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ABSTRACT
In June 2024, the University of Washington’s (UW) Clean Energy 
Institute (CEI) and Molecular Engineering and Materials Center 
(MEMC) in partnership with UW Research Computing (RC) pre-
pared complimentary training for a group of 25 Research Experi-
ence for Undergraduates (REU) participants. Workshop participants 
had completed zero to four years of post-secondary education and 
came from 17 colleges and universities across eight states with 
29% currently attending 2-year programs. On average, 14 students 
attended a given workshop. The program included four targeted 
workshop offerings, spanning essential skills in computational sci-
ence and advanced topics: (1) Python via Jupyter, (2) Command 
Line Interface (CLI) and high performance computing (HPC), (3) 
Gaussian and Quantum Espresso, and (4) data analysis using linear 
and logistic regression as well as neural networks. The program’s 
effectiveness was evaluated with a post-workshop survey. Survey 
results indicated most participants had little prior experience in 
these topics but indicated the content was relevant for their current 
and future aspirations. The survey showed some students agreed 
with statements indicating that learning objectives were met, but 
overall scores and open responses indicated areas for improvement. 
In the future, the CLI and HPC session will be converted from one to 
two sessions and the material in the applied Gaussian and Quantum 
Espresso demonstrations reduced. The program’s materials are re-
producible and publicly accessible, compatible with most academic 
HPC clusters. Our program addressed a wide range of training 
and education needs within computational science, emphasizing 
practical skills and interdisciplinary applicability.

KEYWORDS
Undergraduate Research, REU Workshop, Student Training, High 
Performance Computing, HPC Education, Jupyter Notebook, 
Linux, Command Line, SLURM, Gaussian, Quantum Espresso, 
Molec-ular Engineering, Machine Learning

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full 
citation on the first page. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE, 
a supported publication of the Shodor Education Foundation Inc.

© 2025 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/6/1/10

1 INTRODUCTION
The UW Clean Energy Institute (CEI) and Molecular Engineering
and Materials Center (MEMC) are combining innovative research
with comprehensive training to foster broader engagement in STEM
fields. As part of their grant-funded activities, CEI and MEMC part-
nered with UW Research Computing (RC) to provide training for
REU students residing on campus in Seattle, WA, USA for an immer-
sive 12-week research experience. Students were recruited for their
interest and promise in chemical and molecular engineering. Four
workshops were delivered in June 2024, covering a range of topics
from fundamental computing and data analysis to more advanced
and applied techniques (Figure 1). The topics were carefully cu-
rated to support on-boarding and build technical capacity relevant
to the students’ research projects, as well as to equip them with
skills that will be valuable in their future coursework and careers.
The workshops primarily utilized the UW RC High-Performance
Computing (HPC) cluster, Hyak, and Hyak’s implementation of
the Open OnDemand [14] platform, ensuring hands-on experience
with widely adopted tools. The effectiveness of the workshops was
evaluated through a post-workshop survey, which provided the
RC team with valuable insights for refining future iterations of
the workshop series. These lessons will inform the development of
future workshops aimed at enhancing HPC skills across the UW
research community. Additionally, the materials and methods de-
veloped for this series offer a template that can be adapted for other
academic research computing centers, paving the way for broader
implementation and outreach in STEM education.

Figure 1: A photo from Workshop 3 of the series, “Using
Gaussian for Computational Chemistry.”
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2 OBJECTIVES
The objective of these workshops was to introduce data analy-
sis tools and HPC, as well demonstrate how more advanced and
scientific domain-specific software utilizes the job scheduling in-
frastructure and computing power delivered through HPC. The
workshops offered were as follows, and the team developed specific
objectives for each workshop (WS):
WS 1 Basic Python Programming

• Understand the basics and importance of Jupyter Note-
books [12] towards reproducible and transparent scientific
research.

• Navigate the basics of Python as a scripting and program-
ming language.

WS 2 Using Hyak, Linux Operating System (OS)
• Navigate a file system and explore files using Linux com-
mands.

• Understand the purpose of a job scheduler like SLURM in
HPC [28].

WS 3 Using Gaussian for Computational Chemistry
• Create and modify input file(s) for quantum chemistry
calculations, and become familiar with output files from
Gaussian [7] and Quantum Espresso [9, 10].

• Submit and monitor computational chemistry jobs to an
HPC cluster.

WS 4 Data Analysis in Python with scikit-learn and PyTorch
• Apply linear and logistic regression models to data and
interpret the results.

• Train a neural network in Python and understand training
parameters.

• Tune network architecture parameters to improve perfor-
mance and articulate the various metrics to evaluate a
machine learning model.

Our final objective was to make the materials available for future
iterations and independent study by the student participants.

3 METHODS
3.1 Format
Each workshop was three hours, live, hands-on, and delivered in
Seattle, WA, USA on the main UW campus. Students were sent
calendar invitations and reminder emails with links to training
materials at least 24 hours in advance of each workshop. In addition,
virtual office hours were held the day prior to each workshop to
offer support, whether workshop related or beyond.

Workshops utilized a variety of tools to deliver content. WS 1
used Jupyter Lab and Notebooks via Hyak’s Open OnDemand [14]
environment delivered through each participant’s browser. Addi-
tionally, each participant was guided through the installation of
Anaconda Navigator for later independent study during their REU.
WS 2 was delivered using participants’ local shell terminals. All
commands were demonstrated on Hyak, which runs Rocky Linux 8.
Hyak is the UW tri-campus supercomputer with over 30K compute
cores, 500 GPU accelerators, and 2.5 PB of parallel file systems

storage operating on a shared condo model. The CEI has dedi-
cated resources that are primarily used for research throughout the
year and were temporarily reallocated for education and outreach
during these workshops. WS 3 used a combination of submitting
jobs and editing scripts in the Hyak shell, then generating inputs
and viewing Gaussian and Quantum Espresso results with Hyak’s
OnDemand virtual desktop. WS 4 used Google Colab, demonstrat-
ing an additional platform for using Python-based computational
notebooks in the cloud.

3.2 Training Materials
Training materials were prepared and made publicly accessible via a
GitHub repository or as a web-based tutorial on Hyak’s documenta-
tion website. The program’s materials are reproducible, compatible
with most academic HPC clusters, and in-line with FAIR compu-
tational workflow specifications [11]. The format is flexible and
could be altered to focus on any HPC-compatible discipline-specific
software.

Figure 2: Jupyter Lab and Notebooks prepared for WS 1 ac-
cessed via Hyak Open OnDemand. Python was taught via
live demonstration with a blank notebook. The photo shows
notebooks that were prepared from Software Carpentry’s
lesson, “Plotting and Programming in Python” for the par-
ticipant’s independent study.

WS 1 sampled exercises from Software Carpentry’s [26, 27] les-
son, “Plotting and Programming in Python.” Selected sections were
made into Jupyter Notebooks with and without solutions for par-
ticipant independent study, but the demonstration was live from a
fresh Notebook without solutions. WS 1 was delivered via Hyak’s
OnDemand platform, which ran a containerized version of Jupyter’s
datascience-notebook. (Figure 2).
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Figure 3: Hyak’s documentation website showing materials
forWS 2 as well as a shell logged intoHyak’s third generation
cluster, klone.

WS 2 introduced Hyak’s file system (Figure 3), and some exer-
cises to demonstrate Linux commands were sampled from Software
Carpentry’s [26, 27] lesson, “The Unix Shell.” SLURM interactive
jobs, batch jobs, and array jobs were demonstrated using Apptainer
[16, 17] and a containerized version of Locator neural network [1]
and publicly available data from black cottonwood trees [8].

Figure 4: GaussView accessed via Hyak Open OnDemand vir-
tual desktop feature, TurboVNC, showing an example mol-
ecule used during WS 3 from the photochemCAD database
(benzophenone). The upper left panel shows the calculated
infrared absorption spectrum (and the “normal mode” re-
sponsible for the highlighted peak). The right panel shows
the electrostatic potential and the electronegativity of the
oxygen atom.

WS 3 introduced quantum chemistry software on Hyak. The
GaussView [4] graphical user interface was delivered via Hyak’s
OnDemand platform (Figure 4), and used to set up both Gaussian
[7] and Quantum Espresso [9, 10] calculations. Job types included

geometry optimizations and band plots were shown. In addition, the
photochemCAD database [24] was used to compare experimental
and calculated absorption spectra. Exercises forWS 4were prepared
as Jupyter Notebooks and delivered with Google Colab (Figure 5).

Figure 5: Google Colab view of Jupyter Notebook prepared
for WS 4 to demonstrate some data analysis basics as well as
linear and logistic regression and training a neural network.

WS 4 utilized a data set from Our World in Data on statistics
regarding country-level clean energy adoption [23]. Trends were
predicted using linear regression to predict future clean energy
utilization and classification done using logistic regression with
scikit-learn [21] to predict what factors would contribute towards
a country adopting clean energy (or not). A shallow, three-layer
artificial neural network (ANN) was generated with PyTorch [20]
but the framework allows for the attendee to modulate ANN depth,
layer width, and test optimization algorithms to experiment with
different ANN architectures. All these aspects help to demonstrate
the effort that goes into tuning an ANN to assess performance
improvements relative to logistic regression. Model performance
metrics were explored, including 𝑅2 and Receiver Operating Char-
acteristic (ROC) curves [6], as quantitative measures for model
comparison.

3.3 Accessibility
With the exception of one student, all students brought a personal
computer to the workshop and installed the required software
to participate. One student was provided a laptop for use by UW
Information Technology. No other accommodations were requested.

3.4 Evaluation and Analysis
All workshop objectives were translated into post-workshop survey
statements to evaluate if the objective was met, and we refer this cat-
egory of survey response as, “objective agreement ranking scores”
because participants were asked to rank their level of agreement
with the statements from 0 (strongly disagree) to 5 (strongly agree).
In addition, the survey collected information about the participants
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educational experience, prior knowledge about workshop topics,
and their assessment of the relevance of the topics towards their
current and future studies. We also requested positive and negative
feedback short responses.

Our analysis included data visualization and rudimentary statis-
tical analysis of participant agreement rankings using R [22] via
a Tidyverse container (V4.4.1) from the Rocker Project [2, 19]. For
the purposes of this discussion, we evaluated a ranking ≥ 2.5 as
indicating that an objective had been met.

4 RESULTS
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Figure 6: Box plot shows the distribution of objective agree-
ment ranking scores for each workshop (WS). Points indicate
individual scores from post-workshop survey respondents,
which were used to generate the box plot summaries. These
points and the box plots were color coded byworkshop. Black
triangular points indicate the average overall score for each
workshop on a scale from 0 (not helpful) to 5 (extremely help-
ful). The red line at 2.5 is our threshold for if workshop ob-
jectives were met. NOTE: Objective agreement ranking scores
were collected on a discrete scale. In this plot, points were “jit-
tered” for better visualization of the data.

Thirteen participants responded to the post-workshop survey. The
prior education experience breakdown was 23.1% for having com-
pleted 0-1 years of post secondary education, 46.2% for 1-2 years,
15.4% for 2-3 years, and 15.4% for 3-4 years. The two workshops
demonstrating Python (WS 1 and WS 4) were evaluated with the
highest relevance for participants future research and professional
development, scoring on average 3.50 and 3.25, respectively on a
scale of 0 (not certain of the relevance) to 5 (high relevance or likely
frequent and regular usage in the future).

The overall average objective agreement score was 2.66 (𝑆𝐷 =

1.64) indicating that some objectives were met yet suggesting some
areas for improvement in future iterations. By workshop, the av-
erage objective agreement ranking scores were: 3.50 (𝑆𝐷 = 1.25)
for WS 1, 2.83 (𝑆𝐷 = 1.62) for WS 2, 0.90 (𝑆𝐷 = 1.33) for WS 3, and

2.48 (𝑆𝐷 = 1.53) for WS 4. Participants’ overall workshop rating on
a scale from 0 (not helpful) to 5 (extremely helpful) was evaluated
independent of the objective agreement rankings, and participants
ranked each workshop higher than the agreement rankings scores
suggest: 3.75 (𝑆𝐷 = 0.622) for WS 1, 3.17 (𝑆𝐷 = 1.17) for WS 2, 1.20
(𝑆𝐷 = 1.30) for WS 3, and 3.12 (𝑆𝐷 = 1.64) for WS 4. Additionally,
the respondents agreed that the instructors were understanding
of their needs (3.65 on average; 𝑆𝐷 = 1.20), but short responses
requesting critical feedback and improvements indicated that the
pace at which the material was covered should be decreased for
better learning and retention.

5 DISCUSSION
Although the average objective agreement ranking for the work-
shop series as a whole was leaning in agreement that our objectives
were met, we have reflections to share along with improvements
for future iterations:

(1) WS 1 was largely successful, but the wrong venue was se-
lected. The classroom was too small and lacked climate con-
trol, especially important for a summer course. Being the
first workshop, at least 20 participants attended and stayed
for the entire three hour session. Subjectively, there were
palpable feelings of excitement and energy in this first ses-
sion. However, due to first time delivery issues and other
logistical issues around the infrastructure, it is possible this
momentum was blunted as the relatively high attendance
did not carry over to subsequent workshops. Learning ba-
sic Python with Jupyter Notebooks is generally enjoyable,
which was reflected by the positive feedback.

(2) WS 2 was in part successful, but it was clear that combin-
ing basic Linux skills with advanced concepts included in
demonstrating SLURM was not effective for this group. Like
with Python basics, Linux basics are fun and easy to follow,
but the jump to SLURM was not well executed. This particu-
lar discussion of SLURM also utilized a software container,
which exposed the students to additional, advanced content.
We have since improved this training with simpler and easier
to consume examples. For future iterations, WS 2 should be
split into a session focused solely on Linux CLI and a sepa-
rate session on SLURM and parallel computing to address
learning fatigue.

(3) Feedback from participants and instructor observations also
indicated that the pacing of WS 3 needed to be slowed and
include fewer distinct examples, allowing more time to be
spent on each part of the demonstration. One participant
commented that while the workshop PDF included a step-by-
step guide, it was missing some vital commands that would
have helped participants catch up when they missed a step
and consequently fell behind the presentation.

(4) Since WS 1 and WS 4 were both using Jupyter Notebooks,
in future iterations, we will deliver these workshops in se-
quence to increase continuity with these tools. During WS
4, in-class engagement in discussion suggesting that the par-
ticipants were following the course content, but the range
of agreement ranking scores was high, indicating not all
participants were reached.
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We think that learning fatigue was present in all workshops due to
the three hour format. An alternative pedagogical delivery suggests
balancing our approach with more active self-directed learning
[3, 25]. Outside of the workshop series, students were participating
in a immersive research experience with new colleagues and inde-
pendent projects, further adding stress on their time, energy, and
focus. Hosting more frequent but shorter sessions could be more
effective for this demographic as there has been a generational shift
in attention spans and emphasis on brevity [18, 25].

6 FUTURE PLANS
It is worth exploring if a format that connects the workshops around
a single dataset or product could improve participant engagement
and the overall learning experience. For example, a single dataset or
problemwould allow any “output” generated from a prior workshop
be the “input” to the next. Should a student attend every session,
the material would make sense not only in terms of the presented
computational skill but it would loosely resemble a journey an
experienced researcher might take to explore a hypothesis. A final
hackathon could bring together students to write an academic paper
unifying the workshop materials and results, and provide a tangible
outcome for the participants in addition to capacity building.

In addition, we aim to broaden the applicability of this content
and extend this integrated training model beyond the REU event.
By applying this approach to various science and engineering disci-
plines, we can provide a cohesive learning experience that supports
students in building computational skills progressively. This tem-
plate may also be beneficial in reaching fields that lack training
advanced computing and data literacy but may benefit from tech-
nological advanced in computer vision and AI. Introducing these
disciplines to a structured, data-driven learning process can address
training gaps and inspire avenues for research. Our goal is to cre-
ate a versatile training platform at University of Washington that
fosters interdisciplinary collaboration and advances students’ skills
across a wide range of scientific and engineering domains.

7 CONCLUSIONS
Many universities have long had a research computing, high-performance
computing, or similar teams for decades and only relatively recently
adopted data science analogs [5, 13, 15]. As noted previously in this
paper, the research computing team has intentions to refine and re-
deploy the material used in this REU workshop. The UW RC team is
developing a regular training schedule for its research community,
drawing from both accepted best-practices nationally as well as
custom modules. We explored how packaging this combination of
pre-existing and custom educational materials would be received
by a diverse undergraduate research audience and provided the
lessons and feedback for other teams to learn from. Given the sam-
ple size (𝑛 = 25), we acknowledge there could be limited external
validity of any conclusions. However, we believe it is important
to provide these voices toward the ongoing national discussions
around computational skills training for research trainees in higher
education.
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A ARTIFACT DESCRIPTION
This appendix includes artifact associated with Computational
Skills Training for Undergraduate Researchers in Molecular
Engineering.

The artifacts described there are training materials prepared for
the workshop series described, and do not include computational re-
sults. To access the workshop materials, follow the links presented
below. During the workshop series held at University of Wash-
ington, participants were given a sponsored UWNetID, which is
required to use UW’s research computing cluster Hyak. Although
the workshop series focused on UW resources and infrastructure,
the materials are transformable to similar systems.

A.0.1 Artifact Check-list.

• Publicly available workshop series repository on GitHub:
https://github.com/UWrc/CEI-REU.git
– python_plotting sub-directory - these materials accompany WS

1 “Basic Python Programming” held on June 20, 2024.
∗ Exercises and explanations used to build the Jupyter notebooks
were sampled from Software Carpentry’s “Plotting and Pro-
gramming in Python.”
· Notebooks starting 00-08 can be followed workbook style by
running the code blocks to demonstrate presented concepts.
This set of Notebooks excludes the solutions to the Exercises.

· Notebooks starting S00-S08 are duplicates of the Notebooks
starting **00-08**, but this set of Notebooks include the
solutions to the Exercises.

· Notebooks starting 09-10 provide plotting examples from
Gaussian outputs.

– using_hyak sub-directory - these materials accompany WS 2
“Using Hyak, Linux Operating System” (OS) held on June 25, 2024.
The walk-through tutorial is available on Hyak’s documentation
website discussed below, but we also share relevant files used in
the tutorial via the repository so that they could be more broadly
available.
∗ locator_NN_job.slurm and locator_NN_array.slurm - template
single and array job submission scripts.

∗ data sub-directory
· potr_genotypes.txt - sample data (adapted from [8].
· potr_m_pred(0-4).txt - sample data (adapted from [8])

– Using_Quantum_Chemistry_Software sub-directory - these mate-
rials accompany WS 3 “Using Gaussian for Computational Chem-
istry” held on June 27, 2024.
∗ Chem_Software_Hyak.pdf - walk through tutorial that demon-
strates how to: (1) use the GaussView graphical user interface,
(2) create and submit Gaussian jobs, and (3) create and submit
Quantum Espresso jobs.

∗ ethane.sh file - this file will allow slurm submission of the
ethane.gjf file.

∗ Pseudopotential .upf files - extra files used in the Quantum
Espresso portion of the workshop.

– analysis sub-directory - these material accompany WS 4 “Data
Analysis Basics in Python with scikit-learn and PyTorch” held on
July 1, 2024.
∗ Complete Jupyter Notebook
∗ Jupyter Notebook with “TODO” or in-session code boxes for
demonstration.

• Publicly available tutorial on UW RC’s Hyak documentation
website:
– https://hyak.uw.edu/docs/hyak101/basics/syllabus provides awalk

through tutorial with the following sections: Syllabus, Logging
In, Navigating Klone, Basic Linux Commands, Basic Linux Com-
mands II.

– https://hyak.uw.edu/docs/hyak101/basics/syllabus_slurm provides
a walk through tutorial for SLURM, which has been updated with
additional examples. The “Advanced SLURM” sections were what
was originally presented in addition to Linux CLI Basics for WS
2.

• Additional publicly available resources:
– WS 2 used a containerized version of Locator Neural Network

[1]. Locator Neural Network is available on GitHub:
https://github.com/kr-colab/locator.git

– The Dockerfile for the containerized version of Locator Neural
Network used during WS 2 is available on GitHub:
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https://github.com/finchnSNPs/Docker_kr-colab_locator
– The Docker container used during WS 2 to run Locator Neural

Network is available on DockerHub:
https://hub.docker.com/repository/docker/finchnsnps/locator/general

• Software and Code licenses:
– Bash, SLURM, and Quantum Espresso are published under the

terms of the GNU General Public License.
– Gaussian16 and Gaussview 6.1.1 are Copyright (c) 1988-2017,

Gaussian, Inc. All Rights Reserved, and were used under a license
held by the Li Lab at University of Washington.

– Jupyter is a Copyright (c) Project Jupyter Contributors, and dis-
tributed under the terms of the 3-clause BSD License
(https://jupyter.org/governance/projectlicense.html).

– Locator Neural Network [1] is a copyright 2019 of C. J. Battey and
released under a Non-Profit Open Software License 3.0 (NPOSL-
3.0); (https://github.com/kr-colab/locator/blob/master/LICENSE.txt).

– matplotlib’s license is based on the Python Software Foundation
license (https://matplotlib.org/stable/project/license.html).

– NumPy’s is a Copyright (c) 2005-2024, NumPy Developers. The li-
cense is publicly available (https://numpy.org/doc/stable/license.html).

– Python is under the Python Software Foundation license agree-
ment (https://docs.python.org/3/license.html#psf-license).

– Pytorch is a Copyright (c) 2016-present, Facebook Inc.
(https://github.com/pytorch/pytorch/blob/main/LICENSE)

– scikit-learn was used under Copyright (c) 2007-2024 The scikit-
learn developers, and distributed under the terms of the 3-clause
BSD License
(https://github.com/scikit-learn/scikit-learn/blob/main/COPYING).

– scipy was used under Copyright (c) 2001-2002 Enthought, Inc.
2003-2024, SciPy Developers. It can be used under a BSD 3-clause
(https://github.com/scipy/scipy/blob/main/LICENSE.txt).

– Some of the data and exercises used in WS 1 and WS 2 are under
the Copyright of Software Carpentry and are made available
under the Creative Commons Attribution license (CC BY 4.0).

• Data licenses:
– Our adaptation of Populus trichocarpa genotype data and loca-

tions [8] are licensed under a CC0 1.0 Universal (CC0 1.0) Public
Domain Dedication license. Original genotyping results available
on DRYAD (https://doi.org/10.5061/dryad.1051d).

– All visualizations, data, and code produced by Our World in Data
are completely open access under the Creative Commons BY
license.
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