
Scientific Computation in Jupyter Notebooks using Python
Mark Matlin

Bryn Mawr College
mmatlin@brynmawr.edu

ABSTRACT
Computation is a significant part of the work done by many prac-
ticing scientists, yet it is not universally taught from a scientific 
perspective in undergraduate science departments. In response to 
the need to provide training in scientific computation to our stu-
dents, we developed a suite of self-paced “modules” in the form of 
Jupyter notebooks using Python. These modules introduce the ba-
sics of Python programming and present a wide variety of scientific 
applications of computing, ranging from numerical integration and 
differentiation to Fourier analysis, Monte Carlo methods, parallel 
processing, and machine learning. 1 The modules contain multiple 
features to promote learning, including “Breakpoint Questions,” 
recaps of key information, self-reflection prompts, and exercises.

KEYWORDS
Scientific computation, Python, Jupyter notebooks

1 INTRODUCTION
The modules were developed under a grant from the TIDES (Teach-
ing to Increase Diversity and Equity in STEM) project of the Asso-
ciation of American Colleges & Universities. 2 It is intended that 
the modules will provide a largely independent learning experience 
in algorithmic thinking and scientific programming for science 
students, but they also could serve as the core content of or a sup-
plement to a formal course.

Our strategy in the first year of the grant was to design a Com-
putational Methods pilot course, primarily for physics majors but 
also other physical science students, that would serve as a tempo-
rary vehicle to develop, pilot, and assess modular learning units in 
a blended learning format, and to gain experience with teaching 
practices that support diverse classrooms. That course, PHYS 350, 
was offered at Bryn Mawr in the spring of 2015. It was run mainly 
by the author as a computational lab: students were asked to do 
readings in the modules ahead of class time, and they worked on 
the embedded exercises during class. Lecturing was kept to a bare 
minimum. Help was available from the author, a colleague, and a 
TA, but the students usually looked to their classmates for help, 
and that was encouraged.
1Much of the scientific computation content was based on the outstanding textbook 
Computational Physics, Mark Newman, CreateSpace Independent Publishing Platform, 
2012.
2Former colleagues Elizabeth McCormack (now at Bowdoin College) and Doug Blank 
(now at Comet ML) were members of the Bryn Mawr TIDES team.

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full 
citation on the first page. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE, 
a supported publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/2/5

A secondary goal of the set of modules beyond teaching compu-
tation (and the focus of the TIDES project) is to attract to computing
and computational science students from groups typically under-
represented in those fields. One approach to that goal is to give
students an appreciation of the wide range of individuals who have
contributed to the development of computational science, or who
have used it in interesting or important ways. This approach is
implemented in nearly every module by the inclusion of a brief
scientist profile, most of which were developed by the students
in PHYS 350. A second approach, which was employed at regular
intervals in that course, was to ask students a “reflection question”
meant to encourage them to think about how science and compu-
tation was relevant to them and could serve their personal goals.
Multiple reflection questions are now presented in the modules.

Since the first offering of PHYS 350, the modules have been used
more than a half dozen times in labs offered at both the first- and
second-year levels, by the author and separately by two colleagues
who were not previously familiar with the modules. As a result of
these experiences, involving roughly 100 students, we now offer the
lab in the second semester of the sophomore year, when we believe
our students can get the most from the course while also acquiring
computational skills in time for them to be used in upper-level
courses.

2 THE MODULES
At the core of our methodology for developing the computational
materials was an open-source technology called a “computational
notebook.” These integrate text, formatted equations in LaTeX,
computations, visualizations, and other media such as sound and
video, and render it in a web browser window. Computational
notebooks easily allow students to author, reproduce, and adapt
code, and insert text and hyperlinks. We believed the notebook
format of computation would allow us to implement our blended
approach to create modules that could be easily distributed to other
institutions. Most importantly, the notebook platform allowed us to
integrate culturally responsive material and activities directly into
the computational instruction modules. In addition, computational
notebooks could be used by the students to express their own
narratives and personal connections in the form of “reflections”
directly alongside their coding work.

Specifically, for our project we used the Jupyter open-source
notebook framework (https://jupyter.org/), which supports over
40 computing languages. A significant advantage to utilizing an
open-source platform is that students will have access to it free of
charge, even after they have left Bryn Mawr College. (An open-
source distribution of Python, which includes the Jupyter platform
as well as many useful Python packages, is Anaconda, https://www.
anaconda.com/.)

Volume 15, Issue 2 Journal of Computational Science Education

24 November 2024

https://doi.org/10.22369/issn.2153-4136/x/x/x 
https://www.anaconda.com/
https://www.anaconda.com/


Our 14 initial modules (one with multiple parts) all use the
Python programming language. (A zeroth module introducing com-
putation and providing lists of resources is offered as a PDF file;
two additional modules on advanced topics have been added more
recently.) Python is especially well-suited for computing education
and is used by researchers in a variety of fields, including biology,
physics, chemistry, linguistics, and computer science. Using authen-
tic tools on authentic problems has been shown to be effective in
education [1].

Module 0 introduces computing in general and, over three parts,
Module 1 introduces the basics of programming and Python, as
well as some software library packages that extend the power of
Python for scientific computing. Module 2 discusses the concepts
of numerical error and computing time. Module 3 presents the first
application of computing to problems relevant in physics: the Euler-
Cromer method is used to solve one- and two-dimensional motion
problems, without and with drag. (The exercises for this module
include ones modeling projectile motion in the distance-dependent
gravitational field of Earth, the flight of a rocket accounting for mass
loss, and a solar-sail- powered spacecraft.) Module 4 introduces the
forward, backward, and central derivatives, as well as interpolation.
Our typical second-year student can get through the preceding
modules and at least part of Module 4 in a one-semester course.

Subsequent modules cover important topics in scientific compu-
tation that a student might find useful in their upper-level courses
or in research: numerical integration, linear equations, eigenvalue
equations, data analysis /visualization, Fourier techniques, nonlin-
ear equations, ordinary differential equations, partial differential
equations, Monte Carlo methods, symbolic computation, object-
oriented programming, parallel computing, and machine learning.
A detailed table of contents of all the modules is provided in an
appendix to this article.

An Instructor’s Guide to the modules, including a flowchart of
module dependencies, is provided along with the modules (see the
Conclusion section). It also includes an overview of all the modules
with some instructions for their use, the prompt we present to
students for developing scientist profiles, and several reflection
prompts.

As noted, the computational modules were designed with several
features intended to help meet the goals of the TIDES project to
enhance diverse and inclusive learning. Some of these features were
formulated with the principles of Universal Design for Learning
in mind. (The UDL philosophy is to provide learning materials
and modalities that will assist all students, including those from
underrepresented groups in STEM.) The features we incorporated
in the modules are:

(1) Context information: The start of each module lists the prior
modules with which students must be familiar in order to
undertake the current module; a time estimate for reading
and working through the module, including the exercises;
and the learning goals for the module. Some modules also
include a brief list of some interesting applications of the
mathematical tools presented in the module. (Module 0 omits
the last two elements, as well as features 2-5 below.)

(2) Scientist profile: Each module contains a personal profile of
a scientist connected with computing that describes their

work and some interesting facts about their life; most of
these profiles were generated by students. In constructing
the profiles, the students were asked to focus on more-or-
less contemporary individuals whose lives or work they
found inspiring in some way. We plan to continue to ask
students working with the modules to generate such profiles.
A couple of comments received from the students in the
PHYS 350 course regarding one of the profiles were “To me,
the most inspiring thing about this story was that Dean
grew up in a very difficult time for Black Americans, yet
still succeeded academically and professionally to a huge
degree. It reminds me that no matter where you come from
or what disadvantages you might start out with, if you are
dedicated, work hard, and love what you do, nothing can
stop you from achieving your goals. I think I can apply this
to my academics and career choice to help me decide what I
spend my life doing based on my true interests.” And “His
[Dean’s] story was very inspirational considering he was
an African American growing up in the 60’s and 70’s and
was able to achieve so much despite any adversity he faced.
He was able to work on many large projects, not just one,
which is something I aspire to do.”

(3) Breakpoints: These are quick questions provided to prompt
students to stop and think about what they have just read—
along with answers to those questions—so students can con-
firm their understanding immediately. (Student feedback
from the pilot course motivated inclusion of the breakpoint
answers in the modules themselves rather than in separate
solution sets.) A couple of example breakpoint questions
from the module on numerical differentiation are “Prove
this claim that 𝑏 is the derivative of the quadratic curve
𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 at 𝑥 = 0” and “Write out the expression for
the quartic (degree 4) approximation to the derivative.”

(4) Exercises: These ask students to put into practice the con-
cepts they learn in the modules. Those in early modules are
relatively straightforward to complete; the exercises increase
in difficulty as students progress through the sequence of
modules and build their skills and confidence. Many of the
exercises involve standard applications or computations that
students will encounter in their physics courses. (We hope
to add application problems from other scientific disciplines
where appropriate in the future.)

(5) Reflection prompts: During the Computational Methods pilot
course—which was run as an interactive session, sometimes
including a short lecture but with the bulk of the time used
for students working independently and in small groups—we
periodically posed questions designed to improve the stu-
dents’ metacognitive skills. Some of those questions and
others have been incorporated into the module notebooks
themselves so that students will encounter them no matter
the context in which they engage with the modules (i.e.,
whether in a course or during independent study). Examples
of reflection questions posed in the modules are “Which com-
ponents of this module did you find more difficult to work
through, and why do you think they were challenging?” and
“When you got stuck, what did you do to get unstuck? Could
this or similar actions be helpful if you get stuck in future

Journal of Computational Science Education Volume 15, Issue 2

November 2024 25



work?” The Instructor’s Guide includes additional prompts
that might prove useful.

(6) Recaps: Bullet-point lists near the end of each module sum-
marize the key takeaway ideas.

Other pedagogical elements connected with the modules that
can enhance their effectiveness include:

Term project: As part of the pilot course, students completed a
term project applying computation to some problem of personal
interest to themselves. Most students chose project topics related to
other courses they had taken or were taking, but one student chose
a topic connected to her personal interest in music. Assignments
that invite connections with a student’s personal goals and interests
can enhance motivation and persistence, two elements of learning
found to be key in the retention of students from underrepresented
groups in STEM [2, 3].

E-portfolio: To encourage students to see the connections be-
tween the modules and to recognize the full scope of their work,
we asked each student in the pilot course to compile all of their
module-related activities into an electronic portfolio (“e-portfolio”)
which they can use as evidence of their computational skills when
applying to jobs or graduate schools.

3 IMPLEMENTATION
The pilot course produced extensive feedback on the individual
modules from the 17 students in the course (nine women from Bryn
Mawr College, one woman and seven men from nearby Haverford
College), which was used to improve their clarity and sequencing.
The feedback resulted in the refinement of breakpoints and self-
reflection prompts, as well as the integration of the scientist profiles
directly into the modules. The first few of the updated and expanded
modules were next taught as part of the laboratory accompanying
our second-semester, calculus-based mechanics course for physi-
cal science majors. There, we found that attempting to teach the
basic material in a few weeks’ worth of two-hour lab meetings to
primarily first-year students was an overreach. Most of them had
no programming experience, and the challenge of learning that
skill on top of the physics they were learning in the course, not to
mention the other demands of being a first-year student in college,
was a bit too much to handle for many of them.

After an extensive departmental discussion, we decided to re-
arrange our sophomore-level labs so that one of them could be
converted to an exclusively computational lab. By placing the ba-
sic modules in a second-semester sophomore lab, we intended to
leverage the students’ greater mathematical maturity while still
introducing them to computing early enough in their college ca-
reers that they would have many opportunities to reinforce and
further extend those abilities in their junior and senior years. The
first offering of this computational lab occurred in Spring 2017
and was taught successfully by a new faculty member who had
not been involved in the development of the modules. The results
were promising: the students were able to get through the first five
modules, apparently without significant difficulty, and the faculty
member was able to learn and adapt the modules into the course
pedagogy. Additionally, the author has now taught this lab five
times since the pilot course and has updated the modules each
time in response to student difficulties. We will continue to present

the computational learning program in this way each year. More-
advanced modules will be assigned in upper-level physics courses,
and in our capstone senior seminar we will ask students to com-
plete and present their e-portfolios with a final reflection on their
computational learning.

4 CONCLUSION
With the twin goals of providing training in scientific computation
to our majors and recruiting and retaining more students from U.S.
underrepresented groups in STEM fields, we developed, piloted,
and have made publicly available curricular materials on scientific
computing.

We intentionally embedded and integrated learning-promoting
features such as personal profiles of noteworthy individuals and
reflection prompts into the instructional modules in order to send
a strong signal to both students and other faculty members that
inclusivity and metacognition are valued in our classrooms, and to
make it less likely that these features will be overlooked or dropped
from courses utilizing the modules due to time constraints. The
modules designed in this way may also serve as a model for other
faculty members adapting these materials or designing their own.

Our curricular materials can be incorporated into curricula at
other institutions. Outcomes will be highly dependent not only on
the details of those curricula, but also on the prior knowledge and
experiences of students, as well as their expectations.

The computational modules are available as open educational re-
sources under a Creative Commons license, and others are invited to
use and adapt them as they wish. The modules and supplementary
materials are provided at https://github.com/BrynMawrCollege/
TIDES. They’re also posted in the Faculty Commons section of
the PICUP website at https://www.compadre.org/PICUP/ under the
title “Scientific Computation with Python in Jupyter Notebooks.”
Supplementary materials include notes for a mini lecture on Python,
which the author has begun presenting in the first two class meet-
ings to get students started on learning Python. Also included is
a Python Quick Reference Guide showing code for common basic
course tasks. Exercise solutions are available for instructors upon
request. Readers interested in learning more about inclusive teach-
ing practices will find materials from a workshop we offered in the
“BMC TIDES Diversity and Equity Workshop” folder on the github
site. Those materials, which include handouts for facilitators and
participants, as well as feedback forms and additional suggested
readings, should be straightforward to adapt to other institutions
wanting to run their own workshops.3 An extended discussion of
our project (and the other TIDES projects) can be found in [4].

REFERENCES
[1] Andrea Forte and Mark Guzdial. 2005. Motivation and nonmajors in computer

science: Identifying discrete audiences for introductory courses. IEEE Transactions
on Education 48, 2 (2005), 248–253. https://doi.org/10.1109/TE.2004.842924

[2] Judith M. Harackiewicz and Chris S. Hulleman. 2010. The Importance of interest:
The role of achievement goals and task values in promoting the development
of interest. Social and Personality Psychology Compass 4, 1 (2010), 42–52. https:
//doi.org/10.1111/j.1751-9004.2009.00207.x

[3] Judith M. Harackiewicz, Yoi Tibbetts, Elizabeth Canning, and Janet S. Hydea. 2014.
Harnessing values to promote motivation in education. In Advances in Motivation
and Achievement, Vol. 18. https://doi.org/10.1108%2FS0749-742320140000018002

3Jennifer Spohrer contributed to these materials.

Volume 15, Issue 2 Journal of Computational Science Education

26 November 2024

https://github.com/BrynMawrCollege/TIDES
https://github.com/BrynMawrCollege/TIDES
https://www.compadre.org/PICUP/
https://doi.org/10.1109/TE.2004.842924
https://doi.org/10.1111/j.1751-9004.2009.00207.x
https://doi.org/10.1111/j.1751-9004.2009.00207.x
https://doi.org/10.1108%2FS0749-742320140000018002


[4] Kelly M. Mack, Kate Winter, and Melissa Soto (eds.). 2019. Culturally Responsive
Strategies for Reforming STEM Higher Education: Turning the TIDES on Inequity.
Emerald Publishing.

APPENDIX: MODULE TABLE OF CONTENTS
Module 0: An Introduction to Computing.

• The computational modules
• Why learn computer programming?
• Modern computer capabilities
• Programming concepts
• Starting with Python
• Tips on learning scientific programming
• Your e-portfolio
• Appendices
– A. Programming resources, Numerical methods resources
– B. Basic Python topics to know
– C. How to install Python on your computer or use it online

Module 1: A Brief Introduction to Python & Programming.

• Part I: The Basics
– Python Overview

∗ Debugging
∗ Python as a Calculator
∗ Strings and Printing
∗ User Input
∗ Lists
∗ Iteration
∗ Slicing
∗ Booleans

• Part II: Functions, Packages, and Plotting
– Functions

∗ Function Packages
∗ User-Defined Functions
∗ Function of a Function

– Numpy and Scipy
∗ Making Vectors and Matrices, 1-D and 2-D Arrays
∗ Slicing Arrays
∗ linspace and arrange
∗ Array Operations
∗ Optional Arguments

– Plotting with Matplotlib
• Part III: Algorithm Design
– List Manipulation

∗ Searching a List
∗ Sorting a List

– Recursion
– References

Module 2: Numerical Errors and Computational Speed.

• Numerical Errors
• Computational Speed and Big-O Notation
• Vectorization
• Profiling

Module 3: Iterative Methods.

• One-dimensional Motion without Drag
• Two-dimensional Projectile Motion without Drag

• Two-dimensional Motion with Drag

Module 4: Differentiation and Interpolation.

• Definition of the Derivative
• From Differences to the Derivative
• Higher-order Approximations to the First Derivative
• Higher-order Derivatives
• Interpolation

Module 5: Integration.

• The Trapezoidal Rule
• Simpson’s Method
• Choosing the Number of Steps, N
• Higher-order Methods
• Gaussian Quadrature
• Comparison of Integration Methods
• Integration over Infinite Ranges
• Multiple Integrals

Module 6: Solution of Linear Equations.

• Gaussian Elimination with Back-Substitution
• LU Decomposition
• Other Decompositions

Module 7: Eigenequations.

• Eigenvalues and Eigenvectors
• Applications
– Principal Axes of Inertia
– Coupled Harmonic Oscillators
– Energies of a Quantum System

Module 8: Analyzing Data .

• Linear Least-Squares Fitting
• An Introduction to Pandas for Data Analysis
• Visualizing Data with Bokeh
• Appendix 1: Singular-value Decomposition
• Appendix 2: Principal Components Analysis

Module 9: Fourier Analysis.

• The Fourier Series
• The Discrete Fourier Transform
• Two-Dimensional Fourier Transforms
• The Discrete Cosine Transform
• The Fast Fourier Transform

Module 10: Differential Equations.

• First-Order Equations of One Variable
– Euler’s Method
– Runge-Kutta Method

• Second-Order Equations of One Variable
• Boundary Value Problems
– The Shooting Method
– The Relaxation Method

Module 11: Partial Differential Equations.

• Partial Differential Equations
– Boundary Value Problems
– Initial Value Problems

• Other Methods

Journal of Computational Science Education Volume 15, Issue 2

November 2024 27



Module 12: Monte Carlo Methods.

• Random Numbers in Numerical Computation
• Monte Carlo Integration
– The Mean Value Method
– Importance Sampling
– The Transformation Method

• Monte Carlo Simulations
– The Ising Model
– Simulated Annealing

Module 13: Symbolic Computing in Python.

• Starting with sympy
• Evaluation
• Derivatives
• Integrals
• Limits
• Power Series Expansions
• Equation Roots
• Simultaneous Equations
• Differential Equations
• Matrix Operations

Module 14: A Brief Introduction to Object-Oriented Programming.

• Why Use Object-Oriented Programming?
• The Idea Behind Object-Oriented Programming

• A Simple Example
• A More Sophisticated Example
– Two Balls Connected by One Spring
– Three Balls Connected by Two Springs

∗ An Atomic Example
∗ A Simplification

Module 15: Parallel Computing.

• Introduction
• The multiprocessing (multiprocess) package
• The concurrent.futures package
• The joblib package
• The ipyparallel package
• The dask package
• cuda and numba

Module 16: Machine Learning.

• Basics of Neural Networks
– What is a Neural Network?
– Neuron Inputs and Outputs
– The Learning Process

• PyTorch
• TensorFlow
• scikit-learn

Volume 15, Issue 2 Journal of Computational Science Education

28 November 2024




