
Orchestrating Cloud-supported Workspaces for a
Computational Biochemistry Course at Large Scale
Gil Speyer

Arizona State University
Tempe, AZ

speyer@asu.edu

Neal Woodbury
Arizona State University

Tempe, AZ
laserweb@asu.edu

Arun Neelicattu
CR8DL, Inc.

Goodyear, AZ
arun.neelicattu@cr8dl.ai

Aaron Peterson
CR8DL, Inc.

Goodyear, AZ
aaron.peterson@cr8dl.ai

Greg Schwimer
CR8DL, Inc.

Goodyear, AZ
schwim@cr8dl.ai

George Slessman
CR8DL, Inc.

Goodyear, AZ
g@cr8dl.ai

ABSTRACT
A joint proof-of-concept project between Arizona State University
and CR8DL, Inc., deployed a Jupyter-notebook based interface to
datacenter resources for a computationally intensive, semester-
length biochemistry course project. Facilitated for undergraduate
biochemistry students with limited high-performance computing
experience, the straightforward interface allowed for large scale
computations. As the project progressed, various enhancements
were identified and implemented.

KEYWORDS
Cloud computing, AlphaFold, Computing education

1 INTRODUCTION
In early 2022, CR8DL, Inc. launched a new concept in datacenter
services, offering easily accessible sandbox services intended to
empower large-scale computation. In order to promote this concept
with real-world success stories, Arizona State University (ASU)
was approached to solicit research or educational computational
challenges. A compelling combination of both of these was read-
ily identified: a senior level computational biochemistry course,
“Modern Approaches to Biochemical Data Analysis.”

The CR8DL resource addressed two critical challenges in the
course. First, students would be assigned a semester-long project
involving repeated prediction of protein structures from mutated
sequences using the Alphafold software [4]. Depending on the
length of the sequence, the resulting structure inference could be
accelerated employing graphical processing units (GPUs). Second,
undergraduate biochemistry students in the course would not have
exposure to campus cluster computational resources. To provide
services like this for a class would have been expensive for the
University in both in terms of time as well as financially (set up,
student training, operations staff, time-on-system availability, and
so on). Further, the use of a traditional command-line interfaces and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit o r c ommercial a dvantage and t hat c opies b ear t his notice and t he full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2023 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/14/2/7

use of a job scheduler on University systems pose a steep barrier to
entry for a large percentage of the students.

In contrast, CR8DL’s services remove these barriers by provid-
ing on-demand compute resources that easily fit the purposes of
the course. This is provided via a straightforward interface that is
easy for students naïve to computer programming to navigate. The
Jupyter notebook interface, with its file upload/download capability
and persistent pages accessible through a browser, allowed for the
students to access these resources with minimal knowledge of the
underlying computer system architecture or operating system.

This work emphasizes solely the integrated technologies made
available to the students in the course in order to enable an en-
hanced activity, namely a semester project. No course redesign
occurred to accommodate this project. Student information was
not used for this study, nor was student feedback solicited.

2 ENABLING HPC TO BIOCHEMISTRY
UNDERGRADUATES

For each student, the project entailed starting with a library of one
thousand randomly generated sequences of the same size as a target
protein domain, ARR10, a plant transcription regulator (Protein
Data Base entry 1IRZ) [2]. The goal of the project was to see if
they could start from a random library of sequences and create a
protein domain with the same alpha carbon backbone structure
as the ARR10 domain. They did this via an iterative process. In
each cycle they used an algorithm that compared the structure of
each generated sequence to the target backbone structure, selected
the best structure, mutated it, generated 100 variants of this amino
acid sequence, uploaded these to a compute cluster, ran AlphaFold
to predict their resulting structure, performed post-processing of
these structures involving downloading the results for visual and
algorithmic assessment. The cycle was repeated about 10 times.
A workflow, showing the iterated steps, including preprocessing
and postprocessing steps run on the ASU supercomputer Agave is
shown in Figure 1.

Throughout this process the student had to make a number of
decisions. Not onlywere they looking for the best fit of the backbone
to the target, they were considering the quality of prediction of
alphafold as determined by the predicted local distance difference
test (pLDDT) score. They also had to decide how many mutations

Volume 14 Issue 2 Journal of Computational Science Education

34 November 2023

https://doi.org/10.22369/issn.2153-4136/x/x/x

Figure 1: Workflow diagram, showing the iterated steps.

to make each round and then visually decide if the key structural
elements were coming into place on the best performers.

By the end of the semester, substantial progress was made by
many of the students in using this random mutation followed by
selection approach to generating a backbone structure similar to the
target. Figure 2 shows the overlap of the target structure (red) and
the structure generated after twelve rounds of random mutation
followed by selection. The pLDDT was 67.5 (borderline believable)
and the root mean squared error (RMSE) between structures was
3.47 based on an angstrom distance scale and focused on the central
region ignoring the unstructured portions of the target.

Alphfold Overlap.jpg

Figure 2: Overlap between the target alphacarbon backbone
structure and the generated structure after twelve rounds of
random mutation and selection using Aphafold2 to gener-
ate structure data and pLDDT scores. A separate algorithm
(in Matlab) was used to generate the RMSE scores. Students
used the pLDDT, RMSE and visual inspection of overlapped
structures to select which of the 100mutations in each struc-
ture would advance to the next round.

2.1 Compute and Software Resources
The cloud environment provided for this project allowed all stu-
dents in the class to concurrently share a high-performance com-
pute infrastructure. Resources such as high-capacity storage, CPU,
and the latest GPU compute resources were provided. The soft-
ware components “over the top” of these resources meant that at
no time was a user expected to know how to administer or other-
wise program on it. The underlying compute infrastructure used
for this project consisted of a number of physical “servers” in a
cluster configuration. Each user was provided guaranteed, full time
access to “slices” of these resources for their own use. Each slice
was composed of:

• CPU: 8 cores

• RAM: 32 GB
• GPU: Nvidia A100-SXM4-80G - 1 “MiG” instances, with a
“3g.40gb” profile (3 slices 40GB RAM)

• Storage: Unlimited. No user used more that 75GB during the
project

These resources were provided on-demand, such that when a user’s
interaction was completed, they were reclaimed to a pool and made
available to other users on the system. At no point was a user denied
these resources as there was ample capacity on the entire system
for all.

2.2 User access and accounts
Student and instructor access was provided via a web-based inter-
face. Authentication was enabled by way of single sign on (SSO)
federation with ASU systems. This allowed users to use their own
existing accounts, controlled by ASU’s own infrastructure services.

2.3 Input data and executables
The entire AlphaFold database set from the public AlphaFold repos-
itory was replicated to a shared storage cluster. These databases
were made available to all users via a read-only directory structure
represented in their main home directory.

The primary path of job execution was provided as a single
Jupyter notebook. Within this notebook, code was placed to au-
tomate the job processing. The goal of this code was to abstract
much of the complexity from the user, while also leveraging the
high-performance compute capabilities of the overall system.

2.4 Workflow
Upon login with a web browser, the users were presented a standard
Jupyter Lab interface. Using this interface, users would implement
a simple, standardized workflow to launch AlphaFold and calculate
the results for further analysis:

(1) Upload fasta files

Figure 3: User uploads their fasta files via a drag and drop
interface provided by Jupyter Lab.

(2) Launch the provided Jupyter Notebook and run it
(3) Input the directory of fasta files in the provided notebook

interface widget
(4) Select “Run Alphafold”
(5) User collects resulting output for visual analysis.

Calculated results were preserved within the user’s personal direc-
tory for the entire duration of the project, only removed by the

Journal of Computational Science Education Volume 14 Issue 2

November 2023 35

Figure 4: Notebook interface.

Figure 5: User selects the source fasta file and is then pre-
sented with a Run AlphaFold button interface. An output
“console” below provides the user with feedback as the job
is run.

user’s own actions. The purpose of this was to encourage iterative
engagement with the results.

2.5 Output data post-processing and iteration
Alphafold generates five predicted structures for the input sequence
in a pdb format, easily rendered in a viewer. In this way, students
could overlay these structures and inspect them visually. Using
a Matlab program, RMSE between the atomic positions could be
calculated [3]. Finally, the Alphapickle python script provided stu-
dents with a quantitative and visual means, via pLDDT scores, to
assess confidence in output structures [1].

3 REFINEMENTS
Through the semester, the students continued to iterate with the
AlphaFold pipeline, uploading new input sets of fasta files repre-
senting one hundred new mutations based on the previous runs.
As these jobs were run, the CR8DL team tracked performance and
investigated opportunities for improvement. Among such refine-
ments were the abstraction of interaction with Python code to a
more graphically driven interface as shown in various figures in
this document, as well as a restructuring of the way in which the

user was expected to interact with the filesystem. This led to a gen-
eral improvement in workflow, enabling users to be more efficient
in their efforts.

Figure 6: Alphafold and Parafold job performance compar-
isons for 100 fasta files across three different processing
strategies: “Base”, “Grouped”, and “Parallel”. “Base” is the as-
provided, out-of-the-box implementation. The “Grouped”
strategy is enhanced by avoiding repeated data loads. “Paral-
lel” execution orchestrates separate, concurrent CPU (“fea-
tures”) and GPU (“prediction”) steps. Parafold further ex-
ploits maximum parallelism in the feature generation, re-
sulting in improved overall performance. Blue = Overall Du-
ration, Red = Feature Generation Duration, Yellow = Predic-
tion Duration for each job type.

3.1 AlphaFold to ParaFold
Alphafold incurs a time intensive workload, even when presented
with a high-performance infrastructure similar to what was pro-
vided by the CR8DL team for this project. It was realized early
on that by splitting CPU and GPU components of the AlphaFold
pipeline, available parallel resources –which are abundant in a
datacenter– can be employed to accelerate the workflow. Aptly
named, the Parafold utility further parallelizes these computations
by exploiting the similarity across the multiple sequences to op-
timize resources both for the CPU-based feature determination
and the GPU-based inference steps [5]. Figure 6 illustrates the en-
hancements observed for a specific data set, exceeding an order of
magnitude acceleration.

4 CONCLUSION AND FUTUREWORK
Continuing efforts are under way to further streamline the user’s
experience when engaging with complex coursework that leverages
high-performance computing resources. User interface improve-
ments, pre-determined visualization outputs, and the ability to run
even larger workloads without a need for software development
experience are all part of our next iterations. The employment of
multiple platforms, despite the vast majority of computation on the
CR8DL resource, could be alleviated. Future implementations of
the course look to porting tools to remove dependence on the aca-
demic Matlab license and co-locating a common folder for project
materials for the students.

Volume 14 Issue 2 Journal of Computational Science Education

36 November 2023

ACKNOWLEDGEMENTS
The authors acknowledge CR8DL, Inc., and Research Computing
at Arizona State University for providing resources that have con-
tributed to the results reported within this paper.

REFERENCES
[1] M. J. Arnold. 2021. mattarnoldbio/alphapickle: v1.4.1. https://doi.org/10.5281/

zenodo.5752375
[2] Kazuo Hosoda, Aya Imamura, Etsuko Katoh, Tomohisa Hatta, Mari Tachiki, Hisami

Yamada, Takeshi Mizuno, and Toshimasa Yamazaki. 2002. Molecular Structure of
the GARP Family of Plant Myb-Related DNA Binding Motifs of the Arabidopsis
Response Regulators. Plant Cell 14, 9 (Sept 2002), 2015–2029. https://doi.org/10.

1105/tpc.002733
[3] The MathWorks Inc. 2022. MATLAB version: 9.13.0 (R2022b). https://www.

mathworks.com
[4] John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,

Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zídek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andy Ballard, An-
drew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas
Adler, Trevor Back, Stig Petersen, David A. Reiman, Ellen Clancy, Michal Zielin-
ski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bo-
denstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate protein structure
prediction with AlphaFold. Nature 596 (2021), 583 – 589.

[5] Bozitao Zhong, Xiaoming Su, Minhua Wen, Sichen Zuo, Liang Hong, and James
Lin. 2021. ParaFold: Paralleling AlphaFold for Large-Scale Predictions. arXiv:q-
bio.BM/2111.06340

Journal of Computational Science Education Volume 14 Issue 2

November 2023 37

https://doi.org/10.5281/zenodo.5752375
https://doi.org/10.5281/zenodo.5752375
https://doi.org/10.1105/tpc.002733
https://doi.org/10.1105/tpc.002733
https://www.mathworks.com
https://www.mathworks.com
http://arxiv.org/abs/q-bio.BM/2111.06340
http://arxiv.org/abs/q-bio.BM/2111.06340

