
Python-Based Tools for Modeling Transport 
in Porous Media Columns 

Boyang Lu
Illinois Institute of Technology 

Chicago, Illinois 
blu6@hawk.iit.edu 

David Lampert 
Illinois Institute of Technology 

Chicago, Illinois 
Dlampert1@iit.edu 

ABSTRACT 
The fate and transport of dissolved constituents in porous media has 
important applications in the earth and environmental sciences and 
many engineering disciplines. Mathematical models are commonly 
applied to simulate the movement of substances in porous media 
using the advection-dispersion equation. Whereas computer 
programs based on numerical solutions are commonly employed to 
solve the governing equations for these problems, analytical 
solutions also exist for some important one-dimensional cases. 
These solutions are often still quite complex to apply in practice, 
and therefore computational tools are still needed to apply them to 
determine the concentrations of dissolved substances as a function 
of space and time. The Python Programming Language provides a 
variety of tools that enable implementation of analytical solutions 
into useful tools and facilitate their application to experimental data. 
Python provides an important but underutilized tool in environ-
mental modeling courses. This article highlights the development 
of a series of Python-based computing tools that can be used to 
numerically compute the values of an analytical solution to the one-
dimensional advection-dispersion equation. These tools are targeted 
to graduate and advanced undergraduate courses that teach 
environmental modeling and the application of Python for 
computing.  

KEYWORDS
Python, Advection-Dispersion Model, Analytical Solution, Column 
Experiment, Columntracer, Dispersion Coefficient, Breakthrough 
Curve, Jupyter Notebook, Binder, Educational Computing Tools 

1 INTRODUCTION 
The fate and transport of dissolved constituents in porous media has 
many important applications in geology, environmental science, 
and engineering. Field and laboratory studies are often used to study 
the fate and transport of contaminants in porous media. These 
studies also require computational tools for interpretation of data 
and forecasting of pollutant migration into uncontaminated areas. 
Since many contaminants released to the environment are 
eventually trapped in soils and sediments, these media can 
contribute to the contamination to surface water and groundwater in 
the vicinity, depending on the contaminant characteristics and site 
geological properties.  

 Laboratory columns are widely used to study fate and 
transport in porous media such as soils and sediments. For example, 

McKenzie et al. [13] and Høisæter et al. [8] recently conducted 
column experiments to improve the understanding of per- and 
polyfluoroalkyl substances, an emerging class of pollutants, in 
unsaturated soils and groundwater. Perujo et al. [16] carried out a 
laboratory-scale column experiment to study the interaction 
between physical heterogeneity and microbial processes in 
subsurface sediments, and Westerhoff et al. [22] performed column 
tests for arsenate removal in iron oxide packed bed columns. The 
main purpose of column experiments is to investigate the transport 
and attenuation of a specific compound within a specific sediment 
or substrate [2]. Column experiments are flexible and simple to 
manage; therefore, it is possible to run a column experiment as part 
of an educational course. The boundary conditions, physical and 
chemical properties of the contaminants, media characteristics, and 
the type of the solvent can be controlled easily during preparation. 
The resulting data can provide a useful educational experience for 
students that are learning about fate and transport modeling. 

The movement of dissolved constituents in porous media 
strongly depends on the fluid flow characteristics. In laboratory 
columns, it is reasonable to assume the flow is one-dimensional. 
Tracer studies using an inert substance that does not interact with 
the media are frequently used to assess fluid flow. The results of a 
tracer study provide data that can be used with an appropriate model 
to interpret the fluid movement, which can then be used to assess 
migration of other substances within the media.  

Mathematical models based on advection (the movement of a 
dissolved substance with the bulk media) and dispersion (the 
dissipation of concentration gradients in the media due to 
differences in flow path lengths) are often used to simulate the fate 
and transport of dissolved substances. One-dimensional advection-
dispersion models often provide excellent performance in 
explaining observed concentrations within laboratory columns used 
to study the movement of dissolved substances within porous media 
[1]. Students in the earth and environmental sciences and engin-
eering disciplines require substantial training in computational 
science to apply these models. In addition to knowledge of the 
underlying physical and chemical processes, these students often 
also require training in the solution of differential equations and the 
development of computer programs to perform the calculations. 
The Python Programming Language provides a convenient plat-
form for solving advection-dispersion problems, since it provides 
access to many applicable computational and visualization tools; 
however, limited educational tools are available to teach the 
applications of Python for environmental modeling. 

The one-dimensional dispersion-advection model can be used 
to simulate the behavior of tracer transport in porous media. An 
analytical solution for the model has been developed in the Fortran 
programming language that is described in a report published by the 
U.S. Geological Survey (USGS), which includes three additional 
useful analytical solutions to 1-dimensional dispersion-advection 
equation in porous media, and more solutions to 2 and 3-dimen-
sional situations [23]. Fortran is still used today for high perform-
ance computing, but it is difficult to implement for analytical 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. Copyright ©JOCSE, a 
supported publication of the Shodor Education Foundation Inc. 

© 2023 Journal of Computational Science Education 
DOI: https://doi.org/10.22369/issn.2153-4136/14/1/2 

Volume 14, Issue 1 Journal of Computational Science Education

8 July 2023



solutions. High-level languages like Python provide many external 
libraries for specific needs such as root finding, minimization, and 
graphics that make it a more suitable alternative on modern 
computing platforms for problems such as the transport of a tracer 
in a porous medium.  

In this article, a new Python library “columntracer” and a suite 
of supplementary Jupyter Notebooks [11] illustrating its develop-
ment and usage are presented. The software is written entirely in 
Python and is freely available online. Key features of columntracer 
include the ability to: (1) calculate the solute concentration at any 
point in time and space in a column, (2) plot concentration profiles 
and breakthrough curves, and (3) fit experimental data at the outlet 
to breakthrough curves to find dispersion coefficient. In experi-
mental column studies, effluent concentrations are easily obtained, 
while the dispersion coefficients are a key unknown parameter. By 
using columntracer, dispersion coefficients can be determined with 
a few lines of code. This library and the associated Jupyter Note-
books serve as a potentially useful educational tool for students in 
environmental modeling classes. Students are able to learn how 
contaminants flow through the column, how different initial 
conditions affect the concentration profile across the column and 
lead to different final concentrations at outlet, and how to fit 
experimental data to obtain dispersion coefficient of the process. 
The Notebooks also demonstrate the potential power of using 
Python versus computing tools that are more familiar to environ-
mental science and engineering students, such as spreadsheet 
programs. 

This project was conducted as an individual special problem 
for three credit hours for the student lead author. The objectives of 
the project were to: (1) deepen student understanding of the 
modeling of fate and transport of contaminants in porous media, (2) 
improve student Python programming skills, including creating 
Python classes, utilizing modules, managing code on GitHub, and 
publishing the columntracer library, and (3) provide an alternative 
to the U.S. Geological Survey Fortran based program for solving 
the dispersion-advection equation by developing a Python 
implementation.  

2 METHOD 
2.1 Model Description 
Consider a cylindrical column of length L with flow entering on one 
end and exiting on the other end. The velocity of the flow U is easily 
measured by monitoring the flow rate (volume that exits per unit 
time). The dispersion coefficient D represents the tendency of the 
concentration gradients to dissipate. Tracer experiments using 
conservative substances such as bromide are typically used, along 
with a model, to estimate this parameter. The solute concentration 
in the influent for a tracer has a constant concentration of C0, and 
eventually the concentration leaving the column will also have a 
concentration of C0, at which point the tracer is said to have 
achieved “breakthrough.” Before breakthrough, the concentration 
in the effluent gradually increases from zero and to the influent 
concentration level. Figure 1 illustrates the model system for the 
case when C0 = 100, L = 30, U = 10, and D = 100. The parameters 
that affect the output from the column for this model are listed in . 
. 

Table 1. List of model parameters. 
Parameters Description Units 

C0 Solute influent concentration mg/L 

U Flow velocity in column cm/hr 

D Dispersion coefficient cm2/hr 

L Length of column cm 

 
Figure 1. Schematic of Column Mode. 

2.2 Advection and Dispersion Equation 
2.2.1  Model and Boundary Conditions 
Equation (2.1) shows the model used in the software, which is the 
one-dimensional advection-dispersion equation. The value of C is 
the concentration at time t and distance x from the inlet. The 
equation is based on a material balance within a differential element, 
and it assumes constant value of the parameters U and D. 
 

 𝑑𝐶
𝑑𝑡 = 𝐷

𝑑!𝐶
𝑑𝑥! −𝑈

𝑑𝐶
𝑑𝑥 

(2.1) 

Two boundary conditions and one initial condition are 
required to solve the equation. Assuming there is no tracer in the 
column at the start of the simulation, the initial condition is zero 
concentration, as shown in Equation (2.2). The boundary condition 
for the influent is flux-matching (i.e., the mass flow of the tracer 
into the column equals the mass flow inside the column at x = 0). 
The advective flux into the column matches the advective and 
dispersive fluxes at the start of the column in Equation (2.3). The 
Danckwerts’ boundary condition used at the effluent assumes that 
the dispersion flux is negligible, meaning the derivative is zero, 
which is shown in Equation (2.4) [25]. 

 
 𝐶(𝑥, 𝑡 = 0) = 0 (2.2) 
 𝑈𝐶" = 𝑈𝐶(𝑥 = 0, 𝑡) − 𝐷

𝑑𝐶(𝑥 = 0, 𝑡)
𝑑𝑥  (2.3) 

 𝑑𝐶(𝑥 = 𝐿, 𝑡)
𝑑𝑥 = 0 (2.4) 

The equations can be non-dimensionalized using the 
dimensionless time t*, distance x*, and concentration C*, which 
simplifies the mathematics as shown in Equations (2.5)-(2.7). In the 
dimensionless domain, the three parameters are reduced to just one 
parameter, defined as the Peclet number Pe in Equation (2.8), which 
represents the ratio of the importance of advection to dispersion 
processes in the column. 

 𝑡∗ =
𝐷𝑡
𝐿! 		 

(2.5) 

 𝑥∗ =
𝑥
𝐿 (2.6)  

 𝐶∗ =
𝐶
𝐶"

 (2.7)  

 𝑃𝑒 =
𝑈𝐿
𝐷  (2.8)  

Journal of Computational Science Education Volume 14, Issue 1

July 2023 9



The governing equation, initial condition, and boundary conditions 
become Equations (2.9)-(2.12), after normalization. 

𝑑𝐶∗

𝑑𝑡∗ =
𝑑!𝐶∗

𝑑𝑥∗!
− 𝑃𝑒

𝑑𝐶∗

𝑑𝑥∗
(2.9) 

𝐶∗(𝑥∗, 	𝑡∗ = 0) = 0 (2.10) 

𝐶∗(𝑥∗ = 0, 	𝑡∗) −
1
𝑃𝑒
𝑑𝐶∗(𝑥∗ = 0, 	𝑡∗)

𝑑𝑥∗ = 1 
(2.11) 

𝑑𝐶∗(𝑥∗ = 1, 𝑡∗)
𝑑𝑥∗ = 0 (2.12) 

2.2.2  Analytical Solution to the Model 
The dimensionless governing equation and auxiliary conditions 
(Equations (2.9)-(2.12)) are a boundary value problem that can be 
solved using separation of variables [18]. The USGS summarizes 
four analytical solutions for the 1-dimensional advection-dispersion 
equation, including the model problem shown in Equation (2.13, 
which is referred to as a “Finite System with Third-Type Source 
Boundary Condition” in the report. Only one analytical solution is 
included in columntracer, but the others could be added easily in the 
future or developed for other student projects. Furthermore, 
analytical solutions to 2 and 3-dimensional problems in different 
situations are also available [23]. The values of 𝛽𝑖 are the 
eigenvalues of the boundary value problem, and the corresponding 
terms in the infinite series are the eigenfunctions [5]. The 
eigenvalues are determined by finding the roots of Equation (2.14), 
which is the characteristic equation of the boundary value problem. 

𝐶∗(𝑥∗, 	𝑡∗)

= 1 − 2𝑃𝑒 ∙ 𝑒$
%&
! '

∗(%&
"

) *∗+

∙ 5
𝛽, 6𝛽, cos(𝛽,𝑥∗) +

𝑃𝑒
2 sin(𝛽,𝑥∗)=

>𝛽,! +
𝑃𝑒!
4 + 𝑃𝑒@ >𝛽,! +

𝑃𝑒!
4 @

∙ 𝑒(-#"*∗
.

/01

(2.13) 

𝛽𝑐𝑜𝑡𝛽 −
𝛽!

𝑃𝑒 +
𝑃𝑒
4 = 0 

(2.14) 

A sufficient number of eigenvalues must be estimated to 
perform the summation in Equation (2.13). The characteristic 
equation (2.14) has no exact solution, unlike some other 
characteristic equations commonly encountered in diffusion 
boundary value problems. The eigenvalues for a given column 
system with parameters U, D, and C0 depend only on the Peclet 
number defined in Equation (2.8). The values for a given Pe can be 
determined by finding the roots of Equation (2.15). The function 
has a singularity at all integral multiples of 𝜋 based on trigonometric 
relationships shown in Equation (2.16) and (2.17). 

𝐹(𝑃𝑒, 𝛽) = 	𝛽𝑐𝑜𝑡𝛽 −
𝛽!

𝑃𝑒 +
𝑃𝑒
4

(2.15) 

𝑐𝑜𝑡𝛽 =
𝑐𝑜𝑠𝛽
𝑠𝑖𝑛𝛽

(2.16) 

𝑠𝑖𝑛𝛽 = 0	𝑎𝑡	𝛽 = 0, 𝜋, 2𝜋,… = 𝑛𝜋 (2.17) 

Between each singularity, the function has exactly one zero. 
Figure 2 shows the value of the function across the first ten 
singularities. It also shows the first few roots. In Figure 2, the value 
of the function, the singularities at every 𝑛𝜋, and the location of the 
first eigenvalue near 𝛽	= 1.54 can be seen. To use the model result, 
the first task is to identify the eigenvalue across each interval. 
Scientific Python (SciPy) has an optimization library with a variety 
of methods to determine the root of a function. For the model 

problem, Brent’s method [3] can be used to solve the characteristic 
equation. 

Figure 2. Characteristic Equation for Eigenvalues. 

Brent’s method (also sometimes called the van Wijngaarden-
Dekker-Brent method) is a root-finding algorithm which combines 
root bracketing, bisection, and inverse quadratic interpolation. It 
uses a Lagrange interpolating polynomial of degree 2. Brent [3] 
claims that this method always converges as long as the values of 
the function are computable within a given region containing a root. 
Given three points x1, x2, and x3, Brent’s method fits x as a 
quadratic function of y, then uses the interpolation formula 
described in Equation (2.18) [21]. 

𝑥 = 
[𝑦 − 𝑓(𝑥1)][𝑦 − 𝑓(𝑥!)]𝑥2

[𝑓(𝑥2) − 𝑓(𝑥1)][𝑓(𝑥2) − 𝑓(𝑥!)]
+ 

[𝑦 − 𝑓(𝑥!)][𝑦 − 𝑓(𝑥2)]𝑥1
[𝑓(𝑥1) − 𝑓(𝑥!)][𝑓(𝑥1) − 𝑓(𝑥2)]

+
[𝑦 − 𝑓(𝑥2)][𝑦 − 𝑓(𝑥1)]𝑥!

[𝑓(𝑥!) − 𝑓(𝑥2)][𝑓(𝑥!) − 𝑓(𝑥1)]
 

(2.18) 

Subsequent root estimation is obtained by setting y = 0, giving 

𝑥 = 𝑥! +
𝑃
𝑄

(2.19) 

where P and Q are: 

𝑃 = 𝑆[𝑇(𝑅 − 𝑇)(𝑥2 − 𝑥!) − (1
− 𝑅)(𝑥! − 𝑥1)]

(2.20) 

𝑄 = (𝑇 − 1)(𝑅 − 1)(𝑆 − 1) (2.21) 
with 

𝑅 ≡
𝑓(𝑥!)
𝑓(𝑥2)

 
(2.22) 

𝑆 ≡
𝑓(𝑥!)
𝑓(𝑥1)

 
(2.23) 

𝑇 ≡
𝑓(𝑥1)
𝑓(𝑥2)

 
(2.24) 

Following the determination of a suitable number of eigenvalues, 
the simulated concentration is computed at any point in the domain 
by summing the eigenvalues in Equation (2.13).  

2.2.3  Dispersion Coefficient Fitting 
One of the primary applications of Equation (2.13) is to determine 
the value of the dispersion coefficient in the media. The velocity 
and initial concentration can be measured relatively easily for a 

Volume 14, Issue 1 Journal of Computational Science Education

10 July 2023



given experiment. Determining the value of D requires an inverse 
parameter fitting, which typically requires running many 
simulations, assessing performance, and optimizing an objective 
function, such as minimizing error. A common approach for 
parameter estimation is to compare the model simulation with 
experimental results. Given a set of values for the effluent 
concentration at 𝑥	= L at various points in time, a series of values of 
the dispersion coefficient can be used to calculate the 
concentrations corresponding to specific data points of 
breakthrough curve.  

After the simulated concentrations corresponding to each data 
point are calculated, the mean squared error (MSE) between the 
simulated data and the experimental data can be determined. The 
MSE is calculated using Equation (2.25), where 𝐶3T  is the simulated 
concentration, 𝐶, is the measured concentration, n is the number of 
measurements. The goal of fitting process is to minimize the MSE. 

 
 

𝑀𝑆𝐸 =
1
𝑛5(𝐶3T − 𝐶,)!

/

,01

 
(2.25) 

Scientific Python (SciPy) offers several functions for 
minimization in its “optimize” module. Four different functions are 
available, depending on the nature of the application. The default 
function is fmin, which uses the downhill simplex algorithm, also 
known as the Nelder-Mead method [14]. The other options are 
fmin_powell, fmin_cg, and fmin_bfgs, which use Powell’s method 
[17], the nonlinear conjugate gradient algorithm [15], and the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [6], resp. 
The results of different functions were compared for performance 
as described in Section 3.3. One of the advantages of using Python 
is the ready availability of these tools for applications such as 
parameter fitting. Demonstrating these capabilities to students can 
help to close the gap and develop computational thinking skills for 
students with limited programming experience. 

After the dispersion coefficient is determined, the coefficient 
of determination, R2, can be calculated using Equation (2.26), where 
�̅�4  and �̅�5  represent the mean values of the model, 𝐶3T , and the 
observations, 𝐶,, resp. 
 

 
𝑅! =

(∑ (𝐶3T − 𝐶4̅) ∙ (𝐶, − �̅�5),0/
,01 )!

∑ (𝐶3T − 𝐶4̅)!,0/
,01 ∙ ∑ (𝐶, − �̅�5)!/

1
 (2.26) 

 

2.3 Software 
2.3.1  Description 
The model tools described in Section 2.2 have been compiled into 
a software library known as “columntracer.” The columntracer 
library is written completely in Python [19]. Python is an interpreted 
high-level open-source programming language, with a design 
philosophy that emphasizes code readability. Python’s user-friendly 
syntax and interpreted nature decrease the time requirements for 
new users (e.g., students in an environmental modeling course) to 
begin applying the software to problem solving. Python’s 
extensibility and interpreted nature allow new users to perform 
complex tasks by integrating various libraries, thereby saving time 
[12]. The key third-party modules used in columntracer are 
Numeric Python (NumPy) for generating and calculating arrays and 
matrixes [7], Scientific Python (SciPy) for optimizing and solving 
equations [20], and the Math Plotting Library (Matplotlib) for 
plotting and visualization [9]. 

The Jupyter Notebook is an open-source web application that 
allows user to create and share documents that contain live code, 
equations, visualizations, and narrative texts [11]. Jupyter Note-

books have been generated to illustrate the computation procedure 
outlined in Section 2, show applications of the columntracer classes 
that enable rapid development of new models, and provide 
documentation of the source code that is available on GitHub [4]. 
In the documentation, examples are demonstrated with both code 
and narrative texts. An example data set for fitting the dispersion 
coefficient is also available in the repository that comes with the 
module. The data set was taken from a study that compared the 
performance of different models that were fit to experimental 
concentrations in a one-dimensional column [24].  

The Binder project offers an easy place to share computing 
environment to everyone. It allows project creators to specify 
custom environments and share them with a single link [10]. With 
the link, users are able to get access to the project without 
downloading any required software or packages. On the 
columntracer GitHub page [4], Binder links are provided for 
interacting the Jupyter Notebooks, requiring only a web browser. 
With the help of Binder, it’s easy to demonstrate the functions of 
columntracer in classroom or other educational situations that 
Python environment is not immediately accessible.  

2.3.2  Walk-through  
Figure 3 shows a screenshot of the code for importing the 
columntracer package and performing a demo run with the default 
parameters.  

  
Figure 3. Example Code for Import and Demo Run  

Four methods are called during the demo run in the following 
sequence: (1) “characteristic_equation” that computes and plots the 
characteristic equation for a given Pe (3 in the demo), (2) 
“eigenvalues” that calculates the first n eigenvalues (1000	in	the	
demo),	 (3)	 “concentration_profile”	 that	 calculates	 the	
concentrations	 across	 the	 column	 at	 various	 times	 (0.00001, 
0.1, 0.5, 1, 2, 4, and 10 hours in the demo), and (4) 
“effluent_concentration” that calculates the concentration at the 
outlet of the column (0 to 12 hours in the demo). 

By setting the parameter “demo_plot” to True, the software 
generates plots of the characteristic equation for eigenvalues 
(Figure 2), the column concentration profiles (Figure 11), and the 
column breakthrough curve (Figure 12), which can also be obtained 
by the code in Figure 4, Figure 6, and, Figure 8, respectively. The 
parameter “demo_plot_save” determines whether to save the plots 
to a local file, and “savefig_dpi” specifies the image quality (200 
dots per inch, dpi).  

The parameter “savefig” in Figure 4, Figure 6, and, Figure 8 
controls the export of plots, and it is set to False by default. Setting 
savefig to True will save the plot to the working directory with a 
default file names of “characteristic_equation,” “concentration_	
profile,” and “breakthrough_curve,” respectively. Users can also 
assign a string to the parameter to name the image files. If users 

Journal of Computational Science Education Volume 14, Issue 1

July 2023 11



want an image with lower or higher quality, they can change the 
value of parameter “savefig_dpi.” 

 

 
Figure 4. Example Code to Compute the  

Characteristic Equation. 

  
Figure 5. Example Code for Calculating the Concentration  

at a Given Time and Position. 

Columntracer can calculate the concentration at any given time 
and location in the column as shown in Figure 5. The x values range 
from 0 to 1, which is similar to the parameter “position” in Figure 
6, indicating the location from the beginning to the end of the 
column. In Figure 5, the effluent concentration at 9 hours is 
calculated to be 98.23 mg/L. By calculating the concentration 
throughout the column at a given time, a concentration profile can 
be created as shown in Figure 6. 

   
Figure 6. Example Code for Calculating and  

Plotting Concentration Profiles. 

In Figure 6, concentration profiles are calculated for t = 
0.00001, 0.1, 0.5, 1, 2, 4, and 10 hours at different locations through 
the column, which are indicated by the variable “pos.” The 
parameter “positions” must be provided as a list of values ranging 
from 0 to 1, and each value represents the ratio of the distance in 

the column to the total length of the column. This method returns a 
list of concentration lists that can be printed by setting parameter 
“print_conc” to True. Each concentration list corresponds to a time 
in the parameter “times,” and each list has the same length as 
parameter “positions.” By using the concentration stored in variable 
“c_profile,” users can access the data and make plots using the 
Matplotlib package [9] as illustrated in Figure 7.  

For calculating and plotting a breakthrough curve such as the 
one shown in Figure 8, users must provide a time period for the 
solute transport, as well as the time interval, which determines how 
many data points are calculated. The parameter “time_start” is 0 by 
default, but can modified if a different starting time is desired. This 
method returns a list of concentrations that can be used for printing 
or plotting. Users can also choose to use automatic plotting by 
setting parameter “plot” to True, or create plots manually as shown 
in Figure 9. 

 
Figure 7. Example Code for Accessing Concentration  

Profile Data after Numerical Computation. 

For calculating and plotting a breakthrough curve such as the 
one shown in Figure 8, users must provide a time period for the 
solute transport, as well as the time interval, which determines how 
many data points are calculated. The parameter “time_start” is 0 by 
default, but can modified if a different starting time is desired. This 
method returns a list of concentrations that can be used for printing 
or plotting. Users can also choose to use automatic plotting by 
setting parameter “plot” to True, or create plots manually as shown 
in Figure 9. 

 
Figure 8. Example Code for Calculating the Effluent 
Concentration and Plotting the Breakthrough Curve. 

In Figure 10, a csv file containing time and effluent concen-
tration data is imported. The first 8 values in the file are also shown 
in the figure. The data are used to fit to a breakthrough curve, so 
that a dispersion coefficient can be determined. The data processing 

Volume 14, Issue 1 Journal of Computational Science Education

12 July 2023



in the figure is only for the example data set, which is a csv file with 
2 columns: one for time and the other for the corresponding 
concentrations. The csv file is available in the columntracer module 
folder or can be accessed on GitHub repository [4]. The initial 
concentration, solute velocity, length of the column, and the initial 
guess of the dispersion coefficient are required for the dispersion 
coefficient fitting. Four algorithms are available for minimization, 
which are described in Section 3.3. Setting the parameter 
“algorithm” to None applies the default algorithm: the Nelder-Mead 
method. 

 
Figure 9. Example Code for Accessing Effluent  

Concentration Data after Numerical Computation. 

 
Figure 10. Example Code for Fitting Data to Breakthrough 

Curve to Fit the Dispersion Coefficient. 

3 RESULTS 
Examples of several model applications are provided in Jupyter 
Notebooks that describe the code and show plots of the output for 
educational purposes. A general description of the model and a 
detailed set of examples scripts for columntracer are provided with 
the source repository [4]. Jupyter Notebooks are recommended for 
educational applications, but other Python environments can also be 

used, including the Command Prompt or the IPython console. 
Alternative text editors and integrated development environments 
(IDE) such as PyCharm and Spyder can also be used to work with 
the code, particularly since columntracer is provided as a library on 
the Python Package Index (PyPI) [26].  

3.1 Concentration Profiles 
After the eigenvalues for a given parameter set (Pe) have been 
determined, the concentration can be evaluated at any point in time 
and space with the same approach described in Section 2.2.2. Figure 
11 shows the evolution in the concentration profile over time 
throughout the column for the example case where initial 
concentration C0 = 100 mg/L, the column length L = 30 cm, the 
solute velocity U = 10 cm/hr, and the dispersion coefficient 
D = 100 cm2/hr. The number of eigenvalues used for the example 
was n = 1000. At the beginning of the simulation, the concentration 
is zero everywhere, as expected, while at the end, the concentration 
has equilibrated with the influent concentration throughout the 
column. Between these extremes, the concentration gradually 
increases throughout the column. 

 
Figure 11. Column Concentration Profiles for  

t = 0, 0.1, 0.5, 1.0, 2.0, 4.0, 10 hours. 

3.2 Breakthrough Curve 
The concentration at the outlet is of primary interest for tracer 
studies, since it can be compared to observed data. A high-
resolution time series of concentrations can easily be obtained by 
evaluating the function at the outlet (𝑥	= 𝐿), and the breakthrough 
curve is shown in Figure 12. The dotted line in blue indicates the 
breakthrough with D = 0, which is known as “plug flow,” since the 
fluid flow paths in this case are all the same causing flow in a “plug” 
motion.  

 
Figure 12. Column Breakthrough Curve. 

3.3 Dispersion Model Fitting 
Experimental data for a column were obtained from Xiong et al. 
[24] and are provided with the columntracer repository on GitHub 

Journal of Computational Science Education Volume 14, Issue 1

July 2023 13



[4]. The column length in the study was 650 cm, and the velocity 
was 34 cm/hr. The concentrations in this publication were non-
dimensionalized, meaning they represent the dimensionless C* (the 
ratio of the effluent to the influent concentration), so the values 
range between 0 and 1. By choosing the default minimization 
method from SciPy, fmin, which uses Nelder-Mead method, and 
with an initial guess of 175 cm2/hr, the fitted dispersion coefficient 
is 193.9 cm2/hr, with mean squared error (MSE) of 0.0888 and R2 
of 0.964. Figure 13 shows the raw data and the breakthrough curve 
based on fitted dispersion coefficient. In Xiong et al. [25], the 
coefficient was fitted to be 74 cm2/hr with root mean square error 
(RMSE) of 0.0313 and an R2 of 0.9935. The relatively higher MSE 
may be caused by the inaccuracy and low quantity of the 
experimental data obtained from the figure. Because porosity η was 
not considered in the software, the adjusted dispersion coefficient 
is calculated to be 77.56 cm2/hr using Equation (3.1), assuming 
η = 0.4, which is in good agreement with the value determined from 
the original analysis. 

𝐷678 = 𝜂𝐷 (3.1) 

Figure 13. Fitted Breakthrough Curve and 
Experimental Data. 

The other three minimization methods from SciPy were also 
tested. The results are listed in Table 2, which  compare the  time 
consumption to determine D for the different  algorithms.   For 
the sample dataset, both the Nelder-Mead method and  Powell’s 
method achieved satisfactory MSEs, whereas the MSEs for the 
nonlinear conjugate gradient algorithm and BFGS algorithm were 
less satisfactory.  Students  can easily try  different    algorithms to 
find  the  most  suitable  approach  for  their  own data  sets  in  an 
educational environment. 

Table 2. Fitted Dispersion Coefficient and MSE Using 
Different Minimization Algorithms. 

Function Algorithm 
D 

(cm2/hr) 

MSE 

(-) 

Time 

(s) 

fmin Nelder-Mead method 193.9 0.089 4.73 

fmin_powell Powell’s method 171.2 0.088 19.1 

fmin_cg Nonlinear conjugate gradient 
algorithm 175 0.18 7.7 

fmin_bfgs BFGS algorithm 175 0.19 9.6 

3.4 Verification, Validation, and Accreditation 
The USGS report provides an example (Sample Problem 2) in 
section titled “Finite System with Third-Type Source Boundary 
Condition” that includes detailed computational results shown in 

attachment 4 [23]. The input data from this sample problem were 
used for validation of the columntracer library. The input 
parameters include: the initial concentration C0 = 1 mg/L, the 
column length L = 12 inches (30.48 cm), the solute velocity U = 0.6 
inch/hr (1.524 cm/hr), and the dispersion coefficient D = 0.6 
inch2/hr (3.87096 cm2/hr). The concentration profiles are shown in 
Figure 14, in which the lines represent the simulated data by 
columntracer and markers represent the data provided in the USGS 
report. The detailed results are presented in U.S. Customary units 
in APPENDIX in the Appendix and show perfect consistency with 
the results in the report.  

Figure 14. Concentration Profiles for Sample Problem 2. 

The simulation results in Table 3 and the concentration profile 
plot are provided in the USGS report on pages 219 and 31, 
respectively. Both Figure 14 and Table 3 show a perfect repro-
duction of the results from the USGS program using the 
columntracer simulation. The time consumption is about 0.03 
seconds, which is over a hundred times faster than the FORTRAN 
program described in the report. A Jupyter Notebook is available 
showing these results in a folder called “validation” on GitHub 
repository for validation [4]. The results provide a comparison of 
the utility of the modern interactive Python notebook and a com-
piled and less user-friendly FORTRAN program from 30 years ago. 

The source code, data, and Jupyter Notebooks can be found on 
GitHub repository [4]. The columntracer library is downloadable 
from PyPI by using command “pip install columntracer” in 
Command Prompt. With the installation of columntracer and a 
clone of the repository, users are able to verify the algorithms of the 
program and use the Jupyter Notebooks to validate the results of the 
model that are provided in the repository. The source code was 
installed on new machines and used to validate the results shown in 
this article. The results are shown with both MSE and R2 to ensure 
that the model correctly predict the transport process. With the help 
of the Binder link provided in the source repository, the Jupyter 
Notebooks can be run through a server online without installing any 
software locally. The examples provided throughout this exercise, 
and additional examples that were run using different parameter 
values all validate the model. The expected behavior that is 
observed in physical experiments is reproduced from the model 
results. 

The information in this article is useful for both undergraduate 
and graduate students in environment-related majors, teachers who 
teach courses involving fluid transport in porous media, and 
researchers who perform column experiments. The information 
provided can help students both be trained with Python 
programming ability and learn modeling of fate and transport of 
dissolved constituents. 

4 CONCLUSION 
Column experiments are useful for studying fate and transport of 
solutes through porous media. A new open-source software tool, 

Volume 14, Issue 1 Journal of Computational Science Education

14 July 2023



columntracer, has been developed to help user better understand the 
column experiment. The software provides solutions to advection-
dispersion equation as well as the visualization of the solutions, 
which includes plotting the characteristic equation, concentration 
profiles, and the effluent breakthrough curve. The software can also 
be used to fit the dispersion coefficient using experimental effluent 
data by minimizing the mean-squared error. The columntracer 
library can be a useful tool for research, but it is also appropriate for 
educational purposes. Students in environmental modeling courses 
could use the software to learn about solute transport, Python 
scripting, NumPy, SciPy, Matplotlib, and Jupyter Notebook by 
using the software and the supplementary Notebooks. The code and 
Notebooks are open-source and freely available online [4].  

5 REFLECTION 
By completing the project, I managed to learn how to define and 
modify a Python class by manipulating attributes and functions, as 
well as by implementing third-party libraries including NumPy, 
SciPy, Matplotlib, Jupyter, and Binder. In addition to programming 
skills, I became acquainted with the advection-dispersion model, 
and its analytical solution solved by separation of variables. I also 
learned how to perform parameter fitting using optimization within 
the Python environment. During the acquirement of these skills, 
there were several challenges that I faced. Debugging was one of 
the hardest, because sometimes a typo could result in a break-down 
or an unexpected outcome. Finding an appropriate method for the 
parameter fitting was also challenging, because there were 
numerous approaches available. On the whole, the project improved 
both my programming ability and specialized knowledge in my 
major, and would help me in future projects such as programming 
for wastewater process optimization and machine learning in 
Python. For these reasons, I consider the project an overall success. 
  

REFERENCES 
[1] Munshoor Ahmed, Qurat Ul Ain Zainab, and Shamsul 

Qamar. 2017. Analysis of One-Dimensional Advection–
Diffusion Model with Variable Coefficients Describing 
Solute Transport in a Porous medium. Transp Porous Med 
118, 3 (July 2017), 327–344. 
DOI:https://doi.org/10.1007/s11242-017-0833-0 

[2] Stefan Banzhaf and Klaus Hebig. 2016. Use of column 
experiments to investigate the fate of organic micropollutants 
- A review. Hydrology and Earth System Sciences 20, 
(September 2016), 3719–3737. 
DOI:https://doi.org/10.5194/hess-20-3719-2016 

[3] Richard P. Brent. 2013. Algorithms for Minimization Without 
Derivatives. Courier Corporation. 

[4] BYL4746. 2021. BYL4746/columntracer. Retrieved July 7, 
2021 from https://github.com/BYL4746/columntracer 

[5] R. Courant and D. Hilbert. 1989. Methods of Mathematical 
Physics (1st ed.). Wiley, New York, New York. 
DOI:https://doi.org/10.1002/9783527617210 

[6] Roger Fletcher. 1987. Practical Methods of Optimization. 
Wiley, New York, New York. Retrieved June 29, 2021 from 
http://archive.org/details/ practicalmethods0000flet 

[7] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, 
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric 
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, 
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van 
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández 
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, 

Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 
2020. Array programming with NumPy. Nature 585, 7825 
(September 2020), 357–362. 
DOI:https://doi.org/10.1038/s41586-020-2649-2 

[8] Åse Høisæter, Anja Pfaff, and Gijs D. Breedveld. 2019. 
Leaching and transport of PFAS from aqueous film-forming 
foam (AFFF) in the unsaturated soil at a firefighting training 
facility under cold climatic conditions. Journal of 
Contaminant Hydrology 222, (April 2019), 112–122. DOI: 
https://doi.org/10.1016/j.jconhyd.2019.02.010 

[9] John D. Hunter. 2007. Matplotlib: A 2D Graphics 
Environment. Computing in Science Engineering 9, 3 (May 
2007), 90–95. DOI: https://doi.org/10.1109/MCSE.2007.55 

[10] Project Jupyter, Matthias Bussonnier, Jessica Forde, Jeremy 
Freeman, Brian Granger, Tim Head, Chris Holdgraf, Kyle 
Kelley, Gladys Nalvarte, Andrew Osheroff, M. Pacer, Yuvi 
Panda, Fernando Perez, Benjamin Ragan-Kelley, and Carol 
Willing. 2018. Binder 2.0 - Reproducible, interactive, 
sharable environments for science at scale. In Proceedings of 
the 17th Python in Science Conference (2018), July 9-15, 
2018, Austin, Texas, 113–120. 
DOI:https://doi.org/10.25080/Majora-4af1f417-011 

[11] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Prez, 
Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle 
Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul 
Ivanov, Damian Avila, Safia Abdalla, Carol Willing, and 
Jupyter Development Team. 2016. Jupyter Notebooks – a 
publishing format for reproducible computational workflows. 
Positioning and Power in Academic Publishing: Players, 
Agents and Agendas (2016), 87–90. 
DOI:https://doi.org/10.3233/978-1-61499-649-1-87 

[12] David Lampert. 2020. An introduction to Python 
programming for environmental professionals. EM: Air and 
Waste Management Association’s Magazine for 
Environmental Managers 2020, (February 2020), 11–14. 

[13] Erica R. McKenzie, Robert L. Siegrist, John E. McCray, and 
Christopher P. Higgins. 2015. Effects of chemical oxidants 
on perfluoroalkyl acid transport in one-dimensional porous 
media columns. Environ. Sci. Technol. 49, 3 (February 2015), 
1681–1689. DOI:https://doi.org/10.1021/es503676p 

[14] J. A. Nelder and R. Mead. 1965. A simplex method for 
function minimization. The Computer Journal 7, 4 (January 
1965), 308–313. DOI:https://doi.org/10.1093/comjnl/7.4.308 

[15] Jorge Nocedal and Stephen J. Wright. 2006. Numerical 
Optimization (2nd ed ed.). Springer, New York. 

[16] N. Perujo, X. Sanchez-Vila, L. Proia, and A.M. Romaní. 
2017. Interaction between physical heterogeneity and 
microbial processes in subsurface sediments: A laboratory-
scale column experiment. Environ. Sci. Technol. 51, 11 (June 
2017), 6110–6119. 
DOI:https://doi.org/10.1021/acs.est.6b06506 

[17] M. J. D. Powell. 1964. An efficient method for finding the 
minimum of a function of several variables without 
calculating derivatives. The Computer Journal 7, 2 (January 
1964), 155–162. DOI:https://doi.org/10.1093/comjnl/7.2.155 

[18] Bernd S. W. Schröder. 2007. Mathematical Analysis: A 
Concise Introduction. John Wiley & Sons, Inc., Hoboken, 
NJ. DOI:https://doi.org/10.1002/9780470226773 

Journal of Computational Science Education Volume 14, Issue 1

July 2023 15



[19] Guido Van Rossum. 2007. Python programming language. 
The Guru is in session, at USENIX Annual Technical 
Conference, Santa Clara, CA. 

[20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt 
Haberland, Tyler Reddy, David Cournapeau, Evgeni 
Burovski, Pearu Peterson, Warren Weckesser, Jonathan 
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua 
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. 
Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, 
İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, 
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian 
Henriksen, E. A. Quintero, Charles R. Harris, Anne M. 
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, and Paul 
van Mulbregt. 2020. SciPy 1.0: fundamental algorithms for 
scientific computing in Python. Nat Methods 17, 3 (March 
2020), 261–272. DOI:https://doi.org/10.1038/s41592-019-
0686-2 

[21] Eric W. Weisstein. Brent’s Method. From MathWorld--A 
Wolfram Web Resource. Retrieved June 14, 2021 from 
https://mathworld.wolfram.com/BrentsMethod.html 

[22] Paul Westerhoff, David Highfield, Mohammad 
Badruzzaman, and Yeomin Yoon. 2005. Rapid small-scale 
column tests for arsenate removal in iron oxide packed bed 
columns. J. Environ. Eng. 131, 2 (February 2005), 262–271. 
DOI:https://doi.org/10.1061/(ASCE)0733-
9372(2005)131:2(262) 

[23] Eliezer J. Wexler. 1992. Analytical Solutions for One-, Two-, 
and Three-dimensional Solute Transport in Ground-water 
Systems with Uniform Flow. U.S. Government Printing 
Office. Retrieved from 
https://pubs.usgs.gov/of/1989/0056/report.pdf 

[24] Yunwu Xiong, Guanhua Huang, and Quanzhong Huang. 
2006. Modeling solute transport in one-dimensional 
homogeneous and heterogeneous soil columns with 
continuous time random walk. Journal of Contaminant 
Hydrology 86, 3 (August 2006), 163–175. 
DOI:https://doi.org/10.1016/j.jconhyd.2006.03.001 

[25] 1995. Continuous flow systems. Distribution of residence 
times. Chemical Engineering Science 50, 24 (December 
1995), 3857–3866. DOI:https://doi.org/10.1016/0009-
2509(96)81811-2 

[26] PyPI · The Python Package Index. PyPI. Retrieved July 7, 
2021 from https://pypi.org/ 

APPENDIX 

Table 3. Solute Concentration as a Function of Time for 
Sample Problem 2 

Position 
in 

Column 
(inch) 

Time (hr) 

2.5 5.0 10.0 15.0 20.0 

 Solute Concentration (mg/L) 
0.0 0.79858 0.90992 0.97530 0.99197 0.99716 

0.5 0.68921 0.85904 0.96098 0.98727 0.99549 

1.0 0.56799 0.79673 0.94230 0.98097 0.99322 

1.5 0.44466 0.72419 0.91871 0.97276 0.99021 
2.0 0.32919 0.64364 0.88977 0.96231 0.98629 
2.5 0.22958 0.55821 0.85524 0.94926 0.98128 
3.0 0.15033 0.47151 0.81509 0.93331 0.97499 
3.5 0.09217 0.38726 0.76955 0.91415 0.96720 
4.0 0.05280 0.30880 0.71911 0.89156 0.95771 
4.5 0.02820 0.23875 0.66455 0.86537 0.94630 
5.0 0.01402 0.17878 0.60686 0.83551 0.93276 

5.5 0.00648 0.12953 0.54722 0.80201 0.91692 

6.0 0.00278 0.09072 0.48691 0.76503 0.89862 

6.5 0.00111 0.06137 0.42724 0.72482 0.87775 

7.0 0.00041 0.04008 0.36949 0.68179 0.85425 

7.5 0.00014 0.02525 0.31477 0.63644 0.82814 

8.0 0.00004 0.01534 0.26404 0.58940 0.79952 

8.5 0.00001 0.00898 0.21800 0.54138 0.76864 

9.0 0.00000 0.00507 0.17710 0.49322 0.73590 

9.5 0.00000 0.00275 0.14160 0.44591 0.70194 

10.0 0.00000 0.00144 0.11154 0.40065 0.66775 

10.5 0.00000 0.00072 0.08691 0.35904 0.63487 
11.0 0.00000 0.00035 0.06782 0.32340 0.60563 
11.5 0.00000 0.00018 0.05487 0.29733 0.58368 
12.0 0.00000 0.00012 0.04982 0.28674 0.57463 

 

Volume 14, Issue 1 Journal of Computational Science Education

16 July 2023




