
Coding through Storytelling: Narrative Reasoning and Software
Engineering Education

S. Charlie Dey
Texas Advanced Computing Center

fcharlie@tacc.utexas.edu

Jeaime H. Powell
Omnibond Systems

fjeaime@omnibond.com

Victor Eijkhout
Texas Advanced Computing Center

feijkhout@tacc.utexas.edu

Joshua Freeze
Texas Advanced Computing Center

fjfreeze@tacc.utexas.edu

Susan Lindsey
Texas Advanced Computing Center

fslindsey@tacc.utexas.edu

ABSTRACT
To become a successful software engineer, technical competence
alone is not enough. Students must learn to reason about their
code, articulate their intentions, and locate errors with clarity and
confidence. This paper introduces a pedagogical approach rooted
in the metaphor of “telling a story.” By encouraging students to
narrate their code—identifying protagonists (variables), plotlines
(control flow), and conclusions (outputs)—we promote a practice
of self-explanation that strengthens metacognitive awareness and
debugging skills. Drawing from experiences in the classroom, we
show how storytelling helps students pinpoint bugs, communicate
intent, and ultimately write more understandable code. We connect
these practices with existing research on metacognition, program
comprehension, and human-centered computing, and describe how
this narrative approach provides a scalable, inclusive, and transfer-
able tool for future computational engineers and scientists.

KEYWORDS
Metacognition, Human-centered programming, teaching coding

1 INTRODUCTION
In undergraduate high-performance computing (HPC) program-
ming courses, a common challenge is students’ difficulty in articulat-
ing the context of their code during debugging sessions. Typically,
students focus narrowly on specific syntactic, semantic, or logical
errors, omitting the broader purpose of their program, which hin-
ders effective instructor guidance. Traditional prompts like “walk
me through your code” often prove challenging as students simul-
taneously navigate the problem domain, programmatic issues, and
the syntax of a new programming language. To address this, a
pedagogical approach grounded in narrative reasoning—a cogni-
tive framework that leverages humans’ natural ability to process
sequences and causality—has been adopted [2]. This method, imple-
mented through a storytelling exercise, encourages students to shift
from a micro-level focus on errors to a macro-level observation of

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full 
citation on the first page. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE, 
a supported publication of the Shodor Education Foundation Inc.

© 2025 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/16/2/2

their code’s logical narrative, aligning with constructivist learning
principles.

1.1 Classroom Implementation
The storytelling approach involves prompting students to “tell the
story of your code,” often with a playful opener like “Once upon a
time. . . ” This shifts their perspective from being immersed in tech-
nical details to viewing their code as a narrative with characters
(variables), plot (control structures), and resolution (outputs). For
example, a student might describe a variable as a character navigat-
ing a dataset, making decisions based on conditions, and collecting
results. When the narrative falters—such as when a student cannot
logically continue the story—it often signals a misunderstanding of
a function, algorithm, or logical flow, pinpointing the bug’s location.
This process also reveals syntactic errors, like missing punctuation
or misnamed variables, as students verbalize their logic in a human-
readable format.

This paper argues that narrative reasoning—a natural human
faculty for explaining sequences, causality, and change—can be
harnessed as a powerful tool in software engineering education.
Specifically, it supports:

• Self-explanation during coding and debugging
• Improved program comprehension through structured rea-
soning

• Communication and collaboration via shared narrative fram-
ing

Through classroom observations, existing research, and pro-
posed curricular strategies, we introduce a narrative framework
that promotes reflective practice among novice programmers.

2 DISCUSSION
Grounded in constructivist learning theory, the storytelling ap-
proach encourages learners to actively build mental models by
narrating the structure and intent of their code. We present a
model that maps programming constructs to narrative elements—
such as characters, setting, and plot—to promote comprehension,
self-explanation, and reflective practice. Supported by research
in metacognition, program comprehension, and learner-centered
design, this approach not only improves debugging and problem-
solving skills but also fosters engagement and communication,
particularly among novice and diverse learners. Together, these
foundations establish storytelling as both an effective teaching tool

Journal of Computational Science Education Volume 16, Issue 2

November 2025 5

https://doi.org/10.22369/issn.2153-4136/x/x/x 


and a cognitive scaffold for navigating the complexities of program-
ming.

2.1 Educational Framework: Constructivism
This approach is rooted in the constructivist learning framework,
which posits that learners actively construct knowledge through
experience and reflection [9]. By narrating their code, students
externalize their mental models, making assumptions and errors
explicit, which facilitates refinement of their understanding. The
narrative structure serves as a scaffold, connecting new program-
ming concepts to familiar storytelling patterns, thus enhancing
comprehension and retention.

2.2 Model Overview
The educational model for “coding through storytelling” is a narra-
tive pedagogy that encourages students to conceptualize code as a
story with narrative elements: characters (variables and objects),
plot (control flow), setting (initial conditions), conflict (conditionals
or loops), and resolution (outputs or goals). Grounded in construc-
tivism, which posits that learners actively construct knowledge
through experience and reflection [9], this model integrates sev-
eral pedagogical practices to foster metacognition, problem-solving,
and communication skills. It aligns with research on program com-
prehension as storytelling [2] and metacognition in programming
[5].

2.3 Benefits of the Storytelling Approach
The narrative-based pedagogy offers several educational benefits,
supported by empirical research:

(1) Improved Debugging: Narrating code shifts students’ fo-
cus to the program’s logical flow, revealing inconsistencies
or misunderstandings that pinpoint bugs. This aligns with
findings on self-explanation, which show that verbalizing
thought processes enhances problem-solving [8].

(2) Enhanced Metacognition: The act of storytelling fosters
metacognitive awareness, encouraging students to reflect
on their understanding and problem-solving strategies, a
critical skill in programming education [5].

(3) Increased Engagement: The playful prompt “Once upon
a time. . . ” adds levity to debugging, making it more ap-
proachable, particularly for diverse learners, as supported
by learner-centered computing education principles [4].

(4) Better Communication: Narrating code helps students articu-
late their intent clearly, a vital skill for collaborative software
development, aligning with broader educational goals [4].

(5) Enhanced ProgramComprehension: Framing code as a narra-
tive improves understanding by leveraging natural cognitive
tendencies to process stories, as evidenced by research on
program comprehension [2].

2.4 Academic Foundations
The storytelling approach is supported by several areas of comput-
ing education research:

• Narrative Reasoning: A systematic review highlights story-
telling’s role in software development, noting its benefits in

planning, requirements elicitation, and prototyping, provid-
ing a theoretical basis for its use in education [2].

• Self-Explanation: Verbalizing thought processes during pro-
gramming improves learning outcomes, as demonstrated in
a randomized experiment with self-explanation assignments
[8].

• Metacognition: Metacognitive strategies, such as reflection
and self-regulation, are essential for programming novices,
and storytelling prompts such reflection [5].

• Program Comprehension: Understanding code as a narra-
tive enhances comprehension by aligning with cognitive
processes for processing sequences and causality [1].

• Learner-Centered Design: Storytelling makes programming
more accessible and engaging, particularly for diverse stu-
dent populations, aligning with learner-centered educational
approaches [4].

2.5 Metacognition and Self-Explanation
Metacognition—thinking about one’s own thinking—is a critical
skill in learning to program. Studentswho engage in self-explanation
while coding are more likely to detect misunderstandings and re-
fine their mental models of how code behaves. Loksa et al. [5]
describe self-regulation strategies in novice programmers, includ-
ing planning, monitoring, and debugging as metacognitive acts that
enhance learning outcomes.

Narration is one such form of self-explanation. By “telling the
story” of what a program does, students externalize their reasoning
process—making it easier to spot contradictions, misconceptions,
or gaps in understanding.

2.6 Code as Story
Ciancarini et al. [2] explored the idea that program comprehension
can be improved by treating code as a narrative structure. They
liken variables to characters, control flow to plot, and comments to
narration—a framing that helps learners understand not just what
the code does, but why. This aligns with how expert programmers
often read code: not linearly, but semantically—constructing a story
that explains behavior.

Recent neuroscience also supports this framing. Peitek et al.
[6] used fMRI to show how code complexity and vocabulary bur-
den working memory during comprehension, aligning with story-
telling’s role in structuring mental load.

2.7 Debugging, Deconstruction, and Literacy
Debugging as hypothesis testing is a narrative act—imagining what
should happen, then identifying where the story breaks. Griffin [3]
advocates for "deconstructionist" learning, where reading, tracing,
and debugging come before code writing, aligning well with our
approach.

Storytelling in teaching also supports literacy, creativity, and
critical thinking. Satriani [7] found storytelling enriched vocabulary,
engagement, and comprehension in literacy classrooms—benefits
that transfer to code comprehension as well.

Volume 16, Issue 2 Journal of Computational Science Education

6 November 2025



3 THE NARRATIVE PEDAGOGY
3.1 Characters, Plot, and Purpose
In the classroom, we frame code as a story with:

• Protagonists: Variables, objects, or agents that change or act
• Setting: Initial conditions and inputs
• Plot: Control flow — how the story unfolds step-by-step
• Conflict: Conditionals or loops that create decision points
• Resolution: Output, state changes, or goals achieved

This structure helps students identify the logical and conceptual
components of a program more intuitively. By mapping code to
familiar storytelling elements, students create a mental schema that
aids in both comprehension and retention.

We often begin exercises by giving students a blank narrative
framework and asking them to fill it in with elements from a given
code snippet or problem description. This reverse-engineering of
story from code builds analytical skills, while designing stories
before writing code builds synthesis.

3.2 Writing the Story Before the Code
While debugging often reveals where the narrative breaks down,
equally powerful is the practice of writing the story first. Before
any code is written, students are encouraged to map out the “story
arc” of their program:

• Who are the characters? (variables, inputs, actors)
• What is the setting? (initial conditions or assumptions)
• What is the problem/conflict? (what needs to be solved or
computed)

• What is the plot? (algorithm or logical steps)
• How does the story end? (output or goal)

This pre-coding narrative acts as a mental simulation of the
algorithm and guides students away from immediately jumping into
syntax. It shifts the focus from what code to write to what problem
to solve—a critical reframe, especially for novice programmers.

This practice also aligns with professional software design prin-
ciples, such as:

• Test-driven development, where the tests represent the ex-
pected outcomes of the story

• Design-first thinking, where logic is mapped out before im-
plementation

• Algorithm sketching, used in pseudocode or flowchart form
to visualize intent

By embedding storytelling at the design stage, we encourage fore-
sight, structure, and intentionality in programming. It also supports
better communication in team settings, as students can articulate
the purpose and logic of their code before implementation.

3.3 Finding the Bug Through the Broken Story
In debugging exercises, students are asked to “read aloud the story”
of their code. Where the story breaks—where they pause, contradict
themselves, or say “I’m not sure what this part does”—is almost
always the bug’s location.

This technique externalizes cognition,making theirmentalmodel
visible. It also mirrors professional practices: code reviews and pair

programming sessions often revolve around shared narrative ex-
planations of what code is doing.

We also incorporate peer-debugging activities where students
exchange code and provide narrative explanations of what the code
is “supposed” to do. This collaborative storytelling not only builds
comprehension but fosters peer support and critical dialogue.

4 CLASSROOM IMPLEMENTATION
4.1 “Storytelling Debugging” Sessions
In small-group help sessions, office hours, or lab time, instructors
and TAs engage students in live storytelling about their code. These
sessions begin with the student walking through their program line
by line, describing what each part is supposed to do, in their own
words. Interruptions or breakdowns in the narrative usually signal
areas of confusion or bugs. The instructor can then prompt deeper
reflection with questions like:

• What’s the role of this variable here?
• What happens next in the story?
• Does the ending make sense given the plot so far?

This Socratic approach encourages self-correction and metacog-
nitive awareness. These sessions are particularly effective in early-
course projects where logic may be simple, but the storytelling gap
is often large.

4.2 Reflective Journals and Pair Storytelling
To reinforce the storytelling practice outside structured help ses-
sions, students maintain reflective journals where they document
the story of their code weekly. These can include narrative de-
scriptions, flow diagrams, or even short paragraphs written as if
explaining their solution to a non-programmer. Prompts might
include:

• What was the goal of my code this week?
• Who were the main characters (variables/functions)?
• What surprised me in the process?

In “pair storytelling,” students take turns reading and retelling
each other’s code in small groups. This not only strengthens their
understanding of syntax and semantics but also develops critical
peer review skills. When a peer can’t explain a section clearly, it
becomes a clue for the author to refine either the code or their
internal logic.

4.3 Rubrics and Evaluation
Assessment in storytelling-based instruction can include narrative
clarity as a rubric category. Instructors can evaluate:

• The completeness and coherence of a student’s narrative
explanation

• The alignment between the intended story and actual code
behavior

• The student’s ability to identify turning points or conflicts
in the logic

These assessments don’t replace functional correctness but en-
rich it, allowing instructors to gain deeper insight into student
thinking and development.

Journal of Computational Science Education Volume 16, Issue 2

November 2025 7



4.4 Integration with Curriculum
The narrative framework is not a standalone technique—it can be
scaffolded across the curriculum. Early weeks can introduce story-
telling as a reflection tool. By mid-semester, storytelling becomes a
design strategy before implementation. In later projects, students
use it collaboratively for design proposals and team check-ins. Em-
bedding narrative reasoning throughout ensures it’s internalized
as part of the student’s cognitive toolkit.

4.5 Example Activities
Consider a student debugging a parallel computing program de-
signed to process large datasets. When asked to explain their issue,
they might initially point to a specific line causing a runtime error.
By prompting them to “tell the story of your code,” the instruc-
tor encourages a narrative: “Once upon a time, a variable named
data_chunk set out to process a portion of the dataset. It entered a
loop to compute averages, but then it got stuck because the loop
never ended.” This narrative might reveal that the student mis-
understood the termination condition of the loop, highlighting a
logical error. As the student continues, they might notice a miss-
ing semicolon that disrupted the syntax, which becomes apparent
when explaining the code’s flow. This example illustrates how sto-
rytelling shifts the student’s perspective, enabling them to identify
both logical and syntactic issues. Examples include:

• The Delivery Bot: Debugging broken logic by following the
story of a package.

• Game Storyboarding: Mapping input, flow, and outcome in
games like Rock-Paper-Scissors.

• Data Visualization Stories: Connecting data interpretation
with narrative.

• Peer Storytelling: Retelling and debugging a partner’s code
to highlight clarity and intent.

4.5.1 Example 1: The Delivery Bot (Narrative Debugging). Stu-
dents are given the following function:
def setDeliveryTime(package):

if not package['priority'] and package['weight'] > 10:
return "afternoon"

else:
return "morning"

They are asked to tell the story of what happens to each package:
package1 = {'priority': True, 'weight': 12}
package2 = {'priority': False, 'weight': 8}
package3 = {'priority': False, 'weight': 15}

They identify that a priority package might still go in the morn-
ing even if it’s very heavy—an unintended outcome. This prompts
a redesign:
def setDeliveryTime(package):

if package['priority']:
return "morning"

elif package['weight'] <= 10:
return "morning"

else:
return "afternoon"

4.5.2 Example 2: Game Mechanics as Story (Design-First Sto-
ryboarding). Before coding a Rock-Paper-Scissors game, students
storyboard the interaction:

• Who are the players?
• What events trigger the next move?
• How does the system declare a winner?

Students present the story visually before implementing any
logic. This helps identify branching conditions and user interaction
flow.

4.5.3 Example 3: Data Storytelling with Visualization (Narrative
Reflection). After analyzing a dataset and creating a visualization,
students write a brief narrative explaining:

• What the data shows
• What question their code answers
• What story the visualization tells

This aligns narrative structure with data reasoning.

4.5.4 Example 4: Explaining a Peer’s Code (Peer Storytelling).
Students swap programs and narrate each other’s code out loud.
Prompts include:

• What is the goal of the program?
• What are the key steps along the way?
• Where is a potential flaw in the story?

This activity strengthens code readability, testing comprehen-
sion, and fosters collaborative debugging.

5 LIMITATIONS AND FUTUREWORK
While promising, narrative pedagogy has limitations. Students with
less fluency in English or those more familiar with mathematical
abstractions may find storytelling unnatural at first. Additionally,
there is a risk of oversimplifying technical concepts if too much
emphasis is placed on metaphor over precision. Instructors must
strike a balance between promoting narrative clarity and ensuring
computational correctness.

This approach also requires additional instructional time and
scaffolding that may not be feasible in all classroom contexts. Larger
courses may face challenges integrating personalized storytelling
activities or giving feedback on reflective work like journals.

Another limitation is the potential variance in how students
interpret and construct stories. While diversity of thought can be
an asset, it can also lead to misaligned mental models if not guided
carefully. Further research is needed to explore how cultural and
linguistic backgrounds influence narrative construction in program-
ming education.

Future work will investigate how narrative practices scale in
larger courses, how they integrate with peer programming and
automated assessment tools, and whether they foster long-term
improvement in code quality and debugging efficiency. Controlled
studies comparing narrative and non-narrative cohorts could val-
idate impact on learning outcomes. There is also opportunity for
tool development—intelligent IDEs or tutoring systems that can
prompt students to articulate their story during code construction.

Moreover, the emergence of AI and large languagemodels (LLMs)
presents an interesting new frontier. Narrative-based pedagogymay

Volume 16, Issue 2 Journal of Computational Science Education

8 November 2025



inform the development of smarter educational prompts, explain-
able AI code assistants, and curriculum-aware LLMs that can co-
construct stories with learners. By studying how students tell code
stories, we may also improve how machines understand, generate,
and teach code narratives—paving the way for more collaborative,
human-centered computing.

6 CONCLUSION
While promising, the storytelling approach faces challenges, such as
objectively assessing narrative quality and scaling it to large classes,
which requires instructor training. Some students may initially find
narrating code awkward, particularly if they lack confidence. Future
research could quantify the approach’s impact through controlled
studies and explore tools to integrate storytelling into programming
environments, as suggested by related work [2].

Storytelling is a universal human tool for reasoning through
complexity. By treating code as a story, students learn to explain
their thinking, debug more effectively, and write clearer programs.
This paper presented a narrative pedagogy that maps program-
ming constructs to storytelling elements—variables as characters,
control flow as plot, and output as resolution. Such framing sup-
ports student understanding, especially when reinforced through
narrative-based planning and story-first design strategies outlined.

We explored classroompractices that support storytelling, includ-
ing reflective journaling, peer code narration, and live debugging as
story deconstruction. These methods empower students to identify
and resolve logic gaps, communicate their intent, and grow into
thoughtful engineers. As software becomes more embedded in ev-
ery discipline, helping students become reflective, communicative,

and narrative-driven coders prepares them not only for technical
success but also for collaborative, human-centered innovation.

As software becomes more embedded in every discipline, helping
students become reflective, communicative, and narrative-driven
coders prepares them not only for technical success but also for
collaborative, human-centered innovation.

REFERENCES
[1] Ruven Brooks. 1983. Towards a theory of the comprehension of computer

programs. International Journal of Man-Machine Studies 18(6) (1983), 543–554.
https://doi.org/10.1016/S0020-7373(83)80031-5

[2] Paolo Ciancarini, Mirko Farina, Ozioma Okonicha, Marina Smirnova, and Gian-
carlo Succi. 2023. Software as storytelling: A systematic literature review. Computer
Science Review 47 (2023), 113–120. https://doi.org/10.1016/j.cosrev.2022.100517

[3] Jean Griffin. 2016. Learning by taking apart: Deconstructing code by reading,
tracing, and debugging. In Proceedings of the 17th Annual Conference on Information
Technology Education (SIGITE ’16). Association for Computing Machinery, Boston,
Massachusetts, 148–153. https://doi.org/10.1145/2978192.2978231

[4] Mark Guzdial. 2015. Learner-Centered Design of Computing Education: Research
on Computing for Everyone. Synthesis Lectures on Human-Centered Informatics
8(6) (2015), 1–165. https://doi.org/10.2200/S00684ED1V01Y201511HCI033

[5] Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, Paul Denny,
Raymond Pettit, and James Prather. 2022. Metacognition and self-regulation in
programming education: Theories and exemplars of use. ACM Transactions on
Computing Education 22(4) (2022), 1–37. https://doi.org/10.1145/3487050

[6] Norman Peitek, Sven Apel, Chris Parnin, and Andre Brechmannand Janet Sieg-
mund. 2021. Program comprehension and code complexity metrics: An fMRI study.
In IEEE/ACM 43rd International Conference on Software Engineering (ICSE). Madrid
Spain, 524–536. https://doi.org/10.1109/ICSE43902.2021.00056.

[7] Intan Satriani. 2019. Storytelling in teaching literacy: Benefits and challenges.
English Review: Journal of English Education 8 (2019), 113–120. https://doi.org/10.
25134/erjee.v8i1.1924

[8] Arto Vihavainen, Craig S. Miller, and Amber Settle. 2015. Benefits of self-
explanation in introductory programming. In Proceedings of the 46th ACMTechnical
Symposium on Computer Science Education (SIGCSE ’15). Association for Comput-
ing Machinery, Kansas City, Missouri, 284–289. https://doi.org/10.1145/2676723.
2677260

[9] Ernst von Glasersfeld. 1989. Cognition, construction of knowledge, and teaching.
Synthese 80 (1989), 121–140.

Journal of Computational Science Education Volume 16, Issue 2

November 2025 9

https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1016/j.cosrev.2022.100517
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.2200/S00684ED1V01Y201511HCI033
https://doi.org/10.1145/3487050
https://doi.org/10.1109/ICSE43902.2021.00056.
https://doi.org/10.25134/erjee.v8i1.1924
https://doi.org/10.25134/erjee.v8i1.1924
https://doi.org/10.1145/2676723.2677260
https://doi.org/10.1145/2676723.2677260



