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ABSTRACT
As more students want to pursue a career in big data analytics and
data science, big data education has become a focal point in many
colleges and universities’ curricula. There are many challenges
when it comes to teaching and learning big data in a classroom
setting. One of the biggest challenges is to prepare big data infras-
tructure to provide meaningful hands-on experience to students.
Setting up necessary distributed computing resource is a delicate
act for instructors and system administrators because there is no
one size fit all solutions. In this paper, we propose an approach
that facilitates the creation of the computing environment on both
personal computers and public cloud resources. This combined
approach meet different needs and can be used in an educational
setting to facilitate different big data learning activities. We dis-
cuss and reflect on our experience using these systems in teaching
undergraduate and graduate courses.
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1 INTRODUCTION
Multicore processors have become standard in modern personal
computing devices. Linux Kernel Subsystem and Hypervisor com-
ponents have ensured Windows-based computers to have access
to the same software libraries commonly used in parallel and dis-
tributed computing (PDC) education such as pthreads [17], OpenMP
[22] and OpenMPI [23]. This enables students to carry out PDC
learning activities on their personal computers rather than fully
dependent on large-scale computing resources. When it comes to
big data computing (BDC) topics, computing environment setup
becomes more complex. For example, Apache Spark, a popular big
data analytic platform, is not a library to be linked and invoked
at run time but a complex ecosystem that needs to be installed,
configured, and deployed. Programs are then submitted to this plat-
form for execution. In addition to multicore requirements, available
memory and local storage are also critical resources to be managed.
To date, BDC education relies mainly on distributed resources with
a preference for on-site physical cluster [15].
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In this work, we present several deployment varieties for indi-
vidualized computing environments together with various BDC
learning activities. These approaches range from direct installation
and configuration on personal computing devices, development
of workflow on local clusters to indirect deployment through con-
tainerization, and large-scale temporary deployment on federal
cloud resources. This provides a sustainable approach to BDC edu-
cation where the burden of maintain computing resources is not
solely placed on academic institutions and students have access to
a learning environment beyond the duration of the courses. These
approaches help creating and disseminating BDC courses at two
academic institutions that lack support for large-scale infrastruc-
tures.

The remainder of the paper is structured as follows. Section 2
presents our approach to maintain a sustainable BDC learning envi-
ronment. Section 3 describes the learning activities and assessments.
In Section 4 we discuss our overall classroom experience, including
descriptions of previous taught courses, students evaluation and
learning outcomes, and the lessons learned. Finally, we conclude
our paper and discuss future work in Section 5.

2 SUSTAINABLE AND SCALABLE SOLUTIONS
There are primarily three approaches to providing computing envi-
ronment to big data education: physical cluster [7], virtual cluster
[14], or cloud-based solutions [24]. Given these approaches require
institutional investments and extensive technical knowledge, scal-
ability and sustainability can be limited for smaller institutions.
These solutions can become limited available to students due to
limitation such as computing credits (cloud), on-campus access
(physical or virtual), or resource contention (physical or virtual).
Students can lose access to resources after the course is ended,
hindering the potential of further self studying.

We define sustainable solutions as approaches that do not place
significant financial and technical burden on students and academic
institutions. A sustainable option for BDC learning environment,
therefore, is one that is deployed on students’ personal computer
(PC). However, it is critical that learning activities behave exactly
the same on personal computers or large-scale resources, except
for run time performance.

2.1 Infrastructure on personal computers
There are three varieties of deploying Spark on PC: direct deploy-
ment, single-node containerized local deployment, and multi-node
containerized cluster deployment. Today, a fairly minimal and inex-
pensive (relative) laptop boasts a dual-core CPU, 4GB of memory,
and 32GB of storage. A direct installation of Apache Spark [28]
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Figure 1: Jupyter notebook with Spark cell setup and Word
Count execution

and PySpark [13] is necessary to avoid overhead that could hap-
pen from containerized solutions. The trade-off in this case is the
added complexity of managing various installations in a Windows
environment. For more powerful devices, single-instance Docker
solutions can be used, where all required libraries for Spark and
Python are already configured inside the container. With top-of-
the-line PCs, we can also deploy a multi-node Spark cluster that
is housed in multiple containers. In all scenarios, we are assuming
Windows installation as it is the most popular operating system
used by students.

For direct deployment, the following components must be setup:
1) Anaconda [5], 2) Apache Spark, 3) Java, and 4) Hadoop-Windows
utilities. Out of these four components, Anaconda potentially takes
up the most space (approximately at least 500MB) and requires
an installation process. While it is possible to selective pick only
relevant Python components necessary to support Apache Spark,
the steps will be lengthy and tedious. Students lacking command-
line experience and administration skill will likely encounter er-
rors, creating technical overhead inside and outside of the class-
room. Java can either be installed or decompressed to a specific
location. Apache Spark and Hadoop-Windows utilities need to be
downloaded and decompressed to specific locations. Once every-
thing is in place, environment variables need to be set for ANA-
CONDA_HOME, SPARK_HOME, HADOOP_HOME, and their corre-
sponding sub-directories to executable files in PATH via Windows’
System Properties.

After a Jupyter notebook is created, a block of template code
is provided to setup the launching of a local Spark cluster. This

Figure 2: Spark Web UI on local server

template includes getting the location of Spark’s installation via
SPARK_HOME and append relevant supporting libraries to the
notebook’s Python kernel. Students can specify the size of the
cluster via number of cores and amount of memory in GB. Finally,
PySpark will launch the local Spark cluster. Figure 1 demonstrates
the execution of the template cell, and the subsequent running of
another cell that runs the word count activities and returns the
top ten unique words’ counts. Figure 2 shows the records of the
submitted Spark jobs on the local 127.0.0.1:4040 address.

In both single-node [2] and multi-node [1] containerized de-
ployments, the key setup step is to install Docker Desktop. The
challenge is the enabling of virtualization support on older laptop
models via BIOS. This issue has gradually been reduced over time
as newer laptops have virtualization enabled by default. The deploy-
ments launch the Docker container(s) and expose the default port
of the Jupyter notebook server to the host machine, making Jupyter
available to students via the host browser. One downside of this
approach is the limited access to Spark’s Web UI. While it is possi-
ble to expose the primary interface of the Web UI, additional log
information resides on individual Spark worker’s container whose
port must be exposed separately. It is possible to examine the log
from the terminal using docker log command. However, this cre-
ates a potential point of failure/technical overhead for students. An
example multi-node containerized deployment is shown in Figure
3.
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Figure 3: Multi-node containerized deployment of Spark cluster

2.2 Scaling to community cloud
The containerized solutions for single and multi-node Spark cluster
can also be used to deploy at scale on CloudLab, a federal cloud
resource that is available for research and education purposes [21].
A CloudLab experiment needs to be deployed prior to class. This
experiment launches a single Docker node or a multi-node Docker
Swarm [3]. Students can launch the containerized deployments
here on the experiment and access the Jupyter server via the public
IP address of the experiment’s head node.

As CloudLab is designed to be an experimental test-bed, cloud al-
locations are provisioned within limited timing duration (16 hours)
that are not suitable for sustained learning activities. However, long-
term availability of personal computing devices can be combined
with CloudLab to create a learning model that enables students to

build their big data workflow locally using smaller data set and test
their solutions on CloudLab using larger data sets.

The combination of personal computing devices and public cloud
resources facilitates sustainable and scalable solutions to provide
learning environments for BDC topics. In the next section, we will
discuss learning activities that are created to support this approach.

3 LEARNING ACTIVITIES AND ASSESSMENT
While designing learning activities, we focus on guiding students
through fundamental steps in the big data processing pipeline.
These steps include identifying data sources, acquiring and ingest-
ing raw data, and analyzing curated data. Students are exposed to
both the underlying theory behind big data techniques and the soft-
ware tools and infrastructures that implement and support these
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techniques. Assessments include both short-term assignment and a
semester-long data analysis project.

3.1 Learning activities
Data acquisition: The first topic of interest is data identification,
acquisition, and curation. The experience of combing through a
large number of data sets can be rewarding but also can be frus-
trating at times. For this topic, students learn to narrow down their
topic area and not to focus solely on quantity but on quality of
the data sets being examined. Qualities such as cleanliness, relia-
bility and uniqueness have a direct impact on subsequent learning
activities. There are many publicly available data sets spanning
across many topic areas for students to explore. Examples include
data.gov [10] for data related to government, climate, health, en-
ergy, and economy, Kaggle [16] for health, science, sports, crypto,
and entertainment data, UCIML [26] for science and engineering
data, Nasdaq Datalink [20] for financial and business related data.
Table 1 shows a list of sources and topic areas for publicly available
data sets.

Additionally, we also make security data collected from our own
Linux servers available to students. For larger data sets, smaller
samples that can easily be processed on PCs are generated.

Programmingmodels: Existing big data toolkits (e.g., Hadoop
[12], Spark [28], AllPairs [19], DataSpaces[25], etc) already provide
an extensive collection of ready-to-use functionalities. It is critical
that students understand the underlying programming paradigms
implemented in these functionalities. They are to momentarily step
away from the traditional procedural and object-oriented paradigms
where functions and objects are the targets of programming ac-
tivities. Instead, they are to focus on the data pipelines and how
these pipelines will eventually produce the desired results. The
MapReduce programming paradigm [11] is one such dataflow pro-
gramming paradigm, where programmers utilize ‘map‘ and ‘reduce‘
functions to form the data pipelines. This paradigm is implemented
in Hadoop MapReduce, Apache Spark, and many other big data
frameworks.

3.2 Assessments
In addition to the standard quizzes and exams that assess students’
on their understanding of foundational concepts, assignments and
semester projects are key components to the assessment process.
The following assignments and projects were disseminated to stu-
dents and carried out primarily using the infrastructures described
in Section 2.

Assignments: Assignments are used forWCUPA’s BDC courses.
There is a total of five assignments that work on progressively
bigger and more complex data sets. Students demonstrate their
understanding by implementing well-known algorithms such as
PageRank and K-mean clustering using MapReduce programming
paradigms and apply them on the data.

• Assignment 1 is a straightforward demonstration that stu-
dents are able to deploy Spark on their PC/laptops. This
assignment requires students to provide a series of screen-
shots showing working Jupyter notebooks, Spark WebUI,
and success WordCount results. The assignment serves as

a confirmation that all students have access to adequate
infrastructure to continue the course.

• Assignment 2 provides students with an actual security log
of a public-facing computer. Students are to study the log and
provide answers to the following questions: 1) How many
failed access attempts? 2) Which countries these attempts
are generated from? 3) What are the attempted usernames?
4) Which date has the highest attack frequencies? These
questions require students to become familiar with Spark’s
actions and transformations and also to learn how to examine
complex textual data.

• In Assignment 3, students are first introduced to a big data
set: the user information portion of Yelp’s academic data
set [4]. This data set is approximately 1.8Gb compressed,
which is large enough to be inconvenient. Besides descrip-
tive statistics, students are required to identify the top ten
influential users from this data set. This particular require-
ment is open-ended, as students will need to justify their
choice of attributes that define level of influence.

• Assignment 4 is an extension of assignment 3, where stu-
dents now use all data within the Yelp data set (user, review,
and business) to study characteristics of the influential users
and identify their pattern of restaurant visits (local, regional,
or east-west coasts). This assignment is where students can
decide to apply complex techniques such as PageRank and
K-mean clustering.

• Assignment 5 introduces students to Kaggle [6]. The assign-
ment involves two parts. In part 1, students are to participate
in the introductory “Titanic - Machine Learning from Disas-
ter“ competition but use Spark and its supporting libraries
to carry out the prediction task. In part 2, students study
the cryptocurrency data set on Kaggle. While this data set is
not overly large (approximately 300Mb), the text line them-
selves contains non-standard characters and are not easily
tokenized.

Semester Project: We have students design and implement a
data analysis workflow to analyze the data set of their own choice.
The goal of this activity is to get students ready to apply what they
learn to work on real-world problem beyond the classroom. We
ask students to come up with at least five interesting questions
they want to answer from the chosen data set. If the student de-
cides MapReduce programming model is suitable to answer those
questions, the student would write their own mapper and reducer
functions specific to each question. A prototype of the workflow
is developed on small sampled data and run on PCs. Later, this
prototype is migrated to run on a large-scale BDC environment
that could be on-site or cloud-based, depending on the institution’
resources. We evaluate the entire workflow by processing different
data sizes and scaling out across different number of computers
and whether the results support answering the proposed questions.

Case Study: One of our students wanted to perform a study of
educational data, specifically,identifying the correlation between
a student’s gender, course work performance and the likeliness of
he/she pursuing a career in STEM after high school graduation.
The student looked into a number of educational data sets from
the National Center for Education Statistics (NCSE) and chose a

Journal of Computational Science Education Volume 14, Issue 1

July 2023 49



Table 1: Popular sources for data sets

Source Topic Areas
data.gov Government, Climate, Health, Energy, Economy,...
Kaggle Health, Science, Sports, Crypto, Entertainment,...
UCI ML Repository Life Science, Physical Science, Engineering,...
Nasdaq Datalink Financial, Real Estate, Banking,...

data set from the High School Longitudinal Study[27]. The study
surveyed over 20,000 students from more than 900 both public and
private schools.

After obtaining a data set, the next step was for the student
to propose a list of questions they want to investigate. The ques-
tions are listed in Table 3. As an example of the type of insight
student could derive from the data set, he/she propose a hypothesis
which state that a student with higher GPA is more likely to take
post-secondary classes (college/university) because GPA is a good
indication of the student’s future academic aspiration in higher edu-
cation. The student then proceed with creating customized mapper
and reducer functions to attempt to validate the hypothesis. Figure
4 shows a part of a mapper code.

Figure 4: A snippet of a customize mapper function

The analysis result validated the hypothesis. Table 2 shows as
the GPA increases, there are more student answered yes to indicate
they were talking postsecondary courses after graduating from
high school.

4 DISCUSSION
The deployment varieties on PC presented in Section 2 have been
used in one BDC course from West Chester University of Penn-
sylvania (WCUPA) and a series of independent study course from
Western Illinois University (WIU). Both institutions are regional
public universities and lack either infrastructure (WCUPA) or per-
sonnel support (WIU) to deploy and maintain large-scale comput-
ing infrastructures for regular BDC courses. The adoption of the

Table 2: Student response to the questions about taking post-
secondary courses

GPA Yes No Don’t know
0.0-0.5 32 58 49
0.5-1.0 70 158 110
1.0-1.5 195 343 189
1.5-2.0 590 618 319
2.0-2.5 1299 708 329
2.5-3.0 2073 617 269
3.0-3.5 2449 417 169
3.5-4.0 2768 202 70
4.0+ 3390 99 16

above-mentioned deployment varieties enable teaching and learn-
ing activities of BDC topics and subsequent course creation.

4.1 Course descriptions
At WCUPA, there was no BDC course prior to 2019. A special topic 
course on complex large-scale systems was offered with emphasis 
on BDC contents during the Winter 2019 semester. During this ini-
tial offering, the multi-node containerized local deployments were 
introduced to the course. At this time, Docker required Docker 
Toolkit and VirtualBox to support containerization for older ver-
sions of Windows and Mac, and several students with much older 
machines could not run a multi-node solution. A single-node so-
lution was developed and introduced as an alternative. After the 
initial offering in Winter 2019, the course was offered once again as 
a special topic course in Winter 2020. During this semester, the di-
rect deployment approach was introduced to students. Instructions 
for Docker-based deployments were made available to students as 
alternatives but were not formally introduced in class. Beginning 
Fall 2021, the course was converted into a regular Fall-semester 
course titled “Big Data Engineering."

Because traditional BDC courses are not offered at WIU, students 
who want to gain experience working with big data often do so 
through an independent study course. The course includes most 
of the activities outlined in Section 3 culminating with a semester 
long final project. This specific independent study course has been 
taken by WIU graduate students four times in recent years.

4.2 Student outcomes and feedback
Descriptive summary of student enrollments during for BDC course 
offering at WCUPA is presented in Table 4. It should be noted that 
for the Fall 2022 semester, class size was capped at 35 due to limited 
physical seating. In general, students’ verbal feedback has been 
positive. For Winter semesters, there were no formal evaluation
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Table 3: Proposed questions by a student [18]

# Questions
1 Does a higher high school GPA correlate to enrollment in a post-secondary education program towards earning a bachelor’s?
2 Does a higher high school GPA correlate to the number of STEM courses enrolled in during high school?
3 Is there a correlation between gender and the decision to enroll in a post-secondary educational program?
4 Is there a correlation between gender and the amount of STEM courses taken during high school?
5 Does a positive response about the value of math also correlate with the number of science related courses enrolled in during high school?
6 How do di�erent genders perceive the importance of math and their own ability to do well in math compared to that of the other gender?

Table 4: BDC Course o�erings and enrollments at WCUPA.

Semester Enrollment
Winter 2019 13
Winter 2020 20
Fall 2021 40
Fall 2022 35

process. However, in-class interactions had been positive and no
signi�cant technical issues happened. During Winter 2020, two
students decided to follow up on the security analysis assignment
and expanded the work to cover all system logs of department
computers. This resulted in a publication that won Best Student
Paper award at a regional conference [9]. For the �rst regular of-
fering, students’ ratings of course contents have been well-above
departmental, college, and university’s mean rating. As Fall 2021
was the �rst semester back after Covid-19, no verbal feedback from
students was made available.

4.3 Lesson learned
We o�er the following lessons to summarize our experience in
teaching big data computing to both undergraduate and graduate
students. We hope these can be applied to sustain and improve
teaching and learning experience for fellow educators and students
in the future.

Keep sustainability and reproducibility at the forefront:
Limited access to workable resources is the primary obstacle to
teaching and learning BDC, or PDC for that matter. Helping stu-
dents to deploy a suitable computing environment on their PCs
ensures access and allows students to at least learn about the un-
derlying theories, even without scalability demonstration.

Give students some autonomy: Having access to the comput-
ing environment on their own PCs will also contribute to students’
autonomy in learning and experimenting with various data sets
from topics that they are interested in. Many data sources available
on ‘data.gov‘ are actually small in size (dozens of megabytes) and
well suited for PC processing. Working with data sets in topic areas
that they can relate to either their future career or their personal
hobbies can help boost students’ motivation.

Be ready to clean data: Ideally, students are able to �nd a
useful and clean data set that contains all relevant information.
However, this is almost always not the case, and students should be
reminded to be mindful about the cleanliness and trustworthiness
of their collected data. Data cleaning is an important part of the

data analysis work�ow. Additional data sets might be needed before
the �nal data product is ready to be analyzed.

Start small, then scale-up: Students can create a small sample
from a big data set while maintaining original statistical properties.
They would then design, implement, and deploy an end-to-end
analysis prototype work�ow for the small sample on their PC en-
vironment. A scale-up deployment on the large-scale resource is
carried out later. One of the side advantage of starting small is
failing faster. If something go wrong, students would have chances
to alter their design and implementation and rerun their experi-
ments. Once they are con�dent on the correctness of their analysis,
they can deploy to the large-scale resource for �nal validation and
performance evaluation.

Use high level abstractions to speed up progress: Although
we spend time on low level programming paradigms to provide
necessary foundational knowledge on BDC, modern frameworks
such as Apache Hadoop or Apache Spark provide students with
more suitable functionalities to build their data analysis work�ow.
It is important for students’ learning growth that they can step
away from the low-level paradigms and focus on designing an
appropriate data�ow pipeline. The question then becomes, what
functionalities would they need to shape their pipeline. In doing
so, students can leave complex decisions such as coordination and
synchronization among multiple compute nodes to the framework.

5 CONCLUSION AND FUTUREWORK
In this paper, we present our approach to create a sustainable and
scalable approaches in setup personal computing environment for
big data computing. Our approach potentially can free educators
from tedious tasks of maintaining distributed computing infrastruc-
ture. Instead, they can focus on teaching and mentoring activities.
For students, theywill have access to resources that can be recreated
and duplicated outside classrooms, enabling self-learning beyond
the scope and duration of the class. We also discuss a list of ac-
tive learning activities that play a large role in achieving many
important learning objectives.

With the gradual changes in Windows’ toward supporting Linux
environment and better yet inexpensive computers, additional work
needs to be done to continue improving the above approaches.
These include, but not limited to

• Creating better documentation for the direct deployment
process. Video instructions might be more useful than static
documentation.

• Convert themulti-nodeDocker deployment fromusingDocker
Compose to using Kubernetes [8]. This allows this approach
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to be deployed as a centralized infrastructure if a cloud re-
source becomes available.

• Improve the Docker deployment to make external data and
code integration more dynamic. This will reduce complexity
of importing/uploading external materials into the container-
ized environment.
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