orienta-
tion, position, and field of view, and can even account for distortion
[20]. The innovative techniques described in this research as well
as the novel structure that account for this accuracy are byprod-
ucts of the expansion to three dimensions modeling. We also show
that the network can improve its results by using several images
at once. This network is capable of accurately detecting bounding
boxes of small, mobile, complex image components and can have
substantial and important use in the medical field for quick and
reliable analyses as part of routine care, helping in clinical decision
making and health management.

While the bounding boxes around arteries (in each image) pro-
vide an extremely high level of accuracy, there can be improvement
in the calcium score algorithm. Most of the observed limitations
are due to the use of a new calcium score calculation algorithm
since the network requires PNG images instead of full-resolution
DICOM files. In a clinical setting, the network would run on the
DICOM images taken straight from the scan, so the calcium score
calculation could be more accurate due to its overall higher reso-
lution. Consequently, this research can be further enhanced in a
large-scale study with higher Graphical Processing Unit capacities,
which can allow the network to continue learning using DICOM
files. However, the accuracy achieved in this research when us-
ing PNG files has some merits. Predominantly, using the current
model with PNG images allows for many more scans to be passed
through the algorithm and generate calcium scores simultaneously.
This is because the chest CT scans used are somewhat cheaper and
much more commonly performed compared to cardiac CT scans,
which are currently used for calcium score estimation. Not only
does this research showcase a potential tool for clinicians to use
while diagnosing a patient, but it also expands to a more general
patient population that could receive a calcium score test, reducing
potential underdiagnosis. Since chest CTs are taken on patients
often reporting cardiac, pulmonary, or abdomen-related issues or
symptoms [23], the calcium score could reveal an underlying dis-
ease or unnoticed atherosclerosis, helping clinicians find problems
fast and more accurately, enabling them to provide more effective
care [16].

The precision of the calcium scores maintaining the same nu-
merical bin and the accuracy reducing the average percent error
means that this network not only succeeds in detecting arteries
within the image but can also identify hotspots of dense calcifica-
tion [8]. These capabilities not only enable it to provide a useful
calcium score but use many of the factors used in the calcium score
calculation to identify parts of the artery that require the most
focus and decide on which coronary bioimplants can be used for
maximum effect. For example, two cases may have similar calcium
scores, but different distributions of fatty plaque. A more spread-out
plaque (possibly reducing its visibility) distribution along a long
segment of the artery would most likely warrant the use of a stent
to minimize the partial blockages and maintain the long-distance
blood flow [18]. However, if the plaque was highly concentrated
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Figure 9: The Effect of Atherosclerotic Plaque on Arterial
Blood Flow. Plaque buildup causes the artery to narrow, forc-
ing blood flow to be constricted, increasing blood pressure.
Even small deposits of plaque can cause disruptions in blood
flow.

in a few completely blocked portions, bypass surgery would be
much more effective [18]. The detection of the artery bounding
boxes can be used beyond calcium scores to create 3D models of the
artery through the chest and find narrow points or measure rate of
blood flow, which can be used to prescribe a variety of life-saving
medications such as Statins, blood thinners or beta blockers.

The implications of this research extend far beyond just CT
scans and could be instrumental in revolutionizing computer vi-
sion applications in general practice. While the work focused on
CT images, the approach can be generalized to a wide variety of
imaging modalities, such as MRI, X-ray, and even ultrasound. In
medical imaging, several common challenges, including distortion,
obstruction, variance in shape, and size, can significantly degrade
the quality of automated diagnoses. The algorithm developed in this
research can help address these issues, particularly through transfer
learning. By training on a diverse set of images, the model improves
its robustness, making it more capable of handling variations inher-
ent in medical imaging. A particularly promising extension of this
research is the application to MRI scans, where images are taken
from multiple angles (360 degrees) around the organ of interest.

In such cases, enabling the neural network to process images
from any angle greatly expands the dataset and enhances the depth
of learning during the training phase. This adaptability leads to
more accurate models capable of interpreting complex anatomical
structures from various perspectives, resulting in improved diag-
nostic reliability. In cases involving rare diseases or conditions with
limited patient samples, a small dataset can hinder the network’s
ability to make informed decisions [22]. However, by increasing the
dataset’s variance through angle diversity and data augmentation,
the model’s robustness improves, allowing it to make more reliable
and precise predictions [22]. This approach also facilitates the de-
velopment of multi-modal models, capable of integrating different
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imaging techniques, such as combining CT with MRI or ultrasound,
further enhancing diagnostic capabilities [24].

An essential feature of the proposed model is its ability to handle
multiple images at once without slowing down the training process.
The system can incorporate various perspectives simultaneously,
making it more efficient while expanding its knowledge base. This
multi-image processing approach allows different sections of the
network to specialize in different aspects, such as varying angles or
distinct image features, contributing to a more refined and accurate
understanding of the data. The speed and scalability of training are
maintained even as the dataset grows, which is particularly crucial
in real-world applications.

This research also demonstrates the potential of combining mul-
tiple network structures to address challenges like artery detection
and calcium scoring in chest CT scans. These tasks have tradition-
ally been difficult to automate due to the complexity and variability
of the anatomical features. The novel network architecture pro-
posed here—by integrating different image perspectives and apply-
ing advanced backpropagation techniques—has shown promising
results, particularly in bounding box regression accuracy. This sug-
gests that the network, although still in its early stages, holds signif-
icant potential for real-world clinical applications, where precision
in detecting subtle features like arterial calcifications can directly
impact patient care.

One of the core innovations of this research lies in its attempt
to guide neural networks in navigating complex environments by
incorporating advanced image segmentation techniques [5]. The
primary goal was to assist the neural network in recognizing spe-
cific patterns rather than relying solely on trial-and-error learning
[5]. Through the implementation of advanced training algorithms,
we provided the network with concrete guidance, helping it better
understand the intricacies of arterial structures in CT scans.

While the methods employed here are promising, they repre-
sent only a fraction of the possible algorithms that could further
optimize artery detection. Future work could involve exploring the
potential of hybrid models that combine CNNs with other machine
learning techniques, such as reinforcement learning or attention-
based models, which are already showing promise in other areas
of medical imaging. Additionally, cross-validation with other algo-
rithms could provide a clearer comparison of performance, ensuring
that the most efficient and accurate methods are chosen for clinical
deployment.

This research also introduced a new optimizer and a modified
backpropagation algorithm to improve the training process. The
flexibility of the network structure allowed for adjustments between
different stack sections and creates opportunities for fine-tuning
performance for specific imaging tasks. Furthermore, the incorpo-
ration of parallel processing methods enhances the computational
efficiency of the network, enabling it to scale across larger datasets
and handle more complex tasks in real time.

The strong Pearson correlations across all four bounding box
coordinates and sub-1% average deviation from ground truth trends
support the spatial robustness of the network. Moreover, the re-
gression slopes approaching unity confirm that the model is not
systematically under- or over-estimating any specific boundary.
These findings compare favorably to prior literature in anatomical
detection using CNNs or object detection networks, which often
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exhibit reduced localization precision when applied to small or
irregular targets like coronary arteries [13]. Our network’s superior
accuracy may be attributed to task-specific training, optimized loss
functions, and the constrained spatial variability of the LAD within
the dataset.

Importantly, the model’s performance remained consistent de-
spite physiological and positional variations, including changes in
heart orientation, image noise, and field of view shifts across test
images. This robustness suggests strong generalization capacity,
an essential feature for clinical deployment where real-world data
often present with high variability.

From a clinical perspective, automated coronary calcium scoring
remains a crucial yet underutilized component of cardiovascular
risk assessment. Traditional methods rely on manual segmentation
and measurement, which are time-intensive and subject to interob-
server variability. Our model demonstrated high concordance with
conventional calcium scoring methods, with an R? value of 0.921
and over 90% bin-level accuracy in clinical calcium score categories.
These results align with or exceed those reported in other auto-
mated calcium scoring systems, particularly in terms of stratifying
risk within accepted clinical thresholds (e.g., 0, 1-10, 11-100, 101-400,
>400) [2].

Notably, the model maintained an average score deviation of less
than 20% even when misclassified, highlighting its potential utility
not only in screening but also in longitudinal risk monitoring. These
findings are significant, given the growing recognition of calcium
scoring as an independent predictor of cardiac events, particularly
in asymptomatic patients or those with equivocal risk profiles based
on traditional metrics [3].

In summary, this work lays the foundation for a new generation
of neural networks capable of handling a diverse range of medical
imaging challenges. The adaptability of the network, combined with
the ability to process multi-perspective images and apply advanced
training methods, promises to improve the speed, accuracy, and
scalability of medical diagnoses, particularly in environments where
data is sparse or complex.

5 LIMITATIONS AND FUTURE WORK

The limitations of this study include training on only one artery:
the Left Anterior Descending (LAD) instead of all four available ar-
teries: the RCA, LAD, CX, and LM. Training on these arteries would
make the model more robust and versatile. The second limitation
is that the proof-of-concept model architecture was developed to
run on PNG, not DICOM images. While the process of window
leveling tried to ensure that the PNG image kept most of the impor-
tant cardiac features in the DICOM images, testing on the DICOM
images is still necessary to either increase the models’ accuracy
and/or assess whether there are any differences when using PNGs
vs DICOMs.

Additionally, the dataset used, while diverse in anatomy and im-
age orientation, was limited to a single imaging modality and may
not reflect the full range of acquisition protocols seen in broader
clinical practice. Another limitation was inaccuracy in the ground
truth annotations: they were manually curated and, while reviewed
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by experts, remain subject to human bias. Incorporating multi-
institutional datasets with broader demographic and imaging diver-
sity could further strengthen model generalizability.

Future directions for this project include expansion to all four
coronary arteries, a larger dataset of chest CT scans, the addition
of more convolutional layers, and the implementation of new tech-
niques to further optimize the network. These adjustments would
improve and optimize the network; however, it is computation-
ally expensive. To further improve the network, images can be
augmented through the application of convolutional kernels such
as sharpening or modulating the relative intensity of surrounding
structures, the network is able to explore in a wider range of images
and environments to become better optimized and robust [10].

On CT scans, there is also the possibility of calculating the risk
of valve disease. This type of network would specifically be helpful
in datasets with continuous data, such as a functional MRI in the
medical field. Beyond medicine, this could have wide-ranging ap-
plications in real-time detection and imaging by utilizing its third
dimension to analyze images over time [25]. Another focus is inte-
grating this detection module into a larger end-to-end diagnostic
framework capable of processing raw DICOM images, performing
artery segmentation, calcium quantification, and risk prediction
without the need for manual intervention.

6 CONCLUSION

This project created a three-dimensional R-CNN to address com-
mon issues with 2D CNNs with respect to distortion and variance
in size and shape. Through techniques such as new optimizers or
events with states as well as alterations in the network structure
and propagation, a five-section 3D CNN was created to train on
non-gated chest CT scans, which contain distorted coronary artery
motion, making it an example of the improvement of 3D CNNs over
2D CNNs. The network was used to identify bounding boxes of
arteries in the chest CT scan and use those boxes to calculate a coro-
nary artery calcium score. Both the network-generated bounding
boxes and calculated calcium scores showed high accuracy, making
this network capable of detecting small complex structures and
providing meaningful clinical info. Applications of this network
include datasets with multiple continuous images, such as a func-
tional MRI or real-time camera data, especially in a setting with
high variance and movement. The expansion of an Al network to
3D analysis using stacked images would further advance medical
imaging analysis knowledge by providing information on how to
analyze hyper-specific differences between consecutive images to
quantify both shared and isolated features. The stacked feature
maps may lead to new experiments with deriving different feature
maps in the same convolutional layer. This leads to better feature
isolation and a wider range of proposed features.

7 STUDENT REFLECTION

This project provided an opportunity to develop both technical and
organizational skills. One of the main challenges was managing all
aspects of the project independently, from planning and research
to execution and problem-solving. Time management became cru-
cial, as balancing the workload with other commitments required
careful prioritization. A key solution was setting clear milestones
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and breaking the project into smaller, manageable tasks, which
helped maintain focus and ensure steady progress. The experience
enhanced my ability to work autonomously, making me more confi-
dent in my problem-solving and decision-making abilities. From an
educational perspective, it was a valuable exercise in applying the-
oretical concepts to practical situations. Specifically, I was inspired
by concepts I learned in my classes for Multivariable Calculus and
Linear Algebra, both taught by Dr. Michael Lavigne. This project
demonstrated my initiative and capacity to handle complex tasks
independently.
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