Volume 16, Issue 2

Journal of Computational Science Education

Facilitating Academic Research with FPGA Support in a
University Data Center

Jeevesh Choudhury Thomas Jennewein Gil Speyer
Arizona State University Arizona State University Arizona State University
jchoudh3@asu.edu tjennewe@asu.edu speyer@asu.edu
ABSTRACT Project Catapult [12], and they can be connected in varying con-

Field Programmable Gate Arrays (FPGAs) offer a practical solu-
tion that balances computational power with energy efficiency,
which could address the growing demand for sustainable high-
performance computing (HPC). Moreover, because they can be re-
configured and optimized for specific applications, FPGAs open up
numerous possibilities for adaptive, high-performance workloads.
However, the substantial expertise required to deploy FPGA designs
has traditionally been daunting, requiring proficiency in Hardware
Description Languages (HDL) such as SystemVerilog or VHDL. To
address this accessibility barrier, the field has shifted toward high-
level synthesis (HLS), which allows developers to program FPGAs
using familiar languages like C++ and Python — mirroring the
evolution seen in GPU programming,.

In this paper, the resources available on the Sol HPC cluster at
Arizona State University (ASU) [8] and the strategies employed to
support and encourage researchers and instructors working with
these nodes are examined. The practical challenges of using FPGAs,
the integration of tools and libraries in the development workflow,
and efforts to lower the expertise threshold required for effective use
are explored. By sharing this experience, the aim is to contribute to
the growing body of knowledge around accessible and sustainable
FPGA development in HPC environments.

KEYWORDS
FPGA, HPC, Facilitation

1 INTRODUCTION

With the advent of the exascale era of high-performance computing,
accelerators have become vastly more expansive and heterogeneous
and often include various novel architectures besides GPUs, such as
FPGAs, Vector Engines (VEs), Wafer-Scale Engines (WSEs), and In-
telligence Processing Units (IPUs). Among such accelerators, FPGAs
have often served as the platform to design, prototype, experiment,
and deploy novel architectures that accelerate applications while
leveraging a balance between computational speed and power ef-
ficiency. The versatility of FPGAs allow them to be used both as
computational and network accelerators, as shown in Microsoft’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial a dvantage and that c opies b ear this n otice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2025 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/16/2/5

22

figurations as shown in Lant, et al. [9] to exploit various compute
advantages.

Due to the FPGA’s low power and programmability features,
implementation of edge computing designs has gained wide popu-
larity. In the context of the data center, this use case would seem
out of place. However, at a university, the development of projects
on a reliable, well-supported datacenter platform can become an
attractive alternative to local labs for both research teams and FPGA
course instructors.

Nevertheless, deploying FPGAs in HPC clusters comes with its
own set of challenges and impediments as illustrated in Chen et al.
[4] and for scalability, FPGAs need to be connected to the data center
network directly as shown in Weerasinghe et al. [13]. Another
barrier to using FPGAs and similar heterogeneous accelerators is
that their workflow and software stack is significantly dissimilar
and non-standardized when compared to GPU or CPU workflows.
Furthermore, depending on the vendor, these accelerators work
with different software stacks as well, in spite of them implementing
a similar workflow methodology.

Broadly speaking, development flow on an FPGA can be classified
as:

o Register-Transfer Level (RTL) Design Development:
This is the classical development flow on an FPGA where
a researcher writes hardware description language (HDL)
code using Verilog or VHDL which is synthesized onto the
FPGA through an appropriate development suite such as
Xilinx Vivado or Intel Quartus Prime. HDL Design requires
greater expertise and is more relevant to VLSI engineers and
microarchitecture researchers. FPGAs facilitate ASIC proto-
typing by serving as a platform to design, test, and optimize
custom integrated circuits. This development workflow can
possibly exploit cloud FPGAs with the important caveat that
the final test on the FPGA of a compiled design bitstream
may not be viable; an FPGA board often needs a complete
power cycle to update the onboard design, and power cycle
privileges may not be granted to every user.

C/C++ Application Development: With advancing tech-
nologies, FPGA programming has been shifting to a para-
digm similar to that of GPU programming. This development
workflow splits the design into two code files: the kernel
code that runs on the FPGA and the host code that runs
on the host CPU and leverages the kernel code. High Level
Synthesis (HLS) compilers convert C/C++ code into FPGA
designs, thereby improving the approachability of FPGA pro-
gramming. A user would only need a base understanding of
C code to get started with this workflow, and the complete

November 2025

https://doi.org/10.22369/issn.2153-4136/x/x/x

Journal of Computational Science Education

flow consists of a minimum of four steps to get a design
running on the FPGA. These can be specified as:

(1) Compile the host code using any C/C++ compiler.

(2) Compile the kernel code into an HLS package.

(3) Link the HLS package into a binary file.

(4) Execute the compiled host code with the binary file.
This flow is easily deployable on HPC clusters, and applica-
tions made using this workflow do not require any height-
ened privileges for the user on the FPGA nodes.

e Hybrid Development: The aforementioned development
flows can also be combined at various stages. Designs made
in HDL code can be packaged into HLS modules and further
linked to a design binary, thereby creating a combined work-
flow where traditional RTL projects can be deployed on HPC
clusters with the C/C++ development flow without having
to provide users increased administrator privileges on the
node.

The tools required for these workflows vary, resulting in a suite
of software tools, drivers, and resources available to the user for
a comprehensive testbed environment. The development method-
ology is modular with multiple intermediate results in the design
process, thereby implying that all stages need not be compiled,
executed, and tested on the same resource, resulting in an inherent
parallelism available to the workflow itself.

2 FPGA AS A SERVICE (FAAS)

With the increasing heterogeneity of HPC systems, FPGA resources
have become popular as an extension to the pool of available re-
sources offered by cloud services. Project Catapult by Microsoft
and Amazon’s AWS EC2 F2 instances are two examples of this
growing trend. As mentioned earlier, the inherent heterogeneity of
the FPGA node configuration requires a suite of software resources
and modules to go from design to deployment. Creating and sus-
taining this development environment as a resource for a multitude
of online users has its own challenges, but an added incentive to
deploying such an environment on the cloud is that these resources
are often self-contained suites that offer a wider breadth of features.
Furthermore, they are designed in a modular fashion, enabling
system administrators to upgrade or downgrade these integrated
development environments (IDEs) as required. Therefore, the pri-
mary classification that inhibits cross-compatibility between IDEs
generally boils down to the choice of software offerings. Intel and
AMD are the prominent vendors in this field, as of this writing, and
hence, the choice is between them as their FPGA software products
are functionally similar.

In terms of performance benchmarks, the FPGA as a Service
(FaaS) model has been evaluated to show better performance for
compute-intensive workloads compared to CPU and GPU imple-
mentations while also leveraging relatively less power consumption
as evaluated in Perepelitsyn et al. [11].

2.1 Compute and Software Resources

ASU’s Sol has FPGA nodes available through the SLURM scheduler.
However, while the OpenCL workflow from design to deployment
is straightforwardy available to all users, full re-programmability

November 2025

Volume 16, Issue 2

of the cards and driver access is restricted by administrator per-
missions to prevent users from accidentally bricking the hardware.
Providing elevated permissions to FPGA researchers is one possi-
ble solution for this. Bare metal servers are the ideal method for
deploying FPGA resources on the cloud, as they allow researchers
to fully exploit the re-programmability of FPGA hardware, and the
possibility of such special access nodes on Sol is being explored.
Currently, Sol has two FPGA nodes with the following FPGAs:

(1) Alveo U280 with an AMD UltraScale+ XCU280 FPGA and
8GB of HBM2 memory [1].

(2) Bittware 520N-MX with an Intel Stratix 10 FPGA and 16GB
of HBM2 memory [3].

Since the two FPGAs are from separate vendors, the requisite
software environment for development on either can be easily
provisioned for each, with AMD Xilinx Vivado being one of the
available development environments and Intel Quartus Prime as
its complement.

2.1.1 AMD Xilinx Resources.

(1) AMD Xilinx Vivado: Vivado is a comprehensive suite for
the traditional FPGA workflow using HDL, and it supports
Verilog, SystemVerilog, and VHDL. On Sol, Vivado 2022.1
Standard Edition is available as a module which can be loaded
on any node and used accordingly. Vivado is a comprehen-
sive IDE for RTL design, and most of its components can
be used from any node on Sol to work from RTL design to
bitstream generation. All boards supported in the Standard
Edition are available for development with the edition on Sol.
Consequently, within the cloud working environment, Sol
offers the capability of offloading the design and testing of
experimental VLSI architectures in a datacenter environment
to researchers, thereby reducing the need for local machines
required to run the same software.

While, with some effort, RTL design does allow users to
use the full reconfiguration of an FPGA, significant domain
expertise is necessary to competently exploit the resources
available on an FPGA. ASU’s Sol allows researchers to design,
develop, and generate their custom architecture bitstreams
with Vivado on any node, but deploying the bitstream on the
Alveo U280 is restricted due to the partial reconfigurability
feature of the board. As such, any design would require a
debug core to be interfaced into them so as to not brick
the Alveo U280 once its onboard design memory is updated.
The card also needs a power cycle to update itself once a
bitstream has been deployed, and, therefore, as a security
measure, full reconfigurability is not granted to all users.
Since Vivado is compatible with various other FPGA design
platforms, it is always plausible for researchers to simply
use the software on any node on Sol to develop a design for
any other FPGA of their choice. Any design files can always
be easily transferred between the cloud and another local
environment.

AMD Xilinx Vitis: Vitis is an IDE designed for working with
HLS using C/C++. The Vitis workflow involves splitting the
code into the CPU/Host component and the Kernel/FPGA
component, akin to specifying the CPU and GPU kernels

—
S
~

23

Volume 16, Issue 2

while working with HIP or CUDA code. The host code is com-
piled using a g++ compiler while the kernel code is compiled
using Vitis v++ which translates the C/C++ implementation
into an FPGA binary. The v++ compiler maps the code to
a specific platform, and hence a .xpfm or .xsa platform file
must be included when running the compiler command. This
platform file can be the provided default for a specific board,
or it can be custom made through Vivado. Vitis has various
sub-components as well which can be used for timing analy-
sis, code debugging, platform generation, and more. Figure
1. shows how the CPU and FPGA codes interact with each
other.

cPU FPGA
e —
. User
Host Application C Functions Application
Code
XRT API AXl Interfaces
Acceleration
XRT Global Memory Platform
Drivers DMA Engine
4 PCle i

Figure 1: CPU-FPGA Code Interaction in Vitis [6]

(3) Xilinx Runtime (XRT): XRT is a software stack composed of a
mix of userspace and kernel driver components. It contains
the collection of API keys that allows the host system to suc-
cessfully communicate with PCle based FPGA accelerators.
The tools provided in this software stack not only help in
synthesizing code to be deployed on the FPGA but also allow
users to monitor and test the FPGA directly through a bash
shell without having to go through Vivado or Vitis. Figure 2.
shows the software stack structure of the XRT libraries.

=] =) _

] Application

| xclbinutil | Libraries & Tools
(SEG) [SERGHN User Space core HETRies B To0l
Debugger, Board Tools,
Virtalization plugin
1 Lmux Kernel
‘ Memory nt,
H Execution Control, DA opératie
i man
() (] : Do ie nage downiosd
Firmware
UltraScale MPSoC PCle MPSoC Ed: Pl Shell BHA engine
PCle Device Device Gl ge HW scheduler, Downioad o \gin
Device Hemory contralier, Tailoox

Figure 2: XRT Software Stack [14]

Figure 3. shows the software stack for XRT on Alveo based
platforms such as the Alveo U280.

XRT Runtime Libraries

Fieerr I eisor B nowrer

PR Region

Figure 3: PCle Stack for Alveo Platforms [14]

24

—
~

-

Journal of Computational Science Education

CCRMEE a.xclbin
Verilog

Python Device

Figure 4: Compilation flow with XRT [14]

Figure 4. shows the compilation and execution workflow
when working with XRT libraries to run kernels on the FPGA.
It illustrates how the host code working on the host system
CPU interacts with the compiled kernel binary deployed on
the FPGA platform.

.1.2 Intel Altera Resources.

Intel Quartus Prime: Intel Quartus Prime is the comprehen-
sive FPGA development suite available for Intel/Altera FP-
GAs. On Sol, there are multiple versions of Quartus Prime
that are available, ranging between the Standard, Pro, and
Lite edition. The recommended version is Intel Quartus
Prime Pro 23.4 as that is the version that works ideally with
the Bittware 520N-MX hardware that is available on Sol.
Quartus Prime is similar to Vivado in that it boasts a compre-
hensive suite of tools, such as Quartus Programmer, Platform
Designer, Timing Analyzer etc., which are designed to ac-
commodate the many possible aspects of designing on Intel
FPGAs. Unlike Vivado, which has separated off the Xilinx
HLS components onto Vitis, Quartus Prime comprehensively
includes the Altera HLS Compiler which acts as the working
suite for compiling higher level code into its RTL equivalent
for Intel FPGAs. The HLS Compiler is available in the Pro
and Standard editions of Quartus Prime with the primary
difference being the devices supported by those editions.
Questa is also provided with Quartus Pro, which serves as
an effective HDL simulator for behavioral verification of RTL
modules.

Quartus Prime Hardware _ Altera
Descpionschema

ortec
Partion e Lingiage ok s
SystemVriog (axp) Verlog HDLVHOL (RADL) Fle

Simulaion
v Gate Level
Rt ’—“ Analyss & Synthesis ’—‘E'—‘ fancional

Post Synthesis
Internal (- Simulation File
Synthesis [~ (vholvo)
NE(\IS[
Gate-Level Timing
Simulation

Post
Placement and Routing

Simulation Files
(vho/.vo and .sdo)

Formal Verification
Using Souce Code as
Golden Netist, and VO
Placementand Routing |~ as Revised Netlist
Fomal erifcation e

|| Constraints
&Settings

Timing & Area
Requitements
Satisfed?

Yes

Confguration/
" Programming
Fies (sof .pof

(" contguesProgam Device)

Figure 5: Intel FPGA Workflow [7]

November 2025

Journal of Computational Science Education

Figure 5. shows a comprehensive workflow and the various
file types involved in different stages of design and compila-
tion for an Intel FPGA. While dissimilar in some aspects, the
overall design philosophy and process is quite reminiscent
of working with Xilinx FPGAs and thereby suggests that,
while the tools may be different, RTL or C++ designs could
possibly be ported from one vendor platform to another as
long as the hardware resources supported the design.

Intel FPGA SDK for OpenCL: OpenCL support for Intel FPGAs
is provided through this package made available by default
on the Bittware node on Sol. The Altera OpenCL (AOCL)
utility can diagnose, program, and validate the FPGA, and
it provides easy access without having to resort to working
through Quartus. While AOCL has become a legacy tool as
of writing this article, it is still readily compatible with many
HLS design tools that allow extended programmability of
the Intel FPGA. It is analogous to the XRT stack on Xilinx
FPGAs and offers similar utilities for real-time hardware
diagnostics.

Intel OneAPI: Intel’s OneAPl is a unified programming frame-
work to write code for Intel FPGAs, CPUs, and GPUs. It
is the current framework for programming Intel FPGAs
through HLS built around C++ with SYCL. Multiple ver-
sions of OneAPI compilers and libraries are available on Sol
with OneAPI 2023.2.1 being the most recent one. The OneAPI
base toolkit is available as a module while its FPGA add-on is
pre-installed on the Intel FPGA node, allowing for a seamless
workflow with OneAPI tools.

Overall, both the AMD Xilinx and the Intel Altera resources provide
tools for implementing the same design workflow and philosophy.
Both vendors provide tools to facilitate RTL designs with Verilog
and VHDL, and they also provide for the HLS design workflow
which is much simpler and easier to learn with its similarities to
GPU kernel programming.

@

~

3

~

2.2 Workflow

As mentioned above, modern FPGA programming is gradually
shifting towards, and becoming unified with, GPU programming,
often even using similar libraries, tools, and compilers. While the
intricacies may be vendor specific, the overall design philosophy
tends to remain the same, with the primary differences arising with
the choice of coding language. In this section, we will attempt to
codify the workflow based on HDL and C++ to create an abstract
but comprehensive route from initial design to final deployment.

2.2.1 RTL Development Workflow.

(1) HDL Block Design: The preliminary stage of any RTL design
project begins with an abstract overview of the many func-
tional modules to be implemented and how they should be
interconnected and controlled. This stage involves a very
high-level overview of the possible functional blocks, the
state machines required for each block or groups of blocks,
and the pipeline stages that will be incorporated into the
design. These designs are then described in an appropriate
HDL as per the discretion of the user. This design is then
verified functionally and behaviorally with an associated
testbench to ensure that the design is working as intended.

November 2025

Volume 16, Issue 2

(2) Synthesis: Using an appropriate compiler, the HDL code pre-

=

=

pared in the earlier stage is used to formulate a gate-level

representation of the same code. This gate level netlist is a

low level design using only primitive circuit components,

representing the code with simple logic gates. It is then fur-
ther optimized for timing, power, and performance according
to the constraints and requirements as defined by the user.

Functional and behavioral verification are usually executed

using the earlier testbench once again to ensure that the

translation from RTL code to the gate-level netlist did not
create any behavioral anomalies.

Implementation: Once the gate-level netlist is compiled and

functional verification is done, the next step is to map these

primitive components to the physical resources that are avail-

able on the FPGA. This step often uses a platform file or a

board support package which contains the configuration and

details of various blocks available on the FPGA for which the
design is being implemented. Place and Route is the primary
phase of this step where;

e Place: Logic cells, required by the design, are placed at
appropriate points on the FPGA board mapped by the
compiler and,

® Route: The connections for the placed logic cells are mapped
to each other to form a complete circuit to implement the
overall design.

The placement and routing of the circuit is done in congru-
ence with an appropriate platform and constraints files. Var-
ious verification methods pertaining to Design Rule Checks
(DRC) are carried out in this phase as well to ensure that the
designed circuit is in accordance with the physical resources
available.
Timing Analysis: Static Timing Analysis (STA) is the standard
method for timing closure which analyzes the propagation
delay through all relevant timing paths. In this context, slack
is the margin by which the timing is met or violated. Setup
slack indicates that the signal is not propagating too slowly,
while hold slack signifies that the signal is not arriving too
early. Positive slack implies that the circuit is meeting the
timing constraint and that a faster clock can be achieved de-
pending on the magnitude of the slack, while negative slack
implies a timing violation. Achieving the highest operating
frequency (lowest clock period) while maintaining timing
closure is the ultimate goal of this step.
Implementation and Timing Analysis are repeated iteratively
until the timing violations in the circuit have been elimi-
nated. Once all relevant timing paths have met timing and
constraint requirements the design is ready to be exported
to a bitstream.
Hardware Validation: The implemented design is then ex-
ported to a device-specific binary configuration format which
is used to program the physical hardware. Verification of the
design is done by testing out the programmed FPGA in a
real-time environment with an appropriate testbench. This
step includes various design-specific tests to ensure that the
hardware is performing well under various conditions and
that there are no discrepancies between the simulated and
implemented design and the final design on hardware.

25

Volume 16, Issue 2

HOL Gode Schematic

Implementation —_

0

5
=2 it

28

i

£2
Saas:

¢
e
fere e
§
L

Figure 6: RTL Development Workflow [5]

Figure 6. shows an abstract and comprehensive overview of the
aforementioned RTL workflow.

222 C/C++ Application Workflow.

(1) C/C++ Algorithm Design: First and foremost, the overall algo-
rithm for implementing a design is formulated. This involves
separating out the steps of the algorithm which can be com-
puted on a host machine (usually with a multi-purpose CPU)
and the steps that can be computed as an FPGA kernel. De-
pending upon the complexity and depth of the design to be
implemented, the interaction between the host and FPGA
kernel can range from simple function calls to more complex
multi-stage data transfer and streaming operations. Once
the overall algorithm is codified, functional verification is
carried out with an appropriate testbench to ensure that
the code is working as needed. This results in two primary
components of the code:

o The host code running on the CPU and,

o The kernel code running on the FPGA

The kernel code is optimized further and then later recom-
piled to a full binary configuration which is deployed onto
the FPGA in the proceeding steps.

(2) HLS Optimization: Once the algorithm is verified function-
ally, various HLS directives and pragmas are employed to
optimize the kernel code for efficient hardware implementa-
tion. These optimizations include selecting appropriate data
types (fixed-point vs. floating-point), loop pipelining and
unrolling, array partitioning, dataflow optimizations, and
interface specifications. The goal is to maximize throughput
while minimizing resource utilization and meeting timing
constraints.

(3) RTL Generation and Co-Simulation: After the functional veri-
fication and optimization of the kernel and host algorithm
is done, the kernel code is compiled into an RTL module
description. This is a synthesizable RTL representation of
the algorithm which is useful in describing the datapath, con-
trol logic, and interfaces in a more hardware-centric manner.

26

—
N
=

Journal of Computational Science Education

Co-simulation is then performed using the software test-
benches to verify that the generated RTL produces identical
functional behavior to the software reference, ensuring no
behavioral discrepancies were introduced during the HLS
compilation process.

Once it is verified that there are no functional anomalies,
power, performance, and area analysis of the design can be
conducted. HLS optimization and RTL generation and co-
simulation can be carried out iteratively until the desired
performance is achieved. Thus, these two steps act as a de-
sign exploration stage of the algorithm where performance
bottlenecks, timing estimates, pipelining techniques, and
memory partitioning and data flow can be tested and evalu-
ated before the implementation of the full design.

Export and Testing: Once the kernel module has been suffi-
ciently tested and optimized, it can be compiled into a com-
plete binary configuration for the FPGA. It is noteworthy
that binaries from the HLS workflow are not interchange-
able with those from the RTL workflow. HLS-generated bi-
naries typically include additional metadata, such as kernel
interfaces, scheduling, and pipelining information, provid-
ing more insight into the implemented design. In contrast,
RTL workflows provide direct control over hardware imple-
mentation details. While HLS workflows offer higher-level
abstraction and include runtime frameworks that facilitate
simpler system integration, the resource efficiency of either
approach depends primarily on the design quality and opti-
mization effort rather than the source methodology itself.
Generation of the binary in this workflow takes a significant
amount of time, typically above 3 hours. This is often be-
cause the HLS compilers carry out similar steps as in the RTL
workflow, such as place and route, timing analysis, area re-
ports, and resource optimizations, effectively going through
the implementation and timing analysis steps repeatedly
until an optimal design is achieved. The design summary
and performance reports are also generated and exported
during this step, which can be used for deeper analysis of
the generated binary.

After the binary has been generated, it can be leveraged by
the host code to be deployed onto the FPGA. Therefore, the
host code can be a testbench to run simulations on the gen-
erated design to verify that functionality and performance
have been preserved over the whole process, or it can be the
primary algorithm interface to implement the overall design
on the FPGA.

3 DISCUSSION

o Cross-Compatibility of Workflows: The workflows elab-
orated upon in Sections 2.2.1 and 2.2.2 are meant to be ab-
stract overviews of the whole process. Each step is often
self-contained and with various possible implementations.
With the increasing diversity of FPGA tools and resources
being made available to researchers, cross-compatibility be-
tween workflows is also becoming more straightforward.
AMD Xilinx Vivado supports this cross-compatibility by

November 2025

Journal of Computational Science Education

virtue of the IP Packaging Tool built into it, which can pack-
age an RTL design into a kernel module and which can
be compiled into an application binary through Vitis HLS.
While this approach can be employed to port older and sim-
pler RTL designs to HLS binaries, the complexity of porting
these designs mirrors the complexity of the RTL design itself.

e Open-Source Resources: Apart from the AMD and Intel
tools mentioned in Sections 2.1.1 and 2.1.2, there are also
many open source tools available to develop on FPGAs as
well. Two open source tools deployed on Sol are OpenHLS
[10] and ScaleHLS [16]. Both of these libraries are available
as mamba environments on Sol. OpenHLS is a project that
translates PyTorch neural network models to synthesizable
RTL code and supports the Alveo U280 on the Sol cluster.
The ScaleHLS project aims at compiling PyTorch code to its
HLS C++ equivalent compatible with AMD Vitis.

Pre-Compiled Binaries: To help researchers ease into the

development workflow on Sol FPGAs, some pre-compiled

projects have been made publicly available. These include:

- Simple vector addition projects for the AMD and Intel
nodes.

— Custom and original implementations of the traveling
salesman problem based on AMD’s Vitis Tutorials [15].

— An OpenCL implementation of a 2D FFT Accelerator for
the Bittware 520N-MX based on Bittware’s white paper
[2].

These projects contain the compiled kernel binaries, sum-

mary reports of the design, and host binaries to easily run

the designs on the FPGA.

Run Time Benchmarking: An important factor to consider

when providing FPGA resources for the research community

is program run time and card utilization. Table 1 presents
some initial run time benchmarking and utilization for some
basic programs.

— The vector addition program simply adds two vectors of
size 65536 to each other.

— The prime number program calculates all prime numbers
between 0 and 4095 and returns them in an output vector.

— The triangular numbers program calculates the first trian-
gular number to have over 500 divisors.

— The second triangular numbers program was an attempt
to solve the problem with a different method. It involved
storing all divisors in an array and then iterating through
the array when checking new numbers. This led to incred-
ibly slow performance and the program did not finish in
emulation or on hardware, even after eight hours.

4 RESULTS

To summarize, FPGAs have emerged as reconfigurable accelera-
tors for specialized workloads in datacenters. They offer a unique
balance between performance, flexibility, and energy efficiency
tailored to specific applications. They perform well on compute-
intensive tasks where parallelization and custom datapaths provide
significant advantages. Despite these advantages, FPGAs have faced

November 2025

Volume 16, Issue 2

Kernel | Kernel | Comp. | Comp. | Util
linking | Linking | time time
time time (emu.) (HW)
(emu.) (HW)
Vector 13m 5s 1h 36m | 115.35s | 9052pus 0%
add. 49s
(65536
array)
Prime 13m2s | 1h 59m | 543s 5634us | 0%
#5 (4096 0s
array)
Triang. | Oh 41m | 4h 24m | 12849s 102524ps| ~1.5%
#s 43s 11s
Triang. | Oh 41m | 1h 22m | DNF DNF N/A
#s 48s 16s
(Array
method)

Table 1: Some performance numbers on the Alveo U280 with
the XRT Compilation Flow

adoption challenges with long development cycles being a major
hurdle. However, recent methods such as HLS and frameworks
like XRT and OneAPI have been enabling wider deployment of
FPGAs by allowing researchers to work with a wider arsenal of
programming languages.

The codified workflows presented above offer a consistent plat-
form to implement different projects as well as to reproduce results
for similar projects. The workflows offer an accessible on-ramp
for the onboarding of researchers onto FPGA projects on Sol and
the versatility of the workflow imparts the capability for auto-
tailorization of the flow with continued development.

The primary dichotomy between the workflows, as of this writ-
ing, arises not because of the overall development methodology
with C/C++ and RTL, but rather due to the difference in vendors
of the FPGAs. Open source tools are democratizing this barrier
slowly but pragmatically, staying within one vendor’s development
environment does not seem to hamper the interchangeability of
workflows significantly.

The datacenter FPGA landscape continues evolving with ad-
vances in memory integration (HBM2 and above), higher-speed
interfaces (PCle 5.0, CXL), multi-processor platforms (AMD Versal
and Zynq MPSoCs), and improved development tools. As workloads
become more specialized and energy efficiency becomes increas-
ingly critical, FPGAs are positioned to play an expanding role in
heterogeneous datacenter architectures, complementing CPUs and
GPUs in optimized computing solutions.

ACKNOWLEDGEMENTS

The authors acknowledge Research Computing at Arizona State
University for providing resources that have contributed to the
results reported within this paper.

REFERENCES

[1] Advanced Micro Devices, Inc. 2024. Alveo U280 Data Center Accelerator Card
User Guide. https://docs.amd.com/r/en-US/ug1314-alveo-u280-reconfig-accel.

27

https://docs.amd.com/r/en-US/ug1314-alveo-u280-reconfig-accel

(2]

[3

[9

=

[10]

Volume 16, Issue 2

BittWare. 2021. Accelerating 2D FFTs Using HBM2 and oneAPI on Stratix 10 MX.
Technical Report. BittWare. https://www.bittware.com/resources/hbm2-2d-fft
-oneapi/ White Paper.

BittWare, Inc. 2024. 520N-MX FPGA Accelerator Card. https://www.bittware.c
om/products/520n-mx/.

Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and
Kun Wang. 2014. Enabling FPGAs in the cloud. In Proceedings of the 11th ACM
Conference on Computing Frontiers (CF '14). Association for Computing Machinery,
New York, NY, USA, Article 3, 10 pages. https://doi.org/10.1145/2597917.2597929
Bruno Da Silva, An Braeken, and Abdellah Touhafi. 2018. FPGA-Based Architec-
tures for Acoustic Beamforming with Microphone Arrays: Trends, Challenges
and Research Opportunities. Computers 7, 3 (2018). https://doi.org/10.3390/co
mputers7030041

Héctor Gutiérrez Arance, Luca Fiorini, Alberto Valero Biot, Francisco Hervas Al-
varez, Santiago Folgueras, Carlos Vico Villalba, Pelayo Leguina Lopez, Arantza
Oyanguren Campos, Valerii Kholoimov, Volodymyr Svintozelskyi, and Jiahui
Zhuo. 2025. Porting MADGRAPH to FPGA Using High-Level Synthesis (HLS).
Particles 8, 3 (2025). https://doi.org/10.3390/particles8030063

Intel Corporation. 2024. Intel® Quartus® Prime Pro Edition User Guide. Intel
Corporation. https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
Document ID: 766292.

Douglas Jennewein et al. 2023. The Sol Supercomputer at Arizona State Uni-
versity. In Practice and Experience in Advanced Research Computing (PEARC ’23).
Association for Computing Machinery, New York, NY, USA, 6. (in press).
Joshua Lant, Javier Navaridas, Mikel Lujan, and John Goodacre. 2020. Toward
FPGA-Based HPC: Advancing Interconnect Technologies. IEEE Micro 40, 1 (2020),
25-34. https://doi.org/10.1109/MM.2019.2950655

Maksim Levental, Arham Khan, Ryan Chard, Kazutomo Yoshii, Kyle Chard,
and lan Foster. 2023. OpenHLS: High-Level Synthesis for Low-Latency Deep

28

[11

[12

(13

[14

]

]

Journal of Computational Science Education

Neural Networks for Experimental Science.
//arxiv.org/abs/2302.06751

Artem Perepelitsyn and Vitaliy Kulanov. 2025. Methods of Deployment and
Evaluation of FPGA as a Service Under Conditions of Changing Requirements
and Environments. Technologies 13, 7 (2025). https://doi.org/10.3390/technologi
€s13070266

Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hor-
mati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope,
Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A re-
configurable fabric for accelerating large-scale datacenter services. In 2014
ACM/IEEE 41st International Symposium on Computer Architecture (ISCA). 13-24.
https://doi.org/10.1109/ISCA.2014.6853195

Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herkers-
dorf. 2015. Enabling FPGAs in Hyperscale Data Centers. In 2015 IEEE 12th Intl
Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on
Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Com-
puting and Communications and Its Associated Workshops (UIC-ATC-ScalCom).
1078-1086. https://doi.org/10.1109/UIC- ATC-ScalCom-CBDCom-IoP.2015.199
Xilinx. 2021. Xilinx Runtime (XRT) Documentation. https://xilinx.github.io/X
RT/2021.1/html/index.html

Xilinx. 2022. Vitis-Tutorials. https://github.com/Xilinx/Vitis-Tutorials
Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. 2022. Scalehls: A new scalable high-level
synthesis framework on multi-level intermediate representation. In 2022 IEEE
international symposium on high-performance computer architecture (HPCA). IEEE,
741-755.

arXiv:cs.AR/2302.06751 https:

November 2025

https://www.bittware.com/resources/hbm2-2d-fft-oneapi/
https://www.bittware.com/resources/hbm2-2d-fft-oneapi/
https://www.bittware.com/products/520n-mx/
https://www.bittware.com/products/520n-mx/
https://doi.org/10.1145/2597917.2597929
https://doi.org/10.3390/computers7030041
https://doi.org/10.3390/computers7030041
https://doi.org/10.3390/particles8030063
https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://doi.org/10.1109/MM.2019.2950655
http://arxiv.org/abs/cs.AR/2302.06751
https://arxiv.org/abs/2302.06751
https://arxiv.org/abs/2302.06751
https://doi.org/10.3390/technologies13070266
https://doi.org/10.3390/technologies13070266
https://doi.org/10.1109/ISCA.2014.6853195
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199
https://xilinx.github.io/XRT/2021.1/html/index.html
https://xilinx.github.io/XRT/2021.1/html/index.html
https://github.com/Xilinx/Vitis-Tutorials

