
HPC Andragogy: Automating Batch Scheduler Feedback
Kyriakos Tsoukalas

Colgate University

ktsoukalas@colgate.edu

ABSTRACT
This paper proposes a monitoring system that emails feedback 
to users about submitted jobs and has the capability to stop and 
resubmit jobs to a batch scheduler. The proposed system has been 
implemented for a small supercomputing environment with a mix 
of high-performance and high-throughput computing jobs. User 
feedback includes alerts for over- and under-utilization of CPU 
and physical memory. This paper also discusses how predefined 
system thresholds were chosen and proposes three algorithms. An 
algorithm for the proposed monitoring system and two algorithms 
for the prediction of CPU and physical memory utilization. The 
latter algorithms are based on users’ input of the identification 
string (job ID) of a similar job that should have finished execution 
without errors. Lastly, a git repository is shared to make the code 
accessible for review.

KEYWORDS
HPC, HTC, Andragogy, Batch Scheduler, Feedback, Automation

1 INTRODUCTION
Batch scheduling on systems that combine High-Performance Com-

puting (HPC) and High-Throughput (HTC) Computing has many 
challenges to overcome. The batch scheduler has a number of dif-
fering goals based on the mix of HPC and HTC jobs. Furthermore, 
resource optimization involves stohastic processes such as the de-
mand for resources, the dynamic availability of resources, and the 
variability of job processing duration. Resource fragmentation is a 
particular challenge in systems with both HPC and HTC loads [3]. 
Moreover, different computer clusters may have different operating 
systems and support different scientific software.

An important factor in resource fragmentation is users’ requested 
resources for their jobs. This paper proposes a system for moni-

toring the utilization of resources in comparison to the resources 
allocated to each running job. The proposed monitoring system 
automates feedback via email when a running job is over- or under-
utilizing its allocated resources. The purpose of the proposed system 
is twofold. Firstly, to stop jobs that grossly under-utilize allocated 
resources and attempt to automatically resubmit them requesting 
appropriate resources. Secondly, to alert users for jobs that over-
utilize or marginally under-utilize resources, prompting them to 
review the statistics for each job with misallocated resources. The 
focus of resource allocation extends beyond processing individual

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full 
citation on the first page. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE, 
a supported publication of the Shodor Education Foundation Inc.

© 2025 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/16/1/11

jobs. Variability in CPU and physical memory utilization affects

all jobs submitted to a batch scheduler. Furthermore, possibly for

long periods of time, each job’s maximum and minimum resource

utilization may vary greatly from the average resource utilization.

Ideally, jobs that have known preparatory steps, such as moving

files or preprocessing data, should be executed in a chain of jobs as

opposed to a single job. Each job in the chain with an appropriate

allocation of resources. Thus, the Colgate Supercomputer emails

users when a predefined discrepancy (threshold) between allocated

(requested) and utilized resources of CPU and physical memory

has been exceeded.

The feedback emails aim to let researchers know when their

job submissions are over- and under-utilizing allocated (requested)

CPU and physical memory resources. The andragogical aspect

of the proposed monitoring system is an early familiarization of

new users of a supercomputer to the important aspect of resource

allocation. More importantly, familiarization with the fact that the

Colgate Supercomputer allows over-utilization when less resources

have been requested and allocated. The overall goal is that users

receive frequent feedback in order to learn to be more conservative

with their requests for resources. Having knowledge that their jobs

will be allowed to utilize more resources when then are able to,

while a batch scheduler will not be able to allocate any allocated

but unused resources to newly submitted jobs.

2 PROPOSED MONITORING SYSTEM
2.1 Rationale
The proposed system has been implemented on the Colgate Super-

computer [1]. Contemplate the following supercomputing academic

context. A supercomputer is used by faculty, staff, and students

alike, both for research and educational activities. The same su-

percomputer processes both HPC and HTC jobs, which include

interactive applications and web services. Users of the supercom-

puter submit jobs that are queued to be processed while processing

duration varies from a few minutes to weeks.

In the previously aforementioned context, it is extremely im-

portant to decrease the discrepancy between allocated (requested)

and utilized resources. Firstly, to increase the number of jobs pro-

cessed daily, weekly, monthly, and yearly. Secondly, to decrease the

number of jobs competing for the same resources. Therefore, it is

important to inform the users of a supercomputer about the dif-

ference between over-allocating resources versus under-allocating

resources.

Over-allocating resources results in inability to schedule more

jobs because there are unused but allocated resources that could

have been allocated to newly submitted jobs. Under-allocating re-

sources results in the possibility that multiple jobs may experience

slower processing due to competing for the same resources. How-

ever, a batch scheduler may be configured to not fill a node when

Journal of Computational Science Education Volume 16, Issue 1

March 2025 57

https://doi.org/10.22369/issn.2153-4136/x/x/x 


CPU or memory utilization is higher that allocated, unless there is

no other node left with enough available (unallocated) resources.

Moreover, jobs could be allowed to utilize more than the allocated

resources when there are more available.

2.2 Proposed Algorithms
A git repository is shared to make the code accessible for review

[10]. Algorithms 1 and 2 are used to predict utilization of CPU

cores and physical memory, respectively, given the identification

string (job ID) of a job with similar characteristics that has finished

without errors. Many users tend to submit groups of jobs at a time,

which have similar characteristics, such as the same processing

script but with different parameters. Algorithm 3 describes the

proposed monitoring system. The proposed monitoring system

could run as a CRON job (a time-based job scheduler in Unix-like

systems).

Algorithm 1 Average Used CPU cores

1: Input: Job IDs, status, owner, and used CPU percentage

2: Output: Average Used CPU cores

3: 𝐶𝑚𝑎𝑥 ← 3 ⊲ Max counter

4: 𝐼𝑚𝑎𝑥 ← 11 ⊲ Max iterations

5: 𝐼 ← 0 ⊲ Iterations

6: 𝐶 ← 0 ⊲ Counter

7: ID← (Job ID) ⊲ Job ID

8: 𝑇𝑐𝑝𝑢 ← 0 ⊲ Total used CPU percentage

9: 𝐽𝑐𝑝𝑢 ← 0 ⊲ Used CPU percentage

10: while 𝐶 < 𝐶𝑚𝑎𝑥 and 𝐼 < 𝐼𝑚𝑎𝑥 do
11: if job with ID has status = F and owner = user then
12: 𝑇𝑐𝑝𝑢 ← 𝑇𝑐𝑝𝑢 + 𝐽𝑐𝑝𝑢
13: 𝐼 ← 𝐼 + 1
14: else
15: 𝐶 ← 𝐶 + 1
16: ID← ID − 1
17: Print: round

(
𝑇𝑐𝑝𝑢
100𝐼

)

3 EMAIL FEEDBACK AUTOMATION
The Colgate Supercomputer automates feedback by monitoring

all running jobs to alert users about under- or over- utilization of

resources. Note that calculations should take into consideration how

memory is reported (for example in MiB or MB). The monitoring

system does not assign weights based on elapsed processing time

of jobs, because the andragogical aspect of the proposed system

aims to familiarize users with the implications of over-allocating

resources. Email is a common medium for sending textual feedback.

The automation requires the capability to send emails. A com-

mon program for sending emails in Linux operating systems is

mailx.

Figure 1 shows a basic Grafana dashboard for CPU utilization and

Figure 2 shows a basic Grafana dashboard for memory utilization

[5].

Algorithm 2 Average Used Physical Memory

1: Input: Job IDs, status, owner, and used physical memory

2: Output: Average Used Physical Memory

3: 𝐶𝑚𝑎𝑥 ← 3 ⊲ Max counter

4: 𝐼𝑚𝑎𝑥 ← 11 ⊲ Max iterations

5: 𝐼 ← 0 ⊲ Iterations

6: 𝐶 ← 0 ⊲ Counter

7: ID← (Job ID) ⊲ Job ID

8: 𝑇𝑚𝑒𝑚 ← 0 ⊲ Total used physical memory in bytes

9: 𝐽𝑚𝑒𝑚 ← 0 ⊲ Used physical memory in bytes

10: procedure ConvertMemory(𝑚)

11: if 𝑚 > 1gb then
12: Print:𝑚𝑔𝑏gb

13: else if 𝑚 > 1mb then
14: Print:𝑚𝑚𝑏mb

15: else if 𝑚 > 1kb then
16: Print:𝑚𝑘𝑏kb

17: else
18: Print:𝑚
19: while 𝐶 < 𝐶𝑚𝑎𝑥 and 𝐼 < 𝐼𝑚𝑎𝑥 do
20: if job with ID has status = F and owner = user then
21: 𝑇𝑚𝑒𝑚 ← 𝑇𝑚𝑒𝑚 + 𝐽𝑚𝑒𝑚

22: 𝐼 ← 𝐼 + 1
23: else
24: 𝐶 ← 𝐶 + 1
25: ID← ID − 1
26: ConvertMemory(𝑇𝑚𝑒𝑚)

Algorithm 3 Monitoring System

1: Input: Running jobs info (F ), logged job IDs (L), job status,

owner, used walltime, used CPU percentage, and used physical

memory

2: Output: Action log

3: 𝑐 ← 2 ⊲ Threshold for CPU core difference

4: 𝑚 ← 8 GB ⊲ Threshold for physical memory difference

5: procedure AllRunningJobs(F )
6: for each Job Job_With_ID ∈ F do
7: Process Job Log for ID

8: if CPU cores requested - used > 2 then
9: Increase counter in Job Log
10: if counter > 1 then
11: Stop Job_With_ID and email Owner
12: Submit new job with Used_CPU_Cores

13: procedure AllLoggedJobs(L)
14: for each Job Job_With_ID ∈ L do
15: if 0 < CPU cores requested - used < 𝑐 then
16: Email Owner
17: if CPU cores requested - used < 0 then
18: Email Owner
19: if 0 < Physical memory requested - used > 𝑚 then
20: Email Owner
21: if Physical memory requested - used < 0 then
22: Email Owner
23: AllRunningJobs(F )
24: AllLoggedJobs(L)

Volume 16, Issue 1 Journal of Computational Science Education

58 March 2025



Figure 1: Example Grafana Dashboard for CPU Utilization

Figure 2: Example Grafana Dashboard for Memory Utiliza-
tion

3.1 Email Feedback Templates
3.1.1 Example for Major CPU Under-utilization. The email sub-

ject is "CPU under-utilization Alert: Job xxxxx.<clustername> on

Node n03 was stopped".

Job ID: xxxxx.<clustername>

Node: n03

Owner: <username>

Elapsed Time: 0h45m

Requested CPU cores: 31

Unused CPU cores: 4

Suggested CPU cores: 27

Metadata: qstat -xf xxxxx.<clustername>

Monitor: Monitor: https://monitor.domain.edu

This is an automated message.

Job xxxxx.<clustername> on Node n03 requested 31

CPU cores but was using an average of 2723% CPU af-

ter 45 minutes. Job xxxxx.<clustername> was stopped

but resubmitted requesting 27 CPU cores. The new

job’s ID is yyyyy.<clustername>. It is suggested to

request 27 CPU cores for future similar jobs instead

of 31. Please review both jobs.

3.1.2 Example for Minor CPU Under-utilization. The email sub-

ject is "CPU under-utilization Alert: xxxxx.<clustername> on Node

n03".

Job ID: xxxxx.<clustername>

Node: n03

Owner: <username>

Elapsed Time: 1d4h24m

Requested CPU cores: 31

Unused CPU cores: 2

Suggested CPU cores: 29

Metadata: qstat -xf xxxxx.<clustername>

Prediction of CPU cores: calccpu xxxxx.<clustername>

Monitor: https://monitor.domain.edu

This is an automated message.

Job xxxxx.<clustername> on Node n03 used 2903%

CPU, therefore it is suggested to request 29 CPU cores

for future similar jobs instead of 31. Please review

your job.

3.1.3 Example for non Multi-threading. The email subject is

"CPU under-utilization Alert: xxxxx.<clustername> on Node n03".

Job ID: xxxxx.<clustername>

Node: n03

Owner: <username>

Elapsed Time: 5h27m

Requested CPU cores: 3

Unused CPU cores: 2

Suggested CPU cores: 1

Metadata: qstat -xf xxxxx.<clustername>

Monitor: https://monitor.domain.edu

This is an automated message.

Job xxxxx.<clustername> on Node n03 used 36% CPU

and did not multi-thread. When a job is not multi-

threading it cannot use more that 1 CPU core and

you will be notified when a job used more than the

requested CPU cores. Therefore it is important to re-

quest only 1 CPU core for future similar jobs. Please

review your job.

3.1.4 Example for CPU Over-utilization. The email subject is

"CPU over-utilization Alert: xxxxx.<clustername> on Node n03".

Job ID: xxxxx.<clustername>

Node: n03

Owner: <username>

Elapsed Time: 13h13m

Requested CPU cores: 10

Unused CPU cores: -7

Suggested CPU cores: 17

Metadata: qstat -xf xxxxx.<clustername>

Prediction of CPU cores: calccpu xxxxx.<clustername>

Monitor: https://monitor.domain.edu

This is an automated message.

Job xxxxx.<clustername> on Node n03 used an av-

erage of 1707% CPU, therefore it is suggested to re-

quest 17 CPU cores for future similar jobs instead of

10. Please review your job.

3.1.5 Example for Memory Under-utilization. The email subject

is "Memory under-utilization Alert: xxxxx.<clustername> on Node

n03".

Journal of Computational Science Education Volume 16, Issue 1

March 2025 59



Job ID: xxxxx.<clustername>

Node: n03

Owner: <username>

Elapsed Time: 13h37m

Requested physical memory: 83886080kb

Unused physical memory: 50gb

Suggested physical memory: 35gb

Prediction of physicalmemory: calcmemxxxxx.<clustername>

Metadata: qstat -xf xxxxx.<clustername>

Monitor: https://monitor.domain.edu

This is an automated message.

Job xxxxx.<clustername> on Node n03 used 29gb of

physical memory and 60gb of virtual memory, there-

fore it is suggested to request 35gb of physical mem-

ory for future similar jobs instead of 83886080kb. Please

review your job.

3.1.6 Example for Memory Over-utilization. The email subject is

"Memory over-utilization Alert: xxxxx.clustername on Node n03".

Job ID: xxxxx.<clustername>

Node: n03

Owner: <username>

Elapsed Time: 26h13m

Requested physical memory: 30gb

Unused physical memory: -21gb

Suggested physical memory: 55gb

Prediction of physicalmemory: calcmemxxxxx.<clustername>

Metadata: qstat -xf xxxxx.<clustername>

Monitor: https://monitor.domain.edu

This is an automated message.

Job xxxxx.<clustername> on Node n03 used 51gb of

physical memory and 83gb of virtual memory, there-

fore it is suggested to request 55gb of physical mem-

ory for future similar jobs instead of 30gb. Please re-

view your job.

4 PREDEFINED SYSTEM THRESHOLDS
On the Colgate supercomputer, jobs utilizing 1 to 3 CPU cores are

considered HTC. There is a grey zone of CPU utilization between

4 and 7 CPU cores. A job which requires more that 12 hours of

processing and an average of 4 CPU cores or more is considered

HPC. Utilization of 8 or more CPU cores is also considered HPC.

The goal of achieving a fair resource allocation between HPC and

HTC job loads is a complicated matter.

The threshold for stopping a running job has been set to 3 cores.

During job processing, jobs are not allowed to use, on average, less

than 2 of the total CPU cores allocated. The proposed monitoring

system will stop such jobs and try to resubmit them using the

average CPU utilization within 25-45 minutes of job processing.

The proposed monitoring system will email alerts to users for

jobs that use more or less than 8GB of physical memory than the

memory requested and thus allocated by the batch scheduler.

5 EARLY RESULTS
The proposed monitoring system has been employed for about a

year on the Colgate Supercomputer. The early findings from its use

informed the supercomputer’s documentation and a progressive

refinement of the system during its trial period. The important

findings from the trial period are presented in this section.

New users who submitted jobs requesting many CPU cores but

their jobs did not multi-thread, received feedback emails. As a result,

their subsequent submissions quickly changed to requesting just

1 CPU core, but also 2 to testing multi-threading. Testing multi-

threading is not necessary as the proposed system will notify users

when a job of theirs used more than the requested CPU cores. The

relevant email alert was modified to clarify this capability in order

to reduce unused but allocated CPU cores.

Some experienced users reached out to discuss the metric of

average CPU utilization with regard to the maximum utilization

during job execution. A result of these discussions was to update

the documentation of the Colgate Supercomputer to emphasize the

difference and how to interpret the relevant metadata given by the

batch scheduler per job.

Another discussion with experienced users was about the dif-

ferentiation between physical and virtual memory. Many users

request physical memory that the batch scheduler allocates, even

though their jobs end up using only a fraction of the allocation.

Although the availability of large amounts of physical memory may

help alleviate this problem, it remains an important issue in HPC

andragogy. The relevant email feedback template was edited to

clearly state the use of both physical and virtual memory.

The capability of the proposed monitoring system to stop and

attempt to resubmit jobs that are under-utilizing allocated resources

has been received with some skepticism from older users. Never-

theless, the system was able to attract attention to the important

difference between under-allocating and over-allocating resources,

and to the fact that jobs are allowed to use more resources than

what was allocated by the batch scheduler.

Researcher training for supercomputing environments is not an

easy endeavor. In a given academic institution, there can be a lot

of different computing backgrounds as well as levels of experience

with scientific software. The proposed monitoring system provides

feedback as needed, rather than requiring users to undergo software

carpentry and batch scheduler training to become familiar with a

supercomputing environment, especially considering that many

users either do not read the available documentation or only skim

through it.

The most important result was that while new users were be-

coming familiar with the Colgate Supercomputer, any submitted

jobs were restricted from excessively over-allocating resources.

6 DISCUSSION
In an effort to separate HPC and HTC jobs, the Colgate Supercom-

puter runs interactive applications on dedicated batch scheduling

queues. Most interactive applications will run with a predefined

number of CPU cores and physical memory. Achieving some level

of separation between HTC and HPC job loads will reduce com-

plexity and may result in fewer unused allocated resources while

keeping higher job cancellation thresholds.

Volume 16, Issue 1 Journal of Computational Science Education

60 March 2025



The thresholds chosen for the trial period, 3 CPU cores and 8GB

of physical memory, would ideally be lowered in the future, as the

resubmission process becomes more efficient. A common problem

is that users could delete or rename files used in a job after its

submission.

Formal training [4], informal training [7, 8], and educational

activities [6] are based on proven paradigms, however they lack

granularity due to the fact that learning is grouped in training mod-

ules, learning topics, or instructional activities. Consistent feedback

for experiential learning provides increased granularity by match-

ing one to one the job submissions of users of HPC/HTC systems.

A useful addition to the proposed monitoring system would

be to automate a monthly report to each user that would present

statistics about under- and over- utilization of requested resources.

Supercomputing users would benefit from automatically receiving

reports that highlight steps to improve subsequent job submissions,

regarding resource requests.

Batch schedulers, such as Slurm [9], provide the statistics to be

leveraged by the proposed monitoring system, hence shell scripting

was used to implement the proposed monitoring system for the trial

period. The approach is considering small supercomputers with less

than 500 nodes. Newer resource managers have been proposed for

supercomputers with more than 10k nodes [2]. A future integration

with a large language model (LLM) would benefit from a python

implementation.

The proposed monitoring system could assign predefined labels

to each discrepancy between allocated (requested) and utilized re-

sources (such as CPU cores and physical memory). An unsupervised

machine learning algorithm, such as Bayesian learning, could then

be employed to create user profiles regarding resource requests.

7 CONCLUSION
The proposed monitoring system offers a solution for managing

resource misallocation leveraging the fault tolerance in scenarios

of resource over-utilization. Supercomputing users can learn to

be more conservative with their resource requests when there is

little to no penalty for over-utilizing resources allocated by a batch

scheduler.

Additionally, the proposed system is designed to efficiently re-

claim resources that are allocated but under-utilized, particularly

in an environment that integrates both HPC and HTC workloads.

By addressing both over-utilization and under-utilization, the pro-

posed system ensures more effective resource management, and

promotes HPC andragogy.

Current work includes a refactoring of the system’s code to query

metadata from both PBS Pro and the Slurm batch schedulers. It

also includes the development of Graphical Processing Unit (GPU)

resource monitoring.

Future work includes integrating the monitoring system with

Colgate’s Supercomputer’s AI chatbot which assists with documen-

tation and coding. This integration aims to develop pipelines for

more complex resource utilization predictions by analyzing previ-

ous job scripts as well as the scripts to be submitted. Parsing new

scripts will also enable raising alerts about job dependencies and

required POSIX permissions.

REFERENCES
[1] Colgate University. 2024. Colgate Supercomputer (Partially supported by NSF grant

OAC-2346664). https://rcd.colgate.edu Accessed: 2024-08-12.

[2] Yiqin Dai, Yong Dong, Kai Lu, Ruibo Wang, Wei Zhang, Juan Chen, Mingtian

Shao, and Zheng Wang. 2022. Towards scalable resource management for super-

computers. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (Dallas, Texas) (SC ’22). IEEE Press,

Article 24, 15 pages.

[3] Oliver Freyermuth, Peter Wienemann, Philip Bechtle, and Klaus Desch. 2021.

Operating an HPC/HTC cluster with fully containerized jobs using HTCondor,

Singularity, CephFS and CVMFS. Computing and Software for Big Science 5, 1
(2021), 9.

[4] Kai Himstedt, Nathanael Hubbe, Julian Kunkel, Hinnerk Stuben, Deutsches Kli-

marechenzentrum, Thomas Ludwig, Stephan Olbrich, Matthias Riebisch, Sandra

Schröder, andMarkus Stammberger. 2018. AnHPC certification program proposal

meeting HPC users’ varied backgrounds. Concept paper https://wr. informatik.
uni-hamburg. de/research/projects/pecoh/start, DKRZ and RRZ (2018).

[5] janakverma. 2024. Linux Exporter Node. https://grafana.com/grafana/dashboards/

14513-linux-exporter-node/ Accessed: 2024-09-09.

[6] Bryan Johnston, Lara Timm, and Mabatho Hashatsi. 2023. Delivering Digital

Skills across the Digital Divide. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (SC23).

[7] Julia Mullen, Chansup Byun, Vijay Gadepally, Siddharth Samsi, Albert Reuther,

and Jeremy Kepner. 2017. Learning by doing, High Performance Computing

education in the MOOC era. J. Parallel and Distrib. Comput. 105 (2017), 105–115.
https://doi.org/10.1016/j.jpdc.2017.01.015 Keeping up with Technology: Teaching

Parallel, Distributed and High-Performance Computing.

[8] JuliaMullen and LaurenMilechin. 2023. AData DrivenApproach to Informal HPC

Training Evaluation. In Practice and Experience in Advanced Research Computing.
378–381.

[9] Nikolay A. Simakov, Robert L. DeLeon, Martins D. Innus, Matthew D. Jones,

Joseph P. White, Steven M. Gallo, Abani K. Patra, and Thomas R. Furlani. 2018.

Slurm Simulator: Improving Slurm Scheduler Performance on Large HPC systems

by Utilization of Multiple Controllers and Node Sharing. In Proceedings of the
Practice and Experience on Advanced Research Computing: Seamless Creativity
(Pittsburgh, PA, USA) (PEARC ’18). Association for Computing Machinery, New

York, NY, USA, Article 25, 8 pages. https://doi.org/10.1145/3219104.3219111

[10] Kyriakos Tsoukalas. 2024. Supercomputer Monitoring System. https://github.com/

tsoukalask/jobcheck Accessed: 2024-09-09.

Journal of Computational Science Education Volume 16, Issue 1

March 2025 61

https://rcd.colgate.edu
https://grafana.com/grafana/dashboards/14513-linux-exporter-node/
https://grafana.com/grafana/dashboards/14513-linux-exporter-node/
https://doi.org/10.1016/j.jpdc.2017.01.015
https://doi.org/10.1145/3219104.3219111
https://github.com/tsoukalask/jobcheck
https://github.com/tsoukalask/jobcheck



