Volume 15, Issue 2

Journal of Computational Science Education

An Interdisciplinary Introduction to High Performance
Computing for Undergraduate Programs

Cody Stevens
Wake Forest University
stevca9@wfu.edu

ABSTRACT

The new strategic framework of Wake Forest University seeks
to build and strengthen signature areas of excellence in research,
scholarship, and creative work that cross academic and institu-
tional boundaries. To support this initiative, the High Performance
Computing (HPC) Team has developed an Introduction to High Per-
formance Computing undergraduate course that is accessible to
students of all levels and of all academic domains. The objective of
this course is to build a curriculum that presents HPC as an essential
tool for research and scholarship, enables student-faculty collabo-
ration across all disciplines, and promotes student participation in
academic research during their undergraduate studies.

KEYWORDS

High Performance Computing, HPC, Cluster Computing, Pedagogy,
Education, Interdisciplinary

1 INTRODUCTION

Wake Forest University (WFU) is an R2 liberal arts institution lo-
cated in Winston-Salem, NC with an undergraduate population
of 5,500 and a graduate population of 1,600 across the Reynolda
Campus and Business School programs. WFU follows the teacher-
scholar model with a student-faculty ratio of 10:1. There is strong
support for undergraduate research and experiential learning pro-
grams throughout the University. Undergraduate research is so
paramount to the University mission, that WFU has a dedicated cen-
ter, the Undergraduate Research and Creative Activities (URECA)
Center, just for this purpose, that provides internal grants to un-
dergraduate students for research fellowships during the summer
with a faculty advisor.

Research at the university is supported by the WFU High Per-
formance Computing (HPC) Facility[13]. The facility’s main asset,
the Distributed Environment for Academic Computing (DEAC)
Cluster, provides 4,000 CPU cores, 20 TB of RAM, and 280 TB of
storage to researchers across the University. The DEAC Cluster
runs on the Red Hat Enterprise Linux (RHEL) 7 operating system.
The 280 TB of storage is provided by a NetApp A300 storage array,
and is served over NFS to all compute and login nodes. The DEAC
Cluster currently supports over 500 faculty, students, and staff from
across 15 different academic departments. Training and support for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial a dvantage and that c opies b ear this n otice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/2/3

10

Sean M. Anderson
Wake Forest University
anderss@wfu.edu

Adam Carlson
Wake Forest University
carlsoas@wfu.edu

this resource is provided by us (the HPC Team) and this resource
is heavily used throughout the Introduction to High Performance
Computing course.

2 BACKGROUND

Collaboration between us and the Computer Science (CS) Depart-
ment first began during the Fall semester of 2017. During this time
the CS Department was interested in recruiting a team of students
to compete in the Student Cluster Competition (SCC) held at the
International Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC). This competition tasks a team
of six undergraduate students to compete in a 48-hour competi-
tion where each team designs and builds a small HPC cluster. The
team must install and run up to five software applications including
benchmarks, visualization programs, and a wide range of scientific
packages. We attended weekly classes led by a CS faculty member,
provided mentorship to students, and presented on HPC topics rel-
evant to the SCC; for instance, on the Slurm scheduler and resource
manager, on cluster hardware and networking, and on software
compilation. Through this collaboration, four cohorts of students
were accepted to compete at the SCC both in-person (2018, 2019)
and remotely (2020, 2021).

While this initial class was successful in preparing students to
compete in the annual SCC, it did have some shortcomings in both
content and student outcomes:

First, this course was offered at the 300-level within the CS
curriculum, with a 200-level prerequisite. This prerequisite
meant that any student who wished to enroll in the course
and participate in the competition would need to have taken
at least two courses in computer programming and one
course in data structures and algorithms.

Second, as this course was a 300-level elective course, enroll-
ment primarily consisted of students in their Junior or Se-
nior year. While these students did learn many principles
of HPC, there was little opportunity for them to use these
skills within research programs before graduating.

Third, with the course’s primary focus being to train a team
to compete in the SCC, there was an implicit enrollment
capacity of six students, which is the maximum team size to
compete. Assessment for this course was directly tied to per-
formance in the SCC, and therefore there was a disconnect
for any student who potentially enrolled in the course and
was not on the SCC team roster in both course content and
assessment.

These shortcomings drastically limited the broader impact of this
initial undergraduate HPC class. We found that the prerequisite
courses did not yield the necessary skills to work in an HPC en-
vironment, such as familiarity with the Linux command line and

November 2024

https://doi.org/10.22369/issn.2153-4136/x/x/x

Journal of Computational Science Education

filesystem. Class time was mostly dedicated to learning these funda-
mental skills, the basics of job scheduling, and exploring computer
hardware. This meant that students were not adequately prepared
for the SCC as they did not have enough time to sufficiently learn
and comprehend more advanced topics like installing and config-
uring the scheduler, compiling software from source, and famil-
iarizing themselves with the application workflows. It was from
this collaboration that the current Introduction to High Performance
Computing course was developed, and it is designed to address
these shortcomings.

3 COURSE DEVELOPMENT

HPC can often be taught from two different pedagogical approaches.
The first is on how to enable HPC and focuses on the perspective of
computer scientists, computer engineers, and cyberinfrastructure
professionals who architect and design the hardware, software, and
computing environment to support HPC workloads. The second is
on how to use HPC as a research tool and focuses on the perspec-
tive of researchers from many different scientific domains, such as
Physics, Biology, Chemistry, Mathematics, and Computer Science,
who use HPC to solve complex real-world problems. When devel-
oping this course, our first priority was to make it as accessible to
as many students as possible across the University. Other institu-
tions that offer HPC courses do so through their Computer Science
or Computing Engineering departments[6, 15, 16], and primarily
focus on the first approach described above. In order to expand the
use of HPC resources across all departments on campus, creating
an interdisciplinary course focusing on the second approach was
critical to meeting this objective.

3.1 Course Structure

The Introduction to High Performance Computing course is currently
offered as a Special Topics course within the CS Department at WFU.
It satisfies degree requirements for students pursuing a minor or
a Bachelor of Arts in Computer Science, but does not satisfy any
degree requirements for the Bachelor of Science program. The
course meets twice a week for 50 minutes and students earn two
credit hours upon completion. The course is unique within the CS
Department as it is taught by all three of us (members of the HPC
Team). Each instructor has a different background and experience
in HPC, and provides their own perspective to the topics covered
in the course. The course is currently offered during the Spring
semester where it serves as an on-ramp to any student hoping to
pursue summer research; this also coincides with two proposal
deadlines — for the URECA Center’s Summer Research Fellowship
and for the SCC in May. We advocate for students to pursue these
two opportunities if they are interested in the content of the course,
and work directly with students to match them with a faculty
research advisor for a URECA fellowship or a hardware vendor for
the SCC proposal. The course then provides the necessary training
for students to be successful in either endeavor.

Assessment for the course comes from biweekly projects and two
larger midterm and final projects. Each project is associated with a
curriculum module within the course, and students must complete
the tasks by interacting with the DEAC Cluster and answering
supplemental questions. We purposefully avoid timed assessments

November 2024

Volume 15, Issue 2

during class, such as quizzes or exams, as tasks that run in an
HPC environment are asynchronous, and it can be unreasonable
to expect those tasks to finish within a specific period of time.
HPC systems have a constant flux of workloads, and there may
be periods where job scheduling can take hours or days. Rather
than reserving cluster resources for each class and impacting other
research workloads, we believe that treating our students just like
researchers gives them a more realistic experience of how to use
and interact with a shared resource that is used by hundreds of
people daily.

3.2 Course Curriculum

The Introduction to High Performance Computing course introduces
topics using several modules. Each module is presented to the class
through a lecture with slides, a hands-on activity performed in class,
and a project that students begin during class but have up to a week
to complete outside of class. The WFU HPC facility is heavily used
throughout the course and students connect and interact with it
using Visual Studio Code. We chose this tool because it is platform
agnostic and provides students with the same experience no matter
what device they bring to the classroom.

We removed all prerequisites for enrollment in order to make
the course as accessible as possible to students from all academic
domains. Students are not expected to have any prior programming
experience before taking the course. We selected Bash and Python
as the main applications (and scripting languages) used in the course
due to their ubiquity on modern HPC systems and relevancy in
data science. We provide all project code for the students, who
interact with them on the DEAC Cluster and learn how to monitor
their behavior and performance on a real HPC system. The topics
covered in the the Spring 2024 semester are listed in the following
sections.

3.2.1 Module 1: The Linux Computing Environment. For many
students the concept of logging into a remote server is foreign to
them. While they can see output of programs and Linux commands
through Visual Studio Code, it can be difficult for new users to
grasp that these programs are not running on one’s personal laptop
or workstation. In terms of distributed computing where jobs are
submitted through a batch scheduler, such as Slurm, this can add
another layer of abstraction that makes the topic more confusing
for students, which is why in this module we have students run all
exercises on one of the DEAC Cluster’s login nodes.

In this module we primarily focus on basic Linux commands
such as cd, 1s, and mkdir. We also discuss the Linux filesystem and
distinguish between absolute and relative paths. We leverage tools
such as bashcrawl[10] and the "Password in a Haystack" challenge
provided by the Hands on with Frontier GitHub repository[2]. The
project for this module requires the students to also utilize helpful
Linux commands such as wc, grep, and echo.

Previous iterations of this module had a deeper focus on Linux
file permissions, and covered more Linux commands, such as how
to determine a server’s hostname and IP address, but this overall
seemed irrelevant to the audience at this stage of their introduction
to Linux, and this content was removed to streamline the course
material.

11

Volume 15, Issue 2

Figure 1: Cody Stevens describes the architecture of a com-
pute node while students disassemble Cisco B200 servers.
Photo credit: Sean M. Anderson.

3.2.2 Module 2: Modulefiles and Environment Variables. The
WFU HPC Facility heavily relies on environment modulefiles to
manage different versions and flavors of scientific software available
to researchers, and is common amongst many HPC Centers across
the world. This module reinforces paths in Linux from the previous
module, and we have students create temporary and persistent
enviornment variables that they will use throughout the rest of the
course.

The project for this module creates a bespoke environment for
each student, and statically compiles several simple C programs
that are named after common dictionary words. Students are tasked
with identifying the environment module with their username, and
analyze the changes to their environment that the module file makes
to find a secret hidden program. In this project students utilize
module commands such as show and load, and Linux commands
such as find and which to determine their secret program.

3.2.3 Module 3: Cluster Components and Hardware. This module
focuses on the hardware that composes an HPC Cluster, and what
resources are available to user jobs. We discuss the components of
a cluster compute node, such as CPU Cores and Memory (RAM).
Students disassemble decommissioned Cisco B200 blade servers
that were previously compute nodes from the DEAC Cluster to
physically see how these components are integrated together in a
different form factor from their laptop or a desktop workstation.

One of the highlights of the course is in this module where the
students take a tour of the WFU Data Center, and see common
elements of a data center, such as a raised flooring. The tour covers
topics such as power, networking, and cooling within the data
center and students get to see the physical hardware that composes
the DEAC Cluster. This entire module helps address the layer of
abstraction mentioned before in Module 1, and gives the students a
physical sense of what resources are available to them when they
are about to submit a job.

3.24 Module 4: The Slurm Resource Manager and Scheduler. At
this point in the course, students should be familiar with the Linux

12

Journal of Computational Science Education

§.
|

Figure 2: Adam Carlson highlighting the raised flooring and
cabling of the WFU Data Center during a tour with students.
Photo credit: Sean M. Anderson.

environment, and should understand the basics of how modulefiles
work and the resources available to them on the DEAC Cluster.
This module ties all of these components together and covers the
basics of submitting a batch job through Slurm using a batch script,
and how to monitor a job and the state of a Slurm cluster using the
commands squeue and sinfo.

For this project we utilize the software application Blender to
render one of the sample files that we have tweaked slightly to
provide some WFU flair. While this application may not be common
on a given scientific computing cluster, overall we think this is a
great application for the students because the rendering process
for a single scene can take up to 16 minutes with a single core,
and consumes roughly 8Gb of memory or RAM and produces a
nice picture and visual feedback for the students. We utilize these
resource requirements to show the students common errors that
Slurm will provide when too little time or memory is requested.
Students also see a significant speedup when requesting additional
CPU cores, and students can see the benefit of allocating more CPU
cores to a given Slurm job.

We have also used Blender in class to demonstrate the ability of
Slurm Job Arrays by rendering one of the sample movies provided
by Blender, where each job with the job array renders a single scene
before they are all stitched together to create the final movie. We
did not use this example in the most recent iteration of the course
due to time constraints, but feel it is worth mentioning as we plan
to use it again in future offerings of the course.

We believe that the conclusion of this module marks the comple-
tion of what a typical HPC training course for a new user would
cover. At this point in the course a student should be able to:

e Login to a login node, and interact with the login node using
basic Linux commands to organize and store their data.

o Interact with environment modulefiles to see which software
applications are available and load appropriate modulefiles
for their research.

November 2024

Journal of Computational Science Education

e Understand the basic resources a cluster provides for their
job, and how to create a Slurm batch script to submit jobs to
the cluster.

The largest hurdle we have observed for new users to the DEAC
Cluster is learning the basic Linux environment. While this content
could be covered in a one to two day workshop, we believe that the
weekly projects that all require Linux commands to be executed on
the login nodes gives the students more structured experience that
they would not otherwise get from a one-on-one training session,
or a small workshop. We believe that content up to this point in the
course could be offered as a half semester class for any prospective
student interested in research, and at this point in the course a
student should be able to adequately pursue independent research
with a faculty advisor.

It is at this time that we also introduce students to a general HPC
workflow using Python and the Palmer Penguins dataset[4]. From
this moment on in the course Python will be used more heavily, and
this interactive activity gives a good example for how data can be
preprocessed before analysis, and provides some context for what
future Python programs used in the course may be doing.

3.25 Midterm: Asymptotic Complexity. As previously mentioned,
the first half of the course could be described as a general training
for a prospective researcher. The second half of the course serves as
an introduction to many concepts we see in HPC, but may not be
relevant to every user on a given research cluster. From this point
on all work is submitted through batch submission using Slurm.

In this module we discuss asymptotic complexity using real
world examples to describe linear, sub-linear, polynomial, and ex-
ponential scaling for computational complexity. We also discuss
Amdahl’s Law and discuss the consequences of requesting too many
resources for a given problem. For the midterm we use a modified
version of the color quantization using K-means clustering example
with scikit-learn[8, 11]. We provide the students with five images

Figure 3: 3D Render of the WFU-customized Cozy Bakery[9]
scene using Blender.

November 2024

Volume 15, Issue 2

of the same subject with varying pixel dimensions to show the
speedup as the size of the image increases. Like the previous appli-
cation, Blender, utilizing images provides a less abstract approach
to the topic and with this example program we observe that the
sampling of the image performs at the same or worse speed using
multiple processors than the assignment of colors using k-means or
random clustering, which decreases in computation time as more
processors are added to calculations. What the students ultimately
observe is that there are distinct parts of the program, and they
each do not scale proportionally to one another as more resources
are given to the problem.

3.26 Module 5: Networking and Storage. Networking and stor-
age are essential components to any HPC environment. We instruct
the students that on the DEAC Cluster, there exist three directories
the students can actively write and save data to. There is their home
directory located under /home which serves as their starting point
on the cluster, but that it is best practice to store input and write
output of their research endeavors to their RESEARCHPATH which is
a directory that exists on a larger pool of storage that is managed
by a quota. On the DEAC Cluster, both of these paths exist on a
shared filesystem and are shared via NFS to the login and compute
nodes.

In this module we also discuss the concept of latency for data
transfers between a shared storage array and the compute and login
nodes. We discuss local storage, which is commonly referred to
as scratch storage, that is temporary in nature and that in theory
provides better performance over reading and writing data over
an NFS filesystem. In practice, we see a minimal performance gain
using the SSD local scratch directories on the DEAC Cluster versus
the NFS filesystem provided by the NetApp A300 storage array, but
we still believe this module is important as latency is something
that will always persist in the field of HPC.

3.2.7 Module 6: Scientific Software. Compiling scientific soft-
ware is a critical component of enabling HPC workloads, and in this
module students learn about how software is installed and managed
in an HPC environment. A simple example of compiling Nyancat
CLI[7] using GNU make is done in class, and we discuss different
versions of software as well as the performance of software when
compiled using different compilers, such as GNU and Intel. We dis-
cuss what files are created when software is compiled and installed,
and environment variables, such as PATH and LD_LIBRARY_PATH,
that are relevant to using software that is compiled from source.

This module directly ties back to Module 2, and gives a more
practical example of why we utilize modulefiles in an HPC environ-
ment. For this project the students are tasked with installing Python
3.9 into a scratch directory. Due to the DEAC Cluster having a base
compiler of GCC 4.8.5, the students would encounter an error if
they did not use a more recent compiler, such as GCC 10.2.0, which
they are instructed to use. Students are tasked with installing their
Python software into a scratch directory which directly references
the content covered in Module 5, and students do this both inter-
actively on a login node as well as on a compute node with a job
submitted through Slurm.

13

Volume 15, Issue 2

Figure 4: Visualization using VMD of the protein structure
output of GROMACS by Cassandra Hung, Spring 2024.

3.2.8 Module 7: GPU Computing. With the rise of Generative
Artificial Intelligence (AI) and the prevalence of NVIDIA Data Cen-
ter GPUs in HPC facilities today, this is a module that is relevant
to the current landscape of HPC. This module is split over two dif-
ferent lectures. The first lecture discusses GPU hardware, and the
history of the GPU and how it has advanced today up to NVIDIA’s
latest announcement of the Grace CPU and Blackwell GPU architec-
tures and the GB200. This lecture explains the historical nature of
GPU hardware, and how it differs from the CPU and CPU memory.
The second lecture focuses on Al, and the software that enables it,
such as TensorFlow and PyTorch. We discuss the rise of Al since the
early 2010’s up to the Generative Al and Large Language Models
we see today.

We use this module to introduce the concept of interactive Slurm
jobs, as GPU compute nodes have hardware and software that is
not available on the DEAC Cluster login nodes, such as the NVIDIA
driver. The students for this project deploy Meta’s Llama2 13b-
chat model[14] using llama.cpp[3]. When compiled this software
produces a chat bot the students can interact with and compare the
performance to other Generative Al tools, such as ChatGPT. This
code is executed on CPU compute nodes with varying numbers of
CPU cores, and on the GPU nodes using NVIDIA V100 GPUs.

3.2.9 Module 8: Parallel Frameworks. The last module covered
within the class is on parallel frameworks such as message passing
and threading. We primarily focus on MPI and OpenMP for each of
these frameworks, and we discuss the memory management and
use cases for each. Students complete a hands-on activity in teams
that tasks them with sorting cards given different requirements.
Students are responsible for assigning themselves to different roles
in the sorting process as they work together, just as MPI processes
and OpenMP threads would interact within the same context, and
we observe the real time it takes us as humans to sort the cards
using this division of labor.

14

Journal of Computational Science Education

Table 1: Student enrollment per semester.

Semester Total Enrollment Male Female

Fall 2022 7 6 1
Spring 2022 12 10 2
Spring 2023 16 8 8
Spring 2024 18 9 9

The final project brings both of these concepts together, and
tasks the users with installing the molecular dynamics software
GROMACS([1] from source and comparing the performance via
throughput of a simulation using different combinations of MPI
processes and OpenMP threads. Students compare over 50 different
combinations using up to 48 CPU cores for a single job, and then
produce a visualization of the resulting protein structure using the
VMD software package[5].

4 OUTCOMES

Total enrollment in the Introduction to High Performance Computing
course has grown each semester, with our most recent semester hav-
ing a total of 18 students. There has been an equal number of men
and women enrolled in the course for the previous two semesters,
but more than half of all students have been Computer Science
majors. This is to be expected, as the course if offered through
the CS Department, but this bias needs to be reduced in order to
foster more interdisciplinary collaboration. Removing prerequisite
classes has made the course more accessible, but there are still many
opportunities for more inter-departmental collaborations.

From the Spring 2023 cohort, we had 4 students participate in the
Student Cluster Competition (SCC) through the virtual IndySCC
competition. Our WFU team, the Daemon Deacons, finished 4th
overall in the competition and 1st amongst US teams. One of the
software applications for the IndySCC was GROMACS which stu-
dents already had prior experience with from our course. The final
result corroborated that this team was better prepared for the SCC
challenges when compared to teams from previous years.

This past semester we saw former students using the WFU HPC
Facility for courses in finance, natural language processing, and
science-guided machine learning. The WFU HPC Facility supported
entire classes on the latter two topics. One student from the finance
course had taken our class in the Spring 2023 cohort, and decided

Table 2: Student enrollment by academic major.

Major Students

Computer Science 27
Mathematics & Statistics 1
Finance
Engineering
Economics
Biology
Undeclared
Political Science

—_

_ NN W W

November 2024

Journal of Computational Science Education

to use the DEAC Cluster to perform a look-back analysis to build
the best stock portfolio for her final project. This work was done
independently of any other student or faculty involvement and was
thanks to their experience in the Introduction to High Performance
Computing course. From our most recent Spring 2024 cohort, two
students have received URECA Research Fellowships for Summer
2024 and will be pursuing research with faculty in the CS Depart-
ment; one student will be pursuing research opportunities in the
Economics Department later this year. We will be working with
these students to sponsor travel and accommodations to attend the
SC24 conference later this year.

It is this engagement that we hope to foster through our course.
By exposing these topics to a diverse student body we can ensure
that the HPC resources are well-utilized and continue to contribute
to student success throughout their time at WFU.

5 CONCLUSIONS

There is an implicit bias when offering HPC topics from only one
academic department - this contradicts the interdisciplinary nature
of HPC work. The demand for these resources in higher education
will continue to expand as more and more academic disciplines
attempt to educate students on the most relevant problems in to-
day’s technological and data-driven world. Advances in artificial
intelligence and machine learning will necessitate powerful com-
pute resources that can only be provided by HPC facilities. These
facilities can also provide students with a unified computing envi-
ronment and are capable of handling the additional computational
requirements of courses that adequately prepare students for em-
ployment and post-graduate opportunities. By developing curricula
that are accessible to students across all academic disciplines and
different skill levels, the concepts of HPC can be introduced early
in the undergraduate career path, and can have greater success
later as HPC becomes more integrated in other academic programs.
This provides greater utilization of HPC facilities, and eases the bur-
den of individual training on faculty and other cyberinfrastructure
professionals.

6 FUTURE WORK

The Introduction to High Performance Computing course in its cur-
rent iteration has been offered for four semesters as a Special Topics
course within the Department of Computer Science. Our next step
is to establish a permanent course reference number within the
CS curriculum and expand the number of academic credit hours to
3. With our permanent course listing and our refined curriculum,
we intend to publish our projects on GitHub[12] to allow anyone
to download each module and project, with bootstrap scripts for
popular Linux flavors. Lastly, to break away from any departmental
bias and to cater to the true interdisciplinary nature of HPC, we will
be working towards creating our own academic program and will
collaborate with departments across campus to create accessible
projects and coursework for faculty to incorporate into their classes
and majors.

ACKNOWLEDGMENTS

Computations were performed using the Wake Forest University
(WFU) High Performance Computing Facility, a centrally managed

November 2024

Volume 15, Issue 2

computational resource available to WFU researchers including
faculty, staff, students, and collaborators.

The authors would like to thank Dr. William Turkett , Chair of
the Department of Computer Science, for fostering this ongoing
collaboration, and Dr. Sam Cho for developing the initial High
Performance Computing course which laid the foundation for the
Introduction to High Performance Computing course as it is today.

Special thanks to the Information Systems Leadership Team for
supporting the authors in this initiative to bolster the strategic
framework of the University and foster a community of learning.

REFERENCES

[1] Mark Abraham, Andrey Alekseenko, Cathrine Bergh, Christian Blau, Eliane
Briand, Mahesh Doijade, Stefan Fleischmann, Vytautas Gapsys, Gaurav Garg,
Sergey Gorelov, Gilles Gouaillardet, Alan Gray, M Eric Irrgang, Farzaneh Jala-
lypour, Joe Jordan, Christoph Junghans, Prashanth Kanduri, Sebastian Keller,
Carsten Kutzner, Justin A Lemkul, Magnus Lundborg, Pascal Merz, Vedran Mileti¢,
Dmitry Morozov, Szilard Pall, Roland Schulz, Michael Shirts, Alexey Shvetsov,
Balint Soproni, David van der Spoel, Philip Turner, Carsten Uphoff, Alessandra
Villa, Sebastian Wingbermiihle, Artem Zhmurov, Paul Bauer, Berk Hess, and Erik
Lindahl. 2024. GROMACS 2023.4 Source code.

[2] Oak Ridge Leadership Computing Facility. 2021. Hands on with Frontier. Re-
trieved February 2024 from https://github.com/olcf/hands-on-with-frontier

[3] Radoslav Gerganov. 2023. LLaMA c++. Retrieved April 2024 from https:
//github.com/ggerganov/llama.cpp

[4] Kristen B Gorman, Tony D Williams, and William R Fraser. 2014. Ecological sexual
dimorphism and environmental variability within a community of antarctic
penguins (genus Pygoscelis). PLoS One 9, 3 (March 2014), €90081.

[5] William Humphrey, Andrew Dalke, and Klaus Schulten. 1996. VMD - Visual
Molecular Dynamics. Journal of Molecular Graphics 14 (1996), 33-38.

[6] Steve Jones. [n. d.]. ME 344: Introduction to High Performance Computing.
https://bulletin.stanford.edu/courses/2191441

[7] K Lange. 2013. Nyancat CLL. Retrieved April 2024 from https://github.com/
klange/nyancat

[8] Robert Layton, Olivier Grisel, and Mathieu Blondel. [n. d.]. Color Quantization
using K-Means. Retrieved March 2024 from https://scikit-learn.org/stable/auto_
examples/cluster/plot_color_quantization.html

[9] Nicole Morena. 2023. Cozy Bakery - Blender 3.5 Splash Screen. https://www.

artstation.com/nickyblender

notklaatu. 2019. bashcrawl. Retrieved February 2024 from https://gitlab.com/

slackermedia/bashcrawl

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.

[12] Cody Stevens, Sean M. Anderson, and Adam Carlson. 2024. Introduc-

tion to High Performance Computing. https://github.com/WFU-HPC/

Introduction-to-High-Performance-Computing

Information Systems and Wake Forest University. 2021. WFU High Performance

Computing Facility. https://doi.org/10.57682/G13Z-2362

[14] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia

Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,

Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel

Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut

Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,

Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,

Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,

Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross

Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,

Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-

driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:

Open Foundation and Fine-Tuned Chat Models. arXiv:cs.CL/2307.09288

Towa State University. [n. d.]. COMS 424: Introduction to High Performance

Computing. https://catalog.iastate.edu/azcourses/com_s/

Rich Vuduc, Andrew Becker, Catherine Gamboa, and Amanda Deisler. 2023.

CSE 6220: Intro to High-Performance Computing. https://omscs.gatech.edu/

cse-6220-intro-high-performance-computing

=
=

=
&

[15

[16

15

https://github.com/olcf/hands-on-with-frontier
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://bulletin.stanford.edu/courses/2191441
https://github.com/klange/nyancat
https://github.com/klange/nyancat
https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
https://www.artstation.com/nickyblender
https://www.artstation.com/nickyblender
https://gitlab.com/slackermedia/bashcrawl
https://gitlab.com/slackermedia/bashcrawl
https://github.com/WFU-HPC/Introduction-to-High-Performance-Computing
https://github.com/WFU-HPC/Introduction-to-High-Performance-Computing
https://doi.org/10.57682/G13Z-2362
http://arxiv.org/abs/cs.CL/2307.09288
https://catalog.iastate.edu/azcourses/com_s/
https://omscs.gatech.edu/cse-6220-intro-high-performance-computing
https://omscs.gatech.edu/cse-6220-intro-high-performance-computing

