
November 2024
Volume 15 Issue 2

Contents Volume 15, Issue 2

Introduction to Volume 15 Issue 2 .. 1
David Joiner, Editor

Creating Guidelines to Supplement the Data Analytics Program in Community College toward
Preparation of STEM and HPC Careers .. 2
Elizabeth Bautista and Nitin Sukhija

Assessing the Impact of a CyberTraining Project: Expanding the Metrics .. 5
Sandra B. Nite, Joshua Winchell, Marinus ‘Maikel’ Pennings, Dhruva K. Chakravorty, and Keith Jackson

An Interdisciplinary Introduction to High Performance Computing for Undergraduate Programs ... 10
Cody Stevens, Sean M. Anderson, and Adam Carlson

HPC Courses Training Organization and Experiences in Supercomputing Luxembourg EuroCC:
National Competence Centre (NCC) ... 16
Ezhilmathi Krishnasamy and Pascal Bouvry

Scientific Computation in Jupyter Notebooks using Python .. 24
Mark Matlin

A Case Study for using Generative Language Models in GUI Development .. 29
Katelyn Reagan, Maryam Berijanian, and Dirk Colbry

Introduction to Volume 15, Issue 2
David Joiner, Editor

Kean University
fdjoiner@kean.edu

This issue of our journal features six diverse contributions that
represent the current advances in computational training, high-
performance computing education, data analytics in community
colleges, and practical AI applications. We present three papers
from the Strategies for Enhancing HPC Education and Training
workshop at PEARC24. as well as three additional submitted arti-
cles.

This issue’s featured articles are as follows:
(1) Bautista and Sukhija on guidelines to support data analytics

programs in community colleges, addressing the challenges
of instructor availability and rigorous student commitments.

(2) Nite et al.’s analysis of the expanded metrics for assessing a
CyberTraining project at Texas A&M University.

(3) Stevens et al.’s interdisciplinary introduction to high-performance
computing at Wake Forest University, bridging multiple aca-
demic disciplines.

(4) Krishnasamy et al.’s exploration of HPC training courses in
Luxembourg, focusing on CUDA, OpenMP, and OpenACC.

(5) Matlin’s development of self-paced computational science
modules in Python, aimed at supporting undergraduate stu-
dents.

(6) Reagan et al.’s student paper on using generative language
models, like GPT-3.5 and GPT-4, for GUI development.

We encourage you to submit your work to the Journal of Com-
putational Science Education. Computational science is an increas-
ingly important interdisciplinary field, offering insights into com-
plex systems, accelerating discovery, and helping to solve diverse
problems. We welcome high-quality papers describing instructional
materials, successful projects, or research on instructional efficacy.
Whether you are faculty or a student, your contributions are valu-
able to advancing computational science education. Additionally, if
you have expertise in computational science, consider volunteer-
ing as a reviewer to support our peer review process. Together,
we can share successes and inspire others to develop and adopt
computational science in education.

Sincerely, Dave Joiner

Journal of Computational Science Education Volume 15, Issue 2

November 2024 1

Creating Guidelines to Supplement the Data Analytics Program in
Community College toward Preparation of STEM and HPC

Careers
Elizabeth Bautista

NERSC, Lawrence Berkeley National Laboratory
ejbautista@lbl.gov

Nitin Sukhija
Slippery Rock University of Pennsylvania

nitin.sukhija@sru.edu

ABSTRACT
Data science continues to create opportunities in the technology
and HPC industry resulting from growing data sets, the need for
more insights, the necessity of automation, the evolving roles and
changes in job descriptions as those positions are needed and the
shortage in the workforce with this talent. However, despite the
growing demand, not enough students are learning the basic skills
or being able to be given opportunities for hands-on work. In the
Northern California Community College system, many of the stu-
dents return to school after having graduated with a bachelor’s
degree or find the need to gain new skills to enhance their resume
or to change careers altogether. Unfortunately, in the community
colleges, there are not enough classes or instructors who are trained
in data science to teach the class. In the four-year university, the
program is usually waitlisted for transfer students from the com-
munity college. This paper is a continuation of the work after the
National Energy Research Scientific Computing Center (NERSC)
partnered with Laney College to start a Data Analytics program.
After two years, they are challenged with not enough instructors to
the number of students that are interested in the program. Further,
approximately 40% of students are struggling to continue the rigor-
ous material they need to learn. These students may have to work to
support families and are unable to put in the 20-40 hours of work to
earn a living as well as the 20-40 hours of study and homework that
the program requires. Therefore, Laney partnered with Codefin-
ity, an online education program that has a track for Python Data
Analysis and Visualization. In the prior year, students who learned
how to visualize data with Grafana [8] were able to master it in
two months and create new visualizations for NERSC Operations
staff [3]. Codefinity [6] provides a similar program where in six
courses they learn about the data and learn a visualization program
at their own pace of either a three-month plan or an annual plan.
This paper describes the early results of using these guidelines to
aid students who are not able to adhere to a rigorous study program
in a community college as well as for students who want this skill
in addition to the concentration they are currently taking.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/2/1

KEYWORDS
Site Reliability Engineer, HPC Education, HPC Training, Diversity,
Inclusion, STEM, community college, data analytics

1 INTRODUCTION
As new data sets are created and data volume grows, organizations
are looking for more insights than ever before because they want to
leverage the collected data. With the improvement of technologies
like machine learning and artificial intelligence being much more
accessible, organizations not only want their routine work to be
automated but the job itself enhanced so that the human is doing
something smarter and more effectively.

At NERSC, the Operations Technology Group (OTG) staff are
the 24x7 onsite site reliability engineers who are the first respon-
ders to anything that occurs in the data center. This particular job
description requires knowledge of system administration of HPC
systems, local and wide area networking, a three-tier onsite storage
and data center facility management at minimum for staff to be
successful. NERSC is one of the largest facilities in the world de-
voted to providing computational resources and expertise for basic
scientific research. NERSC currently supports close to 10,000 users
globally across almost 1,000 scientific projects.

As NERSC moves toward an exascale system, one of the OTG’s
strategic plan is to use the data collected by the Operations Mon-
itoring and Notification Infrastructure (OMNI) system to create
a new paradigm called Artificial Intelligence Operations (AIOps)
[1]. This means, the analysis of the data should be able to predict
usual problems before they occur andmitigate themwithout human
intervention.

But in today’s shortage of talent, how will they be able to hire
staff who can do this work unless they participate in the educational
system to help create a pipeline of staff? The ongoing solutions
reported in prior papers have been effective but this industry needs
more and with the constraints of not enough faculty to many more
students interested in learning these skills, NERSC partnered again
with Laney College who partnered with Codefinity to create guide-
lines for not only their students but all students in general to help
supplement the current shortage in faculty for these classes [5, 11].

This paper documents the process for creating a pipeline where
data analytics students can supplement their education, non-data
analytics students can learn these skills, and students in the program
who cannot adhere to the rigorous program have an alternative.
Section 2 will explain how the partnership with Codefinity was
established. Section 3 shows how the program was designed by
faculty and NERSC staff with Codefinity. Section 4 provides the
logistics of funding for this program. Section 5 will provide case

Volume 15, Issue 2 Journal of Computational Science Education

2 November 2024

https://doi.org/10.22369/issn.2153-4136/x/x/x

studies of positive outcomes from the trial year of the program. Sec-
tion 6 will provide lessons learned, future work and final thoughts
to be able to continue the program.

2 BACKGROUND
This paper is the continuation of work done with Laney College
over the last two to three years [2–4]. We started with creating
pathways for disadvantaged students toward getting them edu-
cated and trained for STEM and HPC careers. Following that, we
strengthened the community college’s computer science program
by creating a data analytics program that can be offered to students
to give them an advantage in getting a job in this field and also
to provide them leverage for when they transferred to a four year
university [9].

As the need and popularity of the program grew, funding for
the program was more challenging to obtain. Therefore, a decision
was made to help supplement the program through other means
to assist students who are not able to continue with the rigorous
study required to complete the educational portion and obtain
the hands-on experience they needed to get a job. We decided to
leverage online training programs and investigated several. One
of the potential programs we investigated was Merit America [10].
This programwas online, provided various tech programs including
coding and data analytics. They also provided a low cost onramp
into the program with a stipulation that pay back isn’t required
until the student is earning at least 40K a year in a job. Cost is a
limiting factor in this instance. Although there is practically zero
start up cost, the student would go into debt again. This did not
work for returning students who already have a four year degree,
college debt and yet do not have a job which is why they are back
in a community college.

Another program we investigated is Coursera [7]. This program
had many choices and the courses seemed like a duplicate of what
students already took in the community college. They were also
too fundamental for the more advanced students. And though they
provided a programming segment, it does not specifically have
courses in data analytics. Course was not as prohibitive even though
you pay as you go along but sometimes, the decision is not only
about the cost.

There were many bootcamps online that were also provided
that promised to gain a student a skill in a short amount of time.
Again, these courses are very expensive and would be prohibitive
for students already in debt. Further, while they present much
marketing that they will help students get a job, interviews with
prior students show that although they have a job, it took them
more than one year after taking the program and it is not the career
they necessarily envisioned for themselves.

We decided to use Codefinity is because of the following reasons:

• The cost was affordable for students and did not get them
into additional debt.

• The programs were what we were looking for including
data science, data analytics, machine learning and artificial
intelligence, which could supplement the Laney curriculum.

• There is a hands-on component where students complete
projects in the software’s workspace or students and faculty

can design a project that groups of students can complete.
We hope it’s the next best thing to an internship.

• The timeline to complete a course is up to the students up to
one year before the course needs to be redone and paid for
again. Further, the quicker the students complete a course,
the faster they could complete the program.

Negotiation to partner with Codefinity included the potential for
Laney to subsidize the cost for students, allowing the cost to be even
less. The program costs 25% less as long as students complete the
program. The 25% is credited to students when they successfully
complete the program and applied toward the next course. The
courses cost 50% less as they complete 70% of the program therefore,
there is an incentive for students to complete courses as well as the
program.

3 PROGRAM DESIGN
Codefinity, the Laney faculty and NERSC staff collaborated to “pick
and choose” various classes in their programs to create a new on-
line course of study that would allow students to do a course on-
line if they cannot participate in school and extend the course
of study to more than a semester should a student need it. Fur-
ther, there were stand alone courses not part of the data analytics
track that could supplement Laney’s classes in programming such
as a python course for beginners and Pandas for more advanced
students. For students in the data analytics track, a course called
Business Analysis Fundamentals is being used to help students get
hands-on practice in looking at business data and creating analytics
graphs for them to answer those insights needed by companies.
For more advanced programmers in the analytics track is a class
that uses python with visualization software and linear regression
with python. The addition of these more advanced courses will
help students planning on applying to the four year university data
analytics program. The advantage of doing the courses online is
that they complete them in their own time. As long as they can set
aside time each day or each week to complete a series of modules,
life does not have to compete with their education and training.

For example, in the beginning python class, the course has 192
chapters which should take a total of 16 hours for the average
students who will need to do homework to complete 168 tasks.
While the 16 hours may seem daunting, it is a total 16 hours that can
be done across a semester or one month, as long as they complete
all the tasks. All that’s needed is for the student to commit to the
time, a device with an approved browser and the motivation to
learn.

4 COST AND FUNDING
Codefinity agreed to the following plans for our students:

• An annual plan that can be billed monthly or annually. This
would be the best plan for a single course. The billing cycle
renews if the student does not complete the course within
in this period.

• A three month plan for a single course that can be billed
every three months or monthly. The billing cycle renews if
the student does not complete the course within this period.

• A monthly plan. This is the most expensive of the plans and
this plan does not qualify for the school discount. As with

Journal of Computational Science Education Volume 15, Issue 2

November 2024 3

the above two plans, if the student does not complete the
course in this time frame, the billing cycle renews.

• An annual professional plan where a student can start up to
five courses and can take up to one year to complete them.
While this costs more, it is less expensive than to pay for a
course at a time.

As previously mentioned, Laney will subsidize 25% of the annual
cost or the three month plan cost, and is credited to the student as
they complete each course. When they are about 70% completed,
they can get up to a 50% discount. A cost comparison to Laney’s
current tuition cost which is currently free as long as the student
lives within the area served by the school, while more expensive,
it is less expensive than a semester at the current state university
and is subsidized by the school. Currently, the school has funding
for three years. We currently offered this program in the spring of
2024. We will continue to offer this program throughout the year
as long as we can secure funding. Financial support for community
colleges is always dire. It is our hope that we have expanded the
Computing Science Department with this program will continue to
get us yearly funding from the state. We also have a few grants that
we hope to complete before the fall to give us additional funding.

5 EARLY RESULTS
In the spring of 2024, 30 pilot students entered the Codefinity pro-
gram. Fifty percent of the students are part of our two previous
programs and have opted to take the one year professional plan.
The other twenty-five percent are newly enrolled fall students in
the computer science program and the last twenty-five percent are
new students not in a computer science program. The second batch
of fifty percent of students are taking either an annual plan or a
monthly plan per course.

As of the end of May 2024, 10 students competed five courses
and when they applied to a summer internship, six students were
accepted to a Port of Oakland Authority internship, two students at
the San Francisco Airport Commission and the other two are in the
summer program at LBNL. The other students have completed a
minimum of one semester of work in their programs. One student
was accepted to New York University’s Data Science program as a
junior and a second student was able to transfer to California State
East Bay’s Computer Science Program. A third student was able
to be accepted to the University of California, Davis’s Computer
Science Program. Two students earned a summer internship at
Stanford Linear Accelerator Laboratory.

Although not every student can say that they earned an intern-
ship or were able to complete a course, none of the 30 students in
the pilot program left the program because they could not complete
the courses. In fact, those students who earned a transfer to the
four year universities plan to continue with the online program.

6 LESSONS LEARNED AND FUTURE WORK
An important lesson for us is that students need flexibility and an
educational institution needs to provide this to ensure success for
their students. The tutoring and mentoring program continues to
help the students. We continue to create partnerships with Bay
Area organizations to provide internships for our students. Our big
issue is continued funding especially now that normal classes are

back and more students are enrolling due to the results of lack of
employment from COVID. A Bureau of Labor Statistics survey in
2023 noted that in the US 2.5 million people lost work because the
employer closed or lost their business. Many of them went into
another industry. The impact of the pandemic today continues as
companies who may have survived the closure now find that they
need to shut down. In Oakland, where Laney College is located,
25-30 businesses close every month in multiple industries. This is
in addition to the layoffs that continue to happen.

As we lose these companies, people will look for alternatives and
will want to gain a new skill. The tech industry is a good possibility
for them because our salaries tend to be higher even when the jobs
are entry level. However, educational organizations need to provide
the training and hands on experience to update skills.

At NERSC, we have experienced that students can quickly under-
stand how to analyze and visualize data. As we continue to gather
data, we need these skill sets so that Site Reliability Engineers can
support their data center. The future work involves being able to
secure funding so that the program can grow as enrollment grows
and to continue recruiting more employers to participate in our
internship program.

ACKNOWLEDGMENTS
This research used resources of the National Energy Research Sci-
entific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility operated under Contract No. DEAC02-
05CH11231.

REFERENCES
[1] Elizabeth Bautista, Melissa Romanus, Thomas Davis, Cary Whitney, and

Theodore Kubaska. 2019. Collecting, monitoring, and analyzing facility and
systems data at the national energy research scientific computing center. In
Workshop Proceedings of the 48th International Conference on Parallel Processing.
ACM, Kyoto Japan, 1–9. https://doi.org/10.1145/3339186.3339213

[2] Elizabeth Bautista and Nitin Sukhija. 2021. Employing directed internship and
apprenticeship for fostering HPC training and education. JOCSE 12, 2 (2021).
https://doi.org/10.22369/issn.2153-4136/12/2/8

[3] Elizabeth Bautista and Nitin Sukhija. 2023. Creating pathways in disadvantaged
communities towards STEM and HPC. JOCSE 14, 2 (2023), 2–5. https://doi.org/
10.22369/issn.2153-4136/14/2/1

[4] Elizabeth Bautista and Nitin Sukhija. 2024. Data analytics program in community
colleges in preparation for STEM and HPC careers. JOCSE 15, 1 (2024), 59–63.
https://doi.org/10.22369/issn.2153-4136/15/1/12

[5] Berkeley Lab. 2022. Berkeley lab demographics. https://diversity.lbl.gov/
berkeley-lab-workforce-demographics-fy2022/

[6] Codefinity. 2024. Boost your career... https://codefinity.com
[7] Coursera. 2024. Your path to career growth. https://www.coursera.org
[8] Grafana Labs. 2024. . https://grafana.com/
[9] Rafael A. Irizarry. 2020. The role of academia in data science education. Harvard

Data Science Review 2 (2020).
[10] Merit America. 2024. Start your tech career... https://meritamerica.org/
[11] Public Policy Institute of California. 2014. California’s need for skilled workers.

https://www.ppic.org/publication/californias-need-for-skilled-workers/

Volume 15, Issue 2 Journal of Computational Science Education

4 November 2024

https://doi.org/10.1145/3339186.3339213
https://doi.org/10.22369/issn.2153-4136/12/2/8
https://doi.org/10.22369/issn.2153-4136/14/2/1
https://doi.org/10.22369/issn.2153-4136/14/2/1
https://doi.org/10.22369/issn.2153-4136/15/1/12
https://diversity.lbl.gov/berkeley-lab-workforce-demographics-fy2022/
https://diversity.lbl.gov/berkeley-lab-workforce-demographics-fy2022/
https://codefinity.com
https://www.coursera.org
https://grafana.com/
https://meritamerica.org/
https://www.ppic.org/publication/californias-need-for-skilled-workers/

Assessing the Impact of a CyberTraining Project:
Expanding the Metrics

Sandra B. Nite
Texas A&M University

s-nite@tamu.edu

Joshua Winchell
Texas A&M University
jwinchell@tamu.edu

Marinus ‘Maikel’ Pennings
Texas A&M University
pennings@tamu.edu

Dhruva K. Chakravorty
Texas A&M University
chakravorty@tamu.edu

Keith Jackson
Texas A&M University
kjackson@tamu.edu

ABSTRACT
As training on cyberinfrastructure resources becomes more com-
mon, we show the progression of metrics used to measure the ef-
fectiveness and impact of informal computational training courses
that are provided by the Texas A&M University High Performance
Research Computing facility. These courses were built to support
researchers from research groups that have a background in comput-
ing practices. As such, the courses were structured as information-
sharing sessions with the primary method to measure course suc-
cess being frequency of participation. While these metrics inform
about the interest in these courses, they relied on researchers con-
tinuing the learning process in their laboratories. As computing
becomes ubiquitous in research programs, researchers who have no
peer-learning mechanisms participate in these courses. Researchers
are now participating in a continuum of courses that cover intro-
ductory to advanced topics and rely on them to build proficiency
in research computing technologies.

We report on a pilot program that pivots along the way to support
these researchers. We collected additional metrics to learn about the
impact of the training materials for individual researchers. These
metrics include participation in course activities, time spent logged
on compute clusters, and views of course recordings and other
asynchronous training materials. Surveys are now structured to
identify the needs of individual researchers. Some of these metrics
require additional processing time but will assist in understanding
how researchers learn in these environments.

KEYWORDS
cybertraining, short courses, high performance computing

1 INTRODUCTION
Texas A&M University (TAMU) High Performance Research Com-
puting (HPRC) was established in 1989 [13] and serves the research
computing needs of all Texas A&M universities and state agen-
cies and provides researchers with exceptional High Performance
Computing (HPC) resources. Besides hardware, users have access

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/2/2

to several commercial, free, and open-source software packages.
HPRC staff includes system administrators and research scientists
as well as graduate and undergraduate student assistants.

2 THE HPRC TRAINING PROGRAM
In 2017 TAMU HPRC was awarded a CiSE ProS Cybertraining
award that was funded by the National Science Foundation (NSF).
This funding, followed by other state and federal funding agencies
helped expand training opportunities to the research community.
As part of this effort, development of the short course program
accelerated. A list of topics in computing were identified as key
areas of importance for researchers interested in computing. For
each topic area, complementary learning objectives and outcomes
were identified to guide the design of courses. Delivery was offered
remotely and in-person, and hybrid instruction was introduced
in 2018. Initially, each course had a lecture component followed
by a series of hands-on exercises. Exercises were incorporated
throughout the courses to keep attendees engaged throughout the
training [1, 3, 8, 10, 11]. After considerable trial and error, it was
determined that two and a half hours was the appropriate duration
for a short course. Each course was followed by a brief survey
asking researchers whether the course content suited their learning
needs. The short courses are modular, and a series of short courses
can be stacked on top of each other to develop a semester-long
series of classes. While this model was refined over the years, the
underlying structure largely remained the same. Researchers can
learn from a series of topics from introductory to advanced levels.

Each semester TAMUHPRC offers 60+CI-training focused camps,
hackathons, workshops, one-on-one consulting sessions, and train-
the-trainers programs for scientific applications. The guiding prin-
ciple for these training programs is to help researchers use our CI
resources for science. In this spirit, the focus remains on teaching re-
searchers how to use science and engineering applications software
and/or workflows on CI. Underlying technologies (e.g., container-
ization, AI/ML frameworks, composability) are taught under the
auspices of these applications. We have developed pedagogical ap-
proaches to CI training and were arguably the first group to offer
micro credentials in research computing. Our informal training
program offers 30+ CI-specific courses in 3 pedagogical formats to
4,000+ researchers every semester. These training courses are mod-
ular and emphasize hands-on activities. Asynchronous self-paced
training for research workflows and CI are offered on the Can-
vas and Google Classroom Learning Management Systems. These
asynchronous classes give researchers the opportunity to learn at

Journal of Computational Science Education Volume 15, Issue 2

November 2024 5

https://doi.org/10.22369/issn.2153-4136/x/x/x

their own pace, while earning micro credentials. In a parallel thrust,
the TAMU HPRC YouTube channel offers ADA-compliant train-
ing videos in 5-, 50- and 160-minute increments. The channel has
1,100+ subscribers and typically garners 1,100 views every month.
Finally, HPRC is home to CI communities like the NSF SWEETER
CyberTeam and BRICCs consortia. These efforts have extended to
tutorials and workshops at the annual SC, PEARC, and IEEE Fron-
tiers in Education conferences as well. These training programs
dovetail into one-on-one deep consulting with researchers via the
“Bring Your Own” Science, Code, and Data series. Research focused
training programs for skilled CI researchers have been supported
by previous NSF CyberTraining awards (OAC-1829799). HPRC sci-
entists are members of the MATCH CSSN (Computational Science
Support Network) and CCEP (CSSN Community Engagement Pro-
gram) awardees. They also lead into our strong K-12 programs that
extend from teacher preparation workshops with IEEE and ACM
at (SuperComputing22 (SC22) and SuperComputing23), and week-
long summer camps that have introduced over 400 school students
to computing. The strength of these programs is best represented
by our ability to recruit students from various backgrounds. Local
news outlets have featured the camps as well, broadening the reach
throughout the community.

The focus for this study is the short courses and primers that
are taught each semester. This is the largest piece of our training
program, and we are working to improve the metrics for formative
assessment. Summative assessment will occur at the end of the
first year of the ACES testbed implementation. HPRC provides a
series of short courses and primers each fall and spring semester
to teach researchers how to enhance their use of research comput-
ing clusters. Primers are hour-long events and are often taught by
graduate students. Short courses are 2.5-hour-long events taught
by HPRC staff and industry partners. These courses build from
introductory topics to advanced courses. The content of HPRC’s
short courses includes the basics needed to use the clusters, coding
specifications for certain types of processing, and programming
languages for specific applications. They are provided over a pe-
riod of about 10 weeks, with a morning and afternoon training
event on Tuesdays and Fridays. There is a mixture of face-to-face,
online through Zoom, and hybrid venues. In particular, the ACES
courses are delivered on Zoom or as hybrid courses so that they are
available to attendees across the U.S. Most of the training courses
incorporate practice exercises for the participants to work through
to ensure their understanding of the concepts and procedures being
presented. As the series of courses were developed, the most impor-
tant metric was a count of participants registered for the courses.
This metric showed that the courses were being attended and gave
information about which courses enjoyed the highest attendance.
This has continued to be the primary metric of interest. As the
series of short courses expanded, the metrics used are changed
to support a better understanding of the effectiveness and impact
of the training program. The knowledge gained about the effec-
tiveness of the training will be useful in the effort to increase the
impact on the university campus and impact a broader community
of researchers across the United States.

3 PURPOSE OF THE STUDY
In this study we show the process we have used to gather better
data about our training program. We will examine what is missing
from a thorough understanding of the impact of the short course
training program at our institution and beyond as we reach out
across the United States to provide high performance compute
resources for research. Our training program will expand, and we
need better metrics to fully understand the impact and how to
improve our effectiveness in providing the resources researchers
need. Our research questions are: 1) How well are our current
short course and primer offerings serving the needs of the research
community? 2) What metrics can deepen our understanding of
what researchers need and how to fulfill those needs?

4 METHODOLOGY
For the first few years, registration numbers and numbers of courses
offered were the primary metrics considered. However, the courses
are continually evolving and offerings expanded as compute cluster
components become more sophisticated. For example, with the
composability available on FASTER and ACES, some short courses
needed to address this. Similarly, with the novel accelerators offered
on these clusters, the porting of code is not a straightforward pro-
cess. Thus, the training model for these courses needed to evolve
[7]. As we considered the metrics of numbers of short courses and
numbers of registrations for each, it became clear that we needed to
improve our data collection to include additional information about
the impact of our training program. The number of registrations
was not sufficient to determine the level of interest. We needed to
take attendance to see how many actually followed through with
their intent to take the course. Further, in order for researchers to
use the clusters as taught in the short courses, attendees needed to
do more than watch a presenter. Thus, we have worked to ensure
that the short courses are not lecture presentations but instruction
with brief exercises for participants to try out during the train-
ing. To this end, we added a new metric in the Fall 2023 semester,
tracking the number of attendees that logged in to the cluster. Be-
sides gathering additional information to examine this new metric,
we realized we needed a different teaching style from lecture and
demonstration. We needed to know how many attendees partici-
pated by logging on and trying the exercises given in the training.
From experiences teaching credit courses, we know that attendees
who watch the presenter but do not log on to the computing cluster
and complete the exercises are much less likely to use the cluster
later. We shifted our focus beyond the metrics of frequency of reg-
istrants and attendees. We began checking the cluster during the
training to ensure attendees are logged into the clusters. If we see
they are not, we offer help at the beginning of the training to get
them logged on to the cluster so that they can complete the tasks
and exercises throughout the course

5 RESULTS
Although the HPRC training program is multi-pronged, we limited
ourselves here to the most homogeneous events that are most
often in advertisement and delivery across semesters. Thus, we
focused on the short courses and primers offered regularly during
school semesters, with the exception of Summer 2020, when a

Volume 15, Issue 2 Journal of Computational Science Education

6 November 2024

Figure 1: Registration counts for groups of classes from Spring of 2016 to Fall of 2023.

series was offered online during the COVID-19 pandemic. Short
courses are generally in Fall and Spring because the Summer is
busy with K12 outreach and conferences. There is some difficulty
in analyzing even the short course and primer data because our
specific course offerings varied by semester, meaning a course-by-
course representation would be both too bulky and too difficult
to use to draw cross-semester conclusions. Thus, we grouped our
classes into six broad categories that we tracked across semesters.

Figure 1 shows the registrations for six categories of short courses
taught during school semesters since Spring of 2016. From these we
can see the areas in which interest has grown or waned over time.
The number of registrations gave us information about the level
of interest in the courses, but the number of attendees gave us a
greater understanding of the strength of that interest. These metrics
for the short courses delivered from 2016-2018 and for 2020 were
previously reported [2, 4]. We make two observations from Figure 1.
Firstly, there is a jump in registrations in 2017, especially for courses
about “Python” and “Other programming languages,” as new fund-
ing allowed for remote classes and expanded offerings of in-person
classes [2]. Secondly, there was a drop in overall registration in the
pandemic years, which is now beginning to recover.

In Figure 2, we look at more detailed metrics for the Fall 2023
semester, checking attendance and cluster logins in addition to reg-
istrations. These courses were offered at no cost; thus, researchers
who registered were not fully committed if something else arose.
The metrics that were especially useful are the number who at-
tended and the number who logged into the cluster.

In addition to our live courses, we process videos from recordings
of short courses and provide YouTube videos on the TAMU HPRC
channel, providing greater access for those who cannot attend
or want to review the material. There have been almost 10,000
views to date. Some courses (e.g., use of containers, programming,
cybersecurity) are very popular with researchers [5, 12].

Our first research question was, “How well are our current short
course and primer offerings serving the needs of the research com-
munity?” The metrics shared thus far have several indicators that
we are meeting those needs well. We can see this in the numbers

that attended the new offerings. One of the newest clusters, ACES,
just reached the testbed state. This cluster has a number of spe-
cialty resources for researchers. During the summer of 2023, we
held a training conference and invited researchers to attend to be
introduced to these resources. The same was true of the newest
cluster, Launch, which went online in December 2023. A quick look
shows that attendees were extremely happy with the training. We
identify needed improvements through surveys.

The second research question was, “What metrics can deepen
our understanding of what researchers need and how to fulfill
those needs?” We recognized through this study that there are
additional metrics that could be useful as we continue to improve
our training program. First, we would like to know how many
attendees completed the exercises during the courses. We have
discussed possibly giving them an assignment to complete and
providing a certificate for attending and completing the assignment.
However, there is work to do to prepare the assignment as well as
preparing and sending certificates after checking the assignment.
We are considering customizing the survey for different courses to
gain optimal information.

6 DISCUSSION
We believe collecting compute times on the clusters for short course
attendees in subsequent semesters could add to the useful metrics.
The average compute time of short course attendees will help us
see how much they use the HPRC resources in their classes and/or
research, if we can obtain these data. A study on e-resources usage
revealed that among the five factors that had an impact on usage,
“influencers” were the most powerful in affecting intention to use
the resources. E-resources need to be organized, be easy to access,
and meet the researcher’s needs. With a good first experience,
users will try again and spread the information to friends and
colleagues [14]. A survey question about how likely an attendee
is to recommend our training courses might prompt the attendee
to encourage fellow researchers to avail themselves of the training
sessions. Finally, we plan to construct a survey for PIs to ascertain
howmuch they believe the short courses help their students in their

Journal of Computational Science Education Volume 15, Issue 2

November 2024 7

Figure 2: Frequency of registrations, attendance, and engagement for Fall 2023 Short Courses.

research projects. A similar survey could be sent to all attendees
at the end of each semester’s series of primers and short courses.
We may create a survey to ask if there are other training courses
that would further enhance the work of the researchers that use
our clusters.

Understanding the impact of a training program on the intended
audience is not simple or straightforward. Counts of registration
and attendance are the bare minimummetrics to inform the training
provider. Actual engagement in the training goes a step forward.
Before that metric can be used, the design of the training may need
to be changed as well. HPRC’s training program began more as a
lecture series where attendees were encouraged to follow along on
their computers, but little help was available during the session to
ensure that level of engagement. The courses have evolved in a way
that provides helpers in the session to assist attendees who have
difficulty accessing the computing clusters. In addition, exercises
for the attendees are embedded. The presenter pauses for response
from the attendees, answers questions, and then shows the process
and answer for the exercises. We are noticing that the engagement
assessed through percentage of those logged onto the cluster is
approaching 100% of the attendees.

6.1 Expanding Beyond the Institution
The metrics discussed have been primarily considered in view of
the impact of the short courses at our institution, TAMU. However,
our new ACES cluster is available to researchers across the United
States and just moved into the testbed phase. We plan to use many
of the metrics discussed previously on the short courses for which
attendees use the ACES cluster. Accounts are controlled through

ACCESS, (the successor of XSEDE), but we will be able to collect
information about logins and compute times on this cluster. These
metrics and others we may design for the future will provide infor-
mation about how our short courses impact the greater research
community that uses HPC resources. It is currently and will always
be necessary to develop new training for the latest hardware and
software used in HPC [6]. We need a variety of metrics to help us
understand better where to focus our efforts moving forward.

7 CONCLUSIONS
In discussing the metrics involved in the cyberinfrastructure train-
ing program, we approach the topic from the standpoint that the
results we obtained gave us ideas about how various factors may
be related; in the relatively open ecosystem of a university–plus
external outreach–there is a limit to how specific our conclusions
may be regardless of how much data we are able to collect, but we
can at least identify trends to explore. We can suggest theories and
sometimes gather data to test that theory, but we often must simply
operate on our conjectures [9].

The key concept is not that the metrics themselves
had a direct causal effect on eventual outcomes, but
rather that the metrics were chosen so that actions
and decisions which moved the metrics in the desired
direction also moved the organization in the direction
of the desired outcomes and goals (p. viii) [14].

This quote defines the purpose of metrics in cyberinfrastructure
training programs. In general, the goals are to serve the research
community by providing various training resources to promote
their research activities on HPC resources for the good of society.

Volume 15, Issue 2 Journal of Computational Science Education

8 November 2024

Thus, adaptation, innovation, and assessment are in constant move-
ment as technology quickly develops continually. We do our best
to use the metrics to understand and conjecture about what will be
needed next and work to develop the resources needed to support
that work.

ACKNOWLEDGEMENTS
We gratefully acknowledge support from the National Science Foun-
dation CyberTraining award CIP-1730695.

REFERENCES
[1] D. Christopher Brooks, JearlWalker, and Paul Baepler. 2016. AGuide to Teaching in

the Active Learning Classroom: History, Research, and Practice. Stylus Publishing.
[2] Dhruva K. Chakravorty, Marinus ‘Maikel’ Pennings, Honggao Liu, Zengyu ‘Shel-

don‘ Wei, Dylan M. Rodriguez, Levi T. Jordan, Donald ‘Rick’ McMullen, Noushin
Ghaffari, and Shaina D. Le. 2019. Effectively Extending Computational Training
Using Informal Means at Larger Institutions. Journal of Computational Science
Education 10, 1 (2019), 40–47. https://doi.org/10.22369/issn.2153-4136/10/1/7

[3] Dhruva K. Chakravorty, Marinus ‘Maikel’ Pennings, Honggao Liu, Zengyu ‘Shel-
don’ Wei, Dylan M. Rodriguez, Levi T. Jordan, Donald ‘Rick’ McMullen, Noushin
Ghaffari, Shaina D. Le, Derek Rodriquez, Crystal Buchanan, and Nathan Gober.
2019. Evaluating Active Learning Approaches for Teaching Intermediate Pro-
gramming at an Early Undergraduate Level. Journal of Computational Science
Education 10, 1 (2019), 61–66. https://doi.org/10.22369/issn.2153-4136/10/1/10

[4] Dhruva K. Chakravorty, Lisa M. Perez, Honggao Liu, Braden Yosko, Keith Jackson,
Dylan Rodriguez, Stuti H. Trivedi, Levi Jordan, and Shaina Le. 2021. Exploring
Remote Learning Methods for User Training in Research Computing. Journal of
Computational Science Education 12, 2 (2021), 11–17. https://doi.org/10.22369/
issn.2153-4136/12/2/2

[5] Dhruva K. Chakravorty and Minh Tri Pham. 2022. Evaluating the Effectiveness
of an Online Learning Platform in Transitioning Users from a High Performance

Computing to a Commercial Cloud Computing Environment. Journal of Com-
putational Science Education 11, 1 (2022), 93–99. https://doi.org/10.22369/issn.
2153-4136/11/1/15

[6] Eric Coulter, Jodie Sprouse, Resa Reynolds, and Richard Knepper. 2019. Extending
XSEDE Innovations to Campus Cyberinfrastructure - The XSEDE National Inte-
gration Toolkit. Journal of Computational Science Education 10, 1 (2019), 16–20.
https://doi.org/10.22369/issn.2153-4136/10/1/3

[7] Zhenhua He, Sandra Nite, Joshua Winchell, Abhinand Nasari, Hieu Le, Jiao Tao,
Dhruva Chakravorty, Lisa M. Pereze, and Honggao Liu. 2023. Development of
a training framework for novel accelerators. In Proceedings of the 2023 IEEE
Frontiers in Education (FIE) Conference: Engineering Education in a Diverse, Global
World. College Station TX. https://doi.org/10.1109/FIE58773.2023.10343498

[8] Richard Lawrence, Tri M. Pham, Phi T. Au, Xin Yang, Kyle Hsu, Stuti H. Trivedi,
Lisa M. Perez, and Dhruva K. Chakravorty. 2020. Expanding Interactive Com-
puting to Facilitate Informal Instruction in Research Computing. Journal of
Computational Science Education 13, 1 (2020), 44–49. https://doi.org/10.22369/
issn.2153-4136/13/1/8

[9] Miriam Madsen. 2021. The Configurative agency of metrics in education: A
research agenda involving a different engagement with data. Journal of Education
Policy 36, 1 (2021), 64–83. https://doi.org/10.1080/02680939.2019.1682679

[10] Michael Prince. 2004. Does active learning work? A review of the research.
Journal of Engineering Education 93, 3 (2004), 64–83. https://doi.org/10.1080/
02680939.2019.1682679

[11] Kem Saichaie, D. Christopher Brooks, Phil Long, Bob Smith, Richard Holeton,
Carole Meyers, Adam Finkelstein, and Shirley Dugdale. 2017. 7 Things You
Should Know About Research on Active Learning Classrooms. Educause.

[12] Jinsil Hwaryoung Seo,Michael Bruner, Austin Payne, NathanGober, Donald ‘Rick’
McMullen, and Dhruva K. Chakravorty. 2019. Using Virtual Reality to Enforce
Principles of Cybersecurity. Journal of Computational Science Education 10, 1
(2019), 81–87. https://doi.org/10.22369/issn.2153-4136/10/1/13

[13] Texas A&MHigh Performance Research Computing. 2024. https://hprc.tamu.edu
[14] Vandana, Ruchi Jain Garg, Vinod Kumar, and Alok Kumar Singh. 2023. In-

vestigating the Impact of Usage Factors on Satisfaction and Intention to use
e-Resource. Performance Measurement and Metrics 24, 1 (2023), 1–11. https:
//doi.org/10.1108/PMM-08-2021-0042

Journal of Computational Science Education Volume 15, Issue 2

November 2024 9

https://doi.org/10.22369/issn.2153-4136/10/1/7
https://doi.org/10.22369/issn.2153-4136/10/1/10
https://doi.org/10.22369/issn.2153-4136/12/2/2
https://doi.org/10.22369/issn.2153-4136/12/2/2
https://doi.org/10.22369/issn.2153-4136/11/1/15
https://doi.org/10.22369/issn.2153-4136/11/1/15
https://doi.org/10.22369/issn.2153-4136/10/1/3
https://doi.org/10.1109/FIE58773.2023.10343498
https://doi.org/10.22369/issn.2153-4136/13/1/8
https://doi.org/10.22369/issn.2153-4136/13/1/8
https://doi.org/10.1080/02680939.2019.1682679
https://doi.org/10.1080/02680939.2019.1682679
https://doi.org/10.1080/02680939.2019.1682679
https://doi.org/10.22369/issn.2153-4136/10/1/13
https://hprc.tamu.edu
https://doi.org/10.1108/PMM-08-2021-0042
https://doi.org/10.1108/PMM-08-2021-0042

An Interdisciplinary Introduction to High Performance
Computing for Undergraduate Programs

Cody Stevens
Wake Forest University

stevca9@wfu.edu

Sean M. Anderson
Wake Forest University

anderss@wfu.edu

Adam Carlson
Wake Forest University

carlsoas@wfu.edu

ABSTRACT
The new strategic framework of Wake Forest University seeks
to build and strengthen signature areas of excellence in research,
scholarship, and creative work that cross academic and institu-
tional boundaries. To support this initiative, the High Performance
Computing (HPC) Team has developed an Introduction to High Per-
formance Computing undergraduate course that is accessible to
students of all levels and of all academic domains. The objective of
this course is to build a curriculum that presents HPC as an essential
tool for research and scholarship, enables student-faculty collabo-
ration across all disciplines, and promotes student participation in
academic research during their undergraduate studies.

KEYWORDS
High Performance Computing, HPC, Cluster Computing, Pedagogy,
Education, Interdisciplinary

1 INTRODUCTION
Wake Forest University (WFU) is an R2 liberal arts institution lo-
cated in Winston-Salem, NC with an undergraduate population
of 5,500 and a graduate population of 1,600 across the Reynolda
Campus and Business School programs. WFU follows the teacher-
scholar model with a student-faculty ratio of 10:1. There is strong
support for undergraduate research and experiential learning pro-
grams throughout the University. Undergraduate research is so
paramount to the University mission, thatWFU has a dedicated cen-
ter, the Undergraduate Research and Creative Activities (URECA)
Center, just for this purpose, that provides internal grants to un-
dergraduate students for research fellowships during the summer
with a faculty advisor.

Research at the university is supported by the WFU High Per-
formance Computing (HPC) Facility[13]. The facility’s main asset,
the Distributed Environment for Academic Computing (DEAC)
Cluster, provides 4,000 CPU cores, 20 TB of RAM, and 280 TB of
storage to researchers across the University. The DEAC Cluster
runs on the Red Hat Enterprise Linux (RHEL) 7 operating system.
The 280 TB of storage is provided by a NetApp A300 storage array,
and is served over NFS to all compute and login nodes. The DEAC
Cluster currently supports over 500 faculty, students, and staff from
across 15 different academic departments. Training and support for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/2/3

this resource is provided by us (the HPC Team) and this resource
is heavily used throughout the Introduction to High Performance
Computing course.

2 BACKGROUND
Collaboration between us and the Computer Science (CS) Depart-
ment first began during the Fall semester of 2017. During this time
the CS Department was interested in recruiting a team of students
to compete in the Student Cluster Competition (SCC) held at the
International Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC). This competition tasks a team
of six undergraduate students to compete in a 48-hour competi-
tion where each team designs and builds a small HPC cluster. The
team must install and run up to five software applications including
benchmarks, visualization programs, and a wide range of scientific
packages. We attended weekly classes led by a CS faculty member,
provided mentorship to students, and presented on HPC topics rel-
evant to the SCC; for instance, on the Slurm scheduler and resource
manager, on cluster hardware and networking, and on software
compilation. Through this collaboration, four cohorts of students
were accepted to compete at the SCC both in-person (2018, 2019)
and remotely (2020, 2021).

While this initial class was successful in preparing students to
compete in the annual SCC, it did have some shortcomings in both
content and student outcomes:

First, this course was offered at the 300-level within the CS
curriculum, with a 200-level prerequisite. This prerequisite
meant that any student who wished to enroll in the course
and participate in the competition would need to have taken
at least two courses in computer programming and one
course in data structures and algorithms.

Second, as this course was a 300-level elective course, enroll-
ment primarily consisted of students in their Junior or Se-
nior year. While these students did learn many principles
of HPC, there was little opportunity for them to use these
skills within research programs before graduating.

Third, with the course’s primary focus being to train a team
to compete in the SCC, there was an implicit enrollment
capacity of six students, which is the maximum team size to
compete. Assessment for this course was directly tied to per-
formance in the SCC, and therefore there was a disconnect
for any student who potentially enrolled in the course and
was not on the SCC team roster in both course content and
assessment.

These shortcomings drastically limited the broader impact of this
initial undergraduate HPC class. We found that the prerequisite
courses did not yield the necessary skills to work in an HPC en-
vironment, such as familiarity with the Linux command line and

Volume 15, Issue 2 Journal of Computational Science Education

10 November 2024

https://doi.org/10.22369/issn.2153-4136/x/x/x

filesystem. Class time was mostly dedicated to learning these funda-
mental skills, the basics of job scheduling, and exploring computer
hardware. This meant that students were not adequately prepared
for the SCC as they did not have enough time to sufficiently learn
and comprehend more advanced topics like installing and config-
uring the scheduler, compiling software from source, and famil-
iarizing themselves with the application workflows. It was from
this collaboration that the current Introduction to High Performance
Computing course was developed, and it is designed to address
these shortcomings.

3 COURSE DEVELOPMENT
HPC can often be taught from two different pedagogical approaches.
The first is on how to enable HPC and focuses on the perspective of
computer scientists, computer engineers, and cyberinfrastructure
professionals who architect and design the hardware, software, and
computing environment to support HPC workloads. The second is
on how to use HPC as a research tool and focuses on the perspec-
tive of researchers from many different scientific domains, such as
Physics, Biology, Chemistry, Mathematics, and Computer Science,
who use HPC to solve complex real-world problems. When devel-
oping this course, our first priority was to make it as accessible to
as many students as possible across the University. Other institu-
tions that offer HPC courses do so through their Computer Science
or Computing Engineering departments[6, 15, 16], and primarily
focus on the first approach described above. In order to expand the
use of HPC resources across all departments on campus, creating
an interdisciplinary course focusing on the second approach was
critical to meeting this objective.

3.1 Course Structure
The Introduction to High Performance Computing course is currently
offered as a Special Topics course within the CSDepartment atWFU.
It satisfies degree requirements for students pursuing a minor or
a Bachelor of Arts in Computer Science, but does not satisfy any
degree requirements for the Bachelor of Science program. The
course meets twice a week for 50 minutes and students earn two
credit hours upon completion. The course is unique within the CS
Department as it is taught by all three of us (members of the HPC
Team). Each instructor has a different background and experience
in HPC, and provides their own perspective to the topics covered
in the course. The course is currently offered during the Spring
semester where it serves as an on-ramp to any student hoping to
pursue summer research; this also coincides with two proposal
deadlines – for the URECA Center’s Summer Research Fellowship
and for the SCC in May. We advocate for students to pursue these
two opportunities if they are interested in the content of the course,
and work directly with students to match them with a faculty
research advisor for a URECA fellowship or a hardware vendor for
the SCC proposal. The course then provides the necessary training
for students to be successful in either endeavor.

Assessment for the course comes from biweekly projects and two
larger midterm and final projects. Each project is associated with a
curriculum module within the course, and students must complete
the tasks by interacting with the DEAC Cluster and answering
supplemental questions. We purposefully avoid timed assessments

during class, such as quizzes or exams, as tasks that run in an
HPC environment are asynchronous, and it can be unreasonable
to expect those tasks to finish within a specific period of time.
HPC systems have a constant flux of workloads, and there may
be periods where job scheduling can take hours or days. Rather
than reserving cluster resources for each class and impacting other
research workloads, we believe that treating our students just like
researchers gives them a more realistic experience of how to use
and interact with a shared resource that is used by hundreds of
people daily.

3.2 Course Curriculum
The Introduction to High Performance Computing course introduces
topics using several modules. Each module is presented to the class
through a lecture with slides, a hands-on activity performed in class,
and a project that students begin during class but have up to a week
to complete outside of class. The WFU HPC facility is heavily used
throughout the course and students connect and interact with it
using Visual Studio Code. We chose this tool because it is platform
agnostic and provides students with the same experience no matter
what device they bring to the classroom.

We removed all prerequisites for enrollment in order to make
the course as accessible as possible to students from all academic
domains. Students are not expected to have any prior programming
experience before taking the course. We selected Bash and Python
as themain applications (and scripting languages) used in the course
due to their ubiquity on modern HPC systems and relevancy in
data science. We provide all project code for the students, who
interact with them on the DEAC Cluster and learn how to monitor
their behavior and performance on a real HPC system. The topics
covered in the the Spring 2024 semester are listed in the following
sections.

3.2.1 Module 1: The Linux Computing Environment. For many
students the concept of logging into a remote server is foreign to
them. While they can see output of programs and Linux commands
through Visual Studio Code, it can be difficult for new users to
grasp that these programs are not running on one’s personal laptop
or workstation. In terms of distributed computing where jobs are
submitted through a batch scheduler, such as Slurm, this can add
another layer of abstraction that makes the topic more confusing
for students, which is why in this module we have students run all
exercises on one of the DEAC Cluster’s login nodes.

In this module we primarily focus on basic Linux commands
such as cd, ls, and mkdir. We also discuss the Linux filesystem and
distinguish between absolute and relative paths. We leverage tools
such as bashcrawl[10] and the "Password in a Haystack" challenge
provided by the Hands on with Frontier GitHub repository[2]. The
project for this module requires the students to also utilize helpful
Linux commands such as wc, grep, and echo.

Previous iterations of this module had a deeper focus on Linux
file permissions, and covered more Linux commands, such as how
to determine a server’s hostname and IP address, but this overall
seemed irrelevant to the audience at this stage of their introduction
to Linux, and this content was removed to streamline the course
material.

Journal of Computational Science Education Volume 15, Issue 2

November 2024 11

Figure 1: Cody Stevens describes the architecture of a com-
pute node while students disassemble Cisco B200 servers.
Photo credit: Sean M. Anderson.

3.2.2 Module 2: Modulefiles and Environment Variables. The
WFU HPC Facility heavily relies on environment modulefiles to
manage different versions and flavors of scientific software available
to researchers, and is common amongst many HPC Centers across
the world. This module reinforces paths in Linux from the previous
module, and we have students create temporary and persistent
enviornment variables that they will use throughout the rest of the
course.

The project for this module creates a bespoke environment for
each student, and statically compiles several simple C programs
that are named after common dictionary words. Students are tasked
with identifying the environment module with their username, and
analyze the changes to their environment that themodule filemakes
to find a secret hidden program. In this project students utilize
module commands such as show and load, and Linux commands
such as find and which to determine their secret program.

3.2.3 Module 3: Cluster Components andHardware. Thismodule
focuses on the hardware that composes an HPC Cluster, and what
resources are available to user jobs. We discuss the components of
a cluster compute node, such as CPU Cores and Memory (RAM).
Students disassemble decommissioned Cisco B200 blade servers
that were previously compute nodes from the DEAC Cluster to
physically see how these components are integrated together in a
different form factor from their laptop or a desktop workstation.

One of the highlights of the course is in this module where the
students take a tour of the WFU Data Center, and see common
elements of a data center, such as a raised flooring. The tour covers
topics such as power, networking, and cooling within the data
center and students get to see the physical hardware that composes
the DEAC Cluster. This entire module helps address the layer of
abstraction mentioned before in Module 1, and gives the students a
physical sense of what resources are available to them when they
are about to submit a job.

3.2.4 Module 4: The Slurm Resource Manager and Scheduler. At
this point in the course, students should be familiar with the Linux

Figure 2: Adam Carlson highlighting the raised flooring and
cabling of the WFU Data Center during a tour with students.
Photo credit: Sean M. Anderson.

environment, and should understand the basics of how modulefiles
work and the resources available to them on the DEAC Cluster.
This module ties all of these components together and covers the
basics of submitting a batch job through Slurm using a batch script,
and how to monitor a job and the state of a Slurm cluster using the
commands squeue and sinfo.

For this project we utilize the software application Blender to
render one of the sample files that we have tweaked slightly to
provide someWFU flair. While this application may not be common
on a given scientific computing cluster, overall we think this is a
great application for the students because the rendering process
for a single scene can take up to 16 minutes with a single core,
and consumes roughly 8Gb of memory or RAM and produces a
nice picture and visual feedback for the students. We utilize these
resource requirements to show the students common errors that
Slurm will provide when too little time or memory is requested.
Students also see a significant speedup when requesting additional
CPU cores, and students can see the benefit of allocating more CPU
cores to a given Slurm job.

We have also used Blender in class to demonstrate the ability of
Slurm Job Arrays by rendering one of the sample movies provided
by Blender, where each job with the job array renders a single scene
before they are all stitched together to create the final movie. We
did not use this example in the most recent iteration of the course
due to time constraints, but feel it is worth mentioning as we plan
to use it again in future offerings of the course.

We believe that the conclusion of this module marks the comple-
tion of what a typical HPC training course for a new user would
cover. At this point in the course a student should be able to:

• Login to a login node, and interact with the login node using
basic Linux commands to organize and store their data.

• Interact with environment modulefiles to see which software
applications are available and load appropriate modulefiles
for their research.

Volume 15, Issue 2 Journal of Computational Science Education

12 November 2024

• Understand the basic resources a cluster provides for their
job, and how to create a Slurm batch script to submit jobs to
the cluster.

The largest hurdle we have observed for new users to the DEAC
Cluster is learning the basic Linux environment. While this content
could be covered in a one to two day workshop, we believe that the
weekly projects that all require Linux commands to be executed on
the login nodes gives the students more structured experience that
they would not otherwise get from a one-on-one training session,
or a small workshop. We believe that content up to this point in the
course could be offered as a half semester class for any prospective
student interested in research, and at this point in the course a
student should be able to adequately pursue independent research
with a faculty advisor.

It is at this time that we also introduce students to a general HPC
workflow using Python and the Palmer Penguins dataset[4]. From
this moment on in the course Python will be used more heavily, and
this interactive activity gives a good example for how data can be
preprocessed before analysis, and provides some context for what
future Python programs used in the course may be doing.

3.2.5 Midterm: Asymptotic Complexity. As previouslymentioned,
the first half of the course could be described as a general training
for a prospective researcher. The second half of the course serves as
an introduction to many concepts we see in HPC, but may not be
relevant to every user on a given research cluster. From this point
on all work is submitted through batch submission using Slurm.

In this module we discuss asymptotic complexity using real
world examples to describe linear, sub-linear, polynomial, and ex-
ponential scaling for computational complexity. We also discuss
Amdahl’s Law and discuss the consequences of requesting toomany
resources for a given problem. For the midterm we use a modified
version of the color quantization using K-means clustering example
with scikit-learn[8, 11]. We provide the students with five images

Figure 3: 3D Render of the WFU-customized Cozy Bakery[9]
scene using Blender.

of the same subject with varying pixel dimensions to show the
speedup as the size of the image increases. Like the previous appli-
cation, Blender, utilizing images provides a less abstract approach
to the topic and with this example program we observe that the
sampling of the image performs at the same or worse speed using
multiple processors than the assignment of colors using k-means or
random clustering, which decreases in computation time as more
processors are added to calculations. What the students ultimately
observe is that there are distinct parts of the program, and they
each do not scale proportionally to one another as more resources
are given to the problem.

3.2.6 Module 5: Networking and Storage. Networking and stor-
age are essential components to any HPC environment. We instruct
the students that on the DEAC Cluster, there exist three directories
the students can actively write and save data to. There is their home
directory located under /home which serves as their starting point
on the cluster, but that it is best practice to store input and write
output of their research endeavors to their RESEARCHPATH which is
a directory that exists on a larger pool of storage that is managed
by a quota. On the DEAC Cluster, both of these paths exist on a
shared filesystem and are shared via NFS to the login and compute
nodes.

In this module we also discuss the concept of latency for data
transfers between a shared storage array and the compute and login
nodes. We discuss local storage, which is commonly referred to
as scratch storage, that is temporary in nature and that in theory
provides better performance over reading and writing data over
an NFS filesystem. In practice, we see a minimal performance gain
using the SSD local scratch directories on the DEAC Cluster versus
the NFS filesystem provided by the NetApp A300 storage array, but
we still believe this module is important as latency is something
that will always persist in the field of HPC.

3.2.7 Module 6: Scientific Software. Compiling scientific soft-
ware is a critical component of enabling HPC workloads, and in this
module students learn about how software is installed and managed
in an HPC environment. A simple example of compiling Nyancat
CLI[7] using GNU make is done in class, and we discuss different
versions of software as well as the performance of software when
compiled using different compilers, such as GNU and Intel. We dis-
cuss what files are created when software is compiled and installed,
and environment variables, such as PATH and LD_LIBRARY_PATH,
that are relevant to using software that is compiled from source.

This module directly ties back to Module 2, and gives a more
practical example of why we utilize modulefiles in an HPC environ-
ment. For this project the students are tasked with installing Python
3.9 into a scratch directory. Due to the DEAC Cluster having a base
compiler of GCC 4.8.5, the students would encounter an error if
they did not use a more recent compiler, such as GCC 10.2.0, which
they are instructed to use. Students are tasked with installing their
Python software into a scratch directory which directly references
the content covered in Module 5, and students do this both inter-
actively on a login node as well as on a compute node with a job
submitted through Slurm.

Journal of Computational Science Education Volume 15, Issue 2

November 2024 13

Figure 4: Visualization using VMD of the protein structure
output of GROMACS by Cassandra Hung, Spring 2024.

3.2.8 Module 7: GPU Computing. With the rise of Generative
Artificial Intelligence (AI) and the prevalence of NVIDIA Data Cen-
ter GPUs in HPC facilities today, this is a module that is relevant
to the current landscape of HPC. This module is split over two dif-
ferent lectures. The first lecture discusses GPU hardware, and the
history of the GPU and how it has advanced today up to NVIDIA’s
latest announcement of the Grace CPU and Blackwell GPU architec-
tures and the GB200. This lecture explains the historical nature of
GPU hardware, and how it differs from the CPU and CPU memory.
The second lecture focuses on AI, and the software that enables it,
such as TensorFlow and PyTorch. We discuss the rise of AI since the
early 2010’s up to the Generative AI and Large Language Models
we see today.

We use this module to introduce the concept of interactive Slurm
jobs, as GPU compute nodes have hardware and software that is
not available on the DEAC Cluster login nodes, such as the NVIDIA
driver. The students for this project deploy Meta’s Llama2 13b-
chat model[14] using llama.cpp[3]. When compiled this software
produces a chat bot the students can interact with and compare the
performance to other Generative AI tools, such as ChatGPT. This
code is executed on CPU compute nodes with varying numbers of
CPU cores, and on the GPU nodes using NVIDIA V100 GPUs.

3.2.9 Module 8: Parallel Frameworks. The last module covered
within the class is on parallel frameworks such as message passing
and threading. We primarily focus on MPI and OpenMP for each of
these frameworks, and we discuss the memory management and
use cases for each. Students complete a hands-on activity in teams
that tasks them with sorting cards given different requirements.
Students are responsible for assigning themselves to different roles
in the sorting process as they work together, just as MPI processes
and OpenMP threads would interact within the same context, and
we observe the real time it takes us as humans to sort the cards
using this division of labor.

Table 1: Student enrollment per semester.

Semester Total Enrollment Male Female
Fall 2022 7 6 1

Spring 2022 12 10 2
Spring 2023 16 8 8
Spring 2024 18 9 9

The final project brings both of these concepts together, and
tasks the users with installing the molecular dynamics software
GROMACS[1] from source and comparing the performance via
throughput of a simulation using different combinations of MPI
processes and OpenMP threads. Students compare over 50 different
combinations using up to 48 CPU cores for a single job, and then
produce a visualization of the resulting protein structure using the
VMD software package[5].

4 OUTCOMES
Total enrollment in the Introduction to High Performance Computing
course has grown each semester, with our most recent semester hav-
ing a total of 18 students. There has been an equal number of men
and women enrolled in the course for the previous two semesters,
but more than half of all students have been Computer Science
majors. This is to be expected, as the course if offered through
the CS Department, but this bias needs to be reduced in order to
foster more interdisciplinary collaboration. Removing prerequisite
classes has made the course more accessible, but there are still many
opportunities for more inter-departmental collaborations.

From the Spring 2023 cohort, we had 4 students participate in the
Student Cluster Competition (SCC) through the virtual IndySCC
competition. Our WFU team, the Daemon Deacons, finished 4th
overall in the competition and 1st amongst US teams. One of the
software applications for the IndySCC was GROMACS which stu-
dents already had prior experience with from our course. The final
result corroborated that this team was better prepared for the SCC
challenges when compared to teams from previous years.

This past semester we saw former students using the WFU HPC
Facility for courses in finance, natural language processing, and
science-guided machine learning. TheWFUHPC Facility supported
entire classes on the latter two topics. One student from the finance
course had taken our class in the Spring 2023 cohort, and decided

Table 2: Student enrollment by academic major.

Major Students
Computer Science 27

Mathematics & Statistics 11
Finance 4

Engineering 3
Economics 3
Biology 2

Undeclared 2
Political Science 1

Volume 15, Issue 2 Journal of Computational Science Education

14 November 2024

to use the DEAC Cluster to perform a look-back analysis to build
the best stock portfolio for her final project. This work was done
independently of any other student or faculty involvement and was
thanks to their experience in the Introduction to High Performance
Computing course. From our most recent Spring 2024 cohort, two
students have received URECA Research Fellowships for Summer
2024 and will be pursuing research with faculty in the CS Depart-
ment; one student will be pursuing research opportunities in the
Economics Department later this year. We will be working with
these students to sponsor travel and accommodations to attend the
SC24 conference later this year.

It is this engagement that we hope to foster through our course.
By exposing these topics to a diverse student body we can ensure
that the HPC resources are well-utilized and continue to contribute
to student success throughout their time at WFU.

5 CONCLUSIONS
There is an implicit bias when offering HPC topics from only one
academic department – this contradicts the interdisciplinary nature
of HPC work. The demand for these resources in higher education
will continue to expand as more and more academic disciplines
attempt to educate students on the most relevant problems in to-
day’s technological and data-driven world. Advances in artificial
intelligence and machine learning will necessitate powerful com-
pute resources that can only be provided by HPC facilities. These
facilities can also provide students with a unified computing envi-
ronment and are capable of handling the additional computational
requirements of courses that adequately prepare students for em-
ployment and post-graduate opportunities. By developing curricula
that are accessible to students across all academic disciplines and
different skill levels, the concepts of HPC can be introduced early
in the undergraduate career path, and can have greater success
later as HPC becomes more integrated in other academic programs.
This provides greater utilization of HPC facilities, and eases the bur-
den of individual training on faculty and other cyberinfrastructure
professionals.

6 FUTURE WORK
The Introduction to High Performance Computing course in its cur-
rent iteration has been offered for four semesters as a Special Topics
course within the Department of Computer Science. Our next step
is to establish a permanent course reference number within the
CS curriculum and expand the number of academic credit hours to
3. With our permanent course listing and our refined curriculum,
we intend to publish our projects on GitHub[12] to allow anyone
to download each module and project, with bootstrap scripts for
popular Linux flavors. Lastly, to break away from any departmental
bias and to cater to the true interdisciplinary nature of HPC, we will
be working towards creating our own academic program and will
collaborate with departments across campus to create accessible
projects and coursework for faculty to incorporate into their classes
and majors.

ACKNOWLEDGMENTS
Computations were performed using the Wake Forest University
(WFU) High Performance Computing Facility, a centrally managed

computational resource available to WFU researchers including
faculty, staff, students, and collaborators.

The authors would like to thank Dr. William Turkett , Chair of
the Department of Computer Science, for fostering this ongoing
collaboration, and Dr. Sam Cho for developing the initial High
Performance Computing course which laid the foundation for the
Introduction to High Performance Computing course as it is today.

Special thanks to the Information Systems Leadership Team for
supporting the authors in this initiative to bolster the strategic
framework of the University and foster a community of learning.

REFERENCES
[1] Mark Abraham, Andrey Alekseenko, Cathrine Bergh, Christian Blau, Eliane

Briand, Mahesh Doijade, Stefan Fleischmann, Vytautas Gapsys, Gaurav Garg,
Sergey Gorelov, Gilles Gouaillardet, Alan Gray, M Eric Irrgang, Farzaneh Jala-
lypour, Joe Jordan, Christoph Junghans, Prashanth Kanduri, Sebastian Keller,
Carsten Kutzner, Justin A Lemkul, Magnus Lundborg, Pascal Merz, VedranMiletić,
Dmitry Morozov, Szilárd Páll, Roland Schulz, Michael Shirts, Alexey Shvetsov,
Bálint Soproni, David van der Spoel, Philip Turner, Carsten Uphoff, Alessandra
Villa, Sebastian Wingbermühle, Artem Zhmurov, Paul Bauer, Berk Hess, and Erik
Lindahl. 2024. GROMACS 2023.4 Source code.

[2] Oak Ridge Leadership Computing Facility. 2021. Hands on with Frontier. Re-
trieved February 2024 from https://github.com/olcf/hands-on-with-frontier

[3] Radoslav Gerganov. 2023. LLaMA c++. Retrieved April 2024 from https:
//github.com/ggerganov/llama.cpp

[4] Kristen BGorman, TonyDWilliams, andWilliam R Fraser. 2014. Ecological sexual
dimorphism and environmental variability within a community of antarctic
penguins (genus Pygoscelis). PLoS One 9, 3 (March 2014), e90081.

[5] William Humphrey, Andrew Dalke, and Klaus Schulten. 1996. VMD – Visual
Molecular Dynamics. Journal of Molecular Graphics 14 (1996), 33–38.

[6] Steve Jones. [n. d.]. ME 344: Introduction to High Performance Computing.
https://bulletin.stanford.edu/courses/2191441

[7] K Lange. 2013. Nyancat CLI. Retrieved April 2024 from https://github.com/
klange/nyancat

[8] Robert Layton, Olivier Grisel, and Mathieu Blondel. [n. d.]. Color Quantization
using K-Means. Retrieved March 2024 from https://scikit-learn.org/stable/auto_
examples/cluster/plot_color_quantization.html

[9] Nicole Morena. 2023. Cozy Bakery - Blender 3.5 Splash Screen. https://www.
artstation.com/nickyblender

[10] notklaatu. 2019. bashcrawl. Retrieved February 2024 from https://gitlab.com/
slackermedia/bashcrawl

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[12] Cody Stevens, Sean M. Anderson, and Adam Carlson. 2024. Introduc-
tion to High Performance Computing. https://github.com/WFU-HPC/
Introduction-to-High-Performance-Computing

[13] Information Systems and Wake Forest University. 2021. WFU High Performance
Computing Facility. https://doi.org/10.57682/G13Z-2362

[14] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:cs.CL/2307.09288

[15] Iowa State University. [n. d.]. COMS 424: Introduction to High Performance
Computing. https://catalog.iastate.edu/azcourses/com_s/

[16] Rich Vuduc, Andrew Becker, Catherine Gamboa, and Amanda Deisler. 2023.
CSE 6220: Intro to High-Performance Computing. https://omscs.gatech.edu/
cse-6220-intro-high-performance-computing

Journal of Computational Science Education Volume 15, Issue 2

November 2024 15

https://github.com/olcf/hands-on-with-frontier
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://bulletin.stanford.edu/courses/2191441
https://github.com/klange/nyancat
https://github.com/klange/nyancat
https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
https://www.artstation.com/nickyblender
https://www.artstation.com/nickyblender
https://gitlab.com/slackermedia/bashcrawl
https://gitlab.com/slackermedia/bashcrawl
https://github.com/WFU-HPC/Introduction-to-High-Performance-Computing
https://github.com/WFU-HPC/Introduction-to-High-Performance-Computing
https://doi.org/10.57682/G13Z-2362
http://arxiv.org/abs/cs.CL/2307.09288
https://catalog.iastate.edu/azcourses/com_s/
https://omscs.gatech.edu/cse-6220-intro-high-performance-computing
https://omscs.gatech.edu/cse-6220-intro-high-performance-computing

HPC Courses Training Organization and Experiences in
Supercomputing Luxembourg

EuroCC: National Competence Centre (NCC)
Ezhilmathi Krishnasamy
University of Luxembourg

ezhilmathi.krishnasamy@uni.lu

Pascal Bouvry
University of Luxembourg
pascal.bouvry@uni.lu

ABSTRACT
High-performance computing (HPC) is a crucial field in science and
engineering. Although HPC [23], is often viewed as a pure field of
computer science or a subset of it, it actually serves as a tool that
enables us to achieve exceptional results in science and engineer-
ing [22]. Since early on, computers have been primarily utilized for
extensive arithmetic computations. However, recent advancements
in electronics have also made edge computing integral to high-
performance computing. Additionally, we have witnessed remark-
able growth in computer architecture, leading to the development
of powerful HPC machines, with supercomputers now reaching
exaflop powers. Nevertheless, there are still challenges in utilizing
these powerful machines due to the lack of knowledge in integrat-
ing physics and mathematics into HPC. Furthermore, complications
with the software stack and common parallel programming models
that target exascale computing (heterogeneous computing) persist.
In this context, we present our effective course design for HPC train-
ing, focusing on CUDA, OpenACC, and OpenMP courses, which
aim to equip STEM graduates with HPC knowledge. We also discuss
how our training stands out in comparison to other NCC training
frameworks in the EuroCC context and promotes lifelong learning.

KEYWORDS
CUDA, OpenMP, OpenACC, EuroCC, HPC Training

1 INTRODUCTION
The concept of a computer has existed since the 19th century. In the
early nineteenth century, Charles Badge had the idea of a differential
machine [20], one of the early visions of present-day computers.
Over the years, it has been developed, and now we are in the era
of exascale computing power. However, as we develop advanced
computer architecture, software and parallel programming models,
we also see an increasing gap in the efficient use of these powerful
machines. We recognize that HPC centres have provided training for
STEM disciplines for decades, but the limited number of trainers has
hampered the ability to scale HPC training, and much of the training
has yet to reach a broad audience. The opportunity to introduce
parallel programming and supercomputer architecture to a broader

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/2/4

group of students studying mathematics, engineering, and physics
is crucial because their applications are very demanding in terms of
using the power of supercomputers, whether in computational fluid
dynamics, material science, or cosmology. In this work, we present
a different approach that uses online courses in order to scale HPC
training. At the same time, we are fortunate to live with relatively
advanced technology around us; for example, our smartphones
have more than a single CPU core and our laptops. However, the
question is whether those with an educational background in STEM
are aware of this or whether they can use these cores efficiently if
they want to do any computations. Even though academic programs
exist for computational science or scientific computing, they are still
not well-received, and we do not have enough people graduating
from those programs. Recently, in the EU, an initiative focused on
the master’s programme in high-performance computing1, which
focuses on from computer science to scientific computing. This
initiative aims to produce more graduates who can efficiently use
the available HPC power we have now and in the future to enable
better science and engineering.

2 RELATEDWORK
There are numerous platforms and organizations that offer HPC
training courses throughMOOCs [3, 4, 7, 8, 11], online courses from
reputable universities, PRACE Training Events [19], and HPC cen-
ters such as BSC, Julich, and CINECA. Additionally, various MOOC
platforms provide different learning paths for specific courses. Mas-
sachusetts Institute of Technology also offers online courses for a
wide range of topics [9]. However, there are some constraints that
could hinder learners from achieving their learning goals:

• MOOC courses usually require payment and may necessitate
subscribing to multiple courses.

• If a participant misses an online session, they may not be
able to catch up with the course content, even if they can
access the slides afterwards due to limitations in the slide
information.

• Some sessions may only include 2-3 hours of presentation
recordings without practical sessions. For instance, in par-
allel programming courses, participants may not have the
opportunity to apply what they have learned from the lecture
videos.

3 IMPORTANCE OF HPC IN STEM
Computers are essential for performing calculations in STEM fields,
which require extensive computation and visualization. However,

1https://eumaster4hpc.uni.lu/

Volume 15, Issue 2 Journal of Computational Science Education

16 November 2024

https://doi.org/10.22369/issn.2153-4136/x/x/x

there is a noticeable gap in high-performance computing (HPC)
skills among graduates and individuals with backgrounds in physics,
engineering, and mathematics. For instance, someone studying me-
chanical engineering may be proficient in using specific software
for parallel computing but may lack knowledge about the paral-
lelization capability of the software or the HPC machine being
used. Each educational program typically emphasizes its own field,
which is appropriate. However, it is also important to introduce
programming and computer architecture to graduates and post-
graduates alongside their core STEM courses. This approach not
only fosters interdisciplinary understanding but also encourages
parallel simulation and computation, leading to enhanced creativity
among engineers, physicists, and mathematicians and potentially
accelerating technological advancements.

Efforts have been made to integrate computer and programming
knowledge into STEM fields, resulting in the emergence of a new
educational profile called "computational science." For example, a
specialization like computational science: mechanics focuses on
solids, fluids, and heat transfer, emphasizing methodologies and
their computer implementation, including parallel architecture and
parallel programming. We must realize how many universities
worldwide offer these kinds of educational profiles. Therefore, it
is essential not only for people following computational science
to be exposed to computers and parallel programming but also
to the entire STEM background. As we witness, we come across
supercomputers and parallel programming applications in every
field, whether artificial intelligence, material science, or mechanical
engineering.

4 HPC KNOWLEDGE IN STEM
In the past decades, students studying computational science have
been introduced to parallel architecture and parallel programming,
which has enabled them to run simulations on supercomputers. To-
day, we are exposed to exascale supercomputers, laptops with pow-
erful cores, and even our mobile phones. This growth is expected
to continue, making a good understanding of parallel architecture
and parallel programming beneficial for speeding up computations
or visualizations in any STEM field.

However, we can not suddenly impose the idea that people from
all STEM backgrounds must study parallel architecture or paral-
lel programming. Therefore, interested individuals with a STEM
background should be able to easily follow individual courses in
computer architecture and parallel programming. Our training pro-
gram is designed to help anyone quickly learn parallel programming
to target various parallel architectures, such as GPU or multicore
CPU.

5 HPC TRAINING INITIATIVE IN EUROPE
Europe has taken a significant initiative to promote HPC educa-
tion and training. Previously, PRACE [10] made substantial efforts
in promoting HPC education and training, along with other ac-
tivities, such as building and maintaining new HPC machines in
a centralized approach. After PRACE concluded, the EU initiated
a new project called EuroHPC JU2. Its functionality is similar to
PRACE, but it has a unique approach to research, installation of
2https://eurohpc-ju.europa.eu/

new HPC machines, education, and training. One of their primary
training initiatives is EuroCC [6], in which many partner EU coun-
tries are participating and providing HPC training in their own
country using either their own supercomputers or one of the JU su-
percomputers. This initiative is typically referred to as the National
Competence Centre (NCC). Since Luxembourg is part of the EU, it
also takes part in the EuroCC initiative, which promotes activities
in high-performance computing (HPC) in Luxembourg, along with
providing education and training in HPC. The EuroCC project is
currently in its second phase, which began on September 1𝑠𝑡 , 2023,
and will continue until August 2026 [5].

5.1 EuroCC
EuroCC was established around September 2020 [6], and since then,
each EU member state has been promoting HPC training activities
within their respective countries, particularly targeting individuals
with a background in STEM education. As the initiative is relatively
new, most of the National Competence Centers (NCCs) are working
independently to develop courses that promote HPC education in
their own countries. As part of this initiative in Luxembourg, we
have conducted education and training in HPC, focusing on parallel
programming courses in CUDA, OpenACC, and OpenMP.

5.2 HPC Training in NCC Luxembourg
Geographically, Luxembourg is a very small country compared
to its neighbouring countries. NCC Luxembourg has three part-
ners: Luxinnovation3, Luxembourg University4 and LuxProvide.
Although it has many industries, including engineering and tech-
nology, especially the financial and law sectors, many professionals
and graduates still lack HPC knowledge in the sense of using HPC
machines (for example, intra-node and accelerators) efficiently and
parallelizing their applications. Therefore, we provide HPC training
in Luxembourg to promote scientific computing within Luxem-
bourg and beyond. Our training is in English and uses the national
supercomputer MeluXina (it is also part of the JU supercomputer).

Figure 1: The NCC Luxembourg training website page.

3https://www.luxinnovation.lu/
4https://www.uni.lu/en/

Journal of Computational Science Education Volume 15, Issue 2

November 2024 17

6 TRAINING STRUCTURE
Since our NCC is very young and before we start training, we
wanted to make sure we provide excellent and optimistic train-
ing within HPC. For this, we have adopted two well-known and
well-practised instructional design (ID) approaches: the ADDIE
model [13], see Figure 2 (left) and Merrill’s First Principle Instruc-
tions [17], see Figure 2 (right).

The ADDIE model consists of five key components:
• Analysis
• Design
• Development
• Implementation
• Evaluation

Analysis. Initially, we distributed questionnaires to public and
private institutes in Luxembourg. The questionnaires aimed to
gather information on the use of parallel simulation, GPU usage,
knowledge of efficient multicore CPU utilization, and more. For
example, we asked about the fields in which parallel simulation
is being used, the use of GPUs or willingness to use GPUs, and
knowledge of efficient multicore CPU utilization. This information
will provide an overview and help reduce the performance gap of
HPC skills in Luxembourg. The responses provided valuable in-
sights, allowing us to understand the current landscape and identify
areas for improvement. To identify knowledge and skills gaps, we
collected essential information to design our HPC training. This
included determining the target audience, skill levels, computing
resources, and participant’s interest in various HPC training topics.
Based on our analysis, we decided to organize the training into the
following courses:

• CUDA
• OpenACC
• OpenMP

Design. In the design phase of the ADDIE model, we focused on
different topics and their learning outcomes. We primarily concen-
trated on the course structure and teaching aids, such as choosing
the website layout for hosting course material to include both lec-
ture material and hands-on sessions. We also selected appropriate
topics (learning outcomes) for lectures and hands-on sessions. For
hosting the teaching material, we decided on the GitHub repository
and created the hands-on session; we chose MkDocs to create the
website5, please see Figure 1. During the design phase, we decided
to structure our training as follows:

• Preparation Session (approximately 1 hour)
• Break 1 (lunch break, up to 60 min.)
• Lecture Part 1 (strictly 45 min.)
• Break 2 (up to 15 min.)
• Lecture Part 2 (strictly 45 min.)
• Break 3 (up to 15 min.)
• Hands-on Session 1 (strictly 45 min.)
• Break 4 (up to 15 min.)
• Hands-on Session 2 (strictly 45 min.)

We limit each lecture and hands-on session (except the prepara-
tion session) to a maximum of 45 minutes. This is primarily based

5https://ncclux.github.io/NCC-Trainings/

on attention span and learning, cognitive load theory, spacing ef-
fect, student engagement, information retention, and learning out-
comes [12, 14, 16, 18, 21]. In between lectures and hands-on ses-
sions, we have a 15-minute break, which is also loosely based on
Pomodoro Technique [15], where a short period of break increases
the learning capacity. Our courses are meant to last only half a day,
which is 4-5 hours. We believe that this would be very efficient
and compact. In addition, HPC courses are mostly self-thought-out
after participants take the classes. The more someone practices, the
more experience they will get. Therefore, keeping the course for an
entire day or more than a day would not be very efficient in terms
of learning outcomes.

Development. In the Development section, we conduct our train-
ing online to ensure that everyone can participate without any
constraints, such as needing to be on-site (which would require
travel time) or take leave from work. This is especially important
as it allows people with transportation issues to participate as well.
Additionally, we wanted our training activities to reach beyond
Luxembourg, so we prefer to keep our training online. During the
development stage, we prepared the lecture and hands-on session
using GitHub with MkDocs, while ensuring that our training ma-
terial fulfills the learning outcomes. We also utilized Material for
MkDocs, which provides a nice layout for text, figures, and coding.

Figure 2: A schematic overview of the ADDIE Model (left)
and Merrill’s First Principles of Instruction (right).

Implementation. This phase involves delivering the course to the
participants. We typically announce the course 5-6 weeks before it
starts to allow participants to register. We use various communica-
tion channels such as Twitter, LinkedIn, and our course webpage to
promote the training. After each course, we gather feedback from
the participants to make improvements.

Evaluation. We analyze the feedback collected during and after
the training to determine if any suggestions need to be adopted for
future iterations. We maintain this approach on a regular basis to
ensure efficient learning outcomes for learners. Even if we meet
the learning outcomes after the training, we still look for further
improvement in the course development. Typically, after the course,
we send out a questionnaire to participants to improve our course
content. For example: 1) Was the trial-run session informative,
or do you need more instructions on the training page? 2) Did
the lecture portion was informative and aligned with the course
learning outcomes? 3) Were the hands-on sessions compatible with
the lecture content and aligned with the learning outcomes?

We received the following feedback: participants would likemore
information on the trial-run session, and in addition, they would
like to participate in advanced courses for inter-node computation.

Volume 15, Issue 2 Journal of Computational Science Education

18 November 2024

This feedback will be included in the following training sessions,
and new training on inter-node environment is being prepared.

Participants liked our approach, such as 45-minute lectures (45
X 2) with breaks and 45-minute hands-on sessions (45 X 2). This is
because in some courses, the lecture part goes beyond 45 minutes,
and the hands-on session also goes on continuously without a break.
Additionally, they are really happy with the hands-on sessions and
how they are organized, which are aligned with the lecture part and
learning outcomes. Overall, participants are satisfied with each of
our courses, which deal with logging in to supercomputers, learning
parallel programming, and performing analysis.

Figure 3: The number of participants who actively used the
learning website during and after the course.

We also monitor our training page through Google Analytics
for further analysis of hands-on sessions; for example, some par-
ticipants spend less or more time on one topic. This eventually
leads to more thought about that topic for further improvement;
for instance, Figure 3 shows the user’s statistics (by country) we
obtained from Google Analytics.

As we have discussed earlier, the ADDIE model has been adopted
to develop our courses; however, we paid even more attention
to the hands-on session and followed Merrill’s First Principles of
Instruction. The following shows those principles and how they
have been adopted to organise our hands-on session:

• Problem-centered: We start with a simple hello world pro-
gram and then progress to more BLAS examples.

• Activation: Each part of the hands-on session addresses key
questions derived from the learning outcomes stated in the
course description, ensuring active participation throughout
the session.

• Demonstration: Initially, we present an example of a specific
problem, such as vector addition. We display the C/C++ code
of the sequential version and provide the framework for
converting it to the parallel version. Participants are required
to focus on crucial areas to subsequently convert the code
to the parallel version.

• Application: We align practice activities with learning out-
comes and gradually reduce guidance to foster learner’s
independence. For instance, we introduce entirely new ques-
tions based on previous problems that are still closely related.
Please refer to list 7.4 for an example, where we pose ques-
tions that are linked to previous ones, but participants need
to work independently.

• Integration: We encourage learners to apply their learning to
their own scientific problems at work or in research. Towards
the end of the training, we prompt participants to apply the
learning outcomes to their own problems. For example, the
CUDA programming model can be employed in fields such
as CFD, solid mechanics, material science, and biomedical
applications.

7 DETAILED TRAINING OUTLINE
In this section, we provide practical details about our training,
focusing on learning outcomes to give readers a better idea of how
the training was conducted.

7.1 Preparation
Our courses are tailored for individuals with a STEM educational
background, so we don’t anticipate extensive experience with the
HPC machine. Therefore, we commence our training with a prepa-
ration session. During this session, participants can log into the
MeluXina6 HPC machine to familiarize themselves with it. This is
crucial as they will need to use the machine later for the practical
sessions. The purpose of this session is to minimize any time loss
during the practical sessions and to assist participants in loading the
necessary modules for compiling and executing the test problem.
This way, they will already have an understanding of how to log in
to the machine, load the modules, compile, and execute the tasks.
We schedule this session for about an hour, usually before lunch,
typically between 11:00-12:00.

7.2 Lecture part 1
In this first part of the lecture we will outline the course structure
and discuss the significance of HPC (High Performance Computing)
along with its various applications. We will cover examples of its
use in computational fluid dynamics and material science. Since
our participants come from diverse educational backgrounds, we
aim to demonstrate the relevance of HPC in their respective fields
rather than focusing on a single domain.

We will begin by explaining the basic architecture of computers.
Our goal is to establish a solid understanding of parallel architecture
before diving into parallel programming syntax, such as CUDA or
OpenMP. By understanding the distinctions between multicore
CPUs vs. single-core CPUs and CPUs vs. GPUs, participants will
be better prepared to grasp parallel programming concepts. This
practical approach is similar to understanding a car’s design before
learning to drive. It’s beneficial to comprehend the car’s design,
such as the number of available gears, speed, camera settings, etc.,
for better manoeuvring the vehicle.

One example that illustrates the distinct difference between
GPUs and CPUs is their core count. GPUs have more cores than
CPUs, making them faster. For instance, the Intel®Core™ i7-10700K
Processor has a base frequency of 3.80 GHz, while the Nvidia Am-
pere GPU has a frequency of 0.765 GHz. Although the CPU’s
frequency is higher, the GPU can achieve high throughput due
to its numerous cores and ability to handle parallel threads more
efficiently than the CPU. Additionally, we provide various figures

6https://www.luxprovide.lu/meluxina/

Journal of Computational Science Education Volume 15, Issue 2

November 2024 19

Figure 4: A simple illustration of the difference between the
CPU and GPU (left). The CPU has a higher frequency than
the GPU; however, the GPU operates in groups using SIMT
(right).

to support these concepts; Figure 4 is an example that visually
demonstrates the disparity between CPU and GPU.

In the subsequent sections, we will delve into essential code
syntax and APIs of parallel programming models, explaining their
use cases and suggesting effective utilization strategies.

7.3 Lecture Part 2
The second part of the lecture analyses more detailed aspects of
the topic. For example, when discussing CUDA programming, we
start by explaining how to print a simple hello world program
from the GPU. We then cover fundamental concepts in parallel
programming applicable to both CPUs and GPUs. Additionally, we
explain memory management, and how parallel threads can be
created and used efficiently. Finally, we conclude lecture part 2 by
presenting examples of BLAS operations and emphasizing the use
of profiling tools.

7.4 Hands-on Session 1
For the hands-on session, we have developed a website that par-
ticipants can access, for example, in OpenACC [2]. We cover a
minimum of 5 key topics in the hands-on session; the first session
will cover topics 1 to 2. Each section will examine a specific topic
concept in detail with an explanation and will also include ques-
tions. Instead of simply asking participants to solve problems, we
pose questions related to techniques that could be used to solve a
problem. For instance, in the CUDA programming course, in the
vector addition section7, we ask the following questions for the
hands-on session topic 1:

• What happens if you remove the _syncthreads() from the
__global void vector_add(float *a, float *b, float
*out, int n) function?

• Can you remove the if condition 𝑖 𝑓 (𝑖 ≤ 𝑛) from the global
void vector_add(float *a, float *b, float *out,
int n) function? If so, how can you do that?

• Here, we do not use the cudaDeviceSynchronize() in the
main application. Can you figure out why we do not need to
use it?

7.5 Hands-on Session 2
In the second part of the hands-on session, we will cover the re-
maining training topics. The hands-on exercises are well-designed,
with questions for participants to work on. Each topic will cover

7https://ncclux.github.io/NCC-Trainings/cuda/exercise-2/

specific concepts, from fundamental to advanced, and we have pro-
vided code skeletons for each concept to ensure that participants
can complete the exercises within the allotted time. Even if some-
one cannot finish during the training session, they can still use the
material for self-paced learning, as we plan to keep the training
material available for an extended period.

8 TOPICS AND LEARNING OUTCOMES
The "Topics and Learning Outcomes" section outlines the three
courses and their respective learning outcomes, as well as our
approach to training based on these outcomes.

8.1 Training in CUDA
The CUDA training is designed for participants at beginner to
intermediate levels [1], and the learning outcomes are as follows:

• Understanding the GPU architecture (and also the difference
between GPU and CPU)
– Streaming architecture
– Thread blocks

• Implement the CUDA programming model
– Programming structure
– Device calls (thread blocks organization)
– Host calls (kernel calls)

• Efficient handling of memory management
– Host to Device
– Unified memory

• Apply the CUDA programming knowledge to accelerate
examples from science and engineering
– Iterative solvers from science and engineering
– Matrix multiplication, matrix-vector multiplication, BLAS
routines, etc.

Lectures. In the "Lectures" section, the focus is on comparing
the basic architecture of the CPU and GPU. The concept of stream-
ing multiprocessors (SMs), thread blocks, and single instruction
multiple threads (SIMT) programming methodology on GPUs is
discussed. The organization of SMs in the GPU and its memory
organization between global, L2, shared, and L1 are detailed. The
organization of thread blocks in the CUDA programming model
is emphasized, along with the creation and conversion of 1D, 2D,
and 3D thread blocks as needed. The latest GPU architecture ad-
vancements and compute capability are also presented. A simple
CUDA programming model is demonstrated, including the con-
struction of device functions and device calls from the host (kernel)
using necessary API and CUDA qualifiers. Finally, essential BLAS
operations like vector addition and multiplication using the CUDA
programming model are showcased. The section concludes with a
brief introduction to profiling the code and identifying bottlenecks,
such as GPU occupancy and data transfer time between CPU and
GPU.

Hands-on Session. During the hands-on session, participants can
go through the example and work on some questions based on
that example. In this way, they would have a better understanding,
which they could connect with lectures and hands-on sessions.

We structured our hands-on session as follows:

Volume 15, Issue 2 Journal of Computational Science Education

20 November 2024

• Hello World: It shows how to use simple CUDA APIs to
work on Hello World, for example, kernel calls and how to
include the thread blocks in the kernel block.

• Vector Addition: It is interesting, in terms of creating more
thread blocks, for example, 1D simultaneously, how compu-
tation can be offloaded to GPU, such as data transfer to GPU
and transferring back solution to CPU.

• Matrix Multiplication: Till now, participants have seen how
to make just one loop into a 1D block that matches SMIT,
whereas in matrix multiplication, out of three loops, inner
loops should be sequentialised. This is an excellent example
of parallelizing multiple loops.

• Shared Memory: Most of the time, we might end up do-
ing computation, which uses data that is being used often.
Hence, knowing how to keep data in the shared memory
decreases the latency; we support this example with matrix
multiplication.

• Unified Memory: It simplifies the CUDA programming struc-
ture. Most programmers make data-handling mistakes be-
tween CPU and GPU. Therefore, unified memory option
would be a good option if someone does not want to pay
more attention to data movement between CPU and GPU.

• Profiling and Performance: It is essential to understand how
the given code is being executed efficiently in the GPU; we
show some examples of Nsight Systems and Nsight Compute.

8.2 Training in OpenACC
Below are the learning objectives for the OpenACC programming
model.

• Understanding the GPU architecture (including the differ-
ences between GPU and CPU)
– Streaming architecture
– Thread blocks

• Implementing the OpenACC programming model
– Compute constructs
– Loop constructs
– Data clauses

• Efficient memory management
– Host to Device
– Unified memory

• Applying OpenACC programming knowledge to accelerate
science and engineering examples
– Iterative solvers from science and engineering
– Matrix multiplication, matrix-vector multiplication, BLAS
routines, etc.

In our OpenACC course, we primarily focus on GPU execution.
This is because we aim to provide an alternative option for GPU
programming, instead of the CUDA programming model. During
the lectures, we investigate the fundamental differences between
GPU and CPU architectures, including details such as streaming
multiprocessors (SMs), GPU processing cluster (GPC), and memory
hierarchy in the GPUs. We also discuss thread blocks in OpenACC,
which, despite its similarity to directive programming, provides a
low-level API for defining thread blocks that can be set manually.

The first part of the lecture covers important APIs from Ope-
nACC, such as parallel and kernel, which are used for paralleliz-
ing loops. Data movement in the programming model is a crucial
aspect of GPU programming, and we cover high-level APIs avail-
able in OpenACC for data movement between CPU and GPU, such
as create, copyin, copyout, and copy. Additionally, we demon-
strate working examples of BLAS routines, which involve nested
loops and data movement of dynamic arrays between CPU and
GPU. Finally, we explore the use of unified memory programming
options and profiling tools to efficiently parallelize sequential code
on a GPU.

Hands-on Session. During the hands-on session, we covered the
following topics:

• Compute Constructs and Parallelize Loops: We provided
examples of using parallel and kernels, such as the hello
world example with a loop.

• Data Locality: We discussed OpenACC’s low-level and high-
level APIs for data movement between GPU and CPU, andwe
considered the use of BLAS routines to support this concept.

• Optimize Loops: By default, the OpenACC compiler selects
an appropriate number of thread blocks to parallelize the
loops. However, sometimes it is beneficial to set multiple
thread blocks for better performance. This section covers
these approaches.

• Unified Memory: Similar to the concept of CUDA, in Ope-
nACC, enabling unified memory is as simple as adding a
compiler flag. This simplifies the necessary data transfer API
in OpenACC.

• Profiling and Performance: This provides more information
during compilation, such as kernel execution thread blocks
and the frequency of other API calls throughout the appli-
cation execution. Additionally, the NVHPC compiler offers
numerous options for profiling OpenACC code.

8.3 Training in OpenMP
The OpenMP training introduces parallel architecture and gradually
introduces parallel programming; the following are the learning
outcomes from OpenMP training.

• Understanding the shared memory architecture
– Unified memory access (UMA) and Non-unified memory
access (NUMA)

– Hybrid distributed shared memory architecture
• Implementing the OpenMP programming model
– Parallel region
– Environment routines
– Data sharing

• Efficient handling of OpenMP constructs
– Work sharing
– Synchronization constructs
– Single instruction multiple data (SIMD) directive

• Applying OpenMP programming knowledge to parallelize
examples from science and engineering:
– Iterative solvers from science and engineering
– Matrix multiplication, matrix-vector multiplication, BLAS
routines, etc.

Journal of Computational Science Education Volume 15, Issue 2

November 2024 21

Lectures. OpenMP begins with an overview of computer archi-
tecture, covering shared and distributed memory architecture. It
briefly explains single instruction single data (SISD), single instruc-
tion multiple data (SIMD), multiple instruction single data (MISD),
and multiple instruction multiple data (MIMD) architectures. This
knowledge is essential for understanding how programming can
utilize the OpenMP programming model.

Next, the lecture explores the important role of the OpenMP
environment, which is necessary for the successful implementation
of the OpenMP programming model. The discussion then covers
topics such as data sharing and work sharing, including the loop
construct, sections construct, single construct, andmaster construct,
which are crucial for SIMD and data lock or to avoid data race
conditions.

Finally, the lecture concludes by demonstrating the use of various
profiling tools for OpenMP performance analysis.

Hands-on Session. The hands-on session for OpenMP is orga-
nized as follows:

• Parallel Region: The parallel construct is crucial to under-
stand when learning the OpenMP programming model. In
this section, we demonstrate how to use the parallel con-
struct and how to invoke it in the application. We also intro-
duce other OpenMP API routines needed for the parallel
construct.

• Data Sharing Attribute: To avoid data race or deadlock in
OpenMP, we explain the methodology and provide examples
using private, shared, firstprivate, and lastprivate.

• Work Sharing Constructs (loop): The previous parallel con-
struct created a parallel region, but often we need parallelism
in the loop. For this, we introduce #pragma omp for, which
enables SIMD programming capability.

• Work Sharing Constructs (loop-scheduling): This section
helps programmers efficiently share loops based on the prob-
lem and available resources, using static, dynamic, guided,
and auto.

• Worksharing Constructs (others): Here, we introduce how
to parallelize nested loops, which is commonly encountered,
especially during BLAS operations.

• Profiling and Performance: We introduce profiling tools such
as Intel APS, ARM Forge, Intel Advisor, Intel Inspector, and
Intel VTune for a better understanding of profiling the code,
memory leaks, latency, finding potential hot spots, etc. Fig-
ure 5 shows an example of the hands-on session topics in
OpenMP.

9 CONCLUSIONS AND FUTURE DIRECTIONS
The training within NCC Luxembourg took place in 2023. Each
course had around 20-30 participants. We have observed that the
approach we adopted, especially the course delivery structures, is
working very well for HPC courses. We are expanding our offer-
ings to include more domains and additional parallel programming
courses such as OpenMP Offloading, SYCL, OpenCL, etc. Addi-
tionally, we plan to offer courses in HPC software for science and
engineering applications, such as ANSYS, OpenFOAM, GROMACS,
and ABINIT. Furthermore, we intend to organize boot camps and

Figure 5: An example from our hands-on session on OpenMP.

hackathons in collaboration with local companies and hardware
vendors like Nvidia and AMD.

ACKNOWLEDGMENTS
The authors express their gratitude to EuroHPC JU and EuroCC
for funding the training initiative in Luxembourg. Additionally,
appreciation is extended to our NCC partners: Luxinnovation, Lux-
embourg University, and LuxProvide, for their support during the
training event.

REFERENCES
[1] 2023-2024. Introduction to GPU Programming Using CUDA. https://ncclux.

github.io/NCC-Trainings/cuda/
[2] 2023-2024. Introduction to OpenACC for Heterogeneous Computing. https:

//ncclux.github.io/NCC-Trainings/openacc/
[3] 2024. Coursera. https://www.coursera.org/
[4] 2024. edX. https://www.edx.org/
[5] 2024. EuroHPC JU - EuroCC1. https://www.eurocc-access.eu/
[6] 2024. EuroHPC JU - EuroCC2. https://eurohpc-ju.europa.eu/
[7] 2024. FutureLearn. https://www.futurelearn.com/
[8] 2024. Khanacademy. https://www.khanacademy.org/
[9] 2024. MIT OpenCourseWare. https://ocw.mit.edu/
[10] 2024. Partnership For Advanced Computing In Europe. https://prace-ri.eu/
[11] 2024. Udacity. https://www.udacity.com/
[12] Donald Bligh. 1985. What’s the use of lectures? Journal of Geography in Higher

Education 9, 1 (1985), 105–106.
[13] Robert Maribe Branch. 2009. Instructional design: The ADDIE approach. Vol. 722.

Springer.
[14] Nicholas J Cepeda, Harold Pashler, Edward Vul, John T Wixted, and Doug Rohrer.

2006. Distributed practice in verbal recall tasks: A review and quantitative
synthesis. Psychological bulletin 132, 3 (2006), 354.

[15] Francesco Cirillo. 2018. The Pomodoro technique: The acclaimed time-management
system that has transformed how we work. Currency.

[16] Scott Freeman, Sarah L Eddy, MilesMcDonough, Michelle K Smith, Nnadozie Oko-
roafor, Hannah Jordt, and Mary Pat Wenderoth. 2014. Active learning increases
student performance in science, engineering, and mathematics. Proceedings of
the national academy of sciences 111, 23 (2014), 8410–8415.

[17] M David Merrill. 2007. First principles of instruction: A synthesis. Trends and
issues in instructional design and technology 2 (2007), 62–71.

[18] Fred Paas, Alexander Renkl, and John Sweller. 2003. Cognitive load theory and
instructional design: Recent developments. Educational psychologist 38, 1 (2003),
1–4.

[19] PRACE 2024. PRACE Training Events. PRACE. https://events.prace-ri.eu/
category/1/.

Volume 15, Issue 2 Journal of Computational Science Education

22 November 2024

https://ncclux.github.io/NCC-Trainings/cuda/
https://ncclux.github.io/NCC-Trainings/cuda/
https://ncclux.github.io/NCC-Trainings/openacc/
https://ncclux.github.io/NCC-Trainings/openacc/
https://www.coursera.org/
https://www.edx.org/
https://www.eurocc-access.eu/
https://eurohpc-ju.europa.eu/
https://www.futurelearn.com/
https://www.khanacademy.org/
https://ocw.mit.edu/
https://prace-ri.eu/
https://www.udacity.com/
https://events.prace-ri.eu/category/1/
https://events.prace-ri.eu/category/1/

[20] Doron Swade and Charles Babbage. 2001. Difference engine: Charles Babbage and
the quest to build the First Computer. Viking Penguin.

[21] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[22] U.S. Department of Energy 2024. Exascale Computing Project. U.S. Department of
Energy. https://www.exascaleproject.org/.

[23] Laurence T Yang and Minyi Guo. 2005. High-performance computing: paradigm
and infrastructure. John Wiley & Sons.

Journal of Computational Science Education Volume 15, Issue 2

November 2024 23

https://www.exascaleproject.org/

Scientific Computation in Jupyter Notebooks using Python
Mark Matlin

Bryn Mawr College
mmatlin@brynmawr.edu

ABSTRACT
Computation is a significant part of the work done by many prac-
ticing scientists, yet it is not universally taught from a scientific
perspective in undergraduate science departments. In response to
the need to provide training in scientific computation to our stu-
dents, we developed a suite of self-paced “modules” in the form of
Jupyter notebooks using Python. These modules introduce the ba-
sics of Python programming and present a wide variety of scientific
applications of computing, ranging from numerical integration and
differentiation to Fourier analysis, Monte Carlo methods, parallel
processing, and machine learning. 1 The modules contain multiple
features to promote learning, including “Breakpoint Questions,”
recaps of key information, self-reflection prompts, and exercises.

KEYWORDS
Scientific computation, Python, Jupyter notebooks

1 INTRODUCTION
The modules were developed under a grant from the TIDES (Teach-
ing to Increase Diversity and Equity in STEM) project of the Asso-
ciation of American Colleges & Universities. 2 It is intended that
the modules will provide a largely independent learning experience
in algorithmic thinking and scientific programming for science
students, but they also could serve as the core content of or a sup-
plement to a formal course.

Our strategy in the first year of the grant was to design a Com-
putational Methods pilot course, primarily for physics majors but
also other physical science students, that would serve as a tempo-
rary vehicle to develop, pilot, and assess modular learning units in
a blended learning format, and to gain experience with teaching
practices that support diverse classrooms. That course, PHYS 350,
was offered at Bryn Mawr in the spring of 2015. It was run mainly
by the author as a computational lab: students were asked to do
readings in the modules ahead of class time, and they worked on
the embedded exercises during class. Lecturing was kept to a bare
minimum. Help was available from the author, a colleague, and a
TA, but the students usually looked to their classmates for help,
and that was encouraged.
1Much of the scientific computation content was based on the outstanding textbook
Computational Physics, Mark Newman, CreateSpace Independent Publishing Platform,
2012.
2Former colleagues Elizabeth McCormack (now at Bowdoin College) and Doug Blank
(now at Comet ML) were members of the Bryn Mawr TIDES team.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/2/5

A secondary goal of the set of modules beyond teaching compu-
tation (and the focus of the TIDES project) is to attract to computing
and computational science students from groups typically under-
represented in those fields. One approach to that goal is to give
students an appreciation of the wide range of individuals who have
contributed to the development of computational science, or who
have used it in interesting or important ways. This approach is
implemented in nearly every module by the inclusion of a brief
scientist profile, most of which were developed by the students
in PHYS 350. A second approach, which was employed at regular
intervals in that course, was to ask students a “reflection question”
meant to encourage them to think about how science and compu-
tation was relevant to them and could serve their personal goals.
Multiple reflection questions are now presented in the modules.

Since the first offering of PHYS 350, the modules have been used
more than a half dozen times in labs offered at both the first- and
second-year levels, by the author and separately by two colleagues
who were not previously familiar with the modules. As a result of
these experiences, involving roughly 100 students, we now offer the
lab in the second semester of the sophomore year, when we believe
our students can get the most from the course while also acquiring
computational skills in time for them to be used in upper-level
courses.

2 THE MODULES
At the core of our methodology for developing the computational
materials was an open-source technology called a “computational
notebook.” These integrate text, formatted equations in LaTeX,
computations, visualizations, and other media such as sound and
video, and render it in a web browser window. Computational
notebooks easily allow students to author, reproduce, and adapt
code, and insert text and hyperlinks. We believed the notebook
format of computation would allow us to implement our blended
approach to create modules that could be easily distributed to other
institutions. Most importantly, the notebook platform allowed us to
integrate culturally responsive material and activities directly into
the computational instruction modules. In addition, computational
notebooks could be used by the students to express their own
narratives and personal connections in the form of “reflections”
directly alongside their coding work.

Specifically, for our project we used the Jupyter open-source
notebook framework (https://jupyter.org/), which supports over
40 computing languages. A significant advantage to utilizing an
open-source platform is that students will have access to it free of
charge, even after they have left Bryn Mawr College. (An open-
source distribution of Python, which includes the Jupyter platform
as well as many useful Python packages, is Anaconda, https://www.
anaconda.com/.)

Volume 15, Issue 2 Journal of Computational Science Education

24 November 2024

https://doi.org/10.22369/issn.2153-4136/x/x/x
https://www.anaconda.com/
https://www.anaconda.com/

Our 14 initial modules (one with multiple parts) all use the
Python programming language. (A zeroth module introducing com-
putation and providing lists of resources is offered as a PDF file;
two additional modules on advanced topics have been added more
recently.) Python is especially well-suited for computing education
and is used by researchers in a variety of fields, including biology,
physics, chemistry, linguistics, and computer science. Using authen-
tic tools on authentic problems has been shown to be effective in
education [1].

Module 0 introduces computing in general and, over three parts,
Module 1 introduces the basics of programming and Python, as
well as some software library packages that extend the power of
Python for scientific computing. Module 2 discusses the concepts
of numerical error and computing time. Module 3 presents the first
application of computing to problems relevant in physics: the Euler-
Cromer method is used to solve one- and two-dimensional motion
problems, without and with drag. (The exercises for this module
include ones modeling projectile motion in the distance-dependent
gravitational field of Earth, the flight of a rocket accounting for mass
loss, and a solar-sail- powered spacecraft.) Module 4 introduces the
forward, backward, and central derivatives, as well as interpolation.
Our typical second-year student can get through the preceding
modules and at least part of Module 4 in a one-semester course.

Subsequent modules cover important topics in scientific compu-
tation that a student might find useful in their upper-level courses
or in research: numerical integration, linear equations, eigenvalue
equations, data analysis /visualization, Fourier techniques, nonlin-
ear equations, ordinary differential equations, partial differential
equations, Monte Carlo methods, symbolic computation, object-
oriented programming, parallel computing, and machine learning.
A detailed table of contents of all the modules is provided in an
appendix to this article.

An Instructor’s Guide to the modules, including a flowchart of
module dependencies, is provided along with the modules (see the
Conclusion section). It also includes an overview of all the modules
with some instructions for their use, the prompt we present to
students for developing scientist profiles, and several reflection
prompts.

As noted, the computational modules were designed with several
features intended to help meet the goals of the TIDES project to
enhance diverse and inclusive learning. Some of these features were
formulated with the principles of Universal Design for Learning
in mind. (The UDL philosophy is to provide learning materials
and modalities that will assist all students, including those from
underrepresented groups in STEM.) The features we incorporated
in the modules are:

(1) Context information: The start of each module lists the prior
modules with which students must be familiar in order to
undertake the current module; a time estimate for reading
and working through the module, including the exercises;
and the learning goals for the module. Some modules also
include a brief list of some interesting applications of the
mathematical tools presented in the module. (Module 0 omits
the last two elements, as well as features 2-5 below.)

(2) Scientist profile: Each module contains a personal profile of
a scientist connected with computing that describes their

work and some interesting facts about their life; most of
these profiles were generated by students. In constructing
the profiles, the students were asked to focus on more-or-
less contemporary individuals whose lives or work they
found inspiring in some way. We plan to continue to ask
students working with the modules to generate such profiles.
A couple of comments received from the students in the
PHYS 350 course regarding one of the profiles were “To me,
the most inspiring thing about this story was that Dean
grew up in a very difficult time for Black Americans, yet
still succeeded academically and professionally to a huge
degree. It reminds me that no matter where you come from
or what disadvantages you might start out with, if you are
dedicated, work hard, and love what you do, nothing can
stop you from achieving your goals. I think I can apply this
to my academics and career choice to help me decide what I
spend my life doing based on my true interests.” And “His
[Dean’s] story was very inspirational considering he was
an African American growing up in the 60’s and 70’s and
was able to achieve so much despite any adversity he faced.
He was able to work on many large projects, not just one,
which is something I aspire to do.”

(3) Breakpoints: These are quick questions provided to prompt
students to stop and think about what they have just read—
along with answers to those questions—so students can con-
firm their understanding immediately. (Student feedback
from the pilot course motivated inclusion of the breakpoint
answers in the modules themselves rather than in separate
solution sets.) A couple of example breakpoint questions
from the module on numerical differentiation are “Prove
this claim that 𝑏 is the derivative of the quadratic curve
𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 at 𝑥 = 0” and “Write out the expression for
the quartic (degree 4) approximation to the derivative.”

(4) Exercises: These ask students to put into practice the con-
cepts they learn in the modules. Those in early modules are
relatively straightforward to complete; the exercises increase
in difficulty as students progress through the sequence of
modules and build their skills and confidence. Many of the
exercises involve standard applications or computations that
students will encounter in their physics courses. (We hope
to add application problems from other scientific disciplines
where appropriate in the future.)

(5) Reflection prompts: During the Computational Methods pilot
course—which was run as an interactive session, sometimes
including a short lecture but with the bulk of the time used
for students working independently and in small groups—we
periodically posed questions designed to improve the stu-
dents’ metacognitive skills. Some of those questions and
others have been incorporated into the module notebooks
themselves so that students will encounter them no matter
the context in which they engage with the modules (i.e.,
whether in a course or during independent study). Examples
of reflection questions posed in the modules are “Which com-
ponents of this module did you find more difficult to work
through, and why do you think they were challenging?” and
“When you got stuck, what did you do to get unstuck? Could
this or similar actions be helpful if you get stuck in future

Journal of Computational Science Education Volume 15, Issue 2

November 2024 25

work?” The Instructor’s Guide includes additional prompts
that might prove useful.

(6) Recaps: Bullet-point lists near the end of each module sum-
marize the key takeaway ideas.

Other pedagogical elements connected with the modules that
can enhance their effectiveness include:

Term project: As part of the pilot course, students completed a
term project applying computation to some problem of personal
interest to themselves. Most students chose project topics related to
other courses they had taken or were taking, but one student chose
a topic connected to her personal interest in music. Assignments
that invite connections with a student’s personal goals and interests
can enhance motivation and persistence, two elements of learning
found to be key in the retention of students from underrepresented
groups in STEM [2, 3].

E-portfolio: To encourage students to see the connections be-
tween the modules and to recognize the full scope of their work,
we asked each student in the pilot course to compile all of their
module-related activities into an electronic portfolio (“e-portfolio”)
which they can use as evidence of their computational skills when
applying to jobs or graduate schools.

3 IMPLEMENTATION
The pilot course produced extensive feedback on the individual
modules from the 17 students in the course (nine women from Bryn
Mawr College, one woman and seven men from nearby Haverford
College), which was used to improve their clarity and sequencing.
The feedback resulted in the refinement of breakpoints and self-
reflection prompts, as well as the integration of the scientist profiles
directly into the modules. The first few of the updated and expanded
modules were next taught as part of the laboratory accompanying
our second-semester, calculus-based mechanics course for physi-
cal science majors. There, we found that attempting to teach the
basic material in a few weeks’ worth of two-hour lab meetings to
primarily first-year students was an overreach. Most of them had
no programming experience, and the challenge of learning that
skill on top of the physics they were learning in the course, not to
mention the other demands of being a first-year student in college,
was a bit too much to handle for many of them.

After an extensive departmental discussion, we decided to re-
arrange our sophomore-level labs so that one of them could be
converted to an exclusively computational lab. By placing the ba-
sic modules in a second-semester sophomore lab, we intended to
leverage the students’ greater mathematical maturity while still
introducing them to computing early enough in their college ca-
reers that they would have many opportunities to reinforce and
further extend those abilities in their junior and senior years. The
first offering of this computational lab occurred in Spring 2017
and was taught successfully by a new faculty member who had
not been involved in the development of the modules. The results
were promising: the students were able to get through the first five
modules, apparently without significant difficulty, and the faculty
member was able to learn and adapt the modules into the course
pedagogy. Additionally, the author has now taught this lab five
times since the pilot course and has updated the modules each
time in response to student difficulties. We will continue to present

the computational learning program in this way each year. More-
advanced modules will be assigned in upper-level physics courses,
and in our capstone senior seminar we will ask students to com-
plete and present their e-portfolios with a final reflection on their
computational learning.

4 CONCLUSION
With the twin goals of providing training in scientific computation
to our majors and recruiting and retaining more students from U.S.
underrepresented groups in STEM fields, we developed, piloted,
and have made publicly available curricular materials on scientific
computing.

We intentionally embedded and integrated learning-promoting
features such as personal profiles of noteworthy individuals and
reflection prompts into the instructional modules in order to send
a strong signal to both students and other faculty members that
inclusivity and metacognition are valued in our classrooms, and to
make it less likely that these features will be overlooked or dropped
from courses utilizing the modules due to time constraints. The
modules designed in this way may also serve as a model for other
faculty members adapting these materials or designing their own.

Our curricular materials can be incorporated into curricula at
other institutions. Outcomes will be highly dependent not only on
the details of those curricula, but also on the prior knowledge and
experiences of students, as well as their expectations.

The computational modules are available as open educational re-
sources under a Creative Commons license, and others are invited to
use and adapt them as they wish. The modules and supplementary
materials are provided at https://github.com/BrynMawrCollege/
TIDES. They’re also posted in the Faculty Commons section of
the PICUP website at https://www.compadre.org/PICUP/ under the
title “Scientific Computation with Python in Jupyter Notebooks.”
Supplementary materials include notes for a mini lecture on Python,
which the author has begun presenting in the first two class meet-
ings to get students started on learning Python. Also included is
a Python Quick Reference Guide showing code for common basic
course tasks. Exercise solutions are available for instructors upon
request. Readers interested in learning more about inclusive teach-
ing practices will find materials from a workshop we offered in the
“BMC TIDES Diversity and Equity Workshop” folder on the github
site. Those materials, which include handouts for facilitators and
participants, as well as feedback forms and additional suggested
readings, should be straightforward to adapt to other institutions
wanting to run their own workshops.3 An extended discussion of
our project (and the other TIDES projects) can be found in [4].

REFERENCES
[1] Andrea Forte and Mark Guzdial. 2005. Motivation and nonmajors in computer

science: Identifying discrete audiences for introductory courses. IEEE Transactions
on Education 48, 2 (2005), 248–253. https://doi.org/10.1109/TE.2004.842924

[2] Judith M. Harackiewicz and Chris S. Hulleman. 2010. The Importance of interest:
The role of achievement goals and task values in promoting the development
of interest. Social and Personality Psychology Compass 4, 1 (2010), 42–52. https:
//doi.org/10.1111/j.1751-9004.2009.00207.x

[3] Judith M. Harackiewicz, Yoi Tibbetts, Elizabeth Canning, and Janet S. Hydea. 2014.
Harnessing values to promote motivation in education. In Advances in Motivation
and Achievement, Vol. 18. https://doi.org/10.1108%2FS0749-742320140000018002

3Jennifer Spohrer contributed to these materials.

Volume 15, Issue 2 Journal of Computational Science Education

26 November 2024

https://github.com/BrynMawrCollege/TIDES
https://github.com/BrynMawrCollege/TIDES
https://www.compadre.org/PICUP/
https://doi.org/10.1109/TE.2004.842924
https://doi.org/10.1111/j.1751-9004.2009.00207.x
https://doi.org/10.1111/j.1751-9004.2009.00207.x
https://doi.org/10.1108%2FS0749-742320140000018002

[4] Kelly M. Mack, Kate Winter, and Melissa Soto (eds.). 2019. Culturally Responsive
Strategies for Reforming STEM Higher Education: Turning the TIDES on Inequity.
Emerald Publishing.

APPENDIX: MODULE TABLE OF CONTENTS
Module 0: An Introduction to Computing.

• The computational modules
• Why learn computer programming?
• Modern computer capabilities
• Programming concepts
• Starting with Python
• Tips on learning scientific programming
• Your e-portfolio
• Appendices
– A. Programming resources, Numerical methods resources
– B. Basic Python topics to know
– C. How to install Python on your computer or use it online

Module 1: A Brief Introduction to Python & Programming.

• Part I: The Basics
– Python Overview

∗ Debugging
∗ Python as a Calculator
∗ Strings and Printing
∗ User Input
∗ Lists
∗ Iteration
∗ Slicing
∗ Booleans

• Part II: Functions, Packages, and Plotting
– Functions

∗ Function Packages
∗ User-Defined Functions
∗ Function of a Function

– Numpy and Scipy
∗ Making Vectors and Matrices, 1-D and 2-D Arrays
∗ Slicing Arrays
∗ linspace and arrange
∗ Array Operations
∗ Optional Arguments

– Plotting with Matplotlib
• Part III: Algorithm Design
– List Manipulation

∗ Searching a List
∗ Sorting a List

– Recursion
– References

Module 2: Numerical Errors and Computational Speed.

• Numerical Errors
• Computational Speed and Big-O Notation
• Vectorization
• Profiling

Module 3: Iterative Methods.

• One-dimensional Motion without Drag
• Two-dimensional Projectile Motion without Drag

• Two-dimensional Motion with Drag

Module 4: Differentiation and Interpolation.

• Definition of the Derivative
• From Differences to the Derivative
• Higher-order Approximations to the First Derivative
• Higher-order Derivatives
• Interpolation

Module 5: Integration.

• The Trapezoidal Rule
• Simpson’s Method
• Choosing the Number of Steps, N
• Higher-order Methods
• Gaussian Quadrature
• Comparison of Integration Methods
• Integration over Infinite Ranges
• Multiple Integrals

Module 6: Solution of Linear Equations.

• Gaussian Elimination with Back-Substitution
• LU Decomposition
• Other Decompositions

Module 7: Eigenequations.

• Eigenvalues and Eigenvectors
• Applications
– Principal Axes of Inertia
– Coupled Harmonic Oscillators
– Energies of a Quantum System

Module 8: Analyzing Data .

• Linear Least-Squares Fitting
• An Introduction to Pandas for Data Analysis
• Visualizing Data with Bokeh
• Appendix 1: Singular-value Decomposition
• Appendix 2: Principal Components Analysis

Module 9: Fourier Analysis.

• The Fourier Series
• The Discrete Fourier Transform
• Two-Dimensional Fourier Transforms
• The Discrete Cosine Transform
• The Fast Fourier Transform

Module 10: Differential Equations.

• First-Order Equations of One Variable
– Euler’s Method
– Runge-Kutta Method

• Second-Order Equations of One Variable
• Boundary Value Problems
– The Shooting Method
– The Relaxation Method

Module 11: Partial Differential Equations.

• Partial Differential Equations
– Boundary Value Problems
– Initial Value Problems

• Other Methods

Journal of Computational Science Education Volume 15, Issue 2

November 2024 27

Module 12: Monte Carlo Methods.

• Random Numbers in Numerical Computation
• Monte Carlo Integration
– The Mean Value Method
– Importance Sampling
– The Transformation Method

• Monte Carlo Simulations
– The Ising Model
– Simulated Annealing

Module 13: Symbolic Computing in Python.

• Starting with sympy
• Evaluation
• Derivatives
• Integrals
• Limits
• Power Series Expansions
• Equation Roots
• Simultaneous Equations
• Differential Equations
• Matrix Operations

Module 14: A Brief Introduction to Object-Oriented Programming.

• Why Use Object-Oriented Programming?
• The Idea Behind Object-Oriented Programming

• A Simple Example
• A More Sophisticated Example
– Two Balls Connected by One Spring
– Three Balls Connected by Two Springs

∗ An Atomic Example
∗ A Simplification

Module 15: Parallel Computing.

• Introduction
• The multiprocessing (multiprocess) package
• The concurrent.futures package
• The joblib package
• The ipyparallel package
• The dask package
• cuda and numba

Module 16: Machine Learning.

• Basics of Neural Networks
– What is a Neural Network?
– Neuron Inputs and Outputs
– The Learning Process

• PyTorch
• TensorFlow
• scikit-learn

Volume 15, Issue 2 Journal of Computational Science Education

28 November 2024

A Case Study for using Generative Language Models
in GUI Development

Katelyn Reagan
Smith College

kreagan@smith.edu

Maryam Berijanian
Michigan State University

berijani@msu.edu

Dirk Colbry
Michigan State University

colbrydi@msu.edu

ABSTRACT
In the age of advanced open-source artificial intelligence (AI) and a
growing demand for software tools, programming skills are as im-
portant as ever. For even the most experienced programmers, it can
be challenging to determine which software libraries and packages
are best suited to fit specific programming needs. To investigate
the potential of AI-supported learning, this case study explores the
use of OpenAI’s ChatGPT, powered by GPT-3.5 and GPT-4, by stu-
dents to create an image annotation graphical user interface (GUI)
in Python. This task was selected because good User Experience
(UX) design is a deceptively complex task in that it can be very
easy to build a GUI interface but extremely hard to build one that
is well designed. The approaches employed in this study included
creating a program from scratch that integrates the listed features
incrementally; compiling a list of essential features and request-
ing ChatGPT to modify existing code accordingly; collaborating
on specific segments of a user-initiated program; and creating a
program anew using GPT-4 for comparative analysis. The findings
of this case study indicate that ChatGPT is optimally utilized for re-
sponding to precise queries rather than creating code from scratch.
Effective use of ChatGPT requires a foundational understanding of
programming languages. As a learning tool, ChatGPT can help a
novice programmer create competent initial drafts, akin to what
one might expect from an introductory programming course, yet
they necessitate substantial modifications for deployment of the
tool even as a prototype.

KEYWORDS
Generative Language Models, ChatGPT, Graphical User Interface
(GUI), User Experience (UX) Design, Software Tools, Artificial In-
telligence in Education (AIED)

1 BACKGROUND
ChatGPT is a web-based chat-bot created by OpenAI [9] and launched
in November 2022. After reaching over one million users within five
days of launching [2], the chat-bot has continued to gain popularity
while demonstrating its ability to convey its broad knowledge us-
ing natural language. A Generative Pre-trained Transformer (GPT)
powers the chat-bot, enabling original text generation that mimics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage a nd t hat c opies b e ar t h is n o tice a nd t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/2/6

the language model’s training data [3]. The primary iteration of
ChatGPT employed in this study was GPT-3.5, accessible freely
through an OpenAI account. GPT-4, requiring a premium account
for access, was then utilized for comparative analysis with GPT-
3.5. This study’s emphasis on GPT-3.5 aims to illustrate the use
of a technology that is readily available to students. Currently,
ChatGPT is not without issues. The program is prone to exuding
confidence while formulating statements from flawed logic and
providing compelling disinformation [7]. Yet, since this particular
chat-bot is still relatively new and continues to get updated and
supported by OpenAI [1], the technology has a promising future.

Many software tools and libraries exist to assist in the creation of
a graphical user interface (GUI), but finding a specific tool that fits
every need of programming task can be time-consuming. Addition-
ally, professional, public facing interfaces must meet the diversity of
users’ needs and put accessibility at the forefront, ensuring intuitive
functionality and smooth navigation of the tools. The design of
“production” quality GUIs calls for unwavering attention to detail
and likely requires expertise to create functional layouts [8].

According to the chat-bot itself, ChatGPT trained on “a diverse
range of internet text up until the knowledge cutoff date in Sep-
tember 2021”. Additionally, it can instruct beginner programmers
on GUI creation through explanations of concepts, code examples,
event handling, problem-solving, and learning material recommen-
dations. The promise of such capacities could help even inexperi-
enced coders expedite the creation of custom GUIs.

2 CASE STUDY
Although deceivingly simple, the creation of a visually intuitive and
smooth-functioning GUI requires a moderate degree of interface
programming expertise. A series of back-and-forth interactions
with ChatGPT demonstrate its ability to guide programmers with-
out user interface programming experience and minimal knowledge
beyond a basic definition of a GUI. This challenging project was
specifically selected to see how far ChatGPT could be pushed as
a learning tool. The particular program was intended to create a
segmentation tool to annotate images [5]. Image segmentation is
the process wherein the user uses pixel selection tools to identify
regions of an image that are of interest (foreground). Image annota-
tion is often the first step in many machine learning and scientific
image understanding workflows.

The desired segmentation program must enable the user to eas-
ily upload an image, segment the image, and save the segmented
image. The user must be able to switch between annotation colors
and zoom/pan the image. The resulting segmented labeling of the
output must maintain a size identical to that of the original so that
coordinate points for the labels correlate directly with the pixels in

Journal of Computational Science Education Volume 15, Issue 2

November 2024 29

https://doi.org/10.22369/issn.2153-4136/x/x/x

the image. Other desirable features include undo/redo buttons, the
option to select different colors, a fill bucket or lasso fill tool, and a
size scale to change the size of the markups. Ideally, the program
would be written in Python and exclude any excess features that
would slow the segmentation process down or provide undesirable
results.

Several techniques were used to prompt the chat-bot, including:

Method 1 – From Scratch Evolution: asks ChatGPT to create
a Python-based image annotation code from scratch, gradually
introducing new features into the program.
Method 2 – From Sample: gives ChatGPT code for a previously
created GUI that functions but does not have all required features,
gradually fixing and developing the code as needed.
Method 3 – From Scratch List Requirements: gives ChatGPT
an extensive list of requested features to create a GUI from scratch.
Method 4 – From Scratch Assisted: gives ChatGPT a rough base-
line code inspired by previously established code and knowledge
gained through the other methods’ results.
Method 5 – Using GPT-4: employs GPT-4 to compare the results
with those of GPT-3.5.

Each technique was attempted anywhere from one to three times,
depending on whether the programmers felt another attempt would
be constructive in demonstrating the capability of the chat-bot given
different initial conditions.

A complete list of the transcripts used throughout this paper can
be found on the following openly available repository:
https://github.com/katiereagan/ChatGPT-Conversation.

2.1 Method 1: From Scratch Evolution
The method ”From Scratch Evolution” starts by asking ChatGPT to
create a Python-based image annotation code from scratch. Using
this code as a baseline, new features were gradually introduced into
the program.

Attempt 1:
The initial prompt was “Python-based image annotation program”.
The output (Figure 1) consisted of a basic annotation program using
Open Source Computer Vision Library (OpenCV) [10], with the
steps outlined above each piece of code.

Underneath the code, ChatGPT provides a brief description that
walks the user through each step of the program, noting that
OpenCV must be installed in the Python environment:

ChatGPT:
In this code, the image is loaded using cv2.imread() and displayed
in a window using cv2.imshow(). The user can click on the image,
and the annotate() function is called to handle the mouse events.
When a point is clicked, it is added to the points list, and the user
is prompted to enter an annotation. The point and annotation are
stored in separate lists. The annotated points are drawn on the image,
and the updated image is displayed using cv2.imshow(). After the
user is done annotating, the annotated points and annotations are

printed, and the annotated image is saved using cv2.imwrite(). Fi-
nally, the image window is closed using cv2.destroyAllWindows().

Note that this is a basic example, and you may need to customize it
based on your specific requirements. Additionally, you’ll need to have
OpenCV installed in your Python environment to run this code.

Upon further prompting, ChatGPT provided the user with more
detailed instructions about installations of OpenCV using the ter-
minal. This initial program did not function properly, generating
errors with each run that were outside the programmer’s ability
to fix. Rather than searching the code for errors, ChatGPT was
prompted to create a program that did not use OpenCV. The al-
ternative offered (Figure 2) by the chat-bot depended on Pillow
(Python Imaging Library or PIL fork) [6] for image manipulation
and Tkinter (Tk interface) [13] for the user interface. The steps
outlined in the code and description provided were similar to those
used in the OpenCV-based program, varying in the libraries used.

Again, the program generated was a Python app that would not
respond, attempting to but never successfully opening a window.
This issue could be due to outdated suggestions due to ChatGPT’s
information intake cutoff occurring in September of 2021, nearly
two years prior to this study.

When working with a chat-bot, the general process is to suggest
a new feature, debug, and repeat while gradually introducing new
features into the program or correcting pre-existing features.

One notable benefit of working with ChatGPT is that, after get-
ting output, the user can ask the system questions about its code to
get more insight into the logic. The chat-bot’s conversational nature
benefits beginners, who may be less familiar with user interface
design.

Although ChatGPT has a reputation for producing solutions
that are not necessarily accurate, this work found that ChatGPT’s
explanations could at least serve as a starting point for further
explanation.

Ultimately, ChatGPT did not successfully produce a working
code and it was decided to start a second attempt guided by the
knowledge and experience gained from the first attempt.

Attempt 2:
For the second attempt, the order in which the features were re-
quested changed in hopes of producing a different outcome.

The initial prompt was still “Python-based image annotation code”.
The code generated once again depended on OpenCV, so a request
was made to rewrite the program without using OpenCV. The
default alternative seems to be PIL. To better fit the program re-
quirements, the prompt requested the system record the coordinate
points of the user annotations. The resulting code (Figure 3) added
a portion of code dedicated to this new feature.

The system struggled to open the Python application popup.
After several rounds of requests to optimize the provided code to
facilitate the generation of the app window, the program remained
non-functional. The chat-bot cited techniques such as double buffer-
ing, resizing the image, and using batch annotations, but the final
product remained unable to load. It became increasingly apparent
that ChatGPT struggles to create its code from scratch but can
explain pre-existing code. ChatGPT would benefit from more user

Volume 15, Issue 2 Journal of Computational Science Education

30 November 2024

https://github.com/katiereagan/ChatGPT-Conversation

Figure 1: The output ChatGPT generated when prompted by “Python-based image annotation program.”

Figure 2: A revised program that contrasts from the earlier program that depended on OpenCV. The most notable differences
occur near the beginning, when importing the PIL and Tkinter libraries.

guidance, such as an outline of the requirements or an initial ex-
cerpt. Ultimately, the programmer was again unable to use ChatGPT
to produce working code.

Attempt 3:
The third attempt once again changed the order in which the fea-
tures were requested in hopes of producing a different outcome,
starting with the input “Python-based image annotation code. Can
you modify the above code to run without using OpenCV?”, followed
immediately by a request to include an annotation coordinate-
tracking feature. The chat-bot’s reply (Figure 4) included parts of
code that intended to fulfill the desired features.

While the app would open, the user’s image would not upload,
and the annotations on the canvas were invisible to the user. After

some repetitive requests to fix the errors, it was determined that
ChatGPT could not produce a working code.

Method Takeaway: Overall, the Scratch Evolution method was
not effective. ChatGPT struggled to output the original code that
functioned and to manipulate the initial code while preserving the
program’s functionality.

2.2 Method 2: From Sample
This method begins by providing ChatGPT with the code for a
previously developed GUI [4] that produces a Python app (Figure
5) that functions but does not have all the required features. For
example, the program contains no zoom feature, no functioning
save feature, and an eraser that undesirably erases the image in

Journal of Computational Science Education Volume 15, Issue 2

November 2024 31

Figure 3: A revised version of the earlier program that includes the annotation recording feature.

Figure 4: ChatGPT’s original code, prompted by the user to create a Python-based image annotation code that did not use
OpenCV and included an annotation coordinate-tracking feature.

addition to the markups. Depending on the window size, not all of
the toolbar may be accessible.

Using this code as a baseline, ChatGPT further developed the
code to satisfy the requirements of the segmentation program.

Attempt 1:
The initial input prompt was ”What is the function of this program?”.
ChatGPT replied with a walk through each part of the provided
code. Additionally, a concluding overview of the program was as
follows:

ChatGPT:
Overall, the program provides a basic image markup tool where users
can draw on an image, choose different tools and colors, adjust brush

size, clear the canvas, and save the modified image.

From here, the programmer was then able to gradually request
the implementation of new features to fit the requirements of our
desired program. While ChatGPT can recognize the sample code
initially given to it and can make modifications to implement the
requested features, it does a poor job of keeping the code func-
tional. Therefore, it is essential to recurrently ask the chat-bot to
check for bugs after each new addition to the program to prevent
an accumulation of issues over time. One consistent issue to note
when working with ChatGPT is that even the requested corrections
may not work. For instance, consider the zoom-in and zoom-out
features. The initial requests are as follows:

Volume 15, Issue 2 Journal of Computational Science Education

32 November 2024

Figure 5: Screenshot of the Python app generated by the
sample code.

User:
Is there a way you can manipulate the earlier code to integrate a
zoom functionality into the program? For instance, can you add a ”+”
button for the user’s view of the canvas to zoom in and a ”-” button
to zoom out? The purpose is to make it easier for the user to see the
details of the image only when the view is zoomed in and the overall
image only when the view is zoomed out?

ChatGPT:
Certainly! Here’s an updated version of the code that integrates zoom
functionality with ”+” and ”-” buttons for zooming in and out of the
canvas: . . .

Although the chat-bot’s reply seems promising, after some test-
ing, it was noticed that the “+” and “-” buttons are present but do
not zoom in and out. ChatGPT was prompted to address this issue:

User:
The program zoom buttons do not seem to work. Is there any way you
can make some modifications to ensure the logic created enables them
to serve their intended purpose?

ChatGPT:
Apologies for the oversight. It seems we missed updating the zoom
functionality. Here’s the modified code with corrected zoom function-
ality: . . .

The provided modifications did not address the issue. The con-
versation continued for several iterations of user input and chat-bot
output, resulting in minor tweaks to the program until the buttons
functioned. The chat-bot frequently recommended creating custom
buttons that had many initial errors. Yet, once the buttons were
functional, the features previously established no longer worked
properly. The final product (Figure 6) contained buttons that were
accessible but did not function. While the zoom buttons work, their
activation resulted in the erasing of annotations. Additionally, the

annotations do not align with the mouse and may occasionally
become dysfunctional. Only PNG images can be uploaded, and there
is no save feature.

Figure 6: Screenshot of the Python app generated by the
updated code. Note that the program now has zoom and pan
features.

Method Takeaway: Overall, the Sample method was not effective.
Due to the conversational nature of working with ChatGPT, it is
exceedingly difficult to pinpoint one cause for the ineffectiveness.
ChatGPT’s learned methods may fail to integrate with the sample
code given. The system may find it challenging to process large
amounts of code upfront.

2.3 Method 3: From Scratch List Requirements
The method titled ”Scratch List Requirements” starts with entering
an extensive list of requests and goals into ChatGPT to create an
image annotation program in Python. The revised list responds to
the issues persisting in the ”From Sample” method. Similarly to the
previous method, this method used the list of requirements to create
an initial code that acts as a baseline. After spotting the errors in
the initial program, the programmer focused on fixing individual
features one at a time with assistance from ChatGPT to create a
functioning program that satisfies all of the listed requirements.
After an unsuccessful first attempt, the second attempt depends on
a slightly different initial list.

Attempt 1:
The initial user input included a list of program requirements writ-
ten for the first attempt.

User:
Create a Python-based image annotation code satisfying the following
conditions: Do not use CV2, Instead of using ANTIALIAS, use LANCZOS

Journal of Computational Science Education Volume 15, Issue 2

November 2024 33

or Resampling.LANCZOS, Include a prompt that enables the user to
select an image from their local files, Save both the original image and
the annotated copy of the image and include a place for the user to
choose the location at which the annotated copy will be saved, Enable
the user to annotate the image by interacting using a computer mouse,
The annotation tools include a black marker, white marker and anno-
tation eraser that have the ability to draw atop the pixels in an image.
The user can change the size of the tools throughout their session,
with the smallest size being one pixel and the largest size being 20
pixels. Create a coordinate system for the image that look at the pixel
location of the annotations, and in which the center of the image is
the origin, regardless of its placement on the user’s screen, Create a
document that records a list of these coordinate points. Prompt the user
to choose a file location at which to save this document. Double-check
that the code has no errors, by making sure the GUI event loop has
root.mainloop() and that all of the proper packages are imported
during initialization.

In response, ChatGPT formulated a program that was not func-
tional and produced error messages, as follows. When asked what
adjustments would be required to get the code running, ChatGPT
supplied a bullet point list and, upon request, offered up code and
implemented it into the pre-existing program. Although the chat-
bot can spot errors in its code, it continues to output error-ridden
code. Eventually, the programmer was able to get the program
(Figure 7) up and running. In this version, most of the requested fea-
tures are present with flaws, except for the upload image function,
which is essential to the program. The program can only annotate
in dots and has no scroll functionality. Depending on the window
size, some of the features may not be accessible.

Figure 7: Screenshot of the initial GUI generated by Method
3, in which a list of requirements was provided.

ChatGPT generates the initial code very quickly. The authors
were curious if there would be a way to ask the chat-bot to take
more time in its code generation to check for errors throughout.
However, GPT-4 takes more time to type the response, and as will
be discussed in Method 5, the resulting outputs have higher quality.
Although the system can add comments to its code to help the user
follow along, one of the limitations of ChatGPT is that there is no
way to see the logic behind the output or the sources behind the
information.

When focusing on one specific element of the code, ChatGPT
frequently makes alterations that result in the dysfunction of the
others. After much discussion with the chat-bot, the code (Figure 8)
contained fewer functioning features than the initially generated
code, albeit with no error messages.

Figure 8: Screenshot of the final GUI generated by Method 3 -
Attempt 1. Note that there is no ‘save image’ feature.

Attempt 2:
For the second attempt, the programmer created a list of more
detailed requirements. However, this large amount of input in-
formation revealed a limitation of ChatGPT, wherein the chatbot
conveyed its limit when taking in long and complicated requests:

User:
Create a GUI for image annotation that satisfies the following condi-
tions: . . .

ChatGPT:
Creating a complete GUI application with all the described features is
beyond the scope of a text-based response. However, I can provide you
with an outline of the steps involved in building such an application
using Python and some popular GUI libraries. To create the GUI for
image annotation with the specified features, you can follow these
steps: . . .

The term “text-based response” is most interesting as it was
able to form large programs as output during prior attempts and
methods.

With some prompting, ChatGPT generated a sample of code for
the image annotation program. When asked to review its code, the
system identified unfilled parts of the listed requirements. Each
ChatGPT-generated code was input as new code to be corrected. At
one point, ChatGPT even asked formore specific instructions to best
direct its alterations. Eventually, to increase specificity, the chat-bot
was requested to create a program (Figure 9) with three tabs; the
first one had annotating features such as panning and zooming,
the second one was a continuously updated view of the annotated
image, and the third tab was a blank window that appeared to serve
no purpose.

Volume 15, Issue 2 Journal of Computational Science Education

34 November 2024

Figure 9: Screenshot of the GUI generated by Method 3 - At-
tempt 2. Note that multiple tabs are generated.

With the final layout, the toolbar was not accessible so that the
tabs could not serve their designated purposes.

Method Takeaway: Overall, the ”From Scratch List Requirements”
method was ineffective as it provided too much information upfront
for the system to process. Despite the clarity of the input given,
ChatGPT failed to provide output that took all elements of the
request into account.

2.4 Method 4: From Scratch Assisted
The method titled ”From Scratch Assisted” starts with entering a
rough baseline code as created through user knowledge gained
throughout this study and prior methods. This code generated from
scratch by the user does not meet all of the specifications required
or run and will be corrected and further developed through recom-
mendations by ChatGPT.

Attempt 1:
The first attempt used Tkinter [13] in a program that contained un-
responsive ’Browse’, and ’Clear All’ buttons; black and white
brushes; tool size slider; and zoom and pan features. As such, the
GUI was nonfunctional. The general process was to suggest a new
feature, debug, and then evaluate the new code based on prior
knowledge. Once the code demonstrated some functionality or
comprehensible logic by having a few error codes, a new feature
would be suggested. ChatGPT successfully interpreted error codes,
such as the one included in Figure 10 while also providing explana-
tions when requested.

When given this text-dense error message, ChatGPT responds
as follows:

ChatGPT:
The error message TclError: cannot use geometry manager
pack inside . which already has slaves managed by grid
indicates that you are trying to mix the pack and grid geometry
managers in your code, which is not allowed.
In your code, you are using both grid and pack to manage widgets
within the same parent widget. In the init method, you have used a
grid to place widgets in the root window. However, later on, you are
using pack to manage the annotation_canvas widget.
To fix this error, you need to be consistent and use either grid or pack
for all widgets within a given parent widget. In this case, since you
are already using grid to manage other widgets, you should use grid
for the annotation_canvas widget as well.

The chat-bot also provided an updated code meant to address
the issue. One current limitation of ChatGPT is the inability to
highlight within blocks of provided code. When requesting that
ChatGPT modify pre-written code, it can be challenging to pick out
the changes the chat-bot made. Upon request, comments inside the
code indicate the changes, but even those can be difficult to spot
when considering lengthy blocks of code.

Another feature of ChatGPT is its ability to recall elements from
earlier parts of the conversation. For instance, after conversing
back and forth about specific flaws in an earlier block of code to
suggest changes, the chat-bot implemented the suggestions into
the original code. The response was characterized by a comparable
level of confidence and positivity:

ChatGPT:
Certainly! Here’s the complete code for the image annotation tool
based on the discussions we’ve had. . .

The final product (Figure 11) had all the required buttons except
for a save button; however, the buttons did not successfully activate
any features or annotation tools upon selection, leading the GUI to
be ultimately ineffective.

Attempt 2:
The second attempt used Plotly Dash [11] in a program that, similar
to the one used in Attempt 1, lacked the capability to upload images
and had non-functional buttons. The initial code was constructed
from scratch drawing from pieces of code gathered throughout pre-
vious methods and inspired by examples of programs with similar
features.

After using the chat-bot to fix the code and get it running (Figure
12), the layout included a full toolbar that remained accessible re-
gardless of the window size. The markups became erased whenever
the tool color or size was changed. The saved image had a white,
gridded background and did not retain the same size as the origi-
nal. In addition, it still lacked the buttons to trigger the requested
features. ChatGPT suggested JavaScript to create custom buttons,
but they remained dysfunctional. However, the chat-bot seemed
reluctant to offer Python alternatives to the JavaScript buttons.

Method Takeaway: Overall, the programmer found this method
to be most effective. ChatGPT struggles to produce code from
scratch and sometimes uses logic that can be challenging to follow.

Journal of Computational Science Education Volume 15, Issue 2

November 2024 35

Figure 10: A sample of the error code given to, and successfully deciphered by, ChatGPT.

Figure 11: Screenshot of the GUI generated by Method 4 -
Attempt 1. Note that the toolbox may not be accessible if the
window size is too small.

As such, it is easier for the programmer to start with a clear road
map in mind and a rough draft of code.

2.5 Method 5: Using GPT-4
In this methodology, the programmer initially requested ChatGPT
to develop a GUI based on a specified set of requirements, though
not exhaustively. Subsequently, the generated code was tested, fol-
lowed by iterative refinements and enhancements, including the
addition of new features, aligning this approach with Method 1.

Initially, the GUI encountered an issue where the displayed image
was disproportionately small. The GUI, embedded within a Python
window, was then transformed into a web-based interface, utilizing
Python with Flask [12], HTML, and JavaScript. A critical feature
involved the transmission of x- and y-coordinates from user-drawn
points to Python. Additionally, the application was designed to
overlay an annotation mask on the input image, enabling users to

Figure 12: Screenshot of the GUI generated by Method 4 -
Attempt 2.

create segmentation annotations without altering the original im-
age. This functionality involved dynamic mask updates, including

Volume 15, Issue 2 Journal of Computational Science Education

36 November 2024

real-time display refreshment upon user interaction, and the capac-
ity to save the mask as a separate PNG file. Therefore, the essential
features incorporated were: (a) Utilization of two image elements –
the original base image and the overlay (mask); (b) Incorporation
of a canvas for drawing on the overlay; (c) Functionality to save
the overlay as a new image; (d) Dynamic updating of the mask in
response to user edits.

Despite the successful integration of these features, the GUI
initially lacked a ’save’ button. After multiple iterations, it was
discerned that the issue stemmed from the stacking order of HTML
elements, with the canvas inadvertently obscuring the button. This
realization was attributed to the programmer’s prior experience,
underscoring the significance of foundational programming knowl-
edge in resolving such issues.

The final refinement involved addressing an issue where the
GUI would connect the end point of one drawing segment to the
start point of the next upon resumption. ChatGPT resolved this by
modifying the mouseup event handler to invoke the beginPath()
method. This adjustment ensured that new drawing segments ini-
tiated after releasing the mouse button did not connect with the
preceding segments, thereby enhancing the application’s function-
ality and user experience.

Figure 13 presents a screenshot of the rudimentary GUI devel-
oped with Method 5. The interface of the GUI is minimalistic, pri-
marily displaying the image in its original dimensions alongside
a ’Save Mask’ button situated beneath the image. Users have the
capability to annotate directly on the image; these annotations,
appearing in red, are made on a supplementary canvas layer above
the image, overlaying it without altering the original. Upon clicking
the ’Save Mask’ button, only the annotated mask is preserved.

This version of the GUI is intentionally basic, devoid of advanced
functionalities such as zooming capabilities, varied pen colors for
annotating distinct objects, or the ability to fill enclosed areas in
the annotations. Its primary purpose is to facilitate a comparative
analysis with the GPT-3.5 generated interfaces and to demonstrate
the relative ease and efficiency of GUI generation using GPT-4,
which required fewer iterations and refinements in requests.

Potential enhancements could include instructing the chat-bot
to fill the annotated areas with a specific color, such as white, while
rendering the background in black, thereby further refining the
GUI’s functionality.

Figure 13: Screenshot of the GUI generated byMethod 5. This
figure includes the original image (left), the user-annotated
image (middle), their respective save buttons below each, and
the saved mask after pressing the save button (right).

Method Takeaway: This method demonstrates a level of compa-
rability to Method 1, wherein GPT-3.5 was utilized. The application
of GPT-4 in this context revealed a marked improvement in the
chat-bot’s comprehension capabilities, leading to the fulfillment of
requirements with fewer follow-up interactions and iterations. The
code produced by GPT-4 was notably effective and met the desired
criteria satisfactorily.

However, the experience and prior knowledge of the program-
mer played a pivotal role in identifying the mentioned issue that
ChatGPT was seemingly unable to detect. Consequently, this under-
scores that sole reliance on ChatGPT, in the absence of foundational
programming knowledge, is not advisable.

3 DISCUSSION AND RECOMMENDATIONS
Generally, leveraging prompt engineering with large language mod-
els like ChatGPT possibly leads to significantly improved outcomes.
By thoughtfully designing prompts, users can more precisely steer
the model towards producing the desired responses.

To reduce misunderstandings between the programmer and the
chat-bot, specific instructions to ChatGPT are advisable. The pro-
grammer should maintain some skepticism regarding the output.
While the chat-bot delivers responses that exude confidence, its
output remains occasionally incorrect. It is recommended to have
a well-defined objective: s imilar to the broader practice of cod-
ing, engaging with ChatGPT yields optimal results when the user
approaches with a specific intention in mind. ChatGPT seems to
provide the best responses when user requests are specific.

Either start small or break the code down.
ChatGPT typically exhibits limitations when processing large re-
quests, often resulting in the omission of certain parts. It is therefore
recommended to initiate interaction with either a small request or
an initial draft, subsequently refining it piece by piece. The most
effective strategy is contingent upon the nature of the project. If
the program has interdependent components, starting with basic
features and progressively elaborating them is advisable. If the
program is characterized by sequential components, it would be
more effective to break down the problem and refine it step-by-step.

Pay attention to the modifications made by ChatGPT and
ask questions to understand the logic.
While ChatGPT is capable of analyzing large text inputs, it may not
thoroughly address every aspect of the code. Providing suggestions
is more beneficial than code corrections, as they can provide starting
points for further investigation. Additionally, a compiled list of
recommendations may be more comprehensible than suggestions
embedded within the code. As stated earlier, ChatGPT cannot be
highlighted within a Python code box. While it can insert comments,
such annotations can be challenging to distinguish from comments
input by the user.

4 CONCLUSION
ChatGPT can be a supportive tool for novice programmers. While
the chat-bot is not adept at generating highly functional code from
scratch, it excels in identifying errors and interpreting the logic of
existing programs. Due to its conversational nature, ChatGPT is

Journal of Computational Science Education Volume 15, Issue 2

November 2024 37

particularly effective at responding to specific questions. In general,
the practice of refining prompts through prompt engineering with
this advanced language model probably enhances the result quality.
By carefully crafting and adjusting prompts, users can direct the
model more effectively toward generating outputs that meet their
specific requirements.

This study merely scratched the surface of ChatGPT’s capacity
to aid in user interface programming. A more granular examination
of specific methods might enable programmers to discern patterns
in the system’s responses and check for replaceable conversations.

Additionally, a programmer with experience in graphical user
interface development is better positioned to evaluate the potential
of chat-bots in enhancing their productivity in GUI design.

REFERENCES
[1] 2024. ChatGPT — Release Notes | OpenAI Help Center. https://help.openai.com/

en/articles/6825453-chatgpt-release-notes. Accessed on 3/8/2024.
[2] Katharina Buchholz. 2023. Infographic: Threads Shoots Past One Mil-

lion User Mark at Lightning Speed. https://www.statista.com/chart/29174/
time-to-one-million-users/. Accessed: 2023-11-12.

[3] Enrico Checcucci, Paolo Verri, Daniele Amparore, Giovanni E. Cacciamani,
Cristian Fiori, Alberto Breda, and Francesco Porpiglia. 2023. Generative Pre-
training Transformer Chat (ChatGPT) in the scientific community: the train has
left the station. Minerva Urology and Nephrology 75, 2 (April 2023), 131–133.
https://doi.org/10.23736/S2724-6051.23.05326-0

[4] Dirk Colbry. 2022. GUI-Basic. https://github.com/see-insight/see-tkinter-gui/
blob/dd5c50c5bb0ca92f63cc9b48b85230c2a5d65311/GUI-Basic.py.

[5] Dirk Colbry. 2023. Toward an automatic exploration of algorithm space to speed
up image annotation for applications in scientific image understanding. In IEEE
AIPR workshop. St. Louis, MO.

[6] Jeffrey A. Clark (Alex) and contributors. 2024. Pillow - Python Imaging Library
(Fork). https://pypi.org/project/Pillow/. Accessed on 3/8/2024.

[7] Gary Marcus. 2022. What to Expect When You’re Expecting . . . GPT-4. https:
//garymarcus.substack.com/p/what-to-expect-when-youre-expecting. Accessed:
2023-11-12.

[8] Dan R. Olsen. 2007. Evaluating user interface systems research. https://dl.acm.org/
doi/10.1145/1294211.1294256. In Proceedings of the 20th annual ACM symposium
on User interface software and technology (UIST ’07). Association for Comput-
ing Machinery, New York, NY, USA, 251–258. https://doi.org/10.1145/1294211.
1294256

[9] OpenAI. 2024. OpenAI. https://openai.com. Accessed on 3/8/2024.
[10] OpenCV. 2024. OpenCV - Open Computer Vision Library. https://opencv.org.

Accessed on 3/8/2024.
[11] Plotly Dash. 2024. Dash Python User Guide. https://dash.plotly.com. Accessed

on 3/8/2024.
[12] Armin Ronacher. 2024. Flask Web Framework. https://flask.palletsprojects.com/.

Accessed on 3/8/2024.
[13] Tkinter. 2024. tkinter — Python interface to Tcl/Tk. https://docs.python.org/3/

library/tkinter.html. Accessed on 3/8/2024.

APPENDIX
Here we present the final, fully functional version of the code
generated in Method 5 using GPT-4, to facilitate replication and
further research by interested parties. This includes the app.py file,
a Flask [12] application, and the accompanying index.html.

In app.py, we employ the render_template(’index.html’,
form=form) function, which integrates Flask with the HTML fron-
tend, showcasing the interaction between backend logic and fron-
tend presentation. This setup exemplifies the practical application
of AI-generated code in a web development context.

app.py:

1 from flask import Flask , render_template , request ,
jsonify , redirect , url_for

2 from flask_wtf import FlaskForm

3 from wtforms import SubmitField
4 from PIL import Image
5 import os
6 import base64
7 from io import BytesIO
8
9 app = Flask(__name__)
10 app.config['SECRET_KEY '] = 'mysecretkey '
11
12 class SaveMaskForm(FlaskForm):
13 save = SubmitField('Save Mask')
14
15 @app.route('/', methods =['GET', 'POST'])
16 def index():
17 form = SaveMaskForm ()
18 if form.validate_on_submit ():
19 # The functionality of saving the mask

will be handled in the JS.
20 # This redirect is just to reload the form

after the POST request.
21 return redirect(url_for('index '))
22 return render_template('index.html', form=form

)
23
24 @app.route('/save_mask ', methods =['POST'])
25 def save_mask ():
26 data = request.json
27 mask_data = data['mask_data ']
28
29 mask_img = Image.open(BytesIO(base64.b64decode

(mask_data.split(',')[1])))
30 mask_img_name = "flower_mask.png"
31 mask_img.save(os.path.join('static ',

mask_img_name))
32
33 return jsonify(status='success ')
34
35 if __name__ == "__main__":
36 app.run(debug=True)

index.html:

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF -8">
5 <meta name="viewport" content="width=device -

width , initial -scale =1.0">
6 <title >Image Annotation </title >
7 <style >
8 #control -panel {
9 margin -top: 20px;
10 }
11 </style >
12 </head>
13 <body>
14
15 <img id="sourceImage" src="/static/flower.png"

style="position: relative; z-index: 0;" alt="
Source Image">

16 <canvas id="myCanvas" style="position: absolute;
top: 0; left: 0; z-index: 1;"></canvas >

17
18 <div id="control -panel">
19 <button type="button" onclick="saveMask ()">

Save Mask</button >
20 </div>
21
22 <script >
23 let canvas = document.getElementById('myCanvas

');
24 let ctx = canvas.getContext ('2d');

Volume 15, Issue 2 Journal of Computational Science Education

38 November 2024

https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://www.statista.com/chart/29174/time-to-one-million-users/
https://www.statista.com/chart/29174/time-to-one-million-users/
https://doi.org/10.23736/S2724-6051.23.05326-0
https://github.com/see-insight/see-tkinter-gui/blob/dd5c50c5bb0ca92f63cc9b48b85230c2a5d65311/GUI-Basic.py
https://github.com/see-insight/see-tkinter-gui/blob/dd5c50c5bb0ca92f63cc9b48b85230c2a5d65311/GUI-Basic.py
https://pypi.org/project/Pillow/
https://garymarcus.substack.com/p/what-to-expect-when-youre-expecting
https://garymarcus.substack.com/p/what-to-expect-when-youre-expecting
https://dl.acm.org/doi/10.1145/1294211.1294256
https://dl.acm.org/doi/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256
https://openai.com
https://opencv.org
https://dash.plotly.com
https://flask.palletsprojects.com/
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html

25 let img = document.getElementById('sourceImage
');

26
27 let isDrawing = false;
28
29 img.onload = function () {
30 canvas.width = img.width;
31 canvas.height = img.height;
32 }
33
34 canvas.addEventListener('mousedown ', function(

event) {
35 isDrawing = true;
36 draw(event.pageX - canvas.offsetLeft ,

event.pageY - canvas.offsetTop);
37 });
38
39 canvas.addEventListener('mousemove ', function(

event) {
40 if (isDrawing) {
41 draw(event.pageX - canvas.offsetLeft ,

event.pageY - canvas.offsetTop);
42 }
43 });
44
45 canvas.addEventListener('mouseup ', function ()

{
46 isDrawing = false;
47 ctx.beginPath (); // This line clears the

current drawing path
48 });
49
50 function draw(x, y) {
51 ctx.lineWidth = 5;
52 ctx.lineCap = 'round ';
53 ctx.strokeStyle = 'red ';
54
55 ctx.lineTo(x, y);
56 ctx.stroke ();
57 ctx.beginPath ();
58 ctx.moveTo(x, y);
59 }
60
61 function saveMask () {
62 const canvasData = canvas.toDataURL ();
63 fetch('/save_mask ', {
64 method: 'POST ',
65 headers: {
66 'Content -Type ': 'application/json '
67 },
68 body: JSON.stringify ({
69 'mask_data ': canvasData
70 })
71 })
72 .then(response => response.json())
73 .then(data => {
74 if (data.status === 'success ') {
75 alert("Mask saved successfully!");
76 } else {
77 alert("Error saving mask!");
78 }
79 });
80 }
81 </script >
82
83 </body>
84 </html>

Journal of Computational Science Education Volume 15, Issue 2

November 2024 39

November 2024

Volume 15 Issue 2

	1.pdf
	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	3 PROGRAM DESIGN
	4 COST AND FUNDING
	5 EARLY RESULTS
	6 LESSONS LEARNED AND FUTURE WORK
	Acknowledgments
	References

	2.pdf
	Abstract
	1 INTRODUCTION
	2 THE HPRC TRAINING PROGRAM
	3 Purpose of the study
	4 Methodology
	5 Results
	6 Discussion
	6.1 Expanding Beyond the Institution

	7 Conclusions
	References

	3.pdf
	Abstract
	1 Introduction
	2 Background
	3 Course Development
	3.1 Course Structure
	3.2 Course Curriculum

	4 Outcomes
	5 Conclusions
	6 Future Work
	Acknowledgments
	References

	4.pdf
	Abstract
	1 INTRODUCTION
	2 Related work
	3 Importance of HPC in STEM
	4 HPC Knowledge in STEM
	5 HPC training initiative in Europe
	5.1 EuroCC
	5.2 HPC Training in NCC Luxembourg

	6 Training Structure
	7 Detailed Training Outline
	7.1 Preparation
	7.2 Lecture part 1
	7.3 Lecture Part 2
	7.4 Hands-on Session 1
	7.5 Hands-on Session 2

	8 Topics and Learning Outcomes
	8.1 Training in CUDA
	8.2 Training in OpenACC
	8.3 Training in OpenMP

	9 Conclusions and Future Directions
	Acknowledgments
	References

	5.pdf
	Abstract
	1 Introduction
	2 THE MODULES
	3 IMPLEMENTATION
	4 CONCLUSION
	References

	6.pdf
	Abstract
	References

	front .pdf
	1.pdf
	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	3 PROGRAM DESIGN
	4 COST AND FUNDING
	5 EARLY RESULTS
	6 LESSONS LEARNED AND FUTURE WORK
	Acknowledgments
	References

	2.pdf
	Abstract
	1 INTRODUCTION
	2 THE HPRC TRAINING PROGRAM
	3 Purpose of the study
	4 Methodology
	5 Results
	6 Discussion
	6.1 Expanding Beyond the Institution

	7 Conclusions
	References

	3.pdf
	Abstract
	1 Introduction
	2 Background
	3 Course Development
	3.1 Course Structure
	3.2 Course Curriculum

	4 Outcomes
	5 Conclusions
	6 Future Work
	Acknowledgments
	References

	4.pdf
	Abstract
	1 INTRODUCTION
	2 Related work
	3 Importance of HPC in STEM
	4 HPC Knowledge in STEM
	5 HPC training initiative in Europe
	5.1 EuroCC
	5.2 HPC Training in NCC Luxembourg

	6 Training Structure
	7 Detailed Training Outline
	7.1 Preparation
	7.2 Lecture part 1
	7.3 Lecture Part 2
	7.4 Hands-on Session 1
	7.5 Hands-on Session 2

	8 Topics and Learning Outcomes
	8.1 Training in CUDA
	8.2 Training in OpenACC
	8.3 Training in OpenMP

	9 Conclusions and Future Directions
	Acknowledgments
	References

	5.pdf
	Abstract
	1 Introduction
	2 THE MODULES
	3 IMPLEMENTATION
	4 CONCLUSION
	References

	6.pdf
	Abstract
	References

