
HPC Courses Training Organization and Experiences in
Supercomputing Luxembourg

EuroCC: National Competence Centre (NCC)
Ezhilmathi Krishnasamy
University of Luxembourg

ezhilmathi.krishnasamy@uni.lu

Pascal Bouvry
University of Luxembourg
pascal.bouvry@uni.lu

ABSTRACT
High-performance computing (HPC) is a crucial field in science and 
engineering. Although HPC [23], is often viewed as a pure field of 
computer science or a subset of it, it actually serves as a tool that 
enables us to achieve exceptional results in science and engineer-
ing [22]. Since early on, computers have been primarily utilized for 
extensive arithmetic computations. However, recent advancements 
in electronics have also made edge computing integral to high-
performance computing. Additionally, we have witnessed remark-
able growth in computer architecture, leading to the development 
of powerful HPC machines, with supercomputers now reaching 
exaflop powers. Nevertheless, there are still challenges in utilizing 
these powerful machines due to the lack of knowledge in integrat-
ing physics and mathematics into HPC. Furthermore, complications 
with the software stack and common parallel programming models 
that target exascale computing (heterogeneous computing) persist. 
In this context, we present our effective course design for HPC train-
ing, focusing on CUDA, OpenACC, and OpenMP courses, which 
aim to equip STEM graduates with HPC knowledge. We also discuss 
how our training stands out in comparison to other NCC training 
frameworks in the EuroCC context and promotes lifelong learning.

KEYWORDS
CUDA, OpenMP, OpenACC, EuroCC, HPC Training

1 INTRODUCTION
The concept of a computer has existed since the 19th century. In the 
early nineteenth century, Charles Badge had the idea of a differential 
machine [20], one of the early visions of present-day computers. 
Over the years, it has been developed, and now we are in the era 
of exascale computing power. However, as we develop advanced 
computer architecture, software and parallel programming models, 
we also see an increasing gap in the efficient use of these powerful 
machines. We recognize that HPC centres have provided training for 
STEM disciplines for decades, but the limited number of trainers has 
hampered the ability to scale HPC training, and much of the training 
has yet to reach a broad audience. The opportunity to introduce 
parallel programming and supercomputer architecture to a broader

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full 
citation on the first page. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE, 
a supported publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/2/4

group of students studying mathematics, engineering, and physics
is crucial because their applications are very demanding in terms of
using the power of supercomputers, whether in computational fluid
dynamics, material science, or cosmology. In this work, we present
a different approach that uses online courses in order to scale HPC
training. At the same time, we are fortunate to live with relatively
advanced technology around us; for example, our smartphones
have more than a single CPU core and our laptops. However, the
question is whether those with an educational background in STEM
are aware of this or whether they can use these cores efficiently if
they want to do any computations. Even though academic programs
exist for computational science or scientific computing, they are still
not well-received, and we do not have enough people graduating
from those programs. Recently, in the EU, an initiative focused on
the master’s programme in high-performance computing1, which
focuses on from computer science to scientific computing. This
initiative aims to produce more graduates who can efficiently use
the available HPC power we have now and in the future to enable
better science and engineering.

2 RELATEDWORK
There are numerous platforms and organizations that offer HPC
training courses throughMOOCs [3, 4, 7, 8, 11], online courses from
reputable universities, PRACE Training Events [19], and HPC cen-
ters such as BSC, Julich, and CINECA. Additionally, various MOOC
platforms provide different learning paths for specific courses. Mas-
sachusetts Institute of Technology also offers online courses for a
wide range of topics [9]. However, there are some constraints that
could hinder learners from achieving their learning goals:

• MOOC courses usually require payment and may necessitate
subscribing to multiple courses.

• If a participant misses an online session, they may not be
able to catch up with the course content, even if they can
access the slides afterwards due to limitations in the slide
information.

• Some sessions may only include 2-3 hours of presentation
recordings without practical sessions. For instance, in par-
allel programming courses, participants may not have the
opportunity to apply what they have learned from the lecture
videos.

3 IMPORTANCE OF HPC IN STEM
Computers are essential for performing calculations in STEM fields,
which require extensive computation and visualization. However,

1https://eumaster4hpc.uni.lu/

Volume 15, Issue 2 Journal of Computational Science Education

16 November 2024

https://doi.org/10.22369/issn.2153-4136/x/x/x 


there is a noticeable gap in high-performance computing (HPC)
skills among graduates and individuals with backgrounds in physics,
engineering, and mathematics. For instance, someone studying me-
chanical engineering may be proficient in using specific software
for parallel computing but may lack knowledge about the paral-
lelization capability of the software or the HPC machine being
used. Each educational program typically emphasizes its own field,
which is appropriate. However, it is also important to introduce
programming and computer architecture to graduates and post-
graduates alongside their core STEM courses. This approach not
only fosters interdisciplinary understanding but also encourages
parallel simulation and computation, leading to enhanced creativity
among engineers, physicists, and mathematicians and potentially
accelerating technological advancements.

Efforts have been made to integrate computer and programming
knowledge into STEM fields, resulting in the emergence of a new
educational profile called "computational science." For example, a
specialization like computational science: mechanics focuses on
solids, fluids, and heat transfer, emphasizing methodologies and
their computer implementation, including parallel architecture and
parallel programming. We must realize how many universities
worldwide offer these kinds of educational profiles. Therefore, it
is essential not only for people following computational science
to be exposed to computers and parallel programming but also
to the entire STEM background. As we witness, we come across
supercomputers and parallel programming applications in every
field, whether artificial intelligence, material science, or mechanical
engineering.

4 HPC KNOWLEDGE IN STEM
In the past decades, students studying computational science have
been introduced to parallel architecture and parallel programming,
which has enabled them to run simulations on supercomputers. To-
day, we are exposed to exascale supercomputers, laptops with pow-
erful cores, and even our mobile phones. This growth is expected
to continue, making a good understanding of parallel architecture
and parallel programming beneficial for speeding up computations
or visualizations in any STEM field.

However, we can not suddenly impose the idea that people from
all STEM backgrounds must study parallel architecture or paral-
lel programming. Therefore, interested individuals with a STEM
background should be able to easily follow individual courses in
computer architecture and parallel programming. Our training pro-
gram is designed to help anyone quickly learn parallel programming
to target various parallel architectures, such as GPU or multicore
CPU.

5 HPC TRAINING INITIATIVE IN EUROPE
Europe has taken a significant initiative to promote HPC educa-
tion and training. Previously, PRACE [10] made substantial efforts
in promoting HPC education and training, along with other ac-
tivities, such as building and maintaining new HPC machines in
a centralized approach. After PRACE concluded, the EU initiated
a new project called EuroHPC JU2. Its functionality is similar to
PRACE, but it has a unique approach to research, installation of
2https://eurohpc-ju.europa.eu/

new HPC machines, education, and training. One of their primary
training initiatives is EuroCC [6], in which many partner EU coun-
tries are participating and providing HPC training in their own
country using either their own supercomputers or one of the JU su-
percomputers. This initiative is typically referred to as the National
Competence Centre (NCC). Since Luxembourg is part of the EU, it
also takes part in the EuroCC initiative, which promotes activities
in high-performance computing (HPC) in Luxembourg, along with
providing education and training in HPC. The EuroCC project is
currently in its second phase, which began on September 1𝑠𝑡 , 2023,
and will continue until August 2026 [5].

5.1 EuroCC
EuroCC was established around September 2020 [6], and since then,
each EU member state has been promoting HPC training activities
within their respective countries, particularly targeting individuals
with a background in STEM education. As the initiative is relatively
new, most of the National Competence Centers (NCCs) are working
independently to develop courses that promote HPC education in
their own countries. As part of this initiative in Luxembourg, we
have conducted education and training in HPC, focusing on parallel
programming courses in CUDA, OpenACC, and OpenMP.

5.2 HPC Training in NCC Luxembourg
Geographically, Luxembourg is a very small country compared
to its neighbouring countries. NCC Luxembourg has three part-
ners: Luxinnovation3, Luxembourg University4 and LuxProvide.
Although it has many industries, including engineering and tech-
nology, especially the financial and law sectors, many professionals
and graduates still lack HPC knowledge in the sense of using HPC
machines (for example, intra-node and accelerators) efficiently and
parallelizing their applications. Therefore, we provide HPC training
in Luxembourg to promote scientific computing within Luxem-
bourg and beyond. Our training is in English and uses the national
supercomputer MeluXina (it is also part of the JU supercomputer).

Figure 1: The NCC Luxembourg training website page.

3https://www.luxinnovation.lu/
4https://www.uni.lu/en/

Journal of Computational Science Education Volume 15, Issue 2

November 2024 17



6 TRAINING STRUCTURE
Since our NCC is very young and before we start training, we
wanted to make sure we provide excellent and optimistic train-
ing within HPC. For this, we have adopted two well-known and
well-practised instructional design (ID) approaches: the ADDIE
model [13], see Figure 2 (left) and Merrill’s First Principle Instruc-
tions [17], see Figure 2 (right).

The ADDIE model consists of five key components:
• Analysis
• Design
• Development
• Implementation
• Evaluation

Analysis. Initially, we distributed questionnaires to public and
private institutes in Luxembourg. The questionnaires aimed to
gather information on the use of parallel simulation, GPU usage,
knowledge of efficient multicore CPU utilization, and more. For
example, we asked about the fields in which parallel simulation
is being used, the use of GPUs or willingness to use GPUs, and
knowledge of efficient multicore CPU utilization. This information
will provide an overview and help reduce the performance gap of
HPC skills in Luxembourg. The responses provided valuable in-
sights, allowing us to understand the current landscape and identify
areas for improvement. To identify knowledge and skills gaps, we
collected essential information to design our HPC training. This
included determining the target audience, skill levels, computing
resources, and participant’s interest in various HPC training topics.
Based on our analysis, we decided to organize the training into the
following courses:

• CUDA
• OpenACC
• OpenMP

Design. In the design phase of the ADDIE model, we focused on
different topics and their learning outcomes. We primarily concen-
trated on the course structure and teaching aids, such as choosing
the website layout for hosting course material to include both lec-
ture material and hands-on sessions. We also selected appropriate
topics (learning outcomes) for lectures and hands-on sessions. For
hosting the teaching material, we decided on the GitHub repository
and created the hands-on session; we chose MkDocs to create the
website5, please see Figure 1. During the design phase, we decided
to structure our training as follows:

• Preparation Session (approximately 1 hour)
• Break 1 (lunch break, up to 60 min.)
• Lecture Part 1 (strictly 45 min.)
• Break 2 (up to 15 min.)
• Lecture Part 2 (strictly 45 min.)
• Break 3 (up to 15 min.)
• Hands-on Session 1 (strictly 45 min.)
• Break 4 (up to 15 min.)
• Hands-on Session 2 (strictly 45 min.)

We limit each lecture and hands-on session (except the prepara-
tion session) to a maximum of 45 minutes. This is primarily based

5https://ncclux.github.io/NCC-Trainings/

on attention span and learning, cognitive load theory, spacing ef-
fect, student engagement, information retention, and learning out-
comes [12, 14, 16, 18, 21]. In between lectures and hands-on ses-
sions, we have a 15-minute break, which is also loosely based on
Pomodoro Technique [15], where a short period of break increases
the learning capacity. Our courses are meant to last only half a day,
which is 4-5 hours. We believe that this would be very efficient
and compact. In addition, HPC courses are mostly self-thought-out
after participants take the classes. The more someone practices, the
more experience they will get. Therefore, keeping the course for an
entire day or more than a day would not be very efficient in terms
of learning outcomes.

Development. In the Development section, we conduct our train-
ing online to ensure that everyone can participate without any
constraints, such as needing to be on-site (which would require
travel time) or take leave from work. This is especially important
as it allows people with transportation issues to participate as well.
Additionally, we wanted our training activities to reach beyond
Luxembourg, so we prefer to keep our training online. During the
development stage, we prepared the lecture and hands-on session
using GitHub with MkDocs, while ensuring that our training ma-
terial fulfills the learning outcomes. We also utilized Material for
MkDocs, which provides a nice layout for text, figures, and coding.

Figure 2: A schematic overview of the ADDIE Model (left)
and Merrill’s First Principles of Instruction (right).

Implementation. This phase involves delivering the course to the
participants. We typically announce the course 5-6 weeks before it
starts to allow participants to register. We use various communica-
tion channels such as Twitter, LinkedIn, and our course webpage to
promote the training. After each course, we gather feedback from
the participants to make improvements.

Evaluation. We analyze the feedback collected during and after
the training to determine if any suggestions need to be adopted for
future iterations. We maintain this approach on a regular basis to
ensure efficient learning outcomes for learners. Even if we meet
the learning outcomes after the training, we still look for further
improvement in the course development. Typically, after the course,
we send out a questionnaire to participants to improve our course
content. For example: 1) Was the trial-run session informative,
or do you need more instructions on the training page? 2) Did
the lecture portion was informative and aligned with the course
learning outcomes? 3) Were the hands-on sessions compatible with
the lecture content and aligned with the learning outcomes?

We received the following feedback: participants would likemore
information on the trial-run session, and in addition, they would
like to participate in advanced courses for inter-node computation.

Volume 15, Issue 2 Journal of Computational Science Education

18 November 2024



This feedback will be included in the following training sessions,
and new training on inter-node environment is being prepared.

Participants liked our approach, such as 45-minute lectures (45
X 2) with breaks and 45-minute hands-on sessions (45 X 2). This is
because in some courses, the lecture part goes beyond 45 minutes,
and the hands-on session also goes on continuously without a break.
Additionally, they are really happy with the hands-on sessions and
how they are organized, which are aligned with the lecture part and
learning outcomes. Overall, participants are satisfied with each of
our courses, which deal with logging in to supercomputers, learning
parallel programming, and performing analysis.

Figure 3: The number of participants who actively used the
learning website during and after the course.

We also monitor our training page through Google Analytics
for further analysis of hands-on sessions; for example, some par-
ticipants spend less or more time on one topic. This eventually
leads to more thought about that topic for further improvement;
for instance, Figure 3 shows the user’s statistics (by country) we
obtained from Google Analytics.

As we have discussed earlier, the ADDIE model has been adopted
to develop our courses; however, we paid even more attention
to the hands-on session and followed Merrill’s First Principles of
Instruction. The following shows those principles and how they
have been adopted to organise our hands-on session:

• Problem-centered: We start with a simple hello world pro-
gram and then progress to more BLAS examples.

• Activation: Each part of the hands-on session addresses key
questions derived from the learning outcomes stated in the
course description, ensuring active participation throughout
the session.

• Demonstration: Initially, we present an example of a specific
problem, such as vector addition. We display the C/C++ code
of the sequential version and provide the framework for
converting it to the parallel version. Participants are required
to focus on crucial areas to subsequently convert the code
to the parallel version.

• Application: We align practice activities with learning out-
comes and gradually reduce guidance to foster learner’s
independence. For instance, we introduce entirely new ques-
tions based on previous problems that are still closely related.
Please refer to list 7.4 for an example, where we pose ques-
tions that are linked to previous ones, but participants need
to work independently.

• Integration: We encourage learners to apply their learning to
their own scientific problems at work or in research. Towards
the end of the training, we prompt participants to apply the
learning outcomes to their own problems. For example, the
CUDA programming model can be employed in fields such
as CFD, solid mechanics, material science, and biomedical
applications.

7 DETAILED TRAINING OUTLINE
In this section, we provide practical details about our training,
focusing on learning outcomes to give readers a better idea of how
the training was conducted.

7.1 Preparation
Our courses are tailored for individuals with a STEM educational
background, so we don’t anticipate extensive experience with the
HPC machine. Therefore, we commence our training with a prepa-
ration session. During this session, participants can log into the
MeluXina6 HPC machine to familiarize themselves with it. This is
crucial as they will need to use the machine later for the practical
sessions. The purpose of this session is to minimize any time loss
during the practical sessions and to assist participants in loading the
necessary modules for compiling and executing the test problem.
This way, they will already have an understanding of how to log in
to the machine, load the modules, compile, and execute the tasks.
We schedule this session for about an hour, usually before lunch,
typically between 11:00-12:00.

7.2 Lecture part 1
In this first part of the lecture we will outline the course structure
and discuss the significance of HPC (High Performance Computing)
along with its various applications. We will cover examples of its
use in computational fluid dynamics and material science. Since
our participants come from diverse educational backgrounds, we
aim to demonstrate the relevance of HPC in their respective fields
rather than focusing on a single domain.

We will begin by explaining the basic architecture of computers.
Our goal is to establish a solid understanding of parallel architecture
before diving into parallel programming syntax, such as CUDA or
OpenMP. By understanding the distinctions between multicore
CPUs vs. single-core CPUs and CPUs vs. GPUs, participants will
be better prepared to grasp parallel programming concepts. This
practical approach is similar to understanding a car’s design before
learning to drive. It’s beneficial to comprehend the car’s design,
such as the number of available gears, speed, camera settings, etc.,
for better manoeuvring the vehicle.

One example that illustrates the distinct difference between
GPUs and CPUs is their core count. GPUs have more cores than
CPUs, making them faster. For instance, the Intel®Core™ i7-10700K
Processor has a base frequency of 3.80 GHz, while the Nvidia Am-
pere GPU has a frequency of 0.765 GHz. Although the CPU’s
frequency is higher, the GPU can achieve high throughput due
to its numerous cores and ability to handle parallel threads more
efficiently than the CPU. Additionally, we provide various figures

6https://www.luxprovide.lu/meluxina/

Journal of Computational Science Education Volume 15, Issue 2

November 2024 19



Figure 4: A simple illustration of the difference between the
CPU and GPU (left). The CPU has a higher frequency than
the GPU; however, the GPU operates in groups using SIMT
(right).

to support these concepts; Figure 4 is an example that visually
demonstrates the disparity between CPU and GPU.

In the subsequent sections, we will delve into essential code
syntax and APIs of parallel programming models, explaining their
use cases and suggesting effective utilization strategies.

7.3 Lecture Part 2
The second part of the lecture analyses more detailed aspects of
the topic. For example, when discussing CUDA programming, we
start by explaining how to print a simple hello world program
from the GPU. We then cover fundamental concepts in parallel
programming applicable to both CPUs and GPUs. Additionally, we
explain memory management, and how parallel threads can be
created and used efficiently. Finally, we conclude lecture part 2 by
presenting examples of BLAS operations and emphasizing the use
of profiling tools.

7.4 Hands-on Session 1
For the hands-on session, we have developed a website that par-
ticipants can access, for example, in OpenACC [2]. We cover a
minimum of 5 key topics in the hands-on session; the first session
will cover topics 1 to 2. Each section will examine a specific topic
concept in detail with an explanation and will also include ques-
tions. Instead of simply asking participants to solve problems, we
pose questions related to techniques that could be used to solve a
problem. For instance, in the CUDA programming course, in the
vector addition section7, we ask the following questions for the
hands-on session topic 1:

• What happens if you remove the _syncthreads() from the
__global void vector_add(float *a, float *b, float
*out, int n) function?

• Can you remove the if condition 𝑖 𝑓 (𝑖 ≤ 𝑛) from the global
void vector_add(float *a, float *b, float *out,
int n) function? If so, how can you do that?

• Here, we do not use the cudaDeviceSynchronize() in the
main application. Can you figure out why we do not need to
use it?

7.5 Hands-on Session 2
In the second part of the hands-on session, we will cover the re-
maining training topics. The hands-on exercises are well-designed,
with questions for participants to work on. Each topic will cover

7https://ncclux.github.io/NCC-Trainings/cuda/exercise-2/

specific concepts, from fundamental to advanced, and we have pro-
vided code skeletons for each concept to ensure that participants
can complete the exercises within the allotted time. Even if some-
one cannot finish during the training session, they can still use the
material for self-paced learning, as we plan to keep the training
material available for an extended period.

8 TOPICS AND LEARNING OUTCOMES
The "Topics and Learning Outcomes" section outlines the three
courses and their respective learning outcomes, as well as our
approach to training based on these outcomes.

8.1 Training in CUDA
The CUDA training is designed for participants at beginner to
intermediate levels [1], and the learning outcomes are as follows:

• Understanding the GPU architecture (and also the difference
between GPU and CPU)
– Streaming architecture
– Thread blocks

• Implement the CUDA programming model
– Programming structure
– Device calls (thread blocks organization)
– Host calls (kernel calls)

• Efficient handling of memory management
– Host to Device
– Unified memory

• Apply the CUDA programming knowledge to accelerate
examples from science and engineering
– Iterative solvers from science and engineering
– Matrix multiplication, matrix-vector multiplication, BLAS
routines, etc.

Lectures. In the "Lectures" section, the focus is on comparing
the basic architecture of the CPU and GPU. The concept of stream-
ing multiprocessors (SMs), thread blocks, and single instruction
multiple threads (SIMT) programming methodology on GPUs is
discussed. The organization of SMs in the GPU and its memory
organization between global, L2, shared, and L1 are detailed. The
organization of thread blocks in the CUDA programming model
is emphasized, along with the creation and conversion of 1D, 2D,
and 3D thread blocks as needed. The latest GPU architecture ad-
vancements and compute capability are also presented. A simple
CUDA programming model is demonstrated, including the con-
struction of device functions and device calls from the host (kernel)
using necessary API and CUDA qualifiers. Finally, essential BLAS
operations like vector addition and multiplication using the CUDA
programming model are showcased. The section concludes with a
brief introduction to profiling the code and identifying bottlenecks,
such as GPU occupancy and data transfer time between CPU and
GPU.

Hands-on Session. During the hands-on session, participants can
go through the example and work on some questions based on
that example. In this way, they would have a better understanding,
which they could connect with lectures and hands-on sessions.

We structured our hands-on session as follows:

Volume 15, Issue 2 Journal of Computational Science Education

20 November 2024



• Hello World: It shows how to use simple CUDA APIs to
work on Hello World, for example, kernel calls and how to
include the thread blocks in the kernel block.

• Vector Addition: It is interesting, in terms of creating more
thread blocks, for example, 1D simultaneously, how compu-
tation can be offloaded to GPU, such as data transfer to GPU
and transferring back solution to CPU.

• Matrix Multiplication: Till now, participants have seen how
to make just one loop into a 1D block that matches SMIT,
whereas in matrix multiplication, out of three loops, inner
loops should be sequentialised. This is an excellent example
of parallelizing multiple loops.

• Shared Memory: Most of the time, we might end up do-
ing computation, which uses data that is being used often.
Hence, knowing how to keep data in the shared memory
decreases the latency; we support this example with matrix
multiplication.

• Unified Memory: It simplifies the CUDA programming struc-
ture. Most programmers make data-handling mistakes be-
tween CPU and GPU. Therefore, unified memory option
would be a good option if someone does not want to pay
more attention to data movement between CPU and GPU.

• Profiling and Performance: It is essential to understand how
the given code is being executed efficiently in the GPU; we
show some examples of Nsight Systems and Nsight Compute.

8.2 Training in OpenACC
Below are the learning objectives for the OpenACC programming
model.

• Understanding the GPU architecture (including the differ-
ences between GPU and CPU)
– Streaming architecture
– Thread blocks

• Implementing the OpenACC programming model
– Compute constructs
– Loop constructs
– Data clauses

• Efficient memory management
– Host to Device
– Unified memory

• Applying OpenACC programming knowledge to accelerate
science and engineering examples
– Iterative solvers from science and engineering
– Matrix multiplication, matrix-vector multiplication, BLAS
routines, etc.

In our OpenACC course, we primarily focus on GPU execution.
This is because we aim to provide an alternative option for GPU
programming, instead of the CUDA programming model. During
the lectures, we investigate the fundamental differences between
GPU and CPU architectures, including details such as streaming
multiprocessors (SMs), GPU processing cluster (GPC), and memory
hierarchy in the GPUs. We also discuss thread blocks in OpenACC,
which, despite its similarity to directive programming, provides a
low-level API for defining thread blocks that can be set manually.

The first part of the lecture covers important APIs from Ope-
nACC, such as parallel and kernel, which are used for paralleliz-
ing loops. Data movement in the programming model is a crucial
aspect of GPU programming, and we cover high-level APIs avail-
able in OpenACC for data movement between CPU and GPU, such
as create, copyin, copyout, and copy. Additionally, we demon-
strate working examples of BLAS routines, which involve nested
loops and data movement of dynamic arrays between CPU and
GPU. Finally, we explore the use of unified memory programming
options and profiling tools to efficiently parallelize sequential code
on a GPU.

Hands-on Session. During the hands-on session, we covered the
following topics:

• Compute Constructs and Parallelize Loops: We provided
examples of using parallel and kernels, such as the hello
world example with a loop.

• Data Locality: We discussed OpenACC’s low-level and high-
level APIs for data movement between GPU and CPU, andwe
considered the use of BLAS routines to support this concept.

• Optimize Loops: By default, the OpenACC compiler selects
an appropriate number of thread blocks to parallelize the
loops. However, sometimes it is beneficial to set multiple
thread blocks for better performance. This section covers
these approaches.

• Unified Memory: Similar to the concept of CUDA, in Ope-
nACC, enabling unified memory is as simple as adding a
compiler flag. This simplifies the necessary data transfer API
in OpenACC.

• Profiling and Performance: This provides more information
during compilation, such as kernel execution thread blocks
and the frequency of other API calls throughout the appli-
cation execution. Additionally, the NVHPC compiler offers
numerous options for profiling OpenACC code.

8.3 Training in OpenMP
The OpenMP training introduces parallel architecture and gradually
introduces parallel programming; the following are the learning
outcomes from OpenMP training.

• Understanding the shared memory architecture
– Unified memory access (UMA) and Non-unified memory
access (NUMA)

– Hybrid distributed shared memory architecture
• Implementing the OpenMP programming model
– Parallel region
– Environment routines
– Data sharing

• Efficient handling of OpenMP constructs
– Work sharing
– Synchronization constructs
– Single instruction multiple data (SIMD) directive

• Applying OpenMP programming knowledge to parallelize
examples from science and engineering:
– Iterative solvers from science and engineering
– Matrix multiplication, matrix-vector multiplication, BLAS
routines, etc.

Journal of Computational Science Education Volume 15, Issue 2

November 2024 21



Lectures. OpenMP begins with an overview of computer archi-
tecture, covering shared and distributed memory architecture. It
briefly explains single instruction single data (SISD), single instruc-
tion multiple data (SIMD), multiple instruction single data (MISD),
and multiple instruction multiple data (MIMD) architectures. This
knowledge is essential for understanding how programming can
utilize the OpenMP programming model.

Next, the lecture explores the important role of the OpenMP
environment, which is necessary for the successful implementation
of the OpenMP programming model. The discussion then covers
topics such as data sharing and work sharing, including the loop
construct, sections construct, single construct, andmaster construct,
which are crucial for SIMD and data lock or to avoid data race
conditions.

Finally, the lecture concludes by demonstrating the use of various
profiling tools for OpenMP performance analysis.

Hands-on Session. The hands-on session for OpenMP is orga-
nized as follows:

• Parallel Region: The parallel construct is crucial to under-
stand when learning the OpenMP programming model. In
this section, we demonstrate how to use the parallel con-
struct and how to invoke it in the application. We also intro-
duce other OpenMP API routines needed for the parallel
construct.

• Data Sharing Attribute: To avoid data race or deadlock in
OpenMP, we explain the methodology and provide examples
using private, shared, firstprivate, and lastprivate.

• Work Sharing Constructs (loop): The previous parallel con-
struct created a parallel region, but often we need parallelism
in the loop. For this, we introduce #pragma omp for, which
enables SIMD programming capability.

• Work Sharing Constructs (loop-scheduling): This section
helps programmers efficiently share loops based on the prob-
lem and available resources, using static, dynamic, guided,
and auto.

• Worksharing Constructs (others): Here, we introduce how
to parallelize nested loops, which is commonly encountered,
especially during BLAS operations.

• Profiling and Performance: We introduce profiling tools such
as Intel APS, ARM Forge, Intel Advisor, Intel Inspector, and
Intel VTune for a better understanding of profiling the code,
memory leaks, latency, finding potential hot spots, etc. Fig-
ure 5 shows an example of the hands-on session topics in
OpenMP.

9 CONCLUSIONS AND FUTURE DIRECTIONS
The training within NCC Luxembourg took place in 2023. Each
course had around 20-30 participants. We have observed that the
approach we adopted, especially the course delivery structures, is
working very well for HPC courses. We are expanding our offer-
ings to include more domains and additional parallel programming
courses such as OpenMP Offloading, SYCL, OpenCL, etc. Addi-
tionally, we plan to offer courses in HPC software for science and
engineering applications, such as ANSYS, OpenFOAM, GROMACS,
and ABINIT. Furthermore, we intend to organize boot camps and

Figure 5: An example from our hands-on session on OpenMP.

hackathons in collaboration with local companies and hardware
vendors like Nvidia and AMD.

ACKNOWLEDGMENTS
The authors express their gratitude to EuroHPC JU and EuroCC
for funding the training initiative in Luxembourg. Additionally,
appreciation is extended to our NCC partners: Luxinnovation, Lux-
embourg University, and LuxProvide, for their support during the
training event.

REFERENCES
[1] 2023-2024. Introduction to GPU Programming Using CUDA. https://ncclux.

github.io/NCC-Trainings/cuda/
[2] 2023-2024. Introduction to OpenACC for Heterogeneous Computing. https:

//ncclux.github.io/NCC-Trainings/openacc/
[3] 2024. Coursera. https://www.coursera.org/
[4] 2024. edX. https://www.edx.org/
[5] 2024. EuroHPC JU - EuroCC1. https://www.eurocc-access.eu/
[6] 2024. EuroHPC JU - EuroCC2. https://eurohpc-ju.europa.eu/
[7] 2024. FutureLearn. https://www.futurelearn.com/
[8] 2024. Khanacademy. https://www.khanacademy.org/
[9] 2024. MIT OpenCourseWare. https://ocw.mit.edu/
[10] 2024. Partnership For Advanced Computing In Europe. https://prace-ri.eu/
[11] 2024. Udacity. https://www.udacity.com/
[12] Donald Bligh. 1985. What’s the use of lectures? Journal of Geography in Higher

Education 9, 1 (1985), 105–106.
[13] Robert Maribe Branch. 2009. Instructional design: The ADDIE approach. Vol. 722.

Springer.
[14] Nicholas J Cepeda, Harold Pashler, Edward Vul, John T Wixted, and Doug Rohrer.

2006. Distributed practice in verbal recall tasks: A review and quantitative
synthesis. Psychological bulletin 132, 3 (2006), 354.

[15] Francesco Cirillo. 2018. The Pomodoro technique: The acclaimed time-management
system that has transformed how we work. Currency.

[16] Scott Freeman, Sarah L Eddy, MilesMcDonough, Michelle K Smith, Nnadozie Oko-
roafor, Hannah Jordt, and Mary Pat Wenderoth. 2014. Active learning increases
student performance in science, engineering, and mathematics. Proceedings of
the national academy of sciences 111, 23 (2014), 8410–8415.

[17] M David Merrill. 2007. First principles of instruction: A synthesis. Trends and
issues in instructional design and technology 2 (2007), 62–71.

[18] Fred Paas, Alexander Renkl, and John Sweller. 2003. Cognitive load theory and
instructional design: Recent developments. Educational psychologist 38, 1 (2003),
1–4.

[19] PRACE 2024. PRACE Training Events. PRACE. https://events.prace-ri.eu/
category/1/.

Volume 15, Issue 2 Journal of Computational Science Education

22 November 2024

https://ncclux.github.io/NCC-Trainings/cuda/
https://ncclux.github.io/NCC-Trainings/cuda/
https://ncclux.github.io/NCC-Trainings/openacc/
https://ncclux.github.io/NCC-Trainings/openacc/
https://www.coursera.org/
https://www.edx.org/
https://www.eurocc-access.eu/
https://eurohpc-ju.europa.eu/
https://www.futurelearn.com/
https://www.khanacademy.org/
https://ocw.mit.edu/
https://prace-ri.eu/
https://www.udacity.com/
https://events.prace-ri.eu/category/1/
https://events.prace-ri.eu/category/1/


[20] Doron Swade and Charles Babbage. 2001. Difference engine: Charles Babbage and
the quest to build the First Computer. Viking Penguin.

[21] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[22] U.S. Department of Energy 2024. Exascale Computing Project. U.S. Department of
Energy. https://www.exascaleproject.org/.

[23] Laurence T Yang and Minyi Guo. 2005. High-performance computing: paradigm
and infrastructure. John Wiley & Sons.

Journal of Computational Science Education Volume 15, Issue 2

November 2024 23

https://www.exascaleproject.org/



