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ABSTRACT
The challenges of HPC education span a wide array of targeted 
applications, ranging from developing a new generation of admin-
istrators and facilitators to maintain and support cluster resources 
and their respective user communities, to broadening the impact of 
HPC workflows by reaching non-traditional disciplines and training 
researchers in the best-practice tools and approaches when using 
such systems. Furthermore, standard x86 and GPU architectures 
are becoming untenable to scale to the needs of computational 
research, necessitating software and hardware co-development on 
less-familiar processors. While platforms such as Cerebras and 
SambaNova have matured to include common frameworks such 
as TensorFlow and PyTorch as well as robust APIs, and thus are 
amenable to production use cases and instructional material, other 
systems may lack such infrastructure maturity, impeding all but the 
most technically inclined developers from being able to leverage 
the system.

We present here our efforts and outcomes of providing a  co-
development and instructional platform for the Lucata Pathfinder 
thread-migratory system in the Rogues Gallery at Georgia Tech. 
Through a collection of user workflow management, co-development 
with the platform’s engineers, community tutorials, undergraduate 
coursework, and student hires, we have been able to explore mul-
tiple facets of HPC education in a unique way that can serve as a 
viable template for others seeking to develop similar efforts.

KEYWORDS
HPC education, novel architecture workflows, CS curriculum, work-
force development, community education

1 INTRODUCTION
Despite overlaps with traditional computing, HPC education and 
training requires specialized skills, especially in terms of code scal-
ing and target hardware dispatch. Target audiences for this type
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of training can include students [2, 4, 16], researchers [6, 21], and
future administrators/facilitators [1, 22]. Approaches for training
range from using traditional classroom instruction to condensed
workshops or tutorials to unplugged activities to overcome the
challenges of HPC training across the array of demographics and
science domains, with a number of focus groups running annual
workshops to aggregate best practices and pave the path forward;
for example, see [10–12, 24].

Further complicating the state of HPC education is the ever-
changing landscape of cluster infrastructure. Notably, the broad
recognition of scalability challenges in the movement of data for
modern computational research has led to the introduction of a
new standard for a high-bandwidth, disaggregated architecture
with shared memory access, Compute Express Link, or CXL [7].
Although systems capable of supporting the first generation of the
CXL standard are just now deploying, major vendors have changed
product offerings [8], and it is largely expected that broad adoption
will follow the adoption of the 2.0 standard by 2025 [15]. Given the
major shift in infrastructure, the need for a well-developed user
community and management workforce is readily apparent.

Figure 1: An internal view of the Lucata Pathfinder chassis.

The Rogues Gallery is an NSF-funded novel architecture testbed
designed to provide early experiences for a variety of resources [28],
with training being one of its core tenets. Approaches based on near-
memory computation (of which CXL is a subset), reconfigurable
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Figure 2: The architecture of the Pathfinder. Each node consists of 24 Lucata cores, managed by a stationary core, with access to
sharedmemory and a reconfigurable network. Each chassis contains 8 nodes, with 4 chassis total in the GT Pathfinder system.

hardware, advanced networking, and neuromorphic processing
are hosted, allowing students and researchers to consider how
these architectures can be leveraged, either using current software
capabilities or through novel algorithm design, to tackle many of
the problems in HPC. In this paper, we will discuess one particular
platform, the Lucata Pathfinder, and how we leverage it to educate
the community, students, and future administrators, as covered in
Sections 4, 5, and 6, respectively.

2 THE LUCATA PATHFINDER SYSTEM
The Pathfinder advances the capabilities of the prototype Emu
Chick architecture [9], an earlier prototype of migratory thread
hardware.The Pathfinder-S is based on the concept of migrating
threads rather than a deep cache hierarchy to improve locality and
efficiency. The GT Pathfinder system is comprised of 4 chassis,
shown in Figure 4, each of which contains 8 nodes to run compute.
The primary compute elements, dubbed Lucata cores, execute these
migratory threads and forego a traditional memory controller in
favor of eight memory side processors (MSPs) that assist in acceler-
ating specific in-memory operations like remote writes, addition,
and atomics. There are 24 Lucata cores per node, and thus 192
Lucata cores per chassis and 768 for the GT Pathfinder system.

Figure 2 provides a high-level overview of the Pathfinder archi-
tecture as a single node, chassis, and multi-chassis view. The Lucata
cores are managed by "stationary cores", which use a QorIQ T2080
CPU [17], with 4 multi-threaded PowerPC e6500 cores, and 8 GB
of memory; the 8 boards in each chassis are managed by a chassis
control board, which uses the same processor model. The nodes
and chassis are connected via a reconfigurable, high-bandwidth,
high-radix network for efficient scaling in problems such as sparse
matrix operations and graph analysis algorithms.

The chassis control boards and stationary cores run Yocto Linux
[18], with a custom API for Lucata core execution and thread man-
agement across the system. The custom kernel provides a subset of
the standard utilities found for more common platforms, such as

x86 with RHEL or Ubuntu OSes, but this has yet to prove to be a
barrier in delivery of an operational system.

In addition to the Pathfinder, RG also hosts x86 machines to
develop, validate, and compare code against dispatch to the target
hardware. These servers range from a Intel Westmere Jupyter front-
end with 64 cores and 1 TB of memory for lightweight simulation
by many concurrent users to a set of four Intel Ice Lake nodes
with 64 cores and 512 GB of memory for benchmark performance
comparison. Other available architectures such as GPUs, FPGAs,
and Arm CPUs can be used for such efforts, but have not yet been
explored for these purposes.

3 SCHEDULER AND SOFTWARE
INFRASTRUCTURE

Pathfinder access is handled via the Slurm cluster management and
job scheduling system [25]. We chose to implement the Pathfinder
as a federated cluster in the Rogues Gallery for several reasons,
including the dynamic private network for the compute nodes, un-
supported plugins leveraged on other hardware, and highly variable
configurations thoughout the cluster. The federation allows for the
Pathfinder Slurm instance to utilize a unique configuration while
readily accepting jobs from users on the Rogues Gallery login nodes
for a smoother integration. Additional system SSH configurations
allow users to directly login to the compute nodes using the global
system names and going through the gateway server.

In order to program code for execution on the Pathfinder, the
Cilk parallel-programming model is utilized with the Lucata API
[23]. The successor to Intel’s cilk/cilk++ frameworks, OpenCilk
provides a simple means for users to write deterministic parallel
code as an extension to the LLVM compiler. Users are encouraged to
run Jupyter notebooks on Hawksbill, from which they can explore
the Lucata API and Cilk programming framework, followed by
launching code for scaled execution on systems like the Frozones
or the actual Pathfinder system.
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Figure 3: The Rogues Gallery is comprised of federated clusters, with a primary Slurm controller serving the majority of the
hardware, including x86 servers that provide compute capabilities complementary to the Pathfinder system, and a secondary
Slurm controller atop the Pathfinder and its reconfigurable LAN. Additional system-wide SSH configurations allow users to
submit to either controller from common cluster access points.

4 COMMUNITY TUTORIAL EXPERIENCES
Tutorials focusing on the GT Emu Chick and Pathfinder systems
have been presented at several conferences, either as components
of a broader RG tutorial for the ASPLOS19 and PEARC19 confer-
ences [19, 20], or as a dedicated presentation for the PEARC21 and
HPEC22 conferences [26, 27] in an online-only format. Addition-
ally, proposals were submitted to present tutorials at PEARC22 and
SC22 but were not selected for the final program.

In all cases, the target audience was users who had some famil-
iarity with high-performance or parallel computing but who might
not be experts in computing with a system like the Lucata platform.
As shown in Figure 5, the most recent HPEC22 tutorial debuted the
usage of Jupyter notebooks as a mechanism for tutorial attendees
to learn the basics of the Cilk-based Pathfinder workflow and to
compile and run code for the Pathfinder simulator and the hardware
via integrated Slurm commands. This new interface dramatically
increased the number of attendees who interacted with the tutorial
code samples to approximately 50% from earlier tutorials where
just a few attendees downloaded and ran code samples on their
laptops. This interface was created through an iterative process,
which took several tutorial offerings to fully create and deploy from
initial C-based code samples and slides that were used at the first
tutorial back in 2019.

In general, each of these tutorials had anywhere from 10 to 25
attendees, with some outliers like PEARC22, which limited atten-
dees to pre-registered sessions, which seemed to artifically limit
the number of attendees who might join for part of the tutorial.
Surveys indicated that most attendees were already working in
some computing-related fields, and the more dedicated online and
half-day tutorials like HPEC22 provided a more focused group of
attendees.

The key lessons learned from these tutorials were as follows: 1)
The user interface and required background knowledge can dra-
matically increase/decrease engagement by attendees. 2) Tutorial
venues with limited numbers of cross-scheduled tutorials and an

option for a hybrid attendance mode seemed to increase audience
attendance and possibly participation. 3) Most attendees had some
familiarity with HPC or parallel computing concepts but required
background knowledge to fully understand the tutorial’s material.

Figure 4: An earlier Rogues Gallery tutorial at Georgia Tech.

5 FUTURE COMPUTING VIP’S
NEAR-MEMORY SUBTEAM

The Future Computing with the Rogues Gallery VIP course intro-
duces students to the various architectures in the Rogues Gallery
and their target applications through a vertically-integrated, project-
based approach [14]. In particular, the near-memory subteam is
tasked with exploring the Pathfinder architecture and its use in
HPC through a series of targeted benchmarks, including

• HPCG for sparse-matrix operations [13],
• pChase for exploring memory access latency [5], and
• breadth-first search for use in graph applications [3].
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Figure 5: Screenshot from one of the tutorial demo Jupyter
notebooks. To help reinforce the focus and attention of at-
tendees, customized Jupyter styling was developed for the
hands-on components.

The students in the subteam focus on one of the given applications
in smaller project subteams, using the general class meeting each
week to address common issues with Slurm, Cilk, or the Lucata
API.

To help onboard new team members, the students have em-
ployed the OpenCilk documentation to understand the parallel-
programming framework, and notebooks from the RG/Pathfinder
tutorials to see practical uses for executing code on the system.
Additionally, they develop a rich knowledgebase through their
weekly notebook entries, which collectively provide a robust doc-
umentation of technical implementation details, references, and
experiences that enable new students to contribute quickly to the
team. As an example, student success in comparing serial code
against Cilk-programmed multiplication of square matrices can
be seen in Figure 6. As the students moved from toy models to
benchmarking x86 and the Pathfinder systems, they engaged the
Lucata engineers for code and algorithm development, and turned
to the company repositories for components like

As an added benefit to the nature of the VIP program, students
are able to use the opportunity to develop projects that can apply
to other courses in their computer science curriculum. In particu-
lar, two students enrolled in CS3210: Design of Operating Systems
chose the Pathfinder system to explore kernel functionality by
attempting to write their own DMA driver to provide better per-
formance via lower latency memory access for the Lucata cores, as
depicted in Figure 7. As with the benchmark efforts, the students
worked heavily alongside Lucata developers to understand the
workflow to build the kernel from source. Although the semester
ended with an incomplete kernel, as the networking components
built incorrectly, the students gained considerable knowledge with
regards to low-level activities to advance HPC capabilities on novel
architectures.

Perhaps one of the biggest unexpected challenges encountered
by students from this subteam was contention with Lucata devel-
opment cycles. A combination of scheduling conflicts, in which
the engineers had reserved time on the system and rendered it
unavailable for student use, and a lack of understanding of the lo-
cal network configuration, which caused problems if student code
was built for a different setup, created disruptions throughout the

Figure 6: Benchmark comparing serial and Cilk-parallelized
algorithms to perform square matrix multiplication. As
with other parallel computing frameworks, the perfor-
mance improvement requires sufficient problem size.

semesters. Fortunately, both the Lucata personnel and students
were patient, and both groups graciously considered the opportu-
nity as a learning experience from which workflows and system
tools could be improved.

6 POTENTIAL PIPELINE FOR
NEXT-GENERATION ADMINISTRATION
AND FACILITATION

A recent initiative within the Rogues Gallery has been the hiring of
a student worker to develop administrative utilities such as a pro-
duction solution to publish the Pathfinder system configuration and
facilitate access among the Lucata developers and research users.
Unlike student research employees, whose work may utilize only fa-
miliar academic tools, or student administrative employees, whose
work may only include a very targeted activity within the broader
infrastructure, administrative employment on a near-production
system such as the Pathfinder provides broad exposure to both the
research workflows and the standard tools required to manage the
systems. In this way,

The first project addressed by the student employee focuses
on clarifying the complexity of the Lucata Pathfinder scheduling
and reconfiguration mechanisms. Notably, the Pathfinder 4 chassis
system can be reconfigured in up to eight valid configurations that
include combinations of single-node, multi-node but single-chassiss,
and multi-chassis.

To work around this complexity, the initial scheduling mecha-
nism for the Pathfinder used a Google Calendar to block off time
with specific configuration details. In 2022, Slurm was built for the
Pathfinder system and was set up as a federated instance with the
rest of the Rogues Gallery testbed. However, it was noted that the
calendar interface seemed somewhat more intuitive to some of the
engineers and developers working with the system.

Figure 8 shows a new approach that attempts to combine the
best of both worlds by using Slurm to control and reconfigure
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Figure 7: Schematic showing how a DMA driver would im-
prove data throughput for the Lucata cores by bypassing
processing in the stationary cores entirely. Despite the DMA
controller being present on the T2080 CPU, the kernel cur-
rently provides no explicit support to move data directly be-
tween Lucata cores and DRAM.

the system and Google Calendar and Google Sheets to help share
and update the state of the system. The Google Calendar API is
used to read the state of the Pathfinder system as configured via
Slurm and report it to a calendar that can be checked by Lucata
engineers, researchers, and students. Likewise, Figure 9 shows the
current status of the Pathfinder system with this example showing
two chassis as combined “multi-chassis” instances in blue, a single-
chassis instance in green, and single nodes in grey.

One potential enhancement to this setup would be to actually
interpret and allow inputs from the Google Calendar to drive Slurm
jobs for the Pathfinder or even eventually for other less compli-
cated platforms. A key note here is that while the Lucata system
might seem like a unique and one-off type system with a very be-
spoke scheduler, we are starting to see similar setups in systems
with NVIDIA Multi-Instance GPUs (MIGs) which currently are not
compatible with current Slurm installations, due to their reconfig-
urability. It is likely that other cutting edge systems could benefit
from thinking about user interfaces in similar fashions to improve
both utilization and user experiences.
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Figure 8: Automated status update.

Figure 9: Cluster Configuration Example with Google Sheet.

Although we recognize that asking student employees to “fix”
interface issues like this for a unique system has some shortcomings,
we feel that near-production system administration fills a specific
need in the training process. Broader-reach workforce development
initiatives churn out larger numbers of trained individuals, but
with less depth of knowledge due to the nature of the training
exercises and limited time for the training. At the other end of
the spectrum, student researchers managing isolated systems may
become experts in the systems they manage, but are less likely
to use industry-standard tools in accordance with best practices.
By working on a near-production system, students are exposed
to real-world problems and the tools used to monitor, mitigate,
and manage them, providing a nice balance between richness and
exposure. Furthermore, as multiple near-production systems may
exist on a given campus, such a workforce model can broaden its
impact.

7 CONCLUSIONS
The deployment of extremely novel and unique near-memory mi-
gratory thread systems like the Lucata Chick and Pathfinder has
provided both new opportunities for training as well as challenges
from an educational and maintenance standpoint.

From an educational perspective, the Lucata systems have pro-
vided an extremely compelling high-performance platform that has
been used to support local coursework at Georgia Tech, tutorial
development at architecture and HPC conferences, and proving
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grounds for testing of new tools and techniques to support next-
generation HPC ecosystems. Figuring out the best way to engage
students and non-experts has required iterative and collaborative
work with GT researchers as well as strong support from the vendor.

Some takeaways that could improve this process would be an
earlier focus on smarter tooling and interfaces to support new
users including Slurm scheduling instead of ad-hoc scheduling,
automated scripts to reconfigure the system, and Jupyter notebooks
for teaching and tutorials. Furthermore, matching tutorial materials
and scope with the correct conference audience has proven to be
important to get good turn out and engagement with such a unique
platform.

Overall, the engagement with the community and collaboration
with local researchers and the vendor has provided Georgia Tech
with an incomparable resource and experience for teaching and re-
searching high-performance computing applications. Future efforts
will focus on extending the scope of applications that can be run
using tutorial-style notebooks and in supporting added tools and
features to improve the user experience when using the Pathfinder
system as part of the testbed.
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