
A Case Study for using Generative Language Models
in GUI Development

Katelyn Reagan
Smith College

kreagan@smith.edu

Maryam Berijanian
Michigan State University

berijani@msu.edu

Dirk Colbry
Michigan State University

colbrydi@msu.edu

ABSTRACT
In the age of advanced open-source artificial intelligence (AI) and a
growing demand for software tools, programming skills are as im-
portant as ever. For even the most experienced programmers, it can
be challenging to determine which software libraries and packages
are best suited to fit specific programming needs. To investigate
the potential of AI-supported learning, this case study explores the
use of OpenAI’s ChatGPT, powered by GPT-3.5 and GPT-4, by stu-
dents to create an image annotation graphical user interface (GUI)
in Python. This task was selected because good User Experience
(UX) design is a deceptively complex task in that it can be very
easy to build a GUI interface but extremely hard to build one that
is well designed. The approaches employed in this study included
creating a program from scratch that integrates the listed features
incrementally; compiling a list of essential features and request-
ing ChatGPT to modify existing code accordingly; collaborating
on specific segments of a user-initiated program; and creating a
program anew using GPT-4 for comparative analysis. The findings
of this case study indicate that ChatGPT is optimally utilized for re-
sponding to precise queries rather than creating code from scratch.
Effective use of ChatGPT requires a foundational understanding of
programming languages. As a learning tool, ChatGPT can help a
novice programmer create competent initial drafts, akin to what
one might expect from an introductory programming course, yet
they necessitate substantial modifications for deployment of the
tool even as a prototype.

KEYWORDS
Generative Language Models, ChatGPT, Graphical User Interface
(GUI), User Experience (UX) Design, Software Tools, Artificial In-
telligence in Education (AIED)

1 BACKGROUND
ChatGPT is a web-based chat-bot created by OpenAI [9] and launched
in November 2022. After reaching over one million users within five
days of launching [2], the chat-bot has continued to gain popularity
while demonstrating its ability to convey its broad knowledge us-
ing natural language. A Generative Pre-trained Transformer (GPT)
powers the chat-bot, enabling original text generation that mimics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage a nd t hat c opies b e ar t h is n o tice a nd t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/2/6

the language model’s training data [3]. The primary iteration of
ChatGPT employed in this study was GPT-3.5, accessible freely
through an OpenAI account. GPT-4, requiring a premium account
for access, was then utilized for comparative analysis with GPT-
3.5. This study’s emphasis on GPT-3.5 aims to illustrate the use
of a technology that is readily available to students. Currently,
ChatGPT is not without issues. The program is prone to exuding
confidence while formulating statements from flawed logic and
providing compelling disinformation [7]. Yet, since this particular
chat-bot is still relatively new and continues to get updated and
supported by OpenAI [1], the technology has a promising future.

Many software tools and libraries exist to assist in the creation of
a graphical user interface (GUI), but finding a specific tool that fits
every need of programming task can be time-consuming. Addition-
ally, professional, public facing interfaces must meet the diversity of
users’ needs and put accessibility at the forefront, ensuring intuitive
functionality and smooth navigation of the tools. The design of
“production” quality GUIs calls for unwavering attention to detail
and likely requires expertise to create functional layouts [8].

According to the chat-bot itself, ChatGPT trained on “a diverse
range of internet text up until the knowledge cutoff date in Sep-
tember 2021”. Additionally, it can instruct beginner programmers
on GUI creation through explanations of concepts, code examples,
event handling, problem-solving, and learning material recommen-
dations. The promise of such capacities could help even inexperi-
enced coders expedite the creation of custom GUIs.

2 CASE STUDY
Although deceivingly simple, the creation of a visually intuitive and
smooth-functioning GUI requires a moderate degree of interface
programming expertise. A series of back-and-forth interactions
with ChatGPT demonstrate its ability to guide programmers with-
out user interface programming experience and minimal knowledge
beyond a basic definition of a GUI. This challenging project was
specifically selected to see how far ChatGPT could be pushed as
a learning tool. The particular program was intended to create a
segmentation tool to annotate images [5]. Image segmentation is
the process wherein the user uses pixel selection tools to identify
regions of an image that are of interest (foreground). Image annota-
tion is often the first step in many machine learning and scientific
image understanding workflows.

The desired segmentation program must enable the user to eas-
ily upload an image, segment the image, and save the segmented
image. The user must be able to switch between annotation colors
and zoom/pan the image. The resulting segmented labeling of the
output must maintain a size identical to that of the original so that
coordinate points for the labels correlate directly with the pixels in

Journal of Computational Science Education Volume 15, Issue 2

November 2024 29

https://doi.org/10.22369/issn.2153-4136/x/x/x

the image. Other desirable features include undo/redo buttons, the
option to select different colors, a fill bucket or lasso fill tool, and a
size scale to change the size of the markups. Ideally, the program
would be written in Python and exclude any excess features that
would slow the segmentation process down or provide undesirable
results.

Several techniques were used to prompt the chat-bot, including:

Method 1 – From Scratch Evolution: asks ChatGPT to create
a Python-based image annotation code from scratch, gradually
introducing new features into the program.
Method 2 – From Sample: gives ChatGPT code for a previously
created GUI that functions but does not have all required features,
gradually fixing and developing the code as needed.
Method 3 – From Scratch List Requirements: gives ChatGPT
an extensive list of requested features to create a GUI from scratch.
Method 4 – From Scratch Assisted: gives ChatGPT a rough base-
line code inspired by previously established code and knowledge
gained through the other methods’ results.
Method 5 – Using GPT-4: employs GPT-4 to compare the results
with those of GPT-3.5.

Each technique was attempted anywhere from one to three times,
depending on whether the programmers felt another attempt would
be constructive in demonstrating the capability of the chat-bot given
different initial conditions.

A complete list of the transcripts used throughout this paper can
be found on the following openly available repository:
https://github.com/katiereagan/ChatGPT-Conversation.

2.1 Method 1: From Scratch Evolution
The method ”From Scratch Evolution” starts by asking ChatGPT to
create a Python-based image annotation code from scratch. Using
this code as a baseline, new features were gradually introduced into
the program.

Attempt 1:
The initial prompt was “Python-based image annotation program”.
The output (Figure 1) consisted of a basic annotation program using
Open Source Computer Vision Library (OpenCV) [10], with the
steps outlined above each piece of code.

Underneath the code, ChatGPT provides a brief description that
walks the user through each step of the program, noting that
OpenCV must be installed in the Python environment:

ChatGPT:
In this code, the image is loaded using cv2.imread() and displayed
in a window using cv2.imshow(). The user can click on the image,
and the annotate() function is called to handle the mouse events.
When a point is clicked, it is added to the points list, and the user
is prompted to enter an annotation. The point and annotation are
stored in separate lists. The annotated points are drawn on the image,
and the updated image is displayed using cv2.imshow(). After the
user is done annotating, the annotated points and annotations are

printed, and the annotated image is saved using cv2.imwrite(). Fi-
nally, the image window is closed using cv2.destroyAllWindows().

Note that this is a basic example, and you may need to customize it
based on your specific requirements. Additionally, you’ll need to have
OpenCV installed in your Python environment to run this code.

Upon further prompting, ChatGPT provided the user with more
detailed instructions about installations of OpenCV using the ter-
minal. This initial program did not function properly, generating
errors with each run that were outside the programmer’s ability
to fix. Rather than searching the code for errors, ChatGPT was
prompted to create a program that did not use OpenCV. The al-
ternative offered (Figure 2) by the chat-bot depended on Pillow
(Python Imaging Library or PIL fork) [6] for image manipulation
and Tkinter (Tk interface) [13] for the user interface. The steps
outlined in the code and description provided were similar to those
used in the OpenCV-based program, varying in the libraries used.

Again, the program generated was a Python app that would not
respond, attempting to but never successfully opening a window.
This issue could be due to outdated suggestions due to ChatGPT’s
information intake cutoff occurring in September of 2021, nearly
two years prior to this study.

When working with a chat-bot, the general process is to suggest
a new feature, debug, and repeat while gradually introducing new
features into the program or correcting pre-existing features.

One notable benefit of working with ChatGPT is that, after get-
ting output, the user can ask the system questions about its code to
get more insight into the logic. The chat-bot’s conversational nature
benefits beginners, who may be less familiar with user interface
design.

Although ChatGPT has a reputation for producing solutions
that are not necessarily accurate, this work found that ChatGPT’s
explanations could at least serve as a starting point for further
explanation.

Ultimately, ChatGPT did not successfully produce a working
code and it was decided to start a second attempt guided by the
knowledge and experience gained from the first attempt.

Attempt 2:
For the second attempt, the order in which the features were re-
quested changed in hopes of producing a different outcome.

The initial prompt was still “Python-based image annotation code”.
The code generated once again depended on OpenCV, so a request
was made to rewrite the program without using OpenCV. The
default alternative seems to be PIL. To better fit the program re-
quirements, the prompt requested the system record the coordinate
points of the user annotations. The resulting code (Figure 3) added
a portion of code dedicated to this new feature.

The system struggled to open the Python application popup.
After several rounds of requests to optimize the provided code to
facilitate the generation of the app window, the program remained
non-functional. The chat-bot cited techniques such as double buffer-
ing, resizing the image, and using batch annotations, but the final
product remained unable to load. It became increasingly apparent
that ChatGPT struggles to create its code from scratch but can
explain pre-existing code. ChatGPT would benefit from more user

Volume 15, Issue 2 Journal of Computational Science Education

30 November 2024

https://github.com/katiereagan/ChatGPT-Conversation

Figure 1: The output ChatGPT generated when prompted by “Python-based image annotation program.”

Figure 2: A revised program that contrasts from the earlier program that depended on OpenCV. The most notable differences
occur near the beginning, when importing the PIL and Tkinter libraries.

guidance, such as an outline of the requirements or an initial ex-
cerpt. Ultimately, the programmer was again unable to use ChatGPT
to produce working code.

Attempt 3:
The third attempt once again changed the order in which the fea-
tures were requested in hopes of producing a different outcome,
starting with the input “Python-based image annotation code. Can
you modify the above code to run without using OpenCV?”, followed
immediately by a request to include an annotation coordinate-
tracking feature. The chat-bot’s reply (Figure 4) included parts of
code that intended to fulfill the desired features.

While the app would open, the user’s image would not upload,
and the annotations on the canvas were invisible to the user. After

some repetitive requests to fix the errors, it was determined that
ChatGPT could not produce a working code.

Method Takeaway: Overall, the Scratch Evolution method was
not effective. ChatGPT struggled to output the original code that
functioned and to manipulate the initial code while preserving the
program’s functionality.

2.2 Method 2: From Sample
This method begins by providing ChatGPT with the code for a
previously developed GUI [4] that produces a Python app (Figure
5) that functions but does not have all the required features. For
example, the program contains no zoom feature, no functioning
save feature, and an eraser that undesirably erases the image in

Journal of Computational Science Education Volume 15, Issue 2

November 2024 31

Figure 3: A revised version of the earlier program that includes the annotation recording feature.

Figure 4: ChatGPT’s original code, prompted by the user to create a Python-based image annotation code that did not use
OpenCV and included an annotation coordinate-tracking feature.

addition to the markups. Depending on the window size, not all of
the toolbar may be accessible.

Using this code as a baseline, ChatGPT further developed the
code to satisfy the requirements of the segmentation program.

Attempt 1:
The initial input prompt was ”What is the function of this program?”.
ChatGPT replied with a walk through each part of the provided
code. Additionally, a concluding overview of the program was as
follows:

ChatGPT:
Overall, the program provides a basic image markup tool where users
can draw on an image, choose different tools and colors, adjust brush

size, clear the canvas, and save the modified image.

From here, the programmer was then able to gradually request
the implementation of new features to fit the requirements of our
desired program. While ChatGPT can recognize the sample code
initially given to it and can make modifications to implement the
requested features, it does a poor job of keeping the code func-
tional. Therefore, it is essential to recurrently ask the chat-bot to
check for bugs after each new addition to the program to prevent
an accumulation of issues over time. One consistent issue to note
when working with ChatGPT is that even the requested corrections
may not work. For instance, consider the zoom-in and zoom-out
features. The initial requests are as follows:

Volume 15, Issue 2 Journal of Computational Science Education

32 November 2024

Figure 5: Screenshot of the Python app generated by the
sample code.

User:
Is there a way you can manipulate the earlier code to integrate a
zoom functionality into the program? For instance, can you add a ”+”
button for the user’s view of the canvas to zoom in and a ”-” button
to zoom out? The purpose is to make it easier for the user to see the
details of the image only when the view is zoomed in and the overall
image only when the view is zoomed out?

ChatGPT:
Certainly! Here’s an updated version of the code that integrates zoom
functionality with ”+” and ”-” buttons for zooming in and out of the
canvas: . . .

Although the chat-bot’s reply seems promising, after some test-
ing, it was noticed that the “+” and “-” buttons are present but do
not zoom in and out. ChatGPT was prompted to address this issue:

User:
The program zoom buttons do not seem to work. Is there any way you
can make some modifications to ensure the logic created enables them
to serve their intended purpose?

ChatGPT:
Apologies for the oversight. It seems we missed updating the zoom
functionality. Here’s the modified code with corrected zoom function-
ality: . . .

The provided modifications did not address the issue. The con-
versation continued for several iterations of user input and chat-bot
output, resulting in minor tweaks to the program until the buttons
functioned. The chat-bot frequently recommended creating custom
buttons that had many initial errors. Yet, once the buttons were
functional, the features previously established no longer worked
properly. The final product (Figure 6) contained buttons that were
accessible but did not function. While the zoom buttons work, their
activation resulted in the erasing of annotations. Additionally, the

annotations do not align with the mouse and may occasionally
become dysfunctional. Only PNG images can be uploaded, and there
is no save feature.

Figure 6: Screenshot of the Python app generated by the
updated code. Note that the program now has zoom and pan
features.

Method Takeaway: Overall, the Sample method was not effective.
Due to the conversational nature of working with ChatGPT, it is
exceedingly difficult to pinpoint one cause for the ineffectiveness.
ChatGPT’s learned methods may fail to integrate with the sample
code given. The system may find it challenging to process large
amounts of code upfront.

2.3 Method 3: From Scratch List Requirements
The method titled ”Scratch List Requirements” starts with entering
an extensive list of requests and goals into ChatGPT to create an
image annotation program in Python. The revised list responds to
the issues persisting in the ”From Sample” method. Similarly to the
previous method, this method used the list of requirements to create
an initial code that acts as a baseline. After spotting the errors in
the initial program, the programmer focused on fixing individual
features one at a time with assistance from ChatGPT to create a
functioning program that satisfies all of the listed requirements.
After an unsuccessful first attempt, the second attempt depends on
a slightly different initial list.

Attempt 1:
The initial user input included a list of program requirements writ-
ten for the first attempt.

User:
Create a Python-based image annotation code satisfying the following
conditions: Do not use CV2, Instead of using ANTIALIAS, use LANCZOS

Journal of Computational Science Education Volume 15, Issue 2

November 2024 33

or Resampling.LANCZOS, Include a prompt that enables the user to
select an image from their local files, Save both the original image and
the annotated copy of the image and include a place for the user to
choose the location at which the annotated copy will be saved, Enable
the user to annotate the image by interacting using a computer mouse,
The annotation tools include a black marker, white marker and anno-
tation eraser that have the ability to draw atop the pixels in an image.
The user can change the size of the tools throughout their session,
with the smallest size being one pixel and the largest size being 20
pixels. Create a coordinate system for the image that look at the pixel
location of the annotations, and in which the center of the image is
the origin, regardless of its placement on the user’s screen, Create a
document that records a list of these coordinate points. Prompt the user
to choose a file location at which to save this document. Double-check
that the code has no errors, by making sure the GUI event loop has
root.mainloop() and that all of the proper packages are imported
during initialization.

In response, ChatGPT formulated a program that was not func-
tional and produced error messages, as follows. When asked what
adjustments would be required to get the code running, ChatGPT
supplied a bullet point list and, upon request, offered up code and
implemented it into the pre-existing program. Although the chat-
bot can spot errors in its code, it continues to output error-ridden
code. Eventually, the programmer was able to get the program
(Figure 7) up and running. In this version, most of the requested fea-
tures are present with flaws, except for the upload image function,
which is essential to the program. The program can only annotate
in dots and has no scroll functionality. Depending on the window
size, some of the features may not be accessible.

Figure 7: Screenshot of the initial GUI generated by Method
3, in which a list of requirements was provided.

ChatGPT generates the initial code very quickly. The authors
were curious if there would be a way to ask the chat-bot to take
more time in its code generation to check for errors throughout.
However, GPT-4 takes more time to type the response, and as will
be discussed in Method 5, the resulting outputs have higher quality.
Although the system can add comments to its code to help the user
follow along, one of the limitations of ChatGPT is that there is no
way to see the logic behind the output or the sources behind the
information.

When focusing on one specific element of the code, ChatGPT
frequently makes alterations that result in the dysfunction of the
others. After much discussion with the chat-bot, the code (Figure 8)
contained fewer functioning features than the initially generated
code, albeit with no error messages.

Figure 8: Screenshot of the final GUI generated by Method 3 -
Attempt 1. Note that there is no ‘save image’ feature.

Attempt 2:
For the second attempt, the programmer created a list of more
detailed requirements. However, this large amount of input in-
formation revealed a limitation of ChatGPT, wherein the chatbot
conveyed its limit when taking in long and complicated requests:

User:
Create a GUI for image annotation that satisfies the following condi-
tions: . . .

ChatGPT:
Creating a complete GUI application with all the described features is
beyond the scope of a text-based response. However, I can provide you
with an outline of the steps involved in building such an application
using Python and some popular GUI libraries. To create the GUI for
image annotation with the specified features, you can follow these
steps: . . .

The term “text-based response” is most interesting as it was
able to form large programs as output during prior attempts and
methods.

With some prompting, ChatGPT generated a sample of code for
the image annotation program. When asked to review its code, the
system identified unfilled parts of the listed requirements. Each
ChatGPT-generated code was input as new code to be corrected. At
one point, ChatGPT even asked formore specific instructions to best
direct its alterations. Eventually, to increase specificity, the chat-bot
was requested to create a program (Figure 9) with three tabs; the
first one had annotating features such as panning and zooming,
the second one was a continuously updated view of the annotated
image, and the third tab was a blank window that appeared to serve
no purpose.

Volume 15, Issue 2 Journal of Computational Science Education

34 November 2024

Figure 9: Screenshot of the GUI generated by Method 3 - At-
tempt 2. Note that multiple tabs are generated.

With the final layout, the toolbar was not accessible so that the
tabs could not serve their designated purposes.

Method Takeaway: Overall, the ”From Scratch List Requirements”
method was ineffective as it provided too much information upfront
for the system to process. Despite the clarity of the input given,
ChatGPT failed to provide output that took all elements of the
request into account.

2.4 Method 4: From Scratch Assisted
The method titled ”From Scratch Assisted” starts with entering a
rough baseline code as created through user knowledge gained
throughout this study and prior methods. This code generated from
scratch by the user does not meet all of the specifications required
or run and will be corrected and further developed through recom-
mendations by ChatGPT.

Attempt 1:
The first attempt used Tkinter [13] in a program that contained un-
responsive ’Browse’, and ’Clear All’ buttons; black and white
brushes; tool size slider; and zoom and pan features. As such, the
GUI was nonfunctional. The general process was to suggest a new
feature, debug, and then evaluate the new code based on prior
knowledge. Once the code demonstrated some functionality or
comprehensible logic by having a few error codes, a new feature
would be suggested. ChatGPT successfully interpreted error codes,
such as the one included in Figure 10 while also providing explana-
tions when requested.

When given this text-dense error message, ChatGPT responds
as follows:

ChatGPT:
The error message TclError: cannot use geometry manager
pack inside . which already has slaves managed by grid
indicates that you are trying to mix the pack and grid geometry
managers in your code, which is not allowed.
In your code, you are using both grid and pack to manage widgets
within the same parent widget. In the init method, you have used a
grid to place widgets in the root window. However, later on, you are
using pack to manage the annotation_canvas widget.
To fix this error, you need to be consistent and use either grid or pack
for all widgets within a given parent widget. In this case, since you
are already using grid to manage other widgets, you should use grid
for the annotation_canvas widget as well.

The chat-bot also provided an updated code meant to address
the issue. One current limitation of ChatGPT is the inability to
highlight within blocks of provided code. When requesting that
ChatGPT modify pre-written code, it can be challenging to pick out
the changes the chat-bot made. Upon request, comments inside the
code indicate the changes, but even those can be difficult to spot
when considering lengthy blocks of code.

Another feature of ChatGPT is its ability to recall elements from
earlier parts of the conversation. For instance, after conversing
back and forth about specific flaws in an earlier block of code to
suggest changes, the chat-bot implemented the suggestions into
the original code. The response was characterized by a comparable
level of confidence and positivity:

ChatGPT:
Certainly! Here’s the complete code for the image annotation tool
based on the discussions we’ve had. . .

The final product (Figure 11) had all the required buttons except
for a save button; however, the buttons did not successfully activate
any features or annotation tools upon selection, leading the GUI to
be ultimately ineffective.

Attempt 2:
The second attempt used Plotly Dash [11] in a program that, similar
to the one used in Attempt 1, lacked the capability to upload images
and had non-functional buttons. The initial code was constructed
from scratch drawing from pieces of code gathered throughout pre-
vious methods and inspired by examples of programs with similar
features.

After using the chat-bot to fix the code and get it running (Figure
12), the layout included a full toolbar that remained accessible re-
gardless of the window size. The markups became erased whenever
the tool color or size was changed. The saved image had a white,
gridded background and did not retain the same size as the origi-
nal. In addition, it still lacked the buttons to trigger the requested
features. ChatGPT suggested JavaScript to create custom buttons,
but they remained dysfunctional. However, the chat-bot seemed
reluctant to offer Python alternatives to the JavaScript buttons.

Method Takeaway: Overall, the programmer found this method
to be most effective. ChatGPT struggles to produce code from
scratch and sometimes uses logic that can be challenging to follow.

Journal of Computational Science Education Volume 15, Issue 2

November 2024 35

Figure 10: A sample of the error code given to, and successfully deciphered by, ChatGPT.

Figure 11: Screenshot of the GUI generated by Method 4 -
Attempt 1. Note that the toolbox may not be accessible if the
window size is too small.

As such, it is easier for the programmer to start with a clear road
map in mind and a rough draft of code.

2.5 Method 5: Using GPT-4
In this methodology, the programmer initially requested ChatGPT
to develop a GUI based on a specified set of requirements, though
not exhaustively. Subsequently, the generated code was tested, fol-
lowed by iterative refinements and enhancements, including the
addition of new features, aligning this approach with Method 1.

Initially, the GUI encountered an issue where the displayed image
was disproportionately small. The GUI, embedded within a Python
window, was then transformed into a web-based interface, utilizing
Python with Flask [12], HTML, and JavaScript. A critical feature
involved the transmission of x- and y-coordinates from user-drawn
points to Python. Additionally, the application was designed to
overlay an annotation mask on the input image, enabling users to

Figure 12: Screenshot of the GUI generated by Method 4 -
Attempt 2.

create segmentation annotations without altering the original im-
age. This functionality involved dynamic mask updates, including

Volume 15, Issue 2 Journal of Computational Science Education

36 November 2024

real-time display refreshment upon user interaction, and the capac-
ity to save the mask as a separate PNG file. Therefore, the essential
features incorporated were: (a) Utilization of two image elements –
the original base image and the overlay (mask); (b) Incorporation
of a canvas for drawing on the overlay; (c) Functionality to save
the overlay as a new image; (d) Dynamic updating of the mask in
response to user edits.

Despite the successful integration of these features, the GUI
initially lacked a ’save’ button. After multiple iterations, it was
discerned that the issue stemmed from the stacking order of HTML
elements, with the canvas inadvertently obscuring the button. This
realization was attributed to the programmer’s prior experience,
underscoring the significance of foundational programming knowl-
edge in resolving such issues.

The final refinement involved addressing an issue where the
GUI would connect the end point of one drawing segment to the
start point of the next upon resumption. ChatGPT resolved this by
modifying the mouseup event handler to invoke the beginPath()
method. This adjustment ensured that new drawing segments ini-
tiated after releasing the mouse button did not connect with the
preceding segments, thereby enhancing the application’s function-
ality and user experience.

Figure 13 presents a screenshot of the rudimentary GUI devel-
oped with Method 5. The interface of the GUI is minimalistic, pri-
marily displaying the image in its original dimensions alongside
a ’Save Mask’ button situated beneath the image. Users have the
capability to annotate directly on the image; these annotations,
appearing in red, are made on a supplementary canvas layer above
the image, overlaying it without altering the original. Upon clicking
the ’Save Mask’ button, only the annotated mask is preserved.

This version of the GUI is intentionally basic, devoid of advanced
functionalities such as zooming capabilities, varied pen colors for
annotating distinct objects, or the ability to fill enclosed areas in
the annotations. Its primary purpose is to facilitate a comparative
analysis with the GPT-3.5 generated interfaces and to demonstrate
the relative ease and efficiency of GUI generation using GPT-4,
which required fewer iterations and refinements in requests.

Potential enhancements could include instructing the chat-bot
to fill the annotated areas with a specific color, such as white, while
rendering the background in black, thereby further refining the
GUI’s functionality.

Figure 13: Screenshot of the GUI generated byMethod 5. This
figure includes the original image (left), the user-annotated
image (middle), their respective save buttons below each, and
the saved mask after pressing the save button (right).

Method Takeaway: This method demonstrates a level of compa-
rability to Method 1, wherein GPT-3.5 was utilized. The application
of GPT-4 in this context revealed a marked improvement in the
chat-bot’s comprehension capabilities, leading to the fulfillment of
requirements with fewer follow-up interactions and iterations. The
code produced by GPT-4 was notably effective and met the desired
criteria satisfactorily.

However, the experience and prior knowledge of the program-
mer played a pivotal role in identifying the mentioned issue that
ChatGPT was seemingly unable to detect. Consequently, this under-
scores that sole reliance on ChatGPT, in the absence of foundational
programming knowledge, is not advisable.

3 DISCUSSION AND RECOMMENDATIONS
Generally, leveraging prompt engineering with large language mod-
els like ChatGPT possibly leads to significantly improved outcomes.
By thoughtfully designing prompts, users can more precisely steer
the model towards producing the desired responses.

To reduce misunderstandings between the programmer and the
chat-bot, specific instructions to ChatGPT are advisable. The pro-
grammer should maintain some skepticism regarding the output.
While the chat-bot delivers responses that exude confidence, its
output remains occasionally incorrect. It is recommended to have
a well-defined objective: s imilar to the broader practice of cod-
ing, engaging with ChatGPT yields optimal results when the user
approaches with a specific intention in mind. ChatGPT seems to
provide the best responses when user requests are specific.

Either start small or break the code down.
ChatGPT typically exhibits limitations when processing large re-
quests, often resulting in the omission of certain parts. It is therefore
recommended to initiate interaction with either a small request or
an initial draft, subsequently refining it piece by piece. The most
effective strategy is contingent upon the nature of the project. If
the program has interdependent components, starting with basic
features and progressively elaborating them is advisable. If the
program is characterized by sequential components, it would be
more effective to break down the problem and refine it step-by-step.

Pay attention to the modifications made by ChatGPT and
ask questions to understand the logic.
While ChatGPT is capable of analyzing large text inputs, it may not
thoroughly address every aspect of the code. Providing suggestions
is more beneficial than code corrections, as they can provide starting
points for further investigation. Additionally, a compiled list of
recommendations may be more comprehensible than suggestions
embedded within the code. As stated earlier, ChatGPT cannot be
highlighted within a Python code box. While it can insert comments,
such annotations can be challenging to distinguish from comments
input by the user.

4 CONCLUSION
ChatGPT can be a supportive tool for novice programmers. While
the chat-bot is not adept at generating highly functional code from
scratch, it excels in identifying errors and interpreting the logic of
existing programs. Due to its conversational nature, ChatGPT is

Journal of Computational Science Education Volume 15, Issue 2

November 2024 37

particularly effective at responding to specific questions. In general,
the practice of refining prompts through prompt engineering with
this advanced language model probably enhances the result quality.
By carefully crafting and adjusting prompts, users can direct the
model more effectively toward generating outputs that meet their
specific requirements.

This study merely scratched the surface of ChatGPT’s capacity
to aid in user interface programming. A more granular examination
of specific methods might enable programmers to discern patterns
in the system’s responses and check for replaceable conversations.

Additionally, a programmer with experience in graphical user
interface development is better positioned to evaluate the potential
of chat-bots in enhancing their productivity in GUI design.

REFERENCES
[1] 2024. ChatGPT — Release Notes | OpenAI Help Center. https://help.openai.com/

en/articles/6825453-chatgpt-release-notes. Accessed on 3/8/2024.
[2] Katharina Buchholz. 2023. Infographic: Threads Shoots Past One Mil-

lion User Mark at Lightning Speed. https://www.statista.com/chart/29174/
time-to-one-million-users/. Accessed: 2023-11-12.

[3] Enrico Checcucci, Paolo Verri, Daniele Amparore, Giovanni E. Cacciamani,
Cristian Fiori, Alberto Breda, and Francesco Porpiglia. 2023. Generative Pre-
training Transformer Chat (ChatGPT) in the scientific community: the train has
left the station. Minerva Urology and Nephrology 75, 2 (April 2023), 131–133.
https://doi.org/10.23736/S2724-6051.23.05326-0

[4] Dirk Colbry. 2022. GUI-Basic. https://github.com/see-insight/see-tkinter-gui/
blob/dd5c50c5bb0ca92f63cc9b48b85230c2a5d65311/GUI-Basic.py.

[5] Dirk Colbry. 2023. Toward an automatic exploration of algorithm space to speed
up image annotation for applications in scientific image understanding. In IEEE
AIPR workshop. St. Louis, MO.

[6] Jeffrey A. Clark (Alex) and contributors. 2024. Pillow - Python Imaging Library
(Fork). https://pypi.org/project/Pillow/. Accessed on 3/8/2024.

[7] Gary Marcus. 2022. What to Expect When You’re Expecting . . . GPT-4. https:
//garymarcus.substack.com/p/what-to-expect-when-youre-expecting. Accessed:
2023-11-12.

[8] Dan R. Olsen. 2007. Evaluating user interface systems research. https://dl.acm.org/
doi/10.1145/1294211.1294256. In Proceedings of the 20th annual ACM symposium
on User interface software and technology (UIST ’07). Association for Comput-
ing Machinery, New York, NY, USA, 251–258. https://doi.org/10.1145/1294211.
1294256

[9] OpenAI. 2024. OpenAI. https://openai.com. Accessed on 3/8/2024.
[10] OpenCV. 2024. OpenCV - Open Computer Vision Library. https://opencv.org.

Accessed on 3/8/2024.
[11] Plotly Dash. 2024. Dash Python User Guide. https://dash.plotly.com. Accessed

on 3/8/2024.
[12] Armin Ronacher. 2024. Flask Web Framework. https://flask.palletsprojects.com/.

Accessed on 3/8/2024.
[13] Tkinter. 2024. tkinter — Python interface to Tcl/Tk. https://docs.python.org/3/

library/tkinter.html. Accessed on 3/8/2024.

APPENDIX
Here we present the final, fully functional version of the code
generated in Method 5 using GPT-4, to facilitate replication and
further research by interested parties. This includes the app.py file,
a Flask [12] application, and the accompanying index.html.

In app.py, we employ the render_template(’index.html’,
form=form) function, which integrates Flask with the HTML fron-
tend, showcasing the interaction between backend logic and fron-
tend presentation. This setup exemplifies the practical application
of AI-generated code in a web development context.

app.py:

1 from flask import Flask , render_template , request ,
jsonify , redirect , url_for

2 from flask_wtf import FlaskForm

3 from wtforms import SubmitField
4 from PIL import Image
5 import os
6 import base64
7 from io import BytesIO
8
9 app = Flask(__name__)
10 app.config['SECRET_KEY '] = 'mysecretkey '
11
12 class SaveMaskForm(FlaskForm):
13 save = SubmitField('Save Mask')
14
15 @app.route('/', methods =['GET', 'POST'])
16 def index():
17 form = SaveMaskForm ()
18 if form.validate_on_submit ():
19 # The functionality of saving the mask

will be handled in the JS.
20 # This redirect is just to reload the form

after the POST request.
21 return redirect(url_for('index '))
22 return render_template('index.html', form=form

)
23
24 @app.route('/save_mask ', methods =['POST'])
25 def save_mask ():
26 data = request.json
27 mask_data = data['mask_data ']
28
29 mask_img = Image.open(BytesIO(base64.b64decode

(mask_data.split(',')[1])))
30 mask_img_name = "flower_mask.png"
31 mask_img.save(os.path.join('static ',

mask_img_name))
32
33 return jsonify(status='success ')
34
35 if __name__ == "__main__":
36 app.run(debug=True)

index.html:

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF -8">
5 <meta name="viewport" content="width=device -

width , initial -scale =1.0">
6 <title >Image Annotation </title >
7 <style >
8 #control -panel {
9 margin -top: 20px;
10 }
11 </style >
12 </head>
13 <body>
14
15 <img id="sourceImage" src="/static/flower.png"

style="position: relative; z-index: 0;" alt="
Source Image">

16 <canvas id="myCanvas" style="position: absolute;
top: 0; left: 0; z-index: 1;"></canvas >

17
18 <div id="control -panel">
19 <button type="button" onclick="saveMask ()">

Save Mask</button >
20 </div>
21
22 <script >
23 let canvas = document.getElementById('myCanvas

');
24 let ctx = canvas.getContext ('2d');

Volume 15, Issue 2 Journal of Computational Science Education

38 November 2024

https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://www.statista.com/chart/29174/time-to-one-million-users/
https://www.statista.com/chart/29174/time-to-one-million-users/
https://doi.org/10.23736/S2724-6051.23.05326-0
https://github.com/see-insight/see-tkinter-gui/blob/dd5c50c5bb0ca92f63cc9b48b85230c2a5d65311/GUI-Basic.py
https://github.com/see-insight/see-tkinter-gui/blob/dd5c50c5bb0ca92f63cc9b48b85230c2a5d65311/GUI-Basic.py
https://pypi.org/project/Pillow/
https://garymarcus.substack.com/p/what-to-expect-when-youre-expecting
https://garymarcus.substack.com/p/what-to-expect-when-youre-expecting
https://dl.acm.org/doi/10.1145/1294211.1294256
https://dl.acm.org/doi/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256
https://openai.com
https://opencv.org
https://dash.plotly.com
https://flask.palletsprojects.com/
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html

25 let img = document.getElementById('sourceImage
');

26
27 let isDrawing = false;
28
29 img.onload = function () {
30 canvas.width = img.width;
31 canvas.height = img.height;
32 }
33
34 canvas.addEventListener('mousedown ', function(

event) {
35 isDrawing = true;
36 draw(event.pageX - canvas.offsetLeft ,

event.pageY - canvas.offsetTop);
37 });
38
39 canvas.addEventListener('mousemove ', function(

event) {
40 if (isDrawing) {
41 draw(event.pageX - canvas.offsetLeft ,

event.pageY - canvas.offsetTop);
42 }
43 });
44
45 canvas.addEventListener('mouseup ', function ()

{
46 isDrawing = false;
47 ctx.beginPath (); // This line clears the

current drawing path
48 });
49
50 function draw(x, y) {
51 ctx.lineWidth = 5;
52 ctx.lineCap = 'round ';
53 ctx.strokeStyle = 'red ';
54
55 ctx.lineTo(x, y);
56 ctx.stroke ();
57 ctx.beginPath ();
58 ctx.moveTo(x, y);
59 }
60
61 function saveMask () {
62 const canvasData = canvas.toDataURL ();
63 fetch('/save_mask ', {
64 method: 'POST ',
65 headers: {
66 'Content -Type ': 'application/json '
67 },
68 body: JSON.stringify ({
69 'mask_data ': canvasData
70 })
71 })
72 .then(response => response.json())
73 .then(data => {
74 if (data.status === 'success ') {
75 alert("Mask saved successfully!");
76 } else {
77 alert("Error saving mask!");
78 }
79 });
80 }
81 </script >
82
83 </body>
84 </html>

Journal of Computational Science Education Volume 15, Issue 2

November 2024 39

