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FOREWORD 
This issue combines two regular submissions to the journal with 

refereed articles from several conference workshops in 2021. Our 

thanks to the guest editor Nitin Sukhija from Slippery Rock 

University of Pennsylvania, for managing the submission and 

review of the conference papers from HETET'21 at ISC 21, 

SEHET21 at PEARC21 and BPHTE21 at SC21. 

Alm and Bailey provide a summary of a summer research 

experience for a diverse cross-section of students aimed at 

developing scientific research skills. Students completed a pre-

workshop tutorial and then participated in a ten-week research 

project. The results show that overall students showed both 

improved skills and positive scientific career aspirations. 

The student paper by Toth et al. summarizes a project where 

students created a heat map application aimed at visualizing 

bioinformatic data. Students learned a number of programming 

techniques and gained in project management and collaboration 

skills. 

The first of the workshop papers by Fortin and O’Cais describe 

the Magic Castle project to create virtual HPC infrastructure 

environments for education and training. The article describes the 

underlying architecture and its application to several training 

programs. 

In their article, He and Hartman-Baker provide an overview of the 

best practices used at the National Energy Research 

Supercomputing Center for virtual training through the COVID-

19 pandemic. They utilized ten strategies in an effort to provide 

continued, high quality training opportunities for their users. 

Cahill et al. describe a collaborative project Computational and 

Data Science Curriculum Exchange (C2Exchange) to address the 

challenges associated with sustained access to computational and 

data science courses in institutions with high percentage 

enrollment of students from populations currently under-

represented in STEM disciplines. Seven institutions are piloting a 

program where basic courses in computational and data science 

are shared across institutions, expanding the opportunities for both 

students and faculty to integrate those topics into their curricula. 

A computing course tailored to the needs of economics majors at 

Texas A&M University is the subject of the article by Lawrence 

et al. The course uses a web interface to introduce a number of 

programming concepts using Python. Exercises are oriented to 

topics in economics broadening the knowledge of those students 

in cyberinfrastructure topics. 

Sherman et al. describe the work of the Northeast Cyberteam 

program that addresses the cyberinfrastructure needs for 

researchers at medium- and small-sized institutions in four 

northeastern states. Researchers propose projects where their 

computational and data needs have surpassed the capabilities of 

their laptops. A team using student facilitators and volunteer 

mentors work with the project for up to six months to help achieve 

the research objectives. 

He et al. have created four “tech-labs” that introduce researchers 

to interactive computing environments applied to artificial 

intelligence and machine learning. Two labs introduce the tools 

and environment. This is followed by hands-on labs on data 

exploration and machine learning. 

Finally, Lawrence et al. describe the use of a graphical user 

interface to facilitate adoption and use of HPC resources at Texas 

A&M University. Using Open OnDemand they have created a 

system which allows the use of Jupyter notebooks and interactive, 

containerized environments for instruction and research. 
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ABSTRACT
The computer science research workforce is characterized by a
lack of demographic diversity. To address this, we designed and
evaluated an end-to-end mentored undergraduate research inter-
vention to nurture diverse cohorts’ skills for research and develop
their vision of themselves as scientists. We hypothesized that this
intervention would (a) grow scientific skills, (b) increase science
identity, and (c) stimulate students to view scientific careers in
computer science as future viable options. The evaluation of the
hypotheses addressed the limitations in self-evaluation with a mul-
ticomponent evaluation framework, comprising five forms of evi-
dence from faculty and students, engaging on team projects, with
cohorts additionally participating in professional development pro-
gramming. Results indicated that students gained in scientific skills
and broadened their identity as scientists and, to some degree,
strengthened their outlook on research careers. The introduced
structured intervention and evaluation framework were part of a
US National Science Foundation Research Experiences for Under-
graduates (REU) computing-focused summer program at Rochester
Institute of Technology and are applicable in other scientific disci-
plines and institutional settings.

KEYWORDS
Undergraduate computing research; Scientific skills, identity, and
career aspirations; Diversity in research

1 INTRODUCTION
Despite being well-documented and extensively debated, underrep-
resentation among women, AALANA (African American, Latino/a
American, Native American), and persons with disabilities in com-
puter science continues to persist, according to US national statis-
tics compiled by the National Science Foundation and the National
Center for Science and Engineering Statistics [39]. The level of un-
derrepresentation among these groups is striking in PhD education
where the focus is on training graduates to pursue careers as scien-
tists in academia, industry, and government. Table 1 highlights the
disparity between the pre-pandemic 2018 US general population
estimates, obtained from the the United States Census Bureau [51],
and the percentage of doctoral degrees awarded at US public and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2022 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/13/1/1

private Computer Science departments reported by the Comput-
ing Research Association [14]. While we report on proportions
from 2018 to emphasize that the information was not related to the
pandemic, data from 2020 show similar trends. Moreover, while
proportions may differ somewhat across data sources, evidence
clearly points to a lack of diversity among computer science re-
searchers. Furthermore, data analyzed by the Equity in Graduate
Education Resource Center indicates that the proportion of women
PhD graduates is lower in computer science compared to other sci-
ence and engineering disciplines, with even more inequities when
considering race and gender together [18].

Responding to the need for increasing diversity and inclusion in
the computer science research workforce, we study the impact—for
diverse student cohorts—of participating in an end-to-end under-
graduate research training program. The theme of the program
focused intellectually on sensing humans computationally, using
hardware and software. We hypothesize that early research experi-
ences in computing for diverse cohorts will:

(a) grow scientific skills,
(b) increase science identity, and
(c) stimulate students to view scientific careers in computer

science as future viable options.

By scientific skills, we focus on research skills and knowledge for
computer science, thus involving broader scientific skills such as
teamwork and science dissemination, and also disciplinary-specific
abilities such as computer programming and human subjects re-
search competence in addition to core research process skills such
as formulating research questions, finding relevant research liter-
ature, and articulating the limitations of different methodological
approaches. As discussed by Kim and Sinatra [29], science identity
is a complex socio-cultural construct, intertwined with self/other
recognition as being a researcher and important for retaining peo-
ple in research, following Carlone and Johnson [9]. We focus here
on the perception of belonging, and development into belonging,
to the community of practice of computer science research. We
also attend to the goal and visions for future scientific careers in
computer science by examining aspirations for graduate school and
progression toward careers as scientists. As detailed below, to exam-
ine the above hypotheses, we utilize multi-component evaluation,
using data from three years of demographically diverse undergrad-
uate student cohorts and mentors who participated in the early
mentored research intervention.

1.1 Early Mentored Scientific Experiences in
STEM

It is widely acknowledged that undergraduate research experiences
bring positive benefits. Hammack et al., who link mentoring to
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Table 1: Comparing population estimates from the 2018 US Census Bureau against the 2018 Taulbee Survey’s information on
awarded Computer Science doctoral degrees points to a striking underrepresentation of women and AALANA among com-
puter scientists with terminal research degrees. This reaffirms the need for opening up research careers among underrepre-
sented groups early with effective undergraduate research training programs that are evaluated holistically by considering
multiple evidence and not just self-assessment.

Demographic Population estimate CS PhDs awarded
American Indian or Alaska Native 1.3% 0.1%

Black or African-American 13.4% 1.4%
Hispanic 18.3% 1.8%
Women 50.8% 19.3%

Persons with a disability 8.7% Not reported

“coaching and apprenticeship” (p. 10), note that mentoring provides
multiple positive outcomes for the undergraduate student receiving
the mentee experience and cognitive development directly through
research [25]. Additionally, analysis from biological/life sciences
undergraduate research reveal that mentoring guidance influences
students’ perceptions of their own research competencies, as ob-
served by Byars-Winston et al. [7]. Wright reported on responses
to a survey of almost 800 students by the Computing Research
Association’s Center for Evaluating the Research Pipeline [56]. The
results indicated that the proportion of computing students who ap-
plied to graduate school approximately doubled if undergraduates
experienced research formally and also roughly doubled decisions
to enroll in PhD studies. The National Academies of Sciences, En-
gineering, and Medicine summarized several considerations and
findings about mentoring in undergraduate research in STEM fields
such as the many types of mentors there can be, the many guises
that mentors can adopt and skill development they can support, the
results there can be for faculty and students, existing mentoring-
related measurements, as well as the data linking mentoring and
academic achievements [37]. Johann and Turbak highlighted the
growth provided through a research experience [28] as it “enables
undergraduates to make the transition from course-directed con-
sumption of scientific knowledge to participation in the production
of knowledge” (p. 280). They reported on a computer science un-
dergraduate research program involving principles of “open-ended
closed-endedness” (p. 285)–providing clear objectives for research
while ensuring intellectual room for new discoveries–and “struc-
tured flexibility” (p. 286)–offering students clear guidance and in-
tellectual freedom concurrently. Similarly, Skorinko emphasized
the importance of research for stimulating students, and to engage
diverse students, through scholarly experiences at an early stage
of their undergraduate careers [46]. Cohoon et al. noted that more
undergraduates benefiting from mentoring in research indicated
higher likelihood to attend graduate school at highly regarded insti-
tutions [12]. In addition, Baker et al. summarized reported benefits
to mentors of undergraduate researchers, and observed a positive
link between faculty who mentored undergraduate researchers and
faculty professional productivity such as being active in publishing
research, in pursuing funded research, and in engaging in confer-
ences [3]. Hall et al. observed the importance of mentors’ and their
institutional environments’ recognition of such benefits [24]. In
addition, Alvarado et al. reported on findings from analyzing sopho-
more (second-year) university students who majored in computer

science or a related field while participating in a program struc-
tured around groups; when comparing to groups of control peers,
outcomes pointed to benefits for participant students in terms of
grade point average; and there were potential benefits in terms
of being confident and growth of research interest [2]. The study
presented here recognizes the centrality of mentoring and mentee-
mentor interaction in early research experiences, operationalized
by integrating both the perspective of students and faculty mentors
for examining our hypotheses.

1.2 Diverse Students’ Science Identity and
Early Scientific Experiences

Prior STEM education literature recognizes mentored research ex-
periences as a mechanism toward broadening participation. Barker
noted that students who engage in research as undergraduates are
more likely to pursue graduate degrees [5], and Estrada et al. em-
phasized that it aided students to stay in STEM [19]. Tamer and
Stout conducted an analysis with women and men from under-
represented groups and arrived at four factors impacting study
participants’ intention to pursue academic professorial careers [48].
These included research project collaboration, learning about the
graduate student experience and how to apply to graduate school,
and gaining insight into how computer science research careers
can impact society. Additionally, Tamer and Stout [48] observed
that “[b]y promoting interest in the professorate among URMW
[defined as “underrepresented men as well as women”] undergradu-
ate students, REUs [research experiences for undergraduates] have
the capacity to diversify the types of role models that future gen-
erations of women, and men from racial minority groups interact
with and aspire to become” (p. 118).

Still, there is much room for improvement and growth of such
formative training opportunities, and especially for new empirical
study of outcomes from computer science undergraduate research
training. Indeed, just two decades ago Johann and Turbak pointed
out that computer science lacks the strong tradition of undergradu-
ate research which exists in other science disciplines or in engineer-
ing fields [28]. Kim et al. observed that while most of their surveyed
undergraduate research programs specifically targeted women, and
also mostly successfully recruited a majority of women participants,
the men in these programs still felt more confident in their abilities
and accomplishments for moving forward in STEM disciplines post-
program despite similar performance of the women students [30].
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Results produced by Estrada at al. suggested that identifying as
a scientist was highly important for downstream making STEM
one’s career, as opposed to other professions [19]. They noted that
“higher education institutions that provide authentic experiences of
belonging and inclusion, which are components of science identity,
may be more likely to increase their URM [defined as “historically
underrepresented minorities”] retention rates” (p. 11).

Follmer et al. noted that, compared to undergraduate research
experiences organized by institutions, nationally-spanning pro-
grams were more diverse and also able to accommodate individuals
without opportunities to engage in research experiences at their
respective institutions [20]. The US National Science Foundation
offers a program that enables Research Experiences for Undergrad-
uates Sites (cohort-based seasonal programs), recognizing these
programs as “an important means for extending high-quality re-
search environments and mentoring to diverse groups of students”
and it also aims to reach students “from academic institutions where
research programs in STEM are limited” [38]. In general, for inclu-
sivementoring a diverse mentoring team is important. This includes
the involvement of female role models as noted by Doerschuk [16].
Shamir noted the importance of “a broad range of interdisciplinary
research topics that can engage and motivate students” (p. 15) [44].
Interdisciplinary projects can help peak computer science under-
graduate students’ interests. In particular, the program discussed
focused on computational sensing research projects linked to moti-
vating applications in impactful societal domains such as education,
wellness, smart living, and leisure.

1.3 Science Skills and Identity Development in
Mentored Experiences

The notion of “cognitive apprenticeships” discussed by Griese et
al. [22] and earlier by Collins et al. [13] provided a theoretical lens
in this study for examining growth of science skills and science iden-
tity in mentored research experiences in computing, and aspirations
for pursuing scientific careers. Marra and Pangborn emphasized
the value of apprenticeship for engineering skills [34], and Charney
et al. reported on how elements of cognitive apprenticeship were
adapted in high school-level research-infused experiences involving
science, resulting in knowledge gains [10]. The present study con-
nected mentoring to apprenticeship/coaching experiences in com-
puter science research. Childress et al. highlighted the distinction
between supervising and mentoring–while providing supervision
and support for daily scientific activities is important, mentoring
extends beyond supervision into supporting students to enter into
and become familiar with the research community and envision
themselves as a researcher, which may nurture interests to choose a
research career path [11]. Additionally, the Social Cognitive Career
Theory (SCCT), introduced by Lent et al. [32], relates to Bandura’s
self-efficacy concept [4] (in the context of the present study: confi-
dence in one’s competency to pursue a research career path). It can
provide a basis for examining student attitudes about educational
career choices as computer scientists as exemplified by Alshahrani
et al.’s work [1]. Thiry et al., discussing socio-cultural theoreti-
cal perspectives, further remarked that development is influenced
by participating in a community where activities are experienced
and reflected upon directly [49]. Highlighting the benefits of team

science, Johann and Turbak argued that structuring computer sci-
ence undergraduate research as a collaboration endeavor nurtured
students persevering in research activities beyond a time-limited
program [28]. Holcomb et al. also observed a need for exposing
students to collaboration in a brief programming-focused summer
school [26]. Similarly, Sturner et al. noted the value of nurturing
teamwork competency in research [47]. These theoretical foci and
observations framed the present study.

1.4 Evaluating Science Skills and Science
Identity

Shanahan et al. [45] observed that much prior work had been based
on self-reporting, covering either perceptions of students, whose
ratings of own skills may not correspond well to actual research
training achievements, which have been shown to be better de-
termined by faculty, as discussed by Griese et al. [22], or faculty
perceptions of undergraduate mentoring. For example, Baker et
al. explored faculty perceptions of enabling or limiting factors for
undergraduate research mentoring based on focus group data [3].
Thiry et al. [49] noted that self-reporting might be particularly ben-
eficial for understanding advancement in “confidence or interest
in a subject” (p. 382), yet it is not the only way to measure edu-
cational gains. Instead, as discussed by Linn et al., evaluation of
experiential research training will benefit from a comprehensive,
holistic approach that relies on multiple, complimentary forms of
evidence [33]. In addition, Griese et al. emphasized the importance
of considering both roles—mentor and protégé—when studying
mentoring in academic contexts [22].

The design and use of a holistic evaluation framework is one
of the differentiators that sets the present work apart from prior
studies on programs for undergraduate research training, in com-
bination with its assessment of development of scientific skills,
identity, and the exploration of seeing oneself as becoming part of
a community of research practice in computer science. In contrast,
for example Miller et al. focused on student self-report data [36]. We
also go beyond the evaluation by Jelen et al. which included student
self-report measurements (surveys, interviews), briefly summarized
answers to a mentor survey that highlighted time commitments
(time spent on mentoring undergraduates, coaching graduate men-
tors, and perception on usefulness of time investment), and indi-
vidual “stakeholder insights” (p. 993) narratives [27]. Moreover,
this work differs through its examination of an end-to-end early
research experience intervention with integrated professional de-
velopment activities. Considering five forms of evidence, this study
assessed the development of research identities, skills, and aspi-
rations for future participation in the computer science research
community.

2 MATERIALS AND METHODS
Our mentored undergraduate research intervention and evaluation
framework were deployed as part of a US National Science Foun-
dation Research Experiences for Undergraduates summer research
program at Rochester Institute of Technology. The intellectual re-
search theme was focused on computational sensing of humans
and the program recruited ten undergraduate students annually
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from across the United States for a 10-week summer research ex-
perience. In addition to engaging in team-based research projects,
participating students were also exposed to a suite of programmatic
activities designed to grow scientific and career skills and stimulate
their view of scientific careers as viable options.

2.1 Participants
Across three cohort years, there were 30 students in total from
diverse demographic backgrounds, outlined in Figure 1. In addition,
students came from 26 distinct institutions, with most character-
ized by limited opportunities for computer science research. While
attempts were made to engage students from across the USA, more
came from the US Northeast given its concentration of universities
and colleges. The students participated in 15 team-based computer
science research projects, with gender-balanced pairs of students
being mentored per project. Of 15 faculty mentors who guided
the research experiences, 40% participated all three years and one
third in one year. A third of faculty were women. The mentors
represented varying ethnic and national backgrounds.

2.2 Early Research Experience Intervention
For ten summer weeks, students experienced engaging in scien-
tific practices. The research projects centered on sensing and ana-
lyzing human behaviors and cognitive processes using computer
science. Additionally, a preparatory pre phase (e.g., completion
of human subjects research certification and an introductory pro-
gramming course) and a dissemination-focused post phase (with
remote meetings with mentors) extended the 10-week experience.
The approximate annual timetable of the early research experience

in which students participated is in Figure 2. Prior work on under-
graduate research training has also highlighted the importance of
thoughtful, year-long logistical pre-program planning [55]. Our in-
tellectual theme focused on basic research in the acquisition, fusion,
and analysis of multimodal human sensing data. The ten weeks
had a two-fold structure: (1) students conducted a team science
research project with mentors and (2) they also participated in pro-
fessional development activities as a cohort (see overview in the
Appendix and Figure 3) centered on research and graduate school
competencies and knowledge.

Research projects were structured as scaffolded team-science
experiences spanning experimental design, data acquisition, analy-
sis and inference with collected data including data visualization,
and dissemination with deliverable milestones. Projects provided
experience with human subjects experiments including collection
and analysis of multimodal human-elicited data, and students par-
ticipated in the Institutional Review Board (IRB) ethics review appli-
cation process. The team science structure adopted in the training
program involved regular student-student and student-faculty in-
teractions.

Johann and Turbak highlighted the challenge of conducting a
research project in a short time span such as just ten weeks [28]. To
mitigate this issue, the pre-program phase engaged students with
preparatory research activities — online human-subjects training
and an online computer programming course. Faculty mentor teams
also assigned project-relevant pre-readings to bring students up
to speed on key relevant research before the program started. The
pre-program activities required a reasonable time commitment,
recognizing that students were also concluding their regular se-
mester activities. The time-progression of the ten-week in-program

Figure 1: Student demographics. Other participants refer to additional undergraduates who participated in mentoring, re-
search, and program activities but not in the evaluation. Comparison averages (*) are aggregates for nationwide undergraduate
research training programs from Raicu et al. [41]. Green and bold: Met/exceeded the average 3-year targets set by the program
organizers.
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Figure 2: Timetable of annual program logistics. The upper half conveys the student perspective and the lower half organiza-
tional logistics. Program details (green interval) are expanded in Figure 4 for the 10-week program.

Figure 3: Professional development activities. A: Workshops with active learning-by-doing. B: Panel discussing grant writing
for graduate schoolwith students. C: Public STEMoutreach event. D: Coordinated interdisciplinary symposiumabout graduate
school and research. E: Post-program video follow-up. Faces have been blurred for anonymity.

experience is depicted in Figure 4. The leftmost column outlines
progression in the research process. A post-program phase contin-
ued team interaction for external dissemination as well as cohort
follow-up with video gatherings and support in the graduate school
application process. Students were also encouraged to seek out
new research experiences either at their home institutions after
the program ended or at other universities. This was motivated
by a finding by Estrada et al. [19] using a statistical model that
two semesters in undergraduate research “uniquely predict overall
science self-efficacy, identity, and values” (p. 10).

Based on a review of numerous publications, Walkington et al.
converged on ten beneficial strategies when mentoring undergrad-
uate researchers [52]. Almost all were operationalized structurally
in the intervention. For example, we planned ahead for the research
process in the pre-program phase; made expectations clear for antic-
ipated outcomes during orientation; provided a challenging as well
as emotionally supporting environment; promoted team-building

with field trips and joint meals; encouraged gradually increased
research independence; enabled networking opportunities in coor-
dinated events and formally discussed disciplinary practices in a
journal club and non-credit course; and provided support in schol-
arly dissemination post-program.

2.3 Multicomponent Evaluation
Inspired by the STEM and computer science mentoring and early
research training literature, the evaluation framework integrated
both subjective self-reported and objective program-level measures.
We considered five forms of evidence (E1–E5) described below.
Participating students and mentors consented to completing assess-
ments, and this work was IRB-approved. We focus on measures of
proportions and central tendency as well as qualitative responses;
Linn et al. noted that experiential reflection was beneficial in un-
dergraduate research experiences [33].
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Figure 4: Timeline of the 10-week program, with sequenced steps of the research process. After the initial year, professional
development activities were front-loaded to prioritize focus on research later in the program.

2.4 E1: Faculty-assessed Student Skills
(Repeated In-program Measures)

Students were individually assessed in three formal mentor reports
with 33 assessed skills using five-point Likert scale ratings (strongly
disagree to strongly agree) spread out across the summer, admin-
istered approximately every three weeks. Skills assessed, in part
adapted from a program at Willamette University [54], are listed in
Table 2. For example, mentors assessed the student’s ability to find,
filter, and apply technical scientific information to their project,
initiative-taking and time management skills, capability of formu-
lating research questions, ability to deploy sound methodological
practices, problem solving and creative skills, ability to link theory
with empirical work, presentation and technical writing skills, etc.
Additional assessed skills focused on the discipline such as com-
puter software and hardware, software development and computer
programming, etc. There were not multiple raters, and for this
reason inter-rater reliability measurements are not reported. The
analysis focused on whether individual skills, and how many skills
in total, were assessed as increasing over the course of the program.
(We do not compare the means since in this case, the Likert scales
elicit subjective ratings and raters may adopt different calibration
strategies.)

2.5 E2: Student Self-assessed Skills and Benefits
(Pre and Post Measures)

A program-independent evaluator elicited student self-assessment
data in pre and post surveys. As shown in Figure 2, the pre survey

occurred right before the start of the program and the post survey
in the 10th week of the program. Students assessed their level pre
and post (How would you rank your skill level in the following areas?)
for theoretical or applied scientific skills (research ethics, under-
standing and critiquing research literature, formulating research
questions) and disciplinary-specific skills (programming and sys-
tem development, human subjects research) on an ordinal 5-point
scale. The analysis computed gains in the proportion of students
that assessed themselves as being high-skilled, i.e., asMaster, Expert
or Proficient vs. low-skilled, i.e., Familiar or Beginner, given the
difference between pre to post self-assessment. In addition, in the
post survey, students self-assessed benefits of the early scientific
research experience to their development of skills (Please indicate to
what extent the program benefited you for each) on a 4-point ordinal
scale (from not at all to a great extent). We computed the proportion
of students reporting benefits (somewhat or a great extent ratings),
leaving out those who did not (not at all or very little ratings). These
benefits assessed involved scientific skills (such as learning ethical
conduct in research, ability to analyze data and interpret results, tol-
erance for obstacles faced in research), scientific identity (increased
academic self-confidence, understanding how researchers think
and work on problems), and research career aspirations (readiness
for more demanding research, increased confidence in potential
for academic career). Lastly, two summative metrics focused on
career plans—intent to pursue graduate school in a STEM field or a
non-STEM field.
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Table 2: Skills mentors assessed three times at approximately three-week intervals (n = 10; 30 annually). Items began with
The student... except for S20, S22, S23, and S26. The right-most columns indicate items for which average ratings increased
across all three assessment opportunities; this applied more to Y2 and Y3. Missing ratings could occur for lack of assessment
evidence; these were excluded.

ID Skill assessed Y1 Y2 Y3
S1 is a capable programmer/software developer. ✓ ✓
S2 is capable of finding relevant research resources (software, datasets, literature, etc.) ✓ ✓
S3 is capable of adapting to unfamiliar software. ✓ ✓
S4 is capable of adapting to unfamiliar equipment/hardware. ✓ ✓
S5 takes initiative in research tasks beyond what is assigned. ✓
S6 demonstrates eagerness to learn about forms of data she/he has not worked with before. ✓
S7 understands technical/scientific literature. ✓ ✓
S8 applies insights from research literature to their project. ✓ ✓
S9 applies critical thinking in the research process. ✓
S10 demonstrates capability in formulating research questions answerable with data. ✓ ✓
S11 demonstrates understanding of sound methodological procedures when setting up experimental work. ✓ ✓ ✓
S12 demonstrates knowledge or understanding of data analysis procedures. ✓ ✓
S13 contributes own creative ideas to the project. ✓ ✓
S14 can identify and articulate limitations in research design. ✓ ✓
S15 is adept at problem-solving. ✓ ✓
S16 is capable of linking theory with empirical work. ✓
S17 prepares effective scholarly presentation materials. ✓ ✓
S18 demonstrates adequate scholarly presentation skills. ✓ ✓
S19 demonstrates adequate scholarly writing skills. ✓
S20 I can count on the student to meet scheduled commitments. ✓ ✓
S21 gives advance notice if unable to keep scheduled tasks or appointments. ✓ ✓
S22 Overall, the student has good time management skills. ✓
S23 Overall, the student is very dependable. ✓ ✓
S24 shows genuine interest in the research project and process. ✓
S25 takes ownership of the project. ✓ ✓
S26 When the student ‘gets stuck’, she/he seeks paths forward by own initiative. ✓ ✓
S27 conducts her/himself in a professional manner in face-to-face interactions. ✓
S28 conducts her/himself in a professional manner in email correspondence. ✓
S29 is capable of discussing scholarly concepts with team members. ✓
S30 is respectful to different points of view. ✓ ✓
S31 has the ability to make independent progress between mentor/team meetings.
S32 contributes to a motivating research team experience. ✓
S33 demonstrates thoughtfulness in making own decisions or seeking support for evolving directions of the project. ✓

Total number of questions for which average ratings increased across mentor assessments 6 28 19

2.6 E3: Faculty-assessed Student Outcomes and
Benefits (Post Measure)

Faculty mentors individually completed a survey released immedi-
ately after the program ended. Faculty assessed student outcomes
(my students were able to make progress on working independently;
my students were able to work on the project we identified for her/him
in the way we envisioned), as well as benefits for students of the
early research experience in terms of scientific identity (program
helped students become better researchers; program gave my students
a realistic understanding of life as a researcher) or career aspirations
(program will help my students be more successful in graduate study;
program helped my students develop career paths). We computed
the proportion of faculty that strongly agreed with corresponding
statements.

2.7 E4: Student-led Disseminated Products
(Post Measure)

As a loosely relevant objective measure, we tracked research dis-
semination outcomes: number of accepted refereed team publica-
tions at professional venues, number of students as lead author
of publications, and number of student presentations about the
research. While not directly reflecting perceptions of belonging, re-
search products can be viewed as an objective validator and as overt
recognition of belonging to the research community of practice.
Presenting research on behalf of their teams can provide students
with opportunities to network toward graduate school and research
careers; such formative networking was identified as important by
Shanahan et al. [45].
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2.8 E5: Alumni-assessed Career Aspirations
and Progression (Extended Post Measure)

We conducted an alumni survey which gathered facts and anec-
dotes of post-program activities in both structured and unstructured
answer formats. Program alumni (former students) were invited
back to complete the survey anonymously. This resulted in 39 indi-
vidual responses over the three years such that 2016 participants
(43.5% of total 39 responses) had three opportunities to complete
the alumni survey, 2017 (43.5% of responses) had two opportunities,
and 2018 (13% of responses) had one opportunity. Alumni provided
information on career progression and engagement in scholarship
dissemination. The survey was administered at a point after which
graduate school applications would have been submitted and ap-
plication decisions received. We computed the percent of total
responses. Qualitative data from alumni’s open-ended comments
was also considered.

3 RESULTS
We used the multicomponent framework introduced in the prior
section to report on results of the training intervention per three
hypotheses about the development of scientific skills, scientific
identity, and aspirations for research career. Given the sample size,
we focused on descriptive measures and trends as well as qualitative
discussion of open-ended answers.

3.1 E1 Results
The right-most three columns of Table 2 indicate per year the
skills for which average ratings continuously improved over three
assessments. Skills not indicatedwere assessed on average as having
a flat or decreasing rating for at least one of the three assessments.

The research methodology skill (S11) had a continuous increase
in all years, highlighting that the intervention supported its stead-
fast development. Several disciplinary and broader scientific skills
also showed a continuous increase in ratings in two of the three
years: S1 (computer programming), S2 (resourcefulness), S3 (new
software), S4 (new hardware), S7 (technical/scientific literature), S8
(research literature), S10 (formulating research questions), S12 (data
analysis), S13 (creative ideas), S14 (research design limitations), S15
(problem-solving), S17 (presentations preparation), S18 (present-
ing), S20 (accountability), S21 (notifying), S23 (dependability), S25
(taking ownership), S26 (initiative-taking), and S30 (respectfulness).
The last two cohort years indicated a more pronounced improve-
ment trend, applicable to 19 or 28 of the assessed skills.

In contrast, skills related to communication (S27–S29) or to other
scholarly skills (S5 — initiative taking; S6 — eagerness to explore
unknowns; S9 — application of critical thinking; S16 — ability to
connect theory and empiricism; S19 — scholarly writing; S22 — time

management; S24 — genuine interest; S31 — independence; S32—
motivating a research team; S33 — thoughtful decision-making) did
not show as consistent improvement.

3.2 E2 Results
As seen in Figure 5, pre and post comparison of student self-assessed
scientific skills showed gain for, especially: formulating research
questions, developing a research plan, data collection and human
subjects considerations, data processing, understanding and critiquing
research literature, research ethics, and preparing spoken and written
research dissemination. In contrast, two skills were self-assessed
as declining in one year: grant writing in Y3 and programming
and application/system development in Y1. In addition, Figure 6
reveals that students, when completing the post survey, perceived
that their abilities generally increased, and especially in Y3. For
instance, in Y3, 100% felt that they improved their ability to critique
research literature, ability to analyze data and interpret results, skills
to effectively disseminate findings, knowledge of tools and techniques
in the field, and their tolerance for obstacles in the research process
either somewhat or to a great extent. In terms of development of
scientific identity, a majority of students reported gains in increased
academic self-confidence and understanding how researchers think
and work on problems. In addition, there were gains for increased
confidence in potential for academic career and readiness for more
demanding research, relating to research career aspirations and
career progression. Additionally, results for summative metrics
about career intent are in Table 3. Most participating students
intended to pursue graduate study and the majority in STEM fields.

3.3 E3 Results
Figure 7 shows that faculty felt the intervention contributed to
student development, although with a lower proportion of strongly
agree in one year. Faculty also identified benefits for students in
terms of developing scientific identity and positive career aspi-
rations toward the scientific profession. For career aspirations,
responses affirmed stronger benefit for preparation for graduate
school than for careers in research generally. On average, faculty
above all indicated they strongly agreed that the program will make
students more successful in graduate study (i.e., research career aspi-
rations and progression), and that the experience helped students
become better researchers (i.e., scientific identity). The lowest aver-
age proportion of strongly agreed among faculty respondents was
for gave my students a realistic understanding of life as a researcher
(scientific identity) and helped my students develop career paths
(research career aspirations and progression).

Table 3: Students’ self-reported intent to pursue graduate school (n = 10 annually; 30 total).

Evidence from student evaluation Y1 Y2 Y3 Mean
1. Intend to pursue grad school in STEM 50% 80% 70% 67%
2. Intend to pursue grad school in non-STEM 30% 10% 10% 17%
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Figure 5: For all three years, students’ self-assessment of
their skills show cohort gains in most skills in pre and post
program comparison. Gain was computed as the difference
between the post and pre upper-end skill ratings. (Propor-
tion of n = 10 annually; 30 total; Y2 and Y3 had 9 post re-
sponses.)

Figure 6: For all three years responses from the student post-
program survey shows that the majority of student cohorts
perceived gains in skills somewhat to a great extent in many
areas. (Proportion of n = 10 annually; 30 total).
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Figure 7: Many faculty strongly agreed with statements
about student benefits across the three years; others gener-
ally agreed. (Proportion of n = 10 in Y1 vs. n = 8 in Y2 to Y3.)

Figure 8: Percent program alumni responses self-reporting
career and activities choices for three years (n = 39 total re-
sponses). 1+ = one or many.
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3.4 E4 Results
The research projects placed computational sensing in the center
of a research experience, translating into refereed dissemination
of research discoveries, including eleven refereed technical team
publications with students as lead authors [8, 17, 21, 23, 31, 35, 40,
42, 43, 50, 53], and two other student-led technical publications [6,
15]. There were additionally 30 pre-publication student-presented
talks or posters at a local undergraduate research event, as well as
annual pre-publication posters at a national undergraduate research
symposium.

3.5 E5 Results
Aggregated results of alumni surveys over the three years are in
Figure 8. Students continued to engage in research after returning to
their home institution. In addition, of the responses, almost a fifth
reported they presented research at a STEM conference and/or pub-
lished a conference proceedings paper. Over one fifth of the responses
also indicated that respondents were attending graduate school in
STEM disciplines, and/or that respondents applied or intended to
apply to graduate school in a STEM discipline. Graduate program
aspirations included computer science, human-computer interac-
tion or human factors, robotics, computational physics, psychology,
game design and development, mathematics, computer engineering
or other engineering disciplines.

Additional open-ended comments about recent activities or ca-
reer plans indicated impact of the research experience for future
career visions in computer science and STEM disciplines:

[This] program was mentioned in all of my formal and
informal interviews for grad school, so I give it a lot of
credit for helping me achieve my educational goals.

If it weren’t for [this program] and my mentors, I may
never have considered applying to get my MS, and my
short term career prospects may have been very differ-
ent.

I was accepted to 2 PhD programs and took a position
in [program] at [university]. I started in August, and
my research focuses primarily on perception-action and
robotics with funding from [organization], technology
use and design for people with Autism Spectrum Dis-
orders, and cybersecurity. I’ve completed one semester,
going on two, with research submitted for publication
with multiple Human Factors-related conferences and
journals.

I intend to earn a PhD in Computer Science and then see
where that takes me. I might try to become a professor
some day.

I attended [conference], the yearly conference of the [or-
ganization], where I attended various career building
sessions and got an internship offer from [organization].

In addition, I travelled to IEEE [conference] with my re-
search partner to present our research from our summer
[program]. Outside of STEM pursuits, I have resumed a
job writing for my school’s newspaper ...

Obtain a PhD in Computer or Mechanical Engineering.

I am fairly set on pursuing a PhD after finishing un-
dergrad, although I’m not sure if I want to ultimately
go into industry or academia. I am interested in AI
for robotics or medical applications and computational
physics, and I will probably end up pursuing my PhD
research in one of those areas.

... I attended the Grace Hopper [women in computing]
conference on a full scholarship, presented research at
the [...] Symposium, and completed my computer sci-
ence degree. Currently I am in a fully-funded machine
learning bootcamp program organized by [organiza-
tion].

4 DISCUSSION
We reported on the impact of an early research experience for di-
verse cohorts of undergraduates in computing for growing scientific
skills, increasing science identities, and fostering career aspirations.
Figure 9 integrates results from all forms of evidence in our evalua-
tion framework. They indicated the benefits of the intervention.

For hypothesis (a), evidence from faculty assessments of students
and student self-assessments (E1, E2) indicated that the interven-
tion resulted in gains in scientific skills. That communication and
abstract skills were not reported to consistently improve may re-
flect that extended practice is required to develop them. Moreover,
the difference in Table 2 from Y1 compared to Y2–Y3 in the num-
ber of consistently improving skills may reflect adjustments made
in response to student/faculty feedback in the training schedule,
including in front-loading the schedule of professional develop-
ment activities in the experience which appeared to have better
supported skills development.

For hypothesis (b), evidence from students and faculty (E2, E3)
indicated that the early scientific experience contributed to scien-
tific identity development. Additionally, the dissemination data (E4)
arguably represented a tangible recognition of belonging to the
scientific community. That faculty rated students’ development of
a realistic understanding of research lower may relate to the com-
pressed timeframe of the intervention and that a 10-week research
project is not reflective of the typical duration of graduate research
projects.

As regards hypothesis (c), evidence from faculty (E3) suggested
that the intervention nurtured scientific career progression, espe-
cially in terms of preparing students for graduate school, the next
step in their careers. Considering the SCCT theoretical framework
[32], the majority of students indicated an intent to pursue grad-
uate school in STEM (E2) and also a confidence boost about their
capacity for an academic career. These were indicators that the
program promoted scientific career aspirations, as were alumni
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Figure 9: Overview of evaluation framework components and key findings. A comprehensive multicomponent evaluation
framework is adopted to avoid pitfalls associated with self-reporting alone.

responses about planned applications or confirmed acceptances to
graduate school. Additional post-contact with alumni completes
the picture for hypothesis (c). Approximately a third have already
continued on to PhD programs in STEM, and additional students
to Master’s programs. Alumni have, in particular, placed into grad-
uate programs in computer science or closely related fields, such
as degree programs with an interdisciplinary computing focus.

In addition, regarding the need for increasing diversity in com-
puting and in other STEM fields, comments from students in the
diverse cohorts acknowledged the importance of diversity and in-
clusion in the practice of research:

Diversity is vital, particularly when the research in-
volves human subjects, because human populations are
diverse. The researchers should reflect their work. Ad-
ditionally, diversity allows for unique experiences and
thus ideas and viewpoints.

Diversity can help prevent implicit biases that may be
held by a particular group without them even realizing
it.

[H]aving a range of perspectives overseeing a project is
essential for the best possible outcome.

[Diversity is] very important. It’s always nice to see
someone who looks like you or have a similar upbring-
ing in the same field of study, especially computer sci-
ence. Diversity is also important because it allows for
different perspectives to be brought to a project or re-
search assignment.

I feel that having a variety of experiences and back-
grounds always helps any project, whether in research
or otherwise. To this extent, diversity is extremely im-
portant as it creates the opportunity for a wealth of
ideas and viewpoints to be expressed. Additionally, I
believe that people do their best work when they are
in an environment they feel welcome in, and having
diverse mentors and peers supports this.

Revisiting the cognitive apprenticeship framework discussed ear-
lier, these comments further emphasize the link between effective
apprenticeship and coaching with inclusive mentoring environ-
ments, and they highlight the importance of collaborative diversity
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in research teams. That students recognize the discipline’s chal-
lenges and its present limitations in diversity, equity, and inclusion
can also be regarded as an indicator of their growing connection
and self-identification with the field.

5 CONCLUSION
We reported on and discussed an intervention that provided diverse
student cohorts with a computer science-focused early scientific
experience. Integrating multiple sources of evidence supported that
the intervention helped develop scientific skills and identity, in
addition to nurturing research career aspirations and progression.
Several participants have already continued on to PhD programs in
computer science or STEM. Targeted recruitment outside of the US
Northeast may improve geographic diversity of participants. The
introduced intervention—see overviews in Figures 2, 3, and 4, and
the Appendix—is applicable in other disciplines and institutional
settings. Resource needs would primarily include cost and time
involved. For example, in the reported study, students received
internship stipends, subsistence, and travel support; and the orga-
nizers and faculty of the training intervention invested their time
before, during, and after the 10-week experience. In future work,
we are interested in studying potential long-term implications for
undergraduate researchers who publish the results of their research
and subsequently pursue a research profession, including topics
such as downstream research career productivity and thementoring
practices they adopt as research professionals.
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A APPENDIX: OVERVIEW OF PROFESSIONAL
DEVELOPMENT PROGRAMMING
• Workshops: Students attendedworkshops on research-relevant
topics such as human subject research, statistics, data visual-
ization and research storytelling. (Figure 3: A).
• Toward Graduate Studies: Students developed understanding
about graduate school or initial grant writing skills for grad-
uate school, a new topic to most participants. We focused on
a national program for graduate fellows and students also
met a panel of prior recipients (Figure 3: B).
• Public STEM Outreach: Students presented a hands-on ex-
hibit of various sensing technologies at a local public library,
interacting with library patrons of all ages (Figure 3: C).
• Coordinated Interdisciplinary Events: The organizers coordi-
nated interdisciplinary joint activities with nearby programs
that were both social and academic in nature, including a
graduate study and research symposium featuring sessions
with research talks by doctoral candidates for insight into
PhD-level STEM research, and panels about graduate school
(Figure 3: D).
• Journal Club: Students discussed papers within the scope of
the program’s intellectual theme. Written and oral reflection
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exercises coached critical scholarly reading and technical
writing.
• Industry Research Lab Visit: Students visited an industrial re-
search lab as part of having them consider a range of research
career paths. At this visit, students interacted with profes-
sionals and received feedback on their project-in-progress.
• Observing a PhDDefense: Students were encouraged to attend
a PhD dissertation defense.
• Teaching-to-Mentoring Bridge: In talks, mentors shared about
their research journey and discussed topics of expertise of

relevance to the program’s intellectual focus such as: Facial
expressions in VR and affective computing, Visual perception
and what we learn from eye tracking, Linguistic sensing and
computers making linguistic sense, and Intelligent systems that
learn deeply.
• Post-program Sessions: In video get-togethers, organizers re-
connected with the cohort and let alumni share about their
progress and activities at home institutions (Figure 3: E).
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ABSTRACT 
Heatmaps are used to visualize data to enable people to quickly 

understand them. While there are libraries that enable 

programmers to create heatmaps with their data, scientists who do 

not typically write programs need a way to quickly create 

heatmaps to understand their data and use those figures in their 

publications. One of the authors is not a programmer but needed 

a way to generate heatmaps for their research. For a summer 

undergraduate research experience, we created a program with a 

graphical user interface to allow non-programmers, including that 

author, to create heatmaps to visualize their data with just a few 

mouse clicks. The program allows the user to easily customize 

their heatmaps and export them as PNG or PDF files to use in 

their publications. 

Categories and Subject Descriptors 
J3 [Life and Medical Sciences] — Biology and genetics 

General Terms 
Design, human factors 

Keywords 
Heatmap, Bioinformatics, Genetics, Software development, 

Student experience, Student research 

1. INTRODUCTION 
One of the authors is a biologist who needed a tool to enable the 

creation of a visual representation of bioinformatics research data 

for research projects on which they were working. That author 

has minimal experience in computer programming. They reached 

out to one of the other authors, a computer scientist, to see if some 

of the computer scientist’s students could do a project that could 

produce the necessary tool, a program with a simple graphical 

user interface (GUI) that would allow the creation of heatmaps 

from data sets stored in comma-separated value (CSV) files. The 

GUI would allow the user to create heatmaps without needing to 

write computer programs. The project would allow the students 

to gain experience in software development and user interface 

design while building a tool to advance science. 

2. BACKGROUND 
A heatmap is a representation of data in the form of a map or 

diagram in which data values are represented as colors depending 

on the magnitude of the value [1]. “They are often used to 

visualize high-frequency data or when seeing general patterns is 

more important than exact values” [2]. A general heatmap takes a 

two-dimensional set of values as its input and maps each of the 

values to a color. Heatmaps can be used to visualize or represent 

raw data in an easily digestible format that can enable users to 

understand their data. Figure 1 shows a sample heatmap with 

made-up data for levels of contamination in a small region of a 

city. The heatmap makes it easy to spot the extremely high levels 

of contamination in the regions represented by Row 5 Column 4 

and Row 8 Column 10, in contrast to areas with high, moderate, 

and low levels of contamination. Our project was to create a GUI 

to allow scientists who are inexperienced with coding to easily 

create a heatmap to display their data.
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Figure 1. A sample heatmap showing contamination levels in a city.

The biologist author’s primary focus was identifying taxonomies 

of bacteria that are particularly prevalent among similar 

microbiome samples. A microbiome is the total collection of 

microorganisms present in a particular environment. A 

bioinformatics lab took the author’s data and analyzed them for 

occurrence of operational taxonomic units (OTUs), resulting in a 

CSV file composed of raw data representing the occurrence of 

each OTU in each sample. An OTU can be defined as a 

categorical classification based on genetic similarity, providing a 

method of understanding what microbes are present in a sample 

through genetic analysis. A heatmap is the accepted way of 

displaying the data for such a project. 

3. METHODS 
Several different factors impacted the development of the 

program. The data input file format, the importance of ease of use 

of the program, and the existence of any libraries that would aid 

in the development were all important. 

3.1 Data 
The data sets that would be used as input to the program were 

stored in CSV files. They contained the information about 

bacteria found on two different populations studied by one of the 

authors. The first set consisted of ninety samples taken from 

either salamanders or environmental controls, and the second set 

consisted of forty samples taken from either dead bodies or 

environmental controls. 

3.2 Interface Design 
When designing the user interface, we felt it was critical that a 

person with no programming experience could easily use it 

without investing more than a couple minutes to learn to use the 

tool. We also wanted to make the tool prevent the user from being 

able to make mistakes, to make it even easier to use. To ensure 

we accomplished these goals, we spent a considerable amount of 

time discussing the ways the user interface could be implemented 

and making sure it prevented the user from making errors. We 

made mockups of different possible interface designs and 

discussed the benefits and drawbacks of them. Ultimately, we 

chose to implement the graphical user interface as the common 

user interface pattern known as “task wizard.” In a task wizard 

interface, the user answers a small number of questions on each 

screen, clicking a “next” button or “back” button to navigate 

between screens. On the final screen, the user clicks a “finish” 

button to complete the task. Since most computer users have 

installed software using one of these task wizard interfaces, and 

since we could prevent errors using this kind of interface, we 

designed the program’s user interface as a task wizard. Figures 2, 

3, and 4 show the screens of our user interface. 

3.3 Implementation Details 
To create the GUI, we used Tkinter, a module in the Python 

standard library which serves as a GUI toolkit. Tkinter is centered 

around event driven programming, which means the program 

responds to actions the user takes such as clicking on buttons or 

selecting an option from a dropdown menu [3]. We used a Python 

plotting library, Matplotlib, and its extension NumPy [4,5]. Both 

provide an object-oriented API for embedding plots into 

applications with Tkinter. To create heatmaps, we used seaborn, 

a Python data visualization library based on Matplotlib [6]. We 

also used another software library, pandas, which is used for data 

manipulation and analysis and provides data structures and 

operations for manipulating numerical tables of data such as the 

OTU occurrence data sets [7]. 

4. RESULTS 
The GUI has two screens, a setup screen shown in Figure 2 and a 

heatmap screen shown in Figures 3 and 4. 

 

Figure 2. The setup screen. 
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Figure 3. The heatmap screen with the default color scheme selected. 

 

 

 

 

 

 

Figure 4. The heatmap screen with the custom color scheme selected. 
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4.1 Setup Screen 
On the setup screen, the user selects two input files, a data file, 

and a taxonomy file. The program forces the user to select the two 

required files before allowing them to continue to the Heatmap 

screen. The user may choose whether to include zeros in the 

category averages as well as choose the taxonomy depth 

represented in the heatmap. If an unavailable taxonomy depth is 

chosen, an error message will appear, and the user must select a 

new depth before continuing. 

4.2 Heatmap Screen 
The heatmap screen is displayed after the user clicks the Next 

button on the setup screen and the calculations have finished. The 

user may return to the setup screen by hitting the Back button at 

any point. On the heatmap screen, the user can choose how many 

results (rows) they want to be displayed on the heatmap. If the 

maximum number of results is less than what the user chooses, no 

extra rows will be added. The rows are sorted in descending order 

by an average of the row’s values. The user can also determine 

the width and height of the heatmap in pixels. There are two color 

options, default and custom. With the default option, the user can 

choose one of the default color schemes provided by seaborn [6]. 

With the custom option, the user can choose from four to ten 

colors to create their own color scheme as well as designate each 

color a percentage range. The user must choose all colors and 

enter continuously ascending range values before clicking the 

Preview button, or an error message will appear. Once all input 

fields are filled, the percentage of each color will be scaled 

correspondingly to the data, and the custom heatmap will be 

drawn. Clicking the Preview button will automatically change the 

plot option from Default to Custom, and selecting any of the 

default color schemes will change the plot option from Custom to 

Default. When the user is satisfied with the colors they have 

chosen, they can click the Export button to export the heatmap in 

either PNG or PDF format. To quit the program, the user can click 

the X button in the window’s title bar and a prompt will ask them 

to confirm if they want to quit the program. 

5. FUTURE WORK 
There are several possible opportunities for further development 

of this GUI. Currently, the program requires the input files to be 

in a specific format. The first thing we could work on is to 

generalize the program to accept more input file formats, enabling 

the GUI to a wider scope of use. We could also allow for greater 

customization of what in the data file is being analyzed, such as 

letting the user choose the column in the input file by which the 

heatmap will be categorized. Since we made this GUI to make 

biological heatmaps, we could also include the option to italicize 

labels that are species names. 

6. REFLECTIONS 
This is the first time we got to do a real-world project that is both 

enriching and helpful. We had to learn how to facilitate cross-

disciplinary communication and collaboration between biologists 

and computer scientists. We are fortunate that one of the authors 

on our team had prior experience working with bioinformatics to 

help bridge the knowledge gap. We had former experience with 

Python in class, but this project provided us a chance to apply 

what we learned, further familiarizing us with the language and 

opening up our programming possibilities. We also had to learn 

tools for collaboration and version control such as Git and 

GitHub. To create a GUI, we had to plan ahead to really get a 

handle on our code. We got to experience the software 

development process like real software developers. We first had 

a mock-up for the GUI then proceeded to prototyping and 

programming it. We had several meetings for feedback with our 

“client” along the way. Since we carefully planned our design 

before getting into coding, adjusting the software was not too 

challenging. As we made the GUI, it was important to think from 

a user perspective, because something that may make sense to 

implement as a programmer may not make sense to a user. All in-

class assignments have rubrics and well-defined goals, so this is 

also our first time working with something where the goals for 

this project were fluid and open-ended. The team experience we 

had was invaluable since we could have diverse approaches to 

solve the problem and work together to achieve a product. 
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ABSTRACT
The potential HPC community grows ever wider as methodologies
such as AI and big data analytics push the computational needs of
more and more researchers into the HPC space. As a result, require-
ments for training are exploding as HPC adoption continues to
gather pace. However, the number of topics that can be thoroughly
addressed without providing access to actual HPC resources is very
limited, even at the introductory level. In cases where access to
production HPC resources is available, security concerns and the
typical overhead of arranging for account provision and training
reservations make the scalability of this approach challenging.

Magic Castle aims to recreate the supercomputer user experience
in public or private clouds. To define the virtual machines, volumes,
and networks that are required in a cloud-provider agnostic way, it
uses the open-source software Terraform and HashiCorp Language
(HCL). These resources are then configured using the configuration
management and deployment tool Puppet to replicate a virtual HPC
infrastructure with a full scientific software stack, and including a
feature-rich JupyterHub environment. The final resource is acces-
sible both through a web browser and via SSH, making it trivially
OS-agnostic for the trainees.

Through the use of Magic Castle, we demonstrate that it is pos-
sible to dynamically provision virtual HPC system(s) in public or
private cloud infrastructure easily, quickly, and cheaply. We also
show that such infrastructures can support accelerators and fast
interconnects, meaning that they can still be considered "true" HPC
resources.

KEYWORDS
Education, Training, HPC, Cloud-computing

1 INTRODUCTION
Compute Canada [2] provides HPC infrastructure and support to
every academic research institution in Canada. It uses CVMFS [5], a
software distribution system developed at CERN, to make the Com-
pute Canada research software stack available on its HPC clusters
and anywhere else with internet access [1]. This enables replica-
tion of the Compute Canada experience outside of its physical
infrastructure.
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Building upon this capability, an open-source software project
named Magic Castle [8] emerged that aims to recreate the Compute
Canada user experience in public or private clouds. OnceMagic Cas-
tle is configured and deployed, the user is provided with a complete
HPC cluster software environment including a Slurm scheduler, a
Globus Endpoint, JupyterHub, LDAP, DNS, and thousands of re-
search software applications compiled by experts with EasyBuild
[10].

Magic Castle is compatible with AWS, Microsoft Azure, Google
Cloud, OpenStack, and OVH. It can also be easily extended to
support other cloud providers. While there are quite a few other
cloud HPC open source projects (such as [6, 11, 13, 16]), Magic
Castle has extensive provider support and ships with a complete
production-ready scientific software stack. This makes it an excit-
ing pedagogical platform for scalable HPC training. It allows for
the possibility of quickly and easily creating event-specific HPC
training clusters at minimal cost and side stepping thorny issues
such as local site security or resource configuration policies.

2 DESIGN
The Magic Castle project is defined by an infrastructure-as-code
component that is responsible for generating a cluster architecture
in a public or private cloud infrastructure. Magic Castle does this
in a cloud-provider-agnostic way using Terraform and HashiCorp
Language (HCL) [9], which defines the virtual machines, volumes,
and networks that are required to replicate a virtual HPC infras-
tructure. The infrastructure definition is packaged as a Terraform
module that users can customize as they require.

A Puppet [14] environment component configures the cluster
instances based on their role. This includes the configuration of the
scientific software stack. Magic Castle has recently been extended
to include support for the European Environment for Scientific Soft-
ware Installations (EESSI) software stack [7], which also uses the
Compute Canada software distribution system as a reference de-
sign.

In Figure 1, the final architecture of the configured infrastructure
is shown. Starting from the Terraform module, it takes about 20
minutes to fully provision the system (including configuration of
support for GPUs and/or special interconnects).

3 CURRENT STATUS
Compute Canada delivers about 150 training workshops per year,
and Magic Castle is used extensively by many of these workshops
since 2018.

The LearnHPC project [12] has also adopted Magic Castle with
the goal of creating an EESSI HPC user experience for training pur-
poses, primarily on the Fenix Research Infrastructure [15]. LearnHPC
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Figure 1: Overview of the architecture of Magic Castle.

is also collaborating with HPC Carpentry to ensure that the full set
of lessons connected to HPC Carpentry [3] are supported on the
training infrastructure.

OS support is available for RedHat and the RedHat-based variants
CentOS, Rocky Linux, and AlmaLinux. As regards hardware capa-
bilities, GPU support on Azure, AWS, Google Cloud, and OpenStack
deployments has been tested with Magic Castle, as have support
for the Infiniband interconnect provided by Azure and the EFA
interconnect provided by AWS. Support for additional hardware
capabilities with specific providers are driven by user requests and
contributions.

Developer documentation for how to add support for an addi-
tional cloud provider is available [4] with a specific example for
Alibaba Cloud given.

3.1 Cost Optimisation
"Spot" instances are allocated from the spare compute capacity of
the cloud provider, usually at heavily discounted rates. However,
these may be withdrawn/replaced by the provider at any time. On
AWS, for example, typical eviction rates for high-end instances are
below 5% and are therefore well-suited to compute nodes when
coupled with the resilience features of Slurm. Spot instances can
lead to savings of more than 70% of the cost of provision and are
currently supported by Magic Castle on AWS, Microsoft Azure, and
Google Cloud.

4 FUTUREWORK
Due to their typical high-availability nature, training clusters are
likely to remain idle for a significant portion of their lifetime.
Dynamic scalability of the provided resources has been a much-
requested feature for Magic Castle and would likely greatly reduce

the cost of provisioning. However, dynamic scalability would typi-
cally require Slurm to have access to the cloud provider API, mean-
ing there would be a risk of exposing the cloud-provider credentials
of the organisation if the cluster was compromised. This was seen
to be an unacceptable prospect and would also require a custom
implementation per provider. An implementation of dynamic pro-
visioning is currently under development that is provider-agnostic
and does not have this flaw.
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A ARTIFACT DESCRIPTION: MAGIC CASTLE
— ENABLING SCALABLE HPC TRAINING
THROUGH SCALABLE SUPPORTING
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A.1 Abstract
This paper does not contain computational results. The reference
release of Magic Castle for this publication is version 11.3 [8].
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ABSTRACT
The National Energy Research Supercomputing Center (NERSC)
at Lawrence Berkeley National Laboratory (LBNL) organizes ap-
proximately 20 training events per year for its 8,000 users from 800
projects, who have varying levels of High Performance Computing
(HPC) knowledge and familiarity with NERSC’s HPC resources.
Due to the novel circumstances of the pandemic, NERSC began
transforming our traditional smaller-scale, on-site training events
to larger-scale, fully virtual sessions in March 2020. We treated this
as an opportunity to try new approaches and improve our train-
ing best practices. This paper describes the key practices we have
developed since the start of this transformation, including:
• Considerations for organizing events;
• Collaboration with other HPC centers and the DOE ECP
Program to increase reach and impact of events;
• Targeted emails to users to increase attendance;
• Efficient management of user accounts for computational
resource access;
• Strategies for preventing Zoombombing;
• Streamlining the publication of professional-quality, closed-
captioned videos on the NERSC YouTube channel for acces-
sibility;
• Effective communication channels for Q&A;
• Tailoring training contents to NERSC user needs via close
collaboration with vendors and presenters;
• Standardized training procedures and publishing of training
materials; and
• Considerations for planning HPC training topics.

Most of these practices will be continued after the pandemic as
effective norms for training.

KEYWORDS
HPC training, Best practices, Virtual training, Remote training,
NERSC, GPU, COVID-19, Zoom, Closed captions

1 INTRODUCTION
TheNational Energy Research Scientific Computing Center (NERSC)
[6] is the primary High Performance Computing (HPC) facility for
the Office of Science in the U.S. Department of Energy. NERSC de-
ploys advanced HPC and data systems for more than 8,000 scientists
in 800 projects across a wide range of scientific and computational
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disciplines, including climate modeling, material sciences, fusion,
high-energy physics, nuclear physics, biological research, and a
host of other scientific endeavors.

The flagship production system at NERSC is the Cray XC Cori
system [2], with Intel Xeon Haswell and Intel Xeon Phi KNL com-
pute nodes. The upcoming HPE EX Perlmutter system [10] will
contain both AMD CPU and NVidia GPU compute nodes. In prepa-
ration for Permultter, we launched the Cori GPU [3] testbed sys-
tem, a small 18-node cluster of NVidia GPUs, to facilitate porting,
benchmarking, and testing efforts for NERSC Exascale Science Ap-
plications Program (NESAP) [8] application codes.

NERSC users, including over 1,000 new users annually, possess
a wide spectrum of HPC knowledge and familiarity with the usage
of HPE/Cray systems. A successful training program for NERSC
users is therefore one of the key components of our user support
portfolio to enable effective usage of the system resources with
efficient programming models. NERSC organizes approximately 20
training events [7] per year.

As a result of the COVID-19 pandemic situation, all of our on-
going training events transitioned into virtual sessions. This gave
us an opportunity to try a number of new approaches and iterate
on improvements. In this paper, we describe the key practices we
have developed during this time.

2 BEST PRACTICES
2.1 Considerations for Organizing Events
Since 2020, NERSC has focused on multi-part training series. This
was partly motivated by the constraints of the COVID pandemic;
with all events being remote and digital, a format ofmultiple, shorter
sessions was found more effective than full-day or full-week events.
The shorter hours per day are more friendly for attendees across
different time zones and allow them to have time for their other
responsibilities outside the training hours.

For complex topics such as CUDA, OpenACC, or OpenMP, the
multi-day format allows users to interleave the consumption of
knowledge with the completion of homework. For example, the
Deep Learning for Science School in 2020 transitioned from a four-
day event to a series of weekly webinars over three months. Simi-
larly, the NESAP hackathons transformed from intensive, single-
week events to the same total number of hours spread across a
couple of months.

2.2 Collaborating with other HPC Centers and
DOE ECP Training Program

Often, NERSC, the Oak Ridge Leadership Facility (OLCF) [9], the
Argonne Leadership Computing Facility (ALCF) [1], and the broader
Department of Energy (DOE) Exascale Computing Project (ECP)
Training Program [5] have common training needs on topics such

Journal of Computational Science Education Volume 13, Issue 1

April 2022 ISSN 2153-4136 23

https://doi.org/10.22369/issn.2153-4136/13/1/4 


as GPU programming and software tools. Collaborating with other
training efforts helps increase the reach and impact of events and
reduces staff workload for organizing these events individually.

There have been many successful collaborations among these
organizations in the past year. A few examples include NERSC users
being invited to participate in CUDA and OpenACC training series
provided by NVidia and driven by OLCF staff. Meanwhile, OLCF
users were invited to join the NVidia HPCSDK OpenMP Offload
training and the HPCToolkit training driven by NERSC. NERSC and
ECP also collaborated to provide CMake and E4S software stack
trainings and invited OLCF and ALCF users. ALCF also included
NERSC on some GPU architecture and GPU profiling trainings.

For all these events, staff from the HPC centers and programs
worked closely together with the presenters on training logistics,
event web pages, compute-system access, and hands-on exercises.
Attendees listened to the same presentations and worked on hands-
on exercises on various systems to which they had access and on
which they already had familiarity with the user environment, with
help from HPC center staff and vendors. For participants without a
home system or wanting to try something new, we provided NERSC
training accounts.

2.3 Targeted Emails to Users
Our training events are announced in the NERSC weekly emails
along with many other NERSC center updates. We had found that
there was often a tendency for these announcements to be over-
looked. Targeted emails to users who may be interested in certain
trainings can substantially boost registrations and attendance. We
often see a 5–10X registration increase within 30minutes of sending
a targeted email.

For example, new users are contacted for our “Introduction to
NERSC Resources” training. Users who have run only single-node
jobs according to a Slurm job-accounting analysis are encouraged
to take the one-day “Crash Course in Supercomputing” (to learn
parallel programming).

2.4 Efficient Management of User Accounts
Management of user accounts for access to special computational
resources is often necessary. For example, training attendees may
need temporary access to NERSC resources for an event. We have
automated the setup of training accounts so a staff member can sim-
ply request an event by providing the number of accounts needed
and the dates and duration of the event. Then a 4-letter code will
be generated for a user to apply for an account associated with
the event. The user account will be approved instantly with the
login credentials provided. The training accounts will be cleared
automatically as well.

Oftentimes, we create compute node reservations for trainings
with a hands-on component. It is more convenient for the Slurm
batch scheduler for the users eligible for the reservation to be in a
small number of projects. In order to satisfy this need, our practice
is to add existing NERSC users to the project we use for training,
which is allocated from NERSC overhead resources. There are also
times when users need to be enabled for a special queue; this is
the means of access to our GPU testbed on Cori. At first, the only
way to add new users was by hand within the NERSC account

management platform IRIS [13], which was quite cumbersome. We
have now significantly simplified this process by developing more
features such as batch adding or removing users to or from a project
or special queue via IRIS APIs.

One major issue with the above approach was that when a user
registers for two events that overlap in time, they would have been
batch removed after the end of the first event while the user still
needs to remain in the training project for the second event. Ini-
tially we had to guard these situations manually. After extensive
discussions, we have implemented a mechanism that separates indi-
vidual training events and adds users to separate training projects
to prevent any interferences.

2.5 Strategies for Preventing Zoombombing
One of our online events was Zoombombed. After the event, we
brainstormed mechanisms to prevent future bombings and incor-
porated them into our standard practices so that we are prepared
for the worst. We recommend the following:
• Use a password on the meeting,
• Do not advertise the URL on the web,
• Enable a waiting room (if possible),
• Turn off participant screen sharing and annotation,
• Mute upon entry,
• Create an unadvertised meeting as backup, and
• Enlist a co-host to help manage attendees.

We also learned that in real time, upon the occasion that Zoom-
bombing happens, there is a “Suspend Participant Activities” button
in the “Security” menu that will lock the meeting, disable screen
sharing & chat, turn off all audio & video, and give the host a chance
to report the incident to Zoom. An excellent resource on this topic,
from which we drew many helpful tips, is [12].

2.6 Publishing Recordings with Professional
Closed Captions

The Department of Energy is committed to making its informa-
tion and communications technology accessible to individuals with
disabilities. The virtual format for training offers opportunities
for improved accessibility, and in 2020 we made it a high prior-
ity to make use of these. NERSC made its training materials and
recordings public and invested in creating closed captions for the
recordings.

By working with NERSC administrative assistants, Berkeley Lab
IT and procurement teams, and the support teams for Zoom and Rev
(the supplier of captioning services) [11], we have reached a stream-
lined process to publish professional-quality closed captions for
training videos on the NERSC YouTube channel1. Fully captioned
videos for current training events are already online. We continue
to work on retro-captioning our past training videos for a larger
impact to the wide user community. These training videos have
long-lasting impacts on users and for the public HPC education.

During Zoom meetings, we also enable live subtitles and full
transcripts so attendees can toggle them on/off and are also able

1The NERSC Training YouTube channel is accessible at https://www.youtube.com/c/
NERSCTraining-HPC
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to save full transcripts. The real-time captions are helpful; how-
ever, they are not as accurate as professional services, and certain
custom keywords (such as NERSC) and technical terms (such as
OpenMP, Slurm, parallelize, etc.) are often misspelled. These errors
are eliminated in the professional-quality captions afterwards with
a list of keywords provided by NERSC for the manual captioners.

2.7 Effective Communications for Q&A
A fully virtual event makes Q&A particularly challenging. We
adapted to the situationwith technology solutions. Slackworkspaces
were created for most user events and used for Q&A, for sharing pre-
sentations, and for continued discussions during and after events.
Events not using Slack used a Google Doc in which users could pose
questions. When working with external organizations such as HPE
and OpenACC, we also used Slack connect to allow people from
each workspace to be in the same Slack channel for conversations.

We would like to especially emphasize the multiple benefits of
using Slack. We usually create a private #organizers channel for the
organizers from different institutions/vendors to use while planning
the events. We discuss every detail in this channel before and during
the event, planning dates, agenda, system access, presentation slides,
hands-on codes, surveys, and more. Using a Slack channel is much
lighter and quicker than email exchanges.

Combining Zoom with Slack or Google Docs is more effective
for participant communications than Zoom alone. While Zoom
does have a chat and Q&A feature, we found these other tools more
effective for discussions. As a result, we used Slack or Google Docs
for participant interactions in addition to Zoom during the training
events. Both are effective for offline discussions and managing Q&A
threads. We often had co-hosts monitoring chat and Google Docs
and technical experts standing by to answer questions.

Additional practices that improved the user experience included
allowing participants to unmute themselves to ask questions in
smaller events and during hands-on sessions. We have also used
Zoom breakout rooms with screen share and Zoom polls in some
events.

At an ECP panel on virtual training best practices [4] held in
September 2021, we learned two additional tips. First, in addition
to Q&A, Google Docs can also be used for shared note-taking
and for quickly gathering attendees feedback such as individual
progress for hands-on exercises. Second, Zoom annotation is handy
for visualizing feedback; for example, we can ask people to put up a
given choice of stamp (green check, red heart, question mark, etc.)
that has an agreed-upon meaning.

2.8 Tailoring Training Content for NERSC
Users

NERSC put a lot of effort into collaborating with presenters to
tailor training content to NERSC user needs (from the largest scope
down to small details of materials covered), trying out exercises
ahead of time, and providing constructive suggestions. These efforts
helped increase the quality of trainings for NERSC users. We also
received positive feedback and appreciation from the presenters on
developing improved and productive trainings.

For example, the Parallelware training in October 2020 was the
culmination of a 10-month collaboration with Appentra staff. The

resulting training materials were highly customized to NERSC user
needs. We held multiple planning meetings to prepare for this train-
ing, studied crucial NESAP user codes and other ECP applications
for motifs, provided detailed feedback on training slides and exer-
cises, and performed a survey.

Another example is working with HPE to schedule the standard
HPE EX programming environment training at a time close to when
users would gain access to the new Perlmutter machine and to col-
laborate on adjusting the contents of the training to NERSC needs.
We established a Slack Connect channel and held multiple long
discussions to plan the training, which proved highly beneficial.
We agreed to begin with a training for staff focused on concepts
that are new with the Perlmutter system (benefiting our system
configuration efforts) followed by a short introduction to Perlmut-
ter for users and then an expanded user training with hands-on
exercises after users are enabled on the system.

2.9 Standardized Training Procedures
For NERSC HPC consultants and staff from other groups who may
provide trainings, we have internally published a guide to hosting a
training event that details all the steps and offers guidelines and best
practices. It includes detailed information and standard procedures
for creating event web pages, registration forms, announcements,
and training accounts; details on how to batch add/remove users
to/from a project and requesting compute node reservations; and
logistics for Zoom, Slack, Q&A, training materials, reminder emails
and calendar invitations, welcome and logistics slide templates,
Zoombombing prevention, slide publication, production of video
recordings with closed captions, post-processing videos, and post-
event surveys.

2.10 Considerations for Training Topics
NERSC continues to provide frequent and wide-ranging training
opportunities for users. NERSC staff held seventeen distinct train-
ing events in 2020 and eighteen events in 2021 as of September.
Some were standalone events; others were presented as a series.
The courses targeted a broad range of audiences and topics, in-
cluding getting started with NERSC, GPU architecture, profiling,
machine learning/deep learning, tools, running jobs, science appli-
cations, programming models (OpenMP, CUDA, OpenACC, etc.),
and services. Attendee counts ranged from 10–15 to more than 200
people per event. Feedback from attendees was uniformly positive.

Two courses traditionally offered to Berkeley Lab summer stu-
dents (“Introduction to NERSC Resources” and “Crash Course for
Supercomputing”) were opened to all NERSC users in 2021 for the
first time, in part because we were no longer constrained by the in-
person classroom size limit. Other recent training topics by NERSC
included LMOD, CI/CD, checkpointing/restarting, SpinUp, CMake,
and OpenMP Offload.

We continue to come up with additional topics on which we may
want to offer future training. One recent new training topic was
HPCToolkit, and we are beginning conversations with NVidia about
adapting for NERSC and offering their Bootcamps, Deep Learning
Institute training materials, and Compilers Premier Support. Other
topics under consideration are the Perlmutter user environment and
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application optimization, Parallelware tools, GPU programming,
AI for Science, Kokkos, SYCL, debuggers, etc.

3 CONCLUSION
Remote training has worked better than expected. The virtual train-
ing format has proved effective despite the lack of in-person guid-
ance for hands-on exercises and nonverbal feedback from the audi-
ence. We were not aware of a good real-time whiteboard sharing
tool initially but later found Google Jamboard to be quite useful.

The added advantages of virtual trainings include:
• Larger capacity for training;
• No added administrative overhead of physical meeting plan-
ning, site access approvals, and food ordering;
• No user travel needed;
• Ease of arranging multi-session training series;
• Ability to schedule sessions a few days apart without im-
pacting travel
• Shorter training days, so attendees can do some other work
during the day;
• Easy to do 1-hour webinars; and
• Increased flexibility for experts, especially for hackathons;
some experts can drop in for a partial event, some can present
a talk, and some can offer offline Slack help.

After in-person gatherings become safe and commonplace, NERSC
will likely still offer more remote training events than in-person
ones. We will have some remote-only events and some hybrid
events, and can arrange in-person rooms for local people or anyone
interested in coming on site, especially for those events with a large
hands-on component. We will give remote attendees the same level
of attention, if not more than what is given to in-person attendees.

Our recommendation is to continue with most of the practices
described in this paper after the pandemic as effective norms of

training at NERSC, such as continuing collaborations, continuing
shorter and multi-day events, and continuing webinar events.
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ABSTRACT 
Under-representation of minorities and women in the STEM 

workforce, especially in computing, is a contributing factor to the 

Computational and Data Science (CDS) workforce shortage. In 

2019, 12 percent of the workforce was African American, while 

only 7 percent of STEM workers were African American with a 

bachelor’s degree or higher. Hispanic share of the workforce 

increased to 18 percent by 2019; Hispanics with a bachelor’s degree 

or higher are only 8 percent of the STEM workforce [1]. 

Although some strides have been made in integrating CDS 

competencies into the university curriculum, the pace of change has 

been slow resulting in a critical shortage of sufficiently qualified 

students at both the baccalaureate and graduate levels. The NSF 

Working Group on Realizing the Potential of Data Science final 

report recommends “strengthening curriculum at EPSCoR and 

Minority Serving Institutions (MSI) so students are prepared and 

competitive for employment opportunities in industry and 

academia” [2]. However, the resource constraints and large 

teaching loads can impede the ability of MSIs and smaller 

institutions to quickly respond and make the necessary curriculum 

changes. 

Ohio Supercomputer Center (OSC) in collaboration with Bethune 

Cookman University (B-CU), Clark Atlanta University (CAU), 

Morgan State University (Morgan), Southeastern Universities 

Research Association (SURA), Southern University and A&M 

College (SUBR), and the University of Puerto Rico at Mayagüez 

(UPRM) are piloting a Computational and Data Science 

Curriculum Exchange (C2Exchange) to address the challenges 

associated with sustained access to computational and data science 

courses in institutions with high percentage enrollment of students 

from populations currently under-represented in STEM disciplines. 

The goal of the C2Exchange pilot is to create a network for resource 

constrained institutions to share CDS courses and increase their 

capacity to offer CDS minors and certificate programs. Over the 

past three years we have found that the exchange model facilitates 

the sharing of curriculum and expertise across institutions for 

immediate implementation of some courses and long-term capacity 

building for new Computational and Data Science programs and 

minors. 

KEYWORDS 
Computational and data science education, Computational and data 

science minors, Curriculum consortia, Broadening participation in 

computational and data science, Computational thinking, 

Computing education programs 

1. CDS WORKFORCE SHORTFALL 
There is a well-established need for a STEM workforce with a 

working knowledge of computational and data science (CDS) [3]. 

Although some strides have been made in integrating CDS 

competencies into the university curriculum, the pace of change has 

been slow, resulting in a critical shortage of sufficiently qualified 

students at both the baccalaureate and graduate levels. There are 

significant resource constraints contributing to the slow pace of 

implementation of undergraduate CDS curriculum that are limiting 

the production of CDS literate CI-Users from STEM domain 

sciences. There has been growth in the number of graduate 

programs in computational science and related data science fields. 

Though CDS at the undergraduate level would provide a pipeline 

for graduate programs and prepare students for the workforce, 

implementation is slower than expected due to several curriculum 
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associated challenges. These curriculum challenges include lack of 

expertise to teach courses, limited access to advanced computing 

resources to conduct large scale data analytics, and institutional 

climate for collaborative instruction. 

The Ohio Supercomputer Center Education staff track 

computational and data science (CDS) programs and maintain a list 

at HPC University [4]. The listing currently shows that there are 

only twenty-three US institutions with undergraduate 

computational science programs or minors, seventy-five 

institutions with graduate level programs, thirty-three institutions 

with undergraduate data science degree or minor programs, and 

seventeen with graduate level programs. Only five minority serving 

institutions are represented in these numbers: Chaminade 

University, Fisk University, Jackson State University, New Mexico 

State University, North Carolina A&T University, University of 

Hawaii at Hilo, and University of San Francisco. 

Computational science requires the integration of expertise across 

several disciplines: mathematics, computer science, and the domain 

science and engineering disciplines. The organization of 

universities into discipline-oriented departments with budget 

models tied to those departments is a major obstacle to the 

development of interdisciplinary courses in computational science. 

Upper level courses and even some introductory courses in each 

discipline are typically oriented toward majors and require a 

number of prerequisites. Departments are heavily oriented toward 

providing the courses for their majors, making it difficult to provide 

courses for non-majors desiring CDS concentrations or minors 

without committing to a large number of classes. For example, 

computer science curricula are focused on meeting extraordinary 

demands for classes in that major, making the education of science 

majors in the basic computer programming and database 

management techniques a very low priority. 

At smaller institutions and those with smaller STEM programs, 

departmental workload of faculty reduces their availability for the 

development of interdisciplinary curriculum. New courses and 

specialty courses are often not offered due to insufficient number 

of students to meet minimum enrollment for the course set by the 

institutions/university. Class exercises require access to advanced 

computing resources or tools not available locally. 

Institutions starting new programs face challenges in recruiting 

students for the new course offerings given the schedule 

constraints, pre-requisites, and competing well-established course 

options. Even the existing programs can be challenged with 

garnering sufficient numbers of students to justify the continued 

use of limited faculty resources to offer them with sufficient 

frequency. These challenges are generally more pronounced at 

MSIs where budgets are tight, teaching loads are high, faculty with 

the expertise and experience to teach computational science is 

either unavailable or insufficient, and the access to appropriate 

software and hardware environments is limited. 

2. CURRICULUM EXCHANGE 

OVERVIEW 
The C2Exchange project is made up of 7 collaborators including 

four Historically Black Colleges and Universities (HBCU) and one 

Hispanic Serving Institution (HSI). These partners are 

collaborating to address the challenges experienced by resource 

constrained institutions and, in particular, those faced by MSIs. 

Computational science expertise at individual institutions is often 

limited to one or two areas, making it impossible to offer a 

curriculum aimed at a broad range of STEM majors. The goal of 

the C2Exchange pilot is to create a network for resource constrained 

institutions to share CDS courses/curriculum and increase their 

capacity to offer CDS minors and certificate programs for STEM 

majors. The proposed exchange model allows the sharing of that 

expertise across institutions for immediate implementation of some 

courses and long-term capacity building for the implementation of 

CDS minors. 

The C2Exchange implementation is guided by CDS competencies 

developed by OSC in collaboration with academic faculty and 

industry, data collected via campus visits conducted by the XSEDE 

Education and Broader Engagement programs, outcomes of the 

SURA-led Advancing Computational Science at MSIs workshop, 

and the requirements articulated by the participating institutions 

through a series of surveys, conference calls, and site visits. 

3. COLLECTIVE IMPACT 
The practical implementation of a computational science program 

for undergraduates often requires the addition of new courses as 

well as changes in existing courses so that disruption to the entire 

curriculum is minimized and the most efficient use is made of 

faculty and support personnel. The C2Exchange takes advantage of 

national efforts to integrate CDS into the curriculum and applies 

distance learning technologies to form a consortium with sufficient 

critical mass to enable stable CDS offerings at the academic 

institution partners. 

Implementation of computational and data science curriculum is a 

strategic priority for all of the participating institutions. The 

C2Exchange builds on the academic partners’ prior participation in 

CDS training and education events and their experience offering 

hybrid courses. Additionally, the participating institutions 

completed surveys to identify technology support, experience, 

current course offerings, and the envisioned institutional benefits 

of participating in the C2Exchange pilot. Figure 1 presents the goals 

of the partner academic institutions. 

 

Figure 1. C2Exchange academic institutions’ goals. 

The courses each institution receives fills a gap in their current 

offerings because of one or more of the following scenarios: (a) the 

course does not exist at their institution; (b) the course exists but no 

instructor is available to teach the course; (c) there is not sufficient 

student enrollment to offer the course. 

4. C2EXCHANGE FOUNDATION 

4.1 CDS Curriculum and Competencies 
While developing an interdisciplinary undergraduate minor 

program in computational science at a group of Ohio institutions, a 

set of competencies were identified to guide the creation of 

computational science courses and course materials. The 

competency-based approach allowed institutions to design their 

curriculum in a flexible way by integrating portions of the 
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computational science materials into existing courses, creating new 

courses focused on computational science, or doing a combination 

of the two. 

Maintained by OSC on the HPC University website, the 

competencies were created by the participating faculty and then 

reviewed by a business advisory committee that offered some 

advice on topic emphasis and breadth. Since that time, a number of 

courses and instructional modules have been developed and tested 

in a variety of instructional formats. The top-level competencies 

resulting from this work are shown in Figure 2. Each top-level 

competency area has recommended content and learning 

objectives. Figure 3 presents the Area 1: Simulation and Modeling 

content [5]. 

 

Figure 2. Top level computational science competencies. 

 

 

Figure 3. Computational science competencies — simulation 

and modeling subareas. 

4.2 Blended Education 
An online course on parallel computing offered through a 

partnership between XSEDE and UC Berkeley initially was offered 

as a Massive Online Open Course (MOOC). XSEDE’s evaluation 

of this initial offering was consistent with the research indicating 

that MOOCs were ineffective and resulted in very high dropout 

rates and poor learning outcomes [6]. XSEDE’s course was 

subsequently offered as a Small Private Online Course (SPOC) 

with collaborating faculty from a variety of higher education 

institutions that offered the course for credit. 

This subsequent offering using a blended learning approach was 

found to be an effective educational model for teaching 

computational science courses at a variety of institutions. The 

lecture materials are delivered as online videos followed by quizzes 

to gauge student comprehension. Computing exercises are 

completed by all students to apply the knowledge gained in the 

lectures. Students may also complete a final project where they use 

the parallel computing techniques reviewed in the class to an 

application of their own choice. Local faculty members serve as 

advisors to these students and were responsible for grading as well 

as altering exercises as they saw fit for their students. 

The advantages of this model are the course materials are readily 

available and the local instructors can offer the course with a 

minimum of preparation time. Students gain by being offered a 

course that was not previously available at their institution. The 

face-to-face component enabled students with a weaker computing 

background to gain the help they needed to complete the 

assignments. Moreover, keeping the classroom environment gives 

the students the focus they needed to complete the course. This 

offering had 91% completion rate compared to the MOOC with 

only 5% completion rate. 

5. COURSE DEVELOPMENT AND 

DELIVERY 
In the C2Exchange pilot project, the participating institutions 

agreed to offer one course and participate as a recipient of at least 

one of the courses offered by the other consortium members. Each 

institution will take the lead in creating the first version of each 

course and agree to have their faculty be the local instructor for 

courses led by other institutions. Each institution will work with 

their administration to institute a formal minor or certificate 

program in computational science that uses both their local courses 

and the shared, online courses as part of the curriculum. 

The courses offered during the pilot are drawn from the 

undergraduate competencies identified in Figure 2 and available at 

HPC University [5]. Initially only four courses will be offered to 

provide enough time for adapting courses to be delivered as a Small 

Private Online Course and to offer each course more than once for 

an effective evaluation. 

Introduction to Modeling & Simulation is a 4-credit course that 

introduces the principles of modeling and simulation combined 

with an introduction to programming principles and skills using 

Python. It covers the construction, development, and study of 

mathematical representations of different classes of models; basic 

examples; techniques for fitting a function to an experimental data 

set; and selected case studies are included. This course may be 

offered to students well into their STEM major who are interested 

in developing computational skills. 

The primary goal of the course is to introduce basic concepts of 

computational science to a diverse student body. The aim is not to 

produce experts in computational science but to provide the tools 

and skills that can benefit the personal and professional lives of 

individual and allow then to better collaborate with computational 

scientists. The course is targeted to students of all majors. 

Computational Linear Algebra topics include Review of MATLAB 

and Basic concepts from Linear Algebra I; Cholesky 

Decomposition; Singular Value Decomposition; Principal 

Component Analysis; Matrix Approximation; Maximum 

Likelihood (Linear and Logistic regression); Support Vector 

Machines; Clustering algorithms, Gaussian Mixture Models; 

Dimensionality reduction techniques; and as time permits, 

applications. Most STEM majors are required to take a linear 

algebra course for their degree programs. Infusing more 

computation into their background through topics involving 

computational linear algebra will broaden their training and help 

prepare them for graduate and professional schools as well as the 

workforce. 

The course was renamed Matrix Methods for Data Science and 

Machine Learning and will be offered for Mathematics, Computer 

Science, Physics, and Engineering majors at Morgan State 

University; this will result in students being better prepared to 

confront emerging challenges of a new data-driven world and to 
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respond to the workforce needs; the course will open doors for 

graduate work in mathematical and computational sciences 

graduate programs and job opportunity in Data Science, Machine 

Learning, and AI fields. 

Introduction to Computational Chemistry and Molecular Modeling 

is comprised of lectures and labs to introduce the concepts of 

computational chemistry and molecular modeling and their 

applications in chemistry and biochemistry. This course is mainly 

for upper level undergraduate students of chemistry and biology 

majors, but students in any STEM discipline can take this course. 

The students in this course will learn how to use computers in 

chemistry as well as related fields like molecular sciences, drug 

design, biomedical, and materials science. 

The Transdisciplinary Data Visualization learning experiences are 

designed to provide students with the procedures and principles for 

the design and deployment of interactive visual representations of 

large professionally collected datasets of societal relevance. The 

pre-requisite is a senior academic status with prior statistics or 

computing course at 200 level or above. The course is to be 

optimized for 4-week, 8-week and normal semester durations as 

well as face-to-face and online learning environments. 

The courses reflect a blend of core competencies for an 

undergraduate computational science certificate program as well as 

the expertise of our partners and are based on currently offered 

courses to reduce development time. Introduction to Modeling and 

Simulation, Data Visualization, and Computational Linear Algebra 

are foundational courses for any computational science program, 

while Computational Chemistry and Molecular Modeling is a 

discipline specific course. 

Through course development discussions, the syllabi and materials 

for the courses are reviewed collectively prior to implementation. 

Thus, all participating institutions are providing input on content 

and identifying how the material will fit into their curriculum. 

Table 1. Courses received each year. 

 Fall 

2019 

Fall 

2020 

Fall 

2021 

Modeling & Simulation x x x 

Matrix Methods Machine Learning  x x 

Computational Chemistry x x x 

Data Visualization (Winter term)   x 

 

6. GOVERNANCE — MANAGEMENT 

AND OWNERSHIP 
Providers such as XSEDE, Virtual School of Computational 

Science and Engineering, and the Great Lakes Consortium Virtual 

School successfully offer multi-site training and blended online 

courses in Parallel Programming and other High Performance 

Computing topics. However, their course offerings don’t fully 

support the goals of C2Exchange. 

1. They offer a just a few courses and don’t cover all the topics 

needed to develop a CDS minor for STEM majors. 

2. The sites or receiving institutions do not influence what or 

when courses are offered, thus making it difficult for local or 

receiving sites to plan out their curriculum offerings. 

3. There isn’t knowledge exchange between the providers and 

the participating sites, thus lacking intentional capacity 

building at the receiving sites. 

The C2Exchange is designed to create a scalable network of 

institutions that can collectively offer CDS minors, concentrations, 

or certificates with minimal investment. The academic institution 

partners collaboratively create and maintain a multi-year plan 

identifying what courses will be offered, when the courses will be 

offered, and who will be the lead for each course. The active 

management role by the academic institution partners provides the 

potential for stable CDS curriculum offerings at their institutions 

and a pathway to the implementation of minor and certificate 

programs. 

Without receiving credit, it will be difficult to recruit students to 

enroll in the course, and there would be little incentive to complete 

the course. Each of the participating institutions has mechanisms 

for setting up courses for credit as long as there is a faculty member 

responsible at the receiving institutions. How the courses are listed 

in the catalog vary depending on whether there is an existing course 

or there are options to offer it as a seminar or special topics course 

during the initial pilot. To date, no impediments at the lead or other 

institutions offering the courses have been encountered. The 

development of a C2Exchange Memorandum of Agreement or 

similar agreement is being explored to ensure courses continue to 

be offered. 

7. EVALUATION 
C2Exchange is employing a robust evaluation designed to provide 

formative information to guide program improvement as well as a 

summative assessment of program effectiveness and impact. The 

ultimate goal of the evaluation is to validate and document the 

effectiveness of the model exchange for enabling CDS minor and 

certificate programs and disseminate findings through publication 

and presentation. The evaluation will utilize a Values-Engaged 

Educative Approach (VEE) [9]. The VEE approach, developed 

with NSF-EHR support, defines high quality STEM educational 

programming as that which effectively incorporates cutting edge 

scientific content, strong instructional pedagogy, and sensitivity to 

diversity and equity issues. In the VEE approach, a key role of the 

evaluator is to work closely with program implementers to promote 

their understanding of program theory, implementation and impact. 

The evaluation is designed to answer four questions: 

1. Implementation: Is the C2Exchange project being 

implemented on schedule and as planned? 

2. Effectiveness: Are key components of the C2Exchange model 

(e.g. enrollment, retention, curriculum development, course 

exchange, Annual Project Meeting, etc.) operating effectively 

and for whom? How might they be improved? 

3. Impact: What outcomes (e.g. scientific impact, gains in 

scientific knowledge, improved technical skills, certification, 

student employment outcomes, increased institutional 

capacity, etc.) are associated with participation in the 

C2Exchange programs? How does impact vary across groups? 

What is the value-added of participation in the C2Exchange 

program? 

4. Institutionalization: How and to what extent are elements of 

the C2Exchange programs becoming institutionalized to 

ensure sustainability of program components? What 

opportunities and barriers exist? 
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Two rounds of evaluation have been conducted with the exchange 

partners to cover the fall semester offerings of 2019 and 2020. The 

survey found that faculty view C2Exchange participation as a 

valuable professional development activity with added benefits for 

local students and respondents generally report higher levels of 

experience in advanced computing areas compared to 2019. 

A survey respondent commented, “The C2Exchange has provided 

excellent professional learning experience for me. The Exchange 

Model is being expanded at my institution in a way to promote 

knowledge sharing, trust, reciprocity, and collaboration.” 

We hope that with expansion of exchange we are able to measure 

student impact directly in our future work. 

8. CONCLUSION 
The pilot so far has demonstrated that the C2Exchange facilitates 

the exchange of strengths in the computational and data science 

curriculum available at the partnering institutions. Requirements 

for governance and inter-institutional agreements are being 

explored, and the initial implementation structures will be 

determined by the end of the pilot in summer 2022. 
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ABSTRACT 
Responding to the growing need for discipline-specific computing 

curricula in academic programs, we offer a template to help bridge 

the gap between informal and formal curricular support. Here, we 

report on a twenty-contact-hour computing course developed for 

economics majors at Texas A&M University. The course is built 

around thematic laboratories that each include learning objectives, 

learning outcomes, assignments, and assessments and is geared 

toward students with a high-school level knowledge of 

mathematics and statistics. Offered in an informal format, the 

course leverages the wide applicability of the Python programming 

language and scaffolding offered by discipline-specific, hands-on 

activities to introduce a curriculum that covers introductory topics 

in programming while prioritizing approaches that are more 

relevant to the discipline. The design leverages technology to offer 

classes in an interactive, Web-based format for both in-person and 

remote learners, ensuring easy access and scalability to other 

institutions as needed. To ensure easier adoption among faculty and 

offer differentiated learning opportunities for students, lectures are 

modularized to 10-minute segments that are mapped to other 

concepts covered during the entire course. Class notes, lectures, and 

exercises are pre-staged and leverage aspects of flipped classroom 

methods. The course concludes with a group project and follow-on 

engagements with instructors. In future iterations, curriculum can 

be extended with a capstone in a Web-based asynchronous 

certification process. 

Keywords 
Python, Cybertraining, Google Colab, Economics, Cyber 

infrastructure (CI) 

1. INTRODUCTION 
The success of broadening participation in computing efforts relies 

on effectively developing a continuum of informal and formal 

learning environments for computing instruction. Simultaneously, 

we have to offer programming education that should be tailored to 

the needs of the students based on their discipline and level of 

commitment, rather than apply a one-size-fits-all approach. Indeed, 

recruitment and engagement can be improved by offering 

computing training in which examples and exercises are tailored to 

the academic and professional interests of the student body. 

Scaffolding can be achieved by adopting a tailored approach that 

focuses on a subset of topics that lead to a discipline-relevant final 

project that offers a feeling of accomplishment. The programming 

language, learning platform, and technologies should be coupled 

with continuing activities to encourage the interested learner to 

continue the process well beyond the duration of the activity. 

Simultaneously, we have to teach in incremental modules that let 

students solve small problems that are tied to real-world examples. 

To benefit the larger community, we should incorporate Web-based 

interactive computing avenues that ensure scalability and 

reproducibility at the core. Finally, the approach should be 

grounded in best practices in cyberinfrastructure technologies and 

reviewed pedagogical approaches. Such an approach should ideally 

not be limited by the computing technologies that are available to 

the students, but rather focus on making the current generation of 

technologies accessible to the students. 

Texas A&M High Performance Research Computing has a legacy 

of offering informal courses geared toward adoption of CI practices 

in the regional researcher community [1, 4, 6, 7]. These have 

extended from our “short courses” that cover several 

cyberinfrastructure topics using hands-on exercises. In previous 

works, we have studied means to promote programming at the early 

undergraduate level [2], relied on visualization to study 

cybersecurity, and have explored opportunities to expand 

computing to the middle and high school levels [3]. With a view 

toward improving student learning in remote learning 

environments, we have explored pedagogical approaches such as 

our peer-moderated and peer-taught “Primers” [5]. We have built 

software platforms to facilitate the use of CI technologies to 

improve reproducibility in the sciences and coupled them with 

technology enabling “Tech labs” to improve CI adoption in 

research [7]. These efforts have been tied into asynchronous 

approaches that leverage interactive computing and social media to 

further CI technology adoption at Texas A&M University.  
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As computing becomes more prevalent, programming is 

increasingly viewed as a critical career skill. Academic programs 

have moved to offer their graduates opportunities to develop skills 

in languages such as Python, R, MATLAB, or C++. Academic 

programs that do not have courses that directly tie into computing 

have relied on informal or certificate-based programs to help their 

students gain these skills. Here, we use our experience in offering 

CI-based training to develop a structured approach to teach “Python 

Programming” to graduate students in the Economics program at 

Texas A&M University. A template for adoption at institutions at 

other sizes is included here. 

2. METHODS 
The course was designed to be taught live in a mixed in-person and 

virtual hybrid modality and was structured to use active-learning 

methods. Curricular materials could be accessed via a Google 

Classroom (via Google Drive) for easy sharing. A course template 

was developed with unique branding and thematic elements to 

ensure that the course has a unique identity and to develop a sense 

of familiarity among students as we revisited old concepts. To 

ensure continuity during the classes, slide decks for the course were 

structured with learning objectives, concepts visited theory, hands-

on exercises, and take-home assignments. To facilitate hands-on 

exercises while ensuring portability and equitable access to all 

students, Python examples and exercises were delivered in the form 

of Jupyter Notebooks as shown in Table 1, hosted in a Google Drive 

(students got a copy), and edited and run in Google Colab. The 

Notebooks contained a mix of informative lecture elements, 

interactive examples, and exercises. With a view toward student 

engagement, exercises used current real-world examples and relied 

on visualization approaches. Scaffolding was achieved by 

including a detailed description of topics covered in each coding 

block along with pointers to previously covered concepts. 

Assessments and assignments were offered using the notebooks. 

Curricular materials including presentation slides were offered 

before the class, allowing students to work on the exercises 

asynchronously. To facilitate a review of the previous thematic 

section, a video covering the major topics was offered before the 

lesson. Google Classroom allowed for seamless integration of all 

these technologies, with automatic distribution of the Jupyter 

Notebook files containing the course materials as well as recording 

student progress. From the students’ perspective, this solution 

allowed the use of only a few clicks to both navigate the course and 

launch the Colab editor to do their coursework. 

An initial list of course topics were identified via polling, informed 

discussions, and the general format used in Python education. 

Topics were developed in consultation with the Economics 

program at Texas A&M. Learning objectives, learning outcomes, 

and assignments were developed for each section. At its core, the 

format was modularized to enable easy adoption in teaching 

scenarios. Toward achieving this goal, the identified course topics 

were divided into thematic sections as described in Table 1. Each 

thematic section included three 50-minute lectures with hands-on 

exercises. Each lecture was divided into ten-minute modules that 

were mapped to other modules in the course, helping revisit topics 

later in the course. The last two thematic sections covered several 

topics introduced during the course. A detailed registry of each 

module’s dependency on previous modules was developed. As 

such, a future instructor could mix and match these modules to 

create a new course or grab all the modules that lead to an advanced 

topic. The course included mandatory and optional assignments for 

each minute lecture. Assignments gradually built up in difficulty 

level, offering opportunities for differentiated learning. Students 

could choose to work on the take-home exercises or see the 

solutions by double-clicking on a cell. Participation was tracked at 

multiple points throughout each day, which determined course 

pass/fail for students. To facilitate student retention and 

participation, office hours were offered by the instructors during 

the week. To facilitate continued engagement on the conclusion of 

the course, HPRC leveraged its “Bring Your Own Science,” a one-

on-one researcher engagement service to work with student groups 

on their group projects. Several measures were considered to ensure 

that students participating using the remote option had an enriching 

experience. Adopting the best practices developed in our “Primers” 

and “Technology Laboratories” approaches, we maintained live 

chat via a peer moderator, online help offered via breakout rooms 

on Zoom, and the option to participate in remote office hours. 

An important aspect of the development of this course was that it 

was not the sole work of any individual, but rather a collaborative 

effort of several instructors. This allowed for a diverse offering of 

teaching styles and helpd to ensure that relevant examples would 

be included at all stages of the course. 

Table 1a. Concepts covered during the course. Each thematic 

section includes three 50-minute lectures that have 

accompanying, in-class, hands-on exercises and take-home 

assignments. 

Thematic Section Topics Covered 

Introduction 

Google Colaboratory, Variables 

Files, Data Types 

Dates and Times, how to use Functions, User 

Input 

Algorithms 

Operations 

Blocks, Control Structures 

Control Structures, Errors 

Data Structures 

Lists and Strings 

Lists, Loops, Dictionaries, Classes 

Arrays 

Data Tools 

Python libraries, Scatter plot, Line plot, 

Subplot, Candlestick plot 

Series, Index, Values, DataFrame Creation 

DataFrame Entry Retrieval, Filtering, Sorting 

Data Analysis 

DataFrame histogram, Missing and duplicate 

data handling 

Merge DataFrame (left, right, outer, inner) 

Linear regression, Train data, Test data, 

Predict, Accuracy 
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Table 1b (continuation of Table 1a). 

Thematic Section Topics Covered 

Data Scavenging 

Web-scraping, HTML, Tags, Browser Inspect 

Requests library, FRED API (short for 

Application Programming Interface)  

Beautiful Soup 

 

3. RESULTS 
The course was offered in Fall 2021 to the first-year graduate 

students enrolled in the Economics program at Texas A&M 

University. Enrollment was limited to 70, with the majority of 

students preferring to attend the sessions in-class. 69 students 

attended the first day of classes, with 47 students completing the 

course. The course was evenly structured in two learning 

components. In the first half of the course, we offered three 

thematic sections that covered the Python programming basics over 

ten contact hours. The second half covered different applications of 

Python for students of Economics over another ten hours. This 

format lent the course to two continued education credits. Details 

of each section are described in Table 1, and the course syllabus is 

included as supporting information. The course culminated with 

capstone exercises that used the Beautiful Soup library to “Web 

scrape” a website with economic data and used finance and plotting 

libraries to generate candlestick charts. These exercises offered an 

opportunity to reinforce concepts that the participating students had 

learned during the thematic sections. 

3.1 Learning Outcomes 
3.1.1 Orientation and Introduction 

● Motivate the use of Python for Economics 

● Familiarity with Jupyter IDE via Google Colab 

● Understand general programming concepts 

● Know what Python is, where it comes from, how to use 

3.1.2 Programming Skills 
● Import from external libraries (e.g. numpy) 

● Use the assignment operator 

● Inspect variables with print() 

● Read and write a simple file  

● Handle common types of data 

● Inspect variables with type() 

● Using functions with arguments 

● Handle dates and times with numpy.datetime 

● Get user input 

● Apply mathematical rules (order of operations) 

● Apply logical rules (comparisons) 

● Define control structures with whitespace 

● Use functions, loops, and conditionals to implement 

algorithms 

● Handle errors 

● Organize data into simple data structures (string, list, 

array) 

● Interact with data structures (index, slice, mask) 

● Integrate data structures into program control (loops, 

array operations) 

● Organize data into advanced data structures (dictionary, 

class) 

● Read HTML to locate data in web page code 

3.1.3 Data Skills 
● Visualize data with Matplotlib 

● Create scatter plot, color map, best-fit-line 

● Organize data with Pandas data structures 

● Manipulate data with Pandas data methods 

● Handle missing data 

● Analyze data with Pandas data methods 

● Create linear regression models with Scikit-Learn 

● Retrieve data from the Web  

● Parse HTML format to extract data 

● Organize Web-scavenged data into data structures 

● Make observations about data and adapt algorithms to 

match 

Table 2a. In-class exercises and take-home assignments for 

additional learning. * indicates a take-home exercise. 

Topics and exercises covered Topics and exercises covered 

Example Assignment National Economics Data* 

Hello World Classes demo* 

Your First Variables Talking Cats* 

Variables Quiz* Array Basics 

Text Files (preview) Array Operations* 

Common Variable Types Scatter Plot 

How to use Functions Line Plot 

Datetime Subplots 

The Droid* Color Plots 

Data Type Quiz* Series 

User Input* Creating a DataFrame method 

Story Generator* Retrieve and Drop Rows 

User Input Quiz* Select, Filter, and Sort Rows 

Arithmetic and Comparisons Read/Write files 

Units of Time* Group data 

Operations Quiz* DataFrame plots and histogram 

Functions Missing and duplicate data* 

Conditionals Merge data* 

More Conditionals Pandas DataFrame* 

Compute Pi* Matplotlib Pandas* 

Control Structures Quiz* Candlestick Plot* 

Errors and Files* Linear Regression 

Calculator HTML 

String Index Pandas HTML 

List Properties Requests 

List Logic FRED API 

List Loops Regular Expression 

Capstone for Lists and Strings Beautiful Soup and Pandas for 

web-scraping  
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Table 2b. (Continuation of Table 2a). 

Topics and exercises covered Topics and exercises covered 

Capstone with Dictionaries 

and Libraries 

Candlestickplots 

 

3.2 Description of Course Content by 

Thematic Section 
3.2.1 Introduction 
Students were first introduced to Python using the Jupyter 

Notebook provided by Google Colaboratory. These exercises built 

up their understanding of programming concepts and Python 

language syntax. The most important topics were covered in class, 

while a few were provided as take-home assignments. All of the 

exercises were directly related to future assignments that depended 

on these fundamentals. Particular emphasis was placed on the 

Numpy datetime64 data type as an example to support the future 

lessons on time series data. The use of files was introduced early 

because they would be critical for data analysis exercises later. 

Modules were introduced early despite not being traditionally 

considered a fundamental topic because of their massive 

importance in future lessons. Students were shown how modules 

could be imported (i.e., import <module_name>) and incorporated 

within their own code. In this course, the Numpy (the 

module/library introduced earlier) arrays were extensively used to 

generate data in Pandas and the Matplotlib exercises. 

3.2.2 Algorithms 
Students practiced with several topics that share a dependence on 

the Python language syntax element called indentation. These are 

the control structures: functions, conditionals, and loops. In 

practice, control structures are primarily used for the 

implementation of algorithms, which is not a primary focus of 

Economics research. Thus, these topics were less connected to 

future exercises. However, we still made use of them, when 

possible, to reinforce that learning. The take-home exercises for this 

session reinforced the use of files and built upon one another to 

form a sort of mini-lesson in themselves. 

3.2.3 Data Structures 
The most relevant topic for Economics research is the Data 

Structure, which is a strategy for keeping large amounts of data 

organized for effective processing. In Python, these structures are 

the List, Dictionary, and Array (with NumPy). These exercises 

depended on existing knowledge of Python fundamentals, most 

especially data typing and interacting with files. The exercises here 

were in the next session to build a useful network of tools that can 

handle time series data. 

3.2.4 Data Tools 
Students were introduced to two commonly used data handling 

libraries: Matplotlib [10] for visualization and Pandas [9] for data 

structure. Matplotlib was introduced first, leaning heavily on the 

Arrays lesson previously covered in order to handle the data that 

was to be visualized. The example data to be visualized was 

selected from publicly available Housing market data for relevance 

to Economics. This same data would be revisited in a future session 

featuring linear regression tools. Pandas includes two data 

structures, the simpler of which is the Series, a one-dimensional 

labeled array, and multiple Series together form a DataFrame, 

which is the most used structure. These data structures directly 

combined the elements taught in the previous session, especially 

the lessons on Dictionaries and Arrays. The primary kind of data in 

Economics research is a time series, so an emphasis was placed on 

those by including them as examples in many lessons. This built 

upon the Numpy [8] datetime64 introduced in the first session. This 

data type integrates with the Pandas [9] dataframe custom index 

feature, which is a staple method of handling time series data. The 

time series concept was revisited in an advanced exercise, the 

candlestick plot, a time series finance data visualization from the 

popular mplfinance [11, 12] library that builds upon the Pandas 

time series data structure. 

3.2.5 Data Analysis  
In addition to the data structure provided by the Pandas library, 

students were taught how to perform several basic data analysis 

operations using the same library. This included manipulation of a 

dataset to collect data into groups, add and remove elements, and 

filter to search for elements meeting certain logical criteria. This 

built upon concepts introduced in the second session where the 

operations that were previously used with conditional control 

structures were recycled for this new purpose. To tie in with 

economic research, the example data for manipulation practice in 

this session were chosen to be a sample of National Economic Data, 

which reprised the data set previously introduced in a Dictionary-

focused take-home assignment. 

Linear regression is one of the primary techniques economists use 

to determine correlations between different variables. We 

introduced students to linear regression using visualizations and a 

practical example. Students were also introduced to a machine 

learning package (Scikit-learn) and its functions. Apart from Scikit-

learn, the rest of the code was built upon the modules that students 

learned during preceding sessions (Pandas, NumPy, and 

Matplotlib). A Housing Price dataset example was used to give 

participants a feel for visualizing, cleaning, and manipulating real-

world economic data using Pandas. 

3.2.6 Data Scavenging 
Nowadays, most data, for example economics data, live online. 

Web scraping is an efficient method to collect data for research, 

sales, and marketing, popularity comparison, etc. Students were 

introduced to common Web data concepts including HTML basics, 

HTTP requests, and the JSON data structure. These naturally built 

upon previously taught skills, especially functions and data 

structures, including Pandas. 

Federal Reserve Economic Data (FRED) [13] is a public resource 

hosted by the St. Louis Federal Reserve bank. This is commonly 

used by economics researchers as a free source of economics data. 

This specific API was also requested by faculty in the department. 

FRED API is a traditional Web API which can be handled easily in 

Python. Data is downloaded in the JSON format, which integrates 

easily into the Python dictionary data structure. This example was 

used as an advanced exercise building upon previous Python 

concepts while also priming students for their future studies using 

the same data source. 

While APIs offer a straightforward means to retrieve data, we note 

that most websites do not have APIs for data extraction. For more 

general Web-data extraction, we covered the Beautiful Soup [11] 

library. Beautiful Soup is a Python library to pull data out of HTML 

files. The example use case for this lesson was salary statistics of a 

given job position in one or more cities. 
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3.3 Feedback from Economics Graduate 

Students 
Surveys released each week collected student impressions of the 

material covered that day. Student impressions were generally 

positive about the relevance of the materials, interest in the topics, 

and opportunities offered by the course. There was a significant 

interest in converting this learning opportunity into a certificate that 

could be digitally displayed on professional social media sites such 

as LinkedIn. The students were able to follow along and use the 

Google Classroom platform effectively. From the survey 

responses, the most requested change was to slow down, because 

the syllabus was too ambitious in its pacing. Incorporating this 

request into the course plan resulted in omission of the capstone 

project and a few other exercises scattered throughout. We were 

pleasantly surprised to receive no comments criticizing the 

relatively advanced nature of the API data retrieval and Web-

scraping exercises. 

For the learning outcomes, 100% of the students who participated 

in the survey agreed that they were able to learn what they expected. 

Take-home assignments for continued learning were read but not 

graded. We observed that assignments were largely attempted the 

night before the previous session. Given the opportunity, we 

learned that offering solutions on the Web platform may dissuade 

students from working on the problems. To encourage more 

discussion, this feature was removed in later weeks. Students were 

now asked to attend office hours to get the solutions to the advanced 

problems. As such, student activity with regard to take-home 

assignments for continued learning was found to be unenthusiastic. 

Many students did not attempt the at-home exercises, citing that 

their other courses kept them too busy. This is an unfortunate but 

predictable result of the choice to do participation-only grading. 

This in turn had a negative impact on attendance at our hours, too, 

since the harder take-home assignments were designed to foster a 

discussion during office hours. In the future, homework should not 

represent a significant part of the curriculum unless true grading 

can be offered. 

4. CONCLUSION  
During this course, students were introduced to fundamental 

competencies and subject-specific applications in Python 

programming. This 20-contact-hour course built on an easy-to-use 

Web-based platform and represented a scalable opportunity for 

programming language instruction targeted at students of specific 

disciplines. Here, we showed that as we work to broaden 

participation in computing, tailoring examples and exercises to the 

interests of the student body increases student-engagement and 

facilitates student learning. The format gave us opportunities to 

include modules that increased awareness of cyberinfrastructure 

practices such as code optimization and parallel programming that 

are common in research computing. This will dovetail into our 

current series of HPRC courses that cover topics in Artificial 

Intelligence and Machine Learning. A tailored approach can focus 

on a subset of topics that lead to a discipline-relevant final project, 

which offers a feeling of accomplishment while serving as a 

capstone exercise in a certification-styled effort. An asynchronous 

version of the course is under development, which will include 

videos that accompany class slides and the Google Colab 

notebooks. This version will be made available to the community 

for wider adoption. A version with mandatory assignments and a 

capstone will be offered for certification. 

5. SUPPORTING INFORMATION 
The slide decks and some of the training materials used in this study 

are available to the community via the Texas A&M HPRC website 

[14]. The course syllabus is included as supporting information. 

Please send us feedback about your adoption experience via an 

email to help@hprc.tamu.edu. 
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APPENDIX: REPRODUCIBILITY 
 

Figure 1. “Hello world” notebook in Google Colab, first few cells. 
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ABSTRACT 
Given the pivotal role of data and cyberinfrastructure (CI) in 

teaching and scientific discovery, it is essential that researchers at 

small and mid-sized institutions be empowered to fully exploit 

them. While access to physical infrastructure is essential, it is 

equally important to have access to people known as Research 

Computing Facilitators (RCFs) who possess a mix of technical 

knowledge and interpersonal skills that enables faculty to make the 

best use of available computing resources. Meeting this need is a 

significant challenge for small and mid-sized institutions that do 

not have the critical mass to build teams of RCFs on site. 

Launched in 2017, the National Science Foundation (NSF) funded 

Northeast Cyberteam (NECT) built a program to address these 

challenges for researchers/educators at small and mid-sized 

institutions in four states — Maine, Massachusetts, New 

Hampshire, and Vermont — while simultaneously developing self-

service tools that support management and execution of RCF 

engagements. These tools are housed in a Portal called 

Connect.cyberinfrastructure and have enabled adoption of program 

methods by the broader research computing community. Initiated 

in 2020, the NSF-funded Cyberteam to Advance Research and 

Education in Eastern Regional Schools (CAREERS) has leveraged 

the NECT methods and tools to jumpstart a program that supports 

researchers at small and mid-sized institutions in six states and lays 

the groundwork for an additional level of support via a distributed 

network of experts directly accessible by the researchers in the 
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region. This paper discusses findings from the first four years of 

NECT and the first year of CAREERS. 

Keywords 
Workforce development, Research computing facilitator, Project 

portal, Ask.CI, CNCT.CI, Connect.Cyberinfrastructure, 

Ask.Cyberinfrastructure, Northeast Cyberteam, CAREERS 

Cyberteam 

1. INTRODUCTION 
Given the pivotal role of data and cyberinfrastructure (CI) in 

teaching and scientific discovery, it is essential that researchers at 

small and mid-sized institutions be empowered to fully exploit 

them. Access to physical infrastructure is essential, and equally 

important is access to people known as Research Computing 

Facilitators (RCFs), who possess a mix of technical knowledge and 

interpersonal skills that enables them to help researchers and 

educators use CI resources efficiently [1]. 

Providing access to RCFs can be challenging for small and mid-

sized institutions for several reasons: (1) RCFs are in short supply 

and are difficult to recruit and retain, especially for institutions 

where budgeting for even one position is challenging to motivate; 

(2) it is impossible for a single RCF to have sufficiently broad 

expertise to cover all disciplines needing support; (3) if a lone RCF 

on campus changes jobs, research and education projects dependent 

on that RCF may slow or grind to a halt. 

Launched in July 2020, the Cyberteam to Advance Research and 

Education in Eastern Regional Schools (CAREERS) aims to 

develop, implement, test, and refine a distributed approach to 

making research computing more accessible to researchers at small 

and mid-sized institutions via a regional collaboration. The 

CAREERS program region covers six eastern states: Connecticut, 

Delaware, New Jersey, New York, Pennsylvania, and Rhode 

Island. To do so, CAREERS builds on ideas developed by prior 

Cyberteam initiatives — the NSF-sponsored Northeast Cyberteam. 

Initiated in 2017, the Northeast Cyberteam Program (NECT) [2, 4, 

5] is a collaborative effort across Maine, New Hampshire, 

Vermont, and Massachusetts that helps researchers at small and 

mid-sized institutions who are using advanced computing 

resources, while simultaneously training a new generation of RCFs. 

The program combines direct assistance to computationally 

intensive research projects; experiential learning opportunities that 

pair experienced mentors with students interested in research 

computing facilitation; sharing of resources and knowledge across 

large and smaller institutions; and development of tools that enable 

efficient oversight and facilitate replication of these ideas. 

One of the most fundamental skills of successful facilitators is their 

ability to quickly learn enough about new domains and applications 

to draw parallels with their existing knowledge and to help solve 

the problem at hand. Recognizing this, a key concept in training 

facilitators through experiential learning is providing tools to 

enable self-service learning. The Connect.cyberinfrastructure 

(Cnct.CI) Portal is used to access the self-service learning resources 

that provide just-in-time information delivery to participants as 

they embark on projects in unfamiliar domains [6]. It also serves as 

a repository for best practices, tools, and techniques developed 

during a project. The NECT program places intentional emphasis 

on capturing and disseminating best practices to leverage and build 

on existing solutions whenever practical. 

CAREERS leveraged the NECT tools and methods to jumpstart a 

similar program in six additional states. Simultaneously, 

CAREERS will lay the groundwork to provide a new layer of 

support through which professional RCF domain expertise can be 

shared with researchers across the region. Significant learning has 

taken place during the adaptation of the NECT methods and tools 

and is reported here. 

2. NORTHEAST CYBERTEAM — 

METHODS AND TOOLS 
The collaborators in the Northeast Cyberteam [3, 4] recognized a 

diversity of specialized knowledge at various institutions in its 

four-state region, as well as an abundance of researchers at small 

and mid-sized institutions who could benefit from increased use of 

large-scale cyberinfrastructure. However, to do so, these 

researchers would need to overcome barriers such as not knowing 

how to start, whom to talk to, or how to address problems when 

they arise. A typical engagement, which we call a “project,” is 

proposed by a researcher whose computational or data needs have 

surpassed the processing power of their laptop, or who desires to 

apply a new technique (e.g., machine learning) in their work. 

Each project involves a researcher seeking to better utilize 

cyberinfrastructure, a student facilitator, and a mentor with relevant 

domain expertise. This team works together over a period of three 

to six months to help the researcher move beyond the daunting 

inflection point where their needs exceed current computation 

and/or storage resources to a solution that makes effective use of 

new cyberinfrastructure. Student facilitators are recruited from 

institutions in the region and are paid for their participation at a rate 

that is based on experience level and project duration. The projects 

have involved students at a range of skill levels and usually 

represent their first experience with research computing 

facilitation. The exposure of this student cohort to facilitation work, 

and ensuring a positive and empowering interaction, is crucial to 

our goal of expanding the workforce pipeline. Mentors are 

volunteers and are usually professional RCFs from research 

computing groups at larger institutions in the region who have 

subject matter expertise relevant to the project. Mentors are paired 

with student facilitators assigned to a project and work with them 

to develop a strategy to provide direct assistance to the researcher 

in making use of appropriate cyberinfrastructure resources. 

Through this model, students receive training in and exposure to 

facilitation that otherwise would not be available, research projects 

move forward to use advanced cyberinfrastructure, and the 

effectiveness of the mentor is multiplied. The individuals involved 

may all be at the same institution, but in many cases, they are at 

different institutions throughout the region. 

Program direction is set by a Steering Committee that meets weekly 

and is composed of leaders from each of the larger institutions that 

serve as anchors for the program, a Program Manager who 

coordinates day-to-day activity, and key advisors from a few other 

institutions. The Steering Committee approves all projects 

undertaken. For a selection of projects, the Steering Committee 

relies less on soliciting competitive applications from researchers 

(though intellectual merit does naturally play a role in the 

selections) and more on outreach to faculty at smaller institutions 

who can benefit from access to cyberinfrastructure but are either 

unaware of available resources or have given up after a poor 

experience. Care has been taken in sourcing and monitoring 

projects to ensure that they (1) lead to results that might not 

otherwise have been achieved and (2) establish a model for 

engagement that others at the participating institution can follow 

[4]. 
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While most costs go to student support, the NECT also invested in 

active management, including a Program Manager, who keeps the 

flow of projects running smoothly, and steering committee 

members who recruit, qualify, and oversee projects in their home 

states. While the value of program management is often 

overlooked, this investment has been critical to success. It has 

enabled several important outcomes including (1) efficient 

recruiting of projects, students, and mentors; (2) development of 

process, tools, and strategy; (3) effective communication across the 

anchor institutions; and (4) ability to explain the purpose and 

benefits of the program to grant administrators who have 

sometimes expressed initial skepticism about supporting this kind 

of collaboration across institutions. The Program Manager also 

coordinates across the geographically dispersed team of 

participants, who have varying amounts of time to invest in the 

program, and provides leadership to ensure forward progress. 

2.1 Monthly Meetings 
To create a convivial team environment despite the geographic 

distribution of participants, the NECT hosts a monthly Zoom 

meeting in which student facilitators are expected to share their 

experiences with each other and learn about other projects currently 

underway. Since the program is often their first exposure to 

research computing, this gives student facilitators a window into 

the diversity of domains, techniques, and subject matter that 

research computing encompasses, and it provides mentoring and 

networking opportunities with professional RCFs in different 

regions and at differently resourced institutions. It also gives them 

an opportunity to learn how other student facilitators are 

approaching their projects, and it provides support, especially 

during the initial stages of projects, where the learning curves can 

be quite steep. 

At the beginning of a project, after the student facilitator has had an 

opportunity to meet with their mentor and researcher and has a solid 

understanding of the task at hand, they prepare and present a simple 

“launch presentation” that includes brief descriptions of the project, 

goals, timeline, and what they hope to learn. An important 

consideration in the launch presentation is the use of a scaffolded 

template that builds confidence and lowers barriers and anxiety 

around presenting about a topic to which the student facilitator 

might have just been introduced. 

At subsequent meetings, student facilitators give brief verbal status 

updates until, at the end of the project, they present a “wrap 

presentation” summarizing what was accomplished, what was 

learned, and what contributions were made to the self-service 

learning tools and Git repository housed on the Portal. The monthly 

meetings, presentations, and project status updates are intended to 

build camaraderie while giving students additional exposure to the 

world of research computing and facilitation. The results have been 

very positive, with students and mentors offering insights and 

advice to each other both at the meeting and out of band. 

2.2 The Portal 
With so many simultaneous moving parts, NECT needed to 

develop a new tool to manage and organize the Cyberteam projects 

and participants as well as collect and disseminate the expertise and 

knowledge resources required to efficiently complete the projects. 

To serve this need, NECT developed the Cnct.CI Portal [2, 4, 6]. 

The Steering Committee relies heavily on the Portal for 

management of project workflows and capturing project outcomes. 

The Portal advertises projects and assists in recruiting mentors and 

student facilitators. The Portal is also used to access and aggregate 

self-service learning resources that provide just-in-time 

information delivery to participants as they embark on projects in 

unfamiliar domains [6]. There is usually not enough time to enroll 

in a traditional training course or attend a seminar when a new 

domain or application is encountered. Therefore, the goal of these 

learning resources is to reduce the need for direct assistance; reduce 

duplication of effort by adapting and building awareness of 

available documentation, training, application software and 

software utilities; and supplement these resources where there are 

high-impact opportunities. 

A uniform underlying infrastructure is provided by a common 

tagging infrastructure and voting capabilities modeled after crowd-

sourced repositories such as Stack Exchange [3]. This 

infrastructure allows a user to click on a tag from any part of the 

Portal and obtain a listing of all related Portal content, including 

mentor profiles, project descriptions, frequently asked questions, 

and training resources. With a continuously growing and evolving 

list of tags, this creates the opportunity to search for content in a 

granular yet curated manner. This underlying tagging mechanism 

also facilitates mentor matching and identification of targeted 

learning resources. For example, a Cyberteam member seeking 

advice on a particular topic can search by individual tags to obtain 

a listing of all Portal users that have identified that topic as a skill 

in their profile. The voting capabilities are a crowd-sourced 

mechanism to ensure that content stays up to date in the rapidly 

evolving world of research computing where new tools and 

methods are constantly emerging. Participants in the portal can vote 

on certain content to confirm its relevance. Curation by moderators 

ensures removal of obsolete information, often with guidance from 

the voting. 

Many Portal functions have utility beyond the NECT, and the tag-

based skills-matching functions in the Portal benefit from broad 

participation because deep knowledge is widely dispersed 

throughout the research computing community. Therefore, the 

Portal was developed with an eye toward making it possible for 

other communities to adopt it while maintaining their own branding 

and project workflows. This has already happened, with several 

pending proposals planning to use the portal for management of 

their own projects. 

2.3 Expansion 
The NECT enables researchers at small and mid-sized institutions 

in the region to take advantage of cyberinfrastructure as their work 

requires it. Simultaneously, NECT exposes a new generation of 

potential facilitators to the exciting and dynamic field of research 

computing earlier in their careers than most professional research 

computing facilitators came into the practice. As of March 2021, 

the NECT has launched 48 projects at 23 institutions, pairing a 

diverse population of student RCFs with knowledgeable mentors to 

assist researchers and educators in the region. 

As noted previously, the strength of Portal features such as mentor 

matching and aggregation of learning resources grows with the size 

of the population participating. As a result, an active effort to find 

collaborators willing to bring their communities to the Portal has 

been underway for several years [4, 6]. Explorations to expand the 

Portal have yielded opportunities to collaborate with other 

programs focused on workforce development for the research 

computing community, including six Cyberteams and the XSEDE 

Campus Champions program. Representatives from each program 

meet monthly to exchange experiences, prioritize feature requests, 

and curate the tag taxonomy. Opportunities to partner with other 

communities of practice are constantly sought after and welcome. 
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3. LAUNCHING CAREERS 
As noted in the introduction, the CAREERS program was initiated 

in July 2020. It leverages the NECT tools and methods to expand 

the RCF workforce pipeline, train student facilitators, and make 

advanced computing resources more readily available to 

researchers at small and mid-sized institutions in six additional 

states. The CAREERS program is led by one “anchor” institution 

from each state: Yale University (CT), University of Delaware 

(DE), Rutgers University (NJ), Rensselaer Polytechnic Institute 

(NY), Penn State (PA) and University of Rhode Island (RI). Yale 

serves as the PI institute for the grant. The goal for the student 

facilitator program is to complete 72 projects over the three-year 

duration of the grant (on average, four projects per state per year). 

Simultaneously, CAREERS is laying the groundwork for a new 

layer of support which shares domain and professional RCF 

expertise throughout the region. 

The CAREERS Cyberteam adopted the NECT experiential 

learning model and engaged the NECT Program Manager to serve 

as Co-Program Manager, ensuring efficient transfer of knowledge. 

This has been an effective strategy for building a process that brings 

value to researchers at small and mid-sized institutions in a new 

region. It has also provided valuable insights that have led to 

adjustments that will improve the scalability of the NECT tools and 

methods beyond the 10 states (4 in NECT and 6 in CAREERS) 

where they are currently deployed. Some of these adjustments were 

made during the initial design of the CAREERS program, and 

others have been motivated by lessons learned during deployment. 

3.1 Initial Adjustments to the Northeast 

Model 
3.1.1 Program Management 
As noted above, the CAREERS program engaged the NECT 

Program Manager to serve as Co-Program Manager on the 

CAREERS team, partnered with a Co-Program Manager new to the 

process. This approach has yielded several positive outcomes, 

outlined below in the Lessons Learned section. 

3.1.2 Flexible Financial Setup 
The NECT program distributed funding for students equally across 

three states — Maine, New Hampshire, and Vermont, with a 

slightly heavier burden placed on Massachusetts, where there is an 

abundance of small and mid-sized institutions as well as major 

research-oriented institutions. However, with the diversity of 

geography, institution, and population density as well as 

characteristics of institutions in the six states covered by the 

CAREERS program, it is necessary to have a more flexible 

arrangement so that each state can proceed at a rate that is natural 

for the conditions in that state (# of researchers/projects) and 

anchors (capacity to host projects). 

A key decision was to have Yale serve as a “central banker” for the 

payments to student facilitators. We pre-allocated funds for just one 

project per year to each of the other anchor institutions and included 

the corresponding participant support costs in their subaward 

budgets. We then assigned the remaining project participant 

support funding to Yale's budget, where it can be disbursed flexibly 

and appropriately as projects are selected and funded. 

As expected, this has allowed us to put money into the projects that 

need it, wherever they happen to be anchored and whenever they 

happen to start. We have also been able to adjust the funding for 

individual projects to reflect the level of the students and the 

duration of the projects without getting mired in whether a 

particular subaward budget has the right amount of remaining 

funds. Finally, it has allowed us to adapt to a significant amount of 

administrative and policy diversity among the various institutional 

offices (e.g., finance, sponsored projects, and international student 

offices) that we partner with at the institutions involved in the 

program. To cite one example encountered so far, some of our 

anchor institutions may not be able to pay participant support costs 

to their own students — even for training projects on their own 

campuses. However, they can pay the costs for students from other 

schools who participate in those projects, and, it turns out, their own 

students are also permitted to participate, so long as a different 

institution (Yale, in our case) officially oversees the relationships 

with those students and pays them. 

4. LESSONS LEARNED 
Porting an idea from one realm to another always presents 

challenges and requires adjustments. In this section, we highlight a 

few of the lessons that we have learned from the first year of the 

CAREERS program. 

4.1 Portability of the Northeast Cyberteam 

Methods and Tools 
One important takeaway has been how well the Cyberteam 

program developed by the NECT has worked for CAREERS “out 

of the box.” When porting the Cyberteam procedures to 

CAREERS, it was unknown how the differences (e.g., new 

institutions, new steering committee members, new and larger 

region) between NECT and CAREERS would affect the efficiency 

of the process. However, we have been reassured to find that the 

NECT program design adapted quite smoothly. Our new 

institutions have different business processes, internal cultures, and 

resources; and our steering committee is composed of new faces 

who bring fresh perspectives to the idea of a Cyberteam. Yet, far 

more aspects of the Cyberteam process have worked seamlessly in 

CAREERS than have needed adjustment, and we have launched 19 

projects in the first eight months of the program. 

4.2 Active Program Management Facilitates 

Rapid Adoption of Process 
One of the major takeaways from the NECT was the value of the 

Program Manager (PM). Program management by steering 

committee members at the institutions anchoring the program in 

each state was instrumental in recruiting projects, students, and 

mentors and in advocating for the program within the anchor 

institution and the surrounding schools. The NECT Program 

Manager organized the development of process, tools, and strategy 

as well as communications among program participants and in the 

research computing community. 

CAREERS incorporated this knowledge into its program in two 

ways. First, since the Cyberteam concept and infrastructure had 

already been established by the NECT, CAREERS was able to 

function efficiently with 25% of the program management time 

spent in the first year of the NECT. Secondly, we elected to divide 

the program management time over two Program Managers instead 

of one. With a larger region and a goal of almost twice as many 

projects, it was necessary to have more than one set of eyes 

overseeing the program management. For example, early in 

CAREERS, through our marketing efforts, we had an unexpectedly 

robust but very welcome influx of student facilitators and found 

ourselves in the enviable position of needing to quickly match 

them, based on interests and skills, with nearly two dozen projects. 

Considering this, dividing the work between a team of Program 

Managers ensured CAREERS got off the ground quickly and 

operated smoothly. Onboarding the second co-PM also efficiently 
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exposed areas on the Portal where clarification/documentation was 

necessary. Having co-PMs also created a sense of camaraderie, and 

the Co-PMs were able to thoughtfully consider situations and adjust 

the process and tools as necessary. On the flip side, the other 

steering committee members were less involved with overall 

program management than their counterparts on NECT because 

there was more delineation between the anchor institution lead role 

and program manager role on the steering committee. 

4.3 Shift in Steering Committee Role 
When adapting the NECT methods to the new CAREERS program, 

we experienced a natural shift in the relationship between the 

steering committee and the NECT methodology. The NECT 

steering committee, having invented the methods, knows the 

procedures intimately and possesses an inherent sense of ownership 

over the process of running it. On the other hand, the CAREERS 

steering committee was tasked with learning the NECT process and 

how it works. As the NECT procedures and concept were ported 

into the new program, this led to a teacher-learner paradigm 

between the Program Managers and the steering committee that 

was not present for the NECT program. One way this difference 

was apparent was in the process of onboarding the new CAREERS 

steering committee. Having not had a direct hand in designing the 

Cyberteam project procedures, the new steering committee 

members identified several opportunities to improve the 

documentation of the procedures as well as areas where the 

methodology itself could be made more explicit and, therefore, 

easier to learn and follow. 

4.4 Systematic Outreach Yields Robust 

Results 
With established marketing materials, process, methodology, and 

proven results (i.e., NECT’s successful experience) at the outset, 

CAREERS was able to tap into large numbers of students at two of 

its anchor schools: Rutgers University and the Rensselaer 

Polytechnic Institute. At Rensselaer, the co-PI introduced 

CAREERS to the Rensselaer Center for Open Source (RCOS), a 

community of open-source student developers at RPI that cultivates 

an inclusive, creative, and entrepreneurial community that seeks to 

empower students to develop open-source solutions to real-world 

problems. The ability to approach so many students early on 

allowed CAREERS to rapidly build a deep pipeline of students that 

could then be matched with projects as they were identified. 

4.5 Portal Facilitates Adoption of Process, 

Creates Opportunities for Enhancement 
A major resource that NECT made available to CAREERS was the 

Connect.cyberinfrastructure Portal. The Portal is a valuable tool for 

advertising the Cyberteam, maintaining active projects, and 

connecting the students and mentors with new projects. In addition 

to the public-facing portion of the Portal, the backend of the Portal 

has detailed forms for project descriptions, progress tracking, and 

outcomes. This backend has been instrumental in standardizing and 

reinforcing the process for launching and managing a successful 

Cyberteam project. When seeking projects, the steering committee 

members are empowered with a predetermined set of questions to 

present to a potential project leader. At project creation, it guides 

the project leaders on requirements for the project, such as an 

appropriate description, milestones, and deliverables that are 

consistent with a research facilitation engagement. As the project 

progresses, we use it to track progress towards the predetermined 

timeline and milestones. And at the end of the project, the project 

outcomes are captured for future reference. Across all these steps, 

the structure provided by the Portal ensures adherence to a standard 

process, leading to decreased friction from the very first CAREERS 

project. 

When using the Portal, the CAREERS Cyberteam identified 

several improvements to be made to accommodate the expansion 

to both a new region and new users. We added a User Guide to 

enable more self-directed onboarding. The new User Guide details 

the different participant roles in a Cyberteam project and how each 

member can interact with the Portal to submit or apply for a project, 

respectively. In response to the enthusiastic influx of potential 

student facilitators, we added an “I'm Interested” button to every 

project page that students could use to indicate that they would like 

to be considered for that project. Student interest is collected in a 

report that the Program Managers use to assess potential student-

project matches to present as candidates to the appropriate steering 

committee member. Lastly, a few small features were added to the 

Portal to enable the Program Managers to handle the expansion of 

both the user base and the projects. These include a sorted project 

view to find projects easily in various states and a report for 

tracking which students are engaged on which projects and which 

students are still seeking a position. 

4.6 Working with Varying OSP and HR 

Policies Requires Precision and Adaptability 
The Office of Sponsored Projects (OSP) at each anchor institution 

is a valuable partner for the program as they handle the 

disbursement of payments to our student facilitators for 

participating in their projects. We knew embarking on the 

CAREERS program that working with six different OSPs (one for 

each anchor institution) would present some logistical hurdles as 

we oriented everyone onto the same page. We found certain 

terminology was more effective in describing the student role in the 

program, which resulted in a smoother interaction. For example, 

the NSF grant that supports the CAREERS project is funding 

student facilitators via participant support costs. We found that it 

was important to use terms that reflected this category of expense 

(which is oriented toward educational experiences) and avoid terms 

such as “number of work hours,” which connote student 

employment. Our efforts to “speak the language” of our OSP and 

HR partners have improved interactions.  We found that the same 

approach was helpful when engaging with International Student 

Offices for F-1 visa student facilitators, as their situations have 

strict guidelines around how they can work or earn money. 

5. FUTURE DIRECTIONS 
The CAREERS program has been operating for approximately one 

year out of the three-year grant period. Therefore, we still have 

several objectives to tackle as well as an eye on goals for the future 

after the end of the grant in 2023. Some key areas of focus for the 

upcoming year are outlined below. 

5.1 Develop a Distributed Expertise Network 
In addition to expanding the NECT process to a new, larger region, 

CAREERS has a second novel objective to establish a distributed 

expertise network of professional RCFs directly accessible by 

researchers and educators in the region. As noted earlier, many 

small and mid-sized institutions cannot financially justify a full-

time RCF, and providing domain expertise across all parts of the 

research computing community is challenging, even for institutions 

with multiple RCFs [5]. The CAREERS program plans to pilot a 

lightweight and cost-effective system to share RCF expertise across 

institutions of all sizes across the CAREERS region, leveraging the 

mentor network that we are building in the Portal. Engagement with 
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this expertise network will provide and create opportunities to 

multiply available expertise throughout the region while providing 

direct support to researchers at small/mid-sized institutions for 

shorter “help desk-like” engagements. 

5.2 Provide Organized Access to Local, 

Regional and National Compute Resources 
In addition to a lack of access to RCFs, researchers at small and 

mid-sized institutions may not have reliable channels for access to 

high-performance computing resources. The formation of the 

CAREERS Cyberteam has provided a route for researchers at these 

target institutions to acquire the cycles and storage necessary to 

effectively conduct their proposed projects from regional resources. 

The CAREERS and Northeast Cyberteams have offered access to 

supercomputers and clusters from several of their participating 

anchor institutions. For example, on one of its earliest projects, 

CAREERS provided computing resources allocated from 

Rensselaer Polytechnic Institute's AiMOS supercomputer, ranked 

29th in the November 2020 TOP500 list of the world's most 

powerful computing systems. Building pipelines of access to a 

spectrum of local, regional, and national computing resources, as 

appropriate, plays a pivotal role in establishing an effective CI 

strategy for the region. We seek to build on this as CAREERS 

develops. 

5.3 Enhance Portal and Further Engage with 

Research Cyberinfrastructure Community 
Throughout the CAREERS program, we will continue to add 

enhancements and improvements to the Cnct.CI Portal as the needs 

arise. Along with the expansion of the Portal to CAREERS, several 

other Cyberteams and organizations have adopted the Portal to 

facilitate their programs, and any improvements made are 

accessible to every program. We have already seen benefits from 

the CAREERS enhancements in Northeast Cyberteam operations. 

Likewise, the expansion of the Portal to the additional Cyberteams 

creates opportunities to attract CAREERS participants, especially 

mentors and distributed RCFs. We will continue to engage with the 

community to identify opportunities to promote collaboration 

across the research cyberinfrastructure community through the 

methods and tools encapsulated within the Portal. 
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ABSTRACT 
While artificial intelligence and machine learning (AI/ML) 

frameworks gain prominence in science and engineering, most 

researchers face significant challenges in adopting complex AI/ML 

workflows to campus and national cyberinfrastructure (CI) 

environments. Data from the Texas A&M High Performance 

Computing (HPRC) researcher training program indicate that 

researchers increasingly want to learn how to migrate and work 

with their pre-existing AI/ML frameworks on large scale 

computing environments. Building on the continuing success of our 

work in developing innovative pedagogical approaches for CI-

training approaches, we expand CI-infused pedagogical approaches 

to teach technology-based AI and data sciences. We revisit the 

pedagogical approaches used in the decades-old tradition of 

laboratories in the Physical Sciences that taught concepts via 

experiential learning. Here, we structure a series of exercises on 

interactive computing environments that give researchers 

immediate hands-on experience in AI/ML and data science 

technologies that they will use as they work on larger CI resources. 

These exercises, called “tech-labs,” assume that participating 

researchers are familiar with AI/ML approaches and focus on 

hands-on exercises that teach researchers how to use these 

approaches on large-scale CI. The tech-labs offer four consecutive 

sessions, each introducing a learner to specific technologies offered 

in CI environments for AI/ML and data workflows. We report on 

our tech-lab offered for Python-based AI/ML approaches during 

which learners are introduced to Jupyter Notebooks followed by 

exercises using Pandas, Matplotlib, Scikit-learn, and Keras. The 

program includes a series of enhancements such as container 

support and easy launch of virtual environments in our Web-based 

computing interface. The approach is scalable to programs using a 

command line interface (CLI) as well. In all, the program offers a 

shift in focus from teaching AI/ML toward increasing adoption of 

AI/ML in large-scale CI. 

 

CCS CONCEPTS 
•CS→Computer Science; •Cybertraining→training on using 

cyberinfrastructure; •HPC→high performance computing • 

interactive computing • training  • containers 

Keywords 
Artificial intelligence, Machine learning, Cyberinfrastructure, 

Portal, Jupyter notebooks, Keras, Training, Scikit-learn, High 

performance computing, Pedagogy, HPRC1 

1. INTRODUCTION 
AI/ML and data science frameworks have been rapidly adopted in 

various fields of science and engineering. We find that most 

researchers, however, first interact with these technologies on their 

personal computing devices. As we continue to work through the 

impact of the COVID-19 pandemic and remote working scenarios, 

we see that researchers use these devices to simultaneously create 

reports and publications, attend workshops and conferences, and 

use teleconferencing techniques. These devices continue their 

routine roles of serving as a means of communication and 

entertainment as well. As we move toward larger community-

shared data sets, researchers struggle to cope past the barriers of 

computing and managed storage on their devices. In a similar vein, 

the scientific community is moving toward workflows like 

Federated learning approaches in AI/ML and data science that 

allow for data to be kept local to a site while the model is trained 

and shared among the collaborating sites. With the data residing on-

site, federated learning approaches meet the privacy and 

compliance needs of data but are currently not viable on the 

personal devices used by researchers. Taken together, we note that 

researchers’ personal computing machines, regardless of the 

hardware specifications, are unable to accommodate AI and 

machine learning workloads at scale. 

In this emerging scenario, researchers find their work limited by 

their choice of technology. To get more access to computing and 

storage, they are increasingly looking toward campus, regional, and 

national large-scale computing options. Over the last decade, and 

in particular in the last couple of years, the CI landscape has grown 

increasingly complex. Campus CI resources, commonly referred to 

as clusters, have evolved from operating traditional high-

performance computing (HPC) environments to now 

simultaneously operating mixed environments that support batch 

schedulers, containers, virtual machines, cloud-bursting, 

composability via software (Kubernetes) and hardware (Liqid 

composability). Accelerators such as graphical processing units 

(GPUs) now run in half-, single -, mixed-, and double-precision 

modes. Data is stored in different formats and may be generated or 

streamed into systems. In such an environment, researchers new to 

1 High Performance Research Computing, Texas A&M University, College 

Station, TX 
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CI environments rapidly encounter an intimidating 

cyberinfrastructure (CI) landscape. It is perhaps ironic that these 

seemingly daunting technologies were developed to support AI/ML 

frameworks. 

While the development of scientific computing applications and 

analysis of scientific data continue to be done on the command line, 

a broad swath of researchers by and large prefer graphical 

interfaces where they can interactively develop their applications 

and visualize their data at the same time. To facilitate the transition 

of researchers to this seemingly daunting environment, we have 

adopted interactive graphical interfaces like Jupyter Notebooks [1] 

and Google Colab where researchers can develop their applications 

and visualize their data at the same time. Such interactive 

development environments can be paired with web-based portals 

such as the Design Safe portal and Open OnDemand that offer 

researchers the ability to interact with CI in application- and 

systems-driven approaches, respectively [2]. Adoption challenges 

around compatibility and usability remain in these approaches as 

well. Furthermore, “quality of life” features that are common in 

AI/ML toolkits on public cloud-based environments are often not 

available on these resources. We have previously reported on our 

work in advancing the state of CI-training at Texas A&M. Texas 

A&M High Performance Research Computing (HPRC) offers over 

sixty training seminars, courses, workshops, and week-long 

computing-camps that support CI aspirations ranging from middle 

school students to CI professionals [3–10]. During the COVID-19 

pandemic-imposed workplace changes, we have learned that 

pedagogical approaches commonly adopted in in-person 

environments do not translate to a virtual learning setting. During 

late spring 2020, we adopted “peer-mentored” and “peer-led” 

learning approaches that were coupled to persistent chat 

(SWEETER Slack workspace, 970+ researchers) and class videos 

offered in short, intermediate, and longer formats [9]. Continuing 

in our quest to offer researchers scaffolded techniques in computing 

environments, we recently reported how support for features like 

containers, virtual environments, quota allocations, and easy 

buttons on a Web-based computing interface led to a new approach 

toward introducing containerization [10]. We anticipate that these 

practices will help improve the adoption of FAIR (Findability, 

Accessibility, Interoperability, and Reusability) [14] and FEAT 

(Fairness, Ethics, Accountability, and Transparency) [15] standards 

in research computing. 

Data from the HPRC ticketing systems, short course participation 

trends, and user feedback show that researchers need a new form of 

AI/ML training that focuses on adoption of AI/ML practices on our 

CI environments rather than courses that merely focus on teaching 

the AI/ML technologies themselves. Engaging, accessible, and 

interactive computing environments offer new opportunities for CI-

infused teaching while simultaneously improving user adoption of 

new technologies. These environments allow researchers to move 

away from the CLI and explore other avenues to learn and interact 

with popular AI/ML frameworks such as Keras, TensorFlow, and 

Torch. These avenues are explored in popular industry-sponsored 

courses like the NVIDIA Deep Learning Institute, Intel’s offering 

on AI/ML, or campus CI offerings like our courses that introduce 

TensorFlow and Pytorch. In this study, we report on our approach 

toward advancing AI/ML training on CI resources in an approach 

named the Technology Laboratories or tech-labs (Figure 1). 

2. METHODS 
We take a leaf from the pedagogical approach used in the tradition 

of Physical Science laboratory classes, during which exercises were 

stacked and techniques simultaneously taught while elucidating the 

concepts covered during classroom lectures. In these programs, the 

study material was divided into two distinct groups. Students first 

learned a foundational approach, typically how to use a scientific 

instrument. Then they used that instrument to conduct a series of 

experiments, each geared toward understanding and exploring 

scientific concepts. The tech-labs teach learners in a similar vein. 

They first introduce researchers to the CI technologies and then 

show them how to effectively work with their existing research 

workflow in a large-scale CI environment. Much like physics 

laboratories, we structured a series of exercises that first helped the 

researcher gain familiarity with the “instrument” or mode of 

computing. This could be the command line, a graphical user 

interface (GUI) for a scientific application, or a Jupyter Notebook. 

Here, we explore the use of Jupyter Notebooks. 

The tech-labs are geared toward improving adoption of better CI 

practices in research environments. As such, they assume that a 

researcher is proficient in the AI/ML approaches that will be used. 

During these labs researchers learn how to use these techniques on 

clusters. Pre-requisites and learning objectives were identified to 

ensure that researchers do not misunderstand the purpose of these 

courses and manage participant expectations. Interested learners 

who were new to AI/ML techniques were directed toward 

community learning resources such as our short courses that 

covered these topics at an introductory level [16]. Toward 

facilitating a flipped classroom approach, curricular materials are 

pre-staged on the HPRC website along with relevant Git 

Journal of Computational Science Education Volume 13, Issue 1

April 2022 ISSN 2153-4136 45



repositories. Delivery is performed entirely using hands-on 

practices on CI resources, with no time spent exclusively on 

lectures introducing the AI/ML topics. 

The class size is typically limited to 20 researchers to ensure that 

the instructor can assist the learners as they work through the 

exercises. Employing teaching assistants offers the option to build 

out the classroom. The tech-labs are divided into four components. 

This is described in the schematic presented in Figure 1. In the first 

session, researchers learn about the platform that will be used to 

access or interact with the CI resources. This session lasts for 15 

minutes and is followed by three sessions of equal length that cover 

the AI/ML areas of interest. Each session is separated with a five-

minute session during which participants can take a break or 

interact with the instructor. 

2.1 Using the HPRC Open OnDemand (OOD) 

Web Portal 
Noting the appeal of interactive computing approaches, especially 

to researchers who are not familiar with large-scale CI practices, 

we have developed a special version of the Open OnDemand 

platform for researchers at Texas A&M HPRC [10]. The adoption 

of this portal by researchers and its use in CI-training have been 

reported elsewhere. During the tech-labs, we first teach researchers 

how to use CI resources via the portal. Figure 2 shows the various 

applications available on the Texas A&M portal on the Terra 

supercomputer. Researchers learn that the home and scratch 

directories can be accessed, and files can be uploaded and 

downloaded easily. Researchers can view the status of their active 

jobs from the Jobs tab and access the shell from the Clusters tab, 

offering convenient access to the command line interface. Under 

the Interactive Apps tab, there is ready access to interactive 

applications such as Bio apps, GUI apps, JupyterLab, Jupyter 

Notebook, etc., for users to use. 

 

Figure 2. Some software applications built into the Texas 

A&M HPRC Open OnDemand (OOD) Portal for the Terra 

computing cluster. 

2.2 Setting up Virtual Environments  
Virtual environments offer a convenient mechanism for each 

project to have its own isolated environment on CI resources where 

its required dependencies can be installed regardless of what 

dependencies other projects require. We next teach the researchers 

how to use Anaconda commands to create virtual environments. 

These instructions are shown in Figure 3. For this project, we install 

scikit-learn and tensorflow packages into the virtual environment. 

 

Figure 3. Creating a virtual environment with Anaconda 

commands. 

2.3 Data Exploration Laboratory 
In this section, we introduce some data science problems and two 

popular python libraries: Pandas and Matplotlib. Pandas is a Python 

library for data manipulation and analysis while Matplotlib is used 

for data visualization. These are taught using the JupyterLab 

interface as shown in Figure 4. During this session, researchers 

learn data manipulation skills. They are introduced to Pandas via 

examples of the two Pandas data structures — series and dataframe 

— and operations are provided such as retrieving and dropping 

entries, indexing, selecting, filtering, sorting, and ranking (based on 

the positions after sorting). The skills learned will be used in the 

exercises in the next session. Also, examples of using the 

Matplotlib object-oriented API to create figures and plots are 

taught. The advantage of using an object-oriented API becomes 

apparent when more than one figure is created or when a figure 

contains more than one subplot. Colormap, contour figures, surface 

plots, wire-frame plot, and contour plots with projections are also 

introduced. Colormaps and contour figures can be used to plot 

functions with two variables with the third dimension encoded. 

Passing a projection='3d' keyword argument to the add_axes or 

add_subplot methods can enable plotting 3D figures for better 

visualization. 

 

Figure 4. JupyterLab interface for the Data Exploration Lab. 
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2.4 Machine Learning Laboratory 
In the machine learning session, we show the relationship between 

machine learning and artificial intelligence. [12]. During this lab, 

researchers learn how to use a machine learning library named 

Scikit-learn to work on regression, classification, and clustering 

problems with different algorithms. Linear regression is used to 

estimate the relationship among variables and predict a continuous-

valued attribute of an object. It fits a linear model to minimize the 

sum of squares between the observations and predictions. In these 

exercises, researchers import the required libraries and models, 

generate an x-dataset with the numpy.linspace() function and a y-

dataset, create an instance of the LinearRegression() model, and fit 

the model with x- and y-datasets. Researchers next check the 

coefficients for the linear regression model and the determination 

coefficient R2 with score() function, and visualize the data points 

and the best fit line. They finally work on a polynomial fitting 

exercise with linear regression by modifying the x-dataset with 

more polynomial terms with numpy.hstack(). 

Researchers are next shown how classification is used to identify 

the category an object belongs to based on a training dataset in 

which the membership of the objects is known. They are introduced 

to three concepts here: (i) Support vector machine (SVM) aims to 

find the hyperplane that separates binary sets with maximum 

margin to both classes. (ii) K-Nearest Neighbors (KNN) works 

based on the assumption that every data point belongs to the same 

class with the majority of its surrounding data points. In other 

words, it classifies a new data point based on similarity. (iii) 

Clustering is the task of separating the data points into groups such 

that the data points in the same groups are more similar than the 

data points in other groups. SVM and KNN classifiers are 

introduced in the lab’s exercises. Students worked on a K-Means 

clustering exercise as well. In this exercise, the K-Means algorithm 

starts with a set of randomly selected centroids that are the 

beginning centers for every cluster and performs iterations to 

optimize the centroids’ locations. 

2.5 Deep Learning Laboratory 
Deep Learning (DL) is included in the tech-labs since it finds 

applications in research. Because of its capability to handle high-

dimensional data, DL is good for automatic feature extraction as 

well. During this session, researchers learn that deep learning is a 

subset of machine learning methods that are based on neural 

networks to improve algorithms by data and the relationship among 

AI, ML, and DL. This relationship is described in Figure 5. Three 

different DL methods including supervised learning, unsupervised 

learning, and reinforcement learning are explained. In supervised 

learning, the models are trained with labeled datasets. Regression 

and classification problems belong to this learning type. In 

unsupervised learning, the models are trained with unlabeled 

datasets. Clustering problems are in this category. In reinforcement 

learning, there are no training datasets, and it is about how agents 

take actions in an environment to maximize the reward. 

During this session, researchers are taught to distinguish between 

traditional modeling that utilizes different numerical methods to 

solve the governing equations, and ML modeling that trains models 

with datasets and predicts unknown data with the trained models. 

In the final session, researchers are introduced to Keras [17], the 

popular open-source neural network library. They perform an 

exercise during which they build a handwritten digits classifier 

[18]. The components include how to import the required libraries; 

load, split, and normalize the MNIST (Modified National Institute 

of Standards and Technology) [13] dataset; build a multi-layered 

neural network model with Sequential class; compile the model 

with an optimizer and a loss function; train the model with fit 

function on the train datasets; evaluate the model on test dataset; 

and predict. Finally, they study the images that were not correctly 

predicted and understand the potential reasons leading to these 

erroneous results. 

 

 

Figure 5. Relationship between AI, ML and DL. 

The topics and in-class exercises covered during the tech-labs are 

summarized in Table 1. We have offered these technology 

laboratories every semester since 2020. These have been offered in 

hybrid (in-person and remote) and in remote (virtual, Zoom) 

formats. 

Table 1a. Covered topics, in-class examples and exercises. 

Topics and exercises covered Topics and exercises covered 

Create a virtual environment* Write a dataframe to a file 

Launch JupyterLab on OOD 

portal* Matplotlib — line plot 

Create a Pandas series Matplotlib — subplots 

Get the index and values of a 

series Matplotlib — color map 

Series indexing Matplotlib — contour figures 

Series filtering Matplotlib — 3D figures 

Series sorting Case study — house market data* 

Series mathematical operations Linear regression 

Create a Pandas dataframe 

Polynomial fitting with linear 

regression 

Specify the sequence of 

dataframe columns SVM classification 

Add a column to a dataframe KNN classification 

Retrieve a row from a dataframe K-Means clustering 

Retrieve a column from a 

dataframe Principal component analysis 

Journal of Computational Science Education Volume 13, Issue 1

April 2022 ISSN 2153-4136 47



Table 1b (continuation of Table 1a). 

Topics and exercises covered Topics and exercises covered 

Drop a row from a dataframe 

Linear regression with a neural 

network library Keras 

Drop a column from a dataframe 

Build a handwritten digit classification 

model 

Dataframe filtering Train the model 

Dataframe sorting Evaluate the model performance 

Load a file to a dataframe 

Make predictions with the trained 

model 

 

3. RESULTS 
The tech-labs were offered by Texas A&M HPRC from fall 2020. 

Each tech-lab session ran for a duration of two-and-a-half hours. 

The labs assumed that researchers have prerequisite knowledge of 

the AI/ML and data frameworks. This marked a departure from our 

regular course of instruction where all materials were covered at an 

introductory level. The tech-labs were offered in hybrid (in-person 

and virtual) and virtual-only settings. Virtual classrooms were 

offered on the Zoom video-conferencing program, with dedicated 

support facilitated by the breakout room functionality. In spring 

2022, the classes returned to a hybrid format. Table 2 lists the 

teaching modality and the number of registered students. 

We have previously found that researchers are comfortable with 

this duration in sessions that include hands-on exercises. During the 

sessions, students created teams to complete the in-class exercises. 

Creating such teams offered the researchers opportunities for peer-

learning as well as continued discussions after the classroom. To 

accommodate the taxing demands of learning via a “live” virtual 

session, we included several breaks. The Zoom “class” included a 

main session with several breakout rooms for teams’ projects. With 

a view toward supporting researchers at different levels of learning, 

a competition-based approach was not adopted. 

Table 2. Technology laboratories offered at Texas A&M. 

Date offered Modality Registered attendees 

2022-03-11 In-person  20* 

2021-10-29 Hybrid 44 

2021-06-02 Virtual 17 

2020-10-30 Virtual 55 

* registration for hybrid modality but course was held in an in-

person modality. 

During these tech-labs, learners were introduced to Jupyter 

Notebooks. This was followed by exercises in data exploration 

using Pandas and Matplotlib, machine learning using Scikit-learn 

for linear regression and classification applications, and Deep 

Learning using Keras to create and train a simple image 

classification model with a deep neural network (DNN). This is 

made possible by introducing a series of enhancements such as 

container support and easy launch of virtual environments in our 

Web-based computing interface. The approach can be readily 

expanded to support CI-adoption of Python-based AI/ML 

frameworks on the command line, AI/ML in Matlab, and other data 

science approaches. In all, the program offers a shift in focus from 

teaching AI/ML toward increasing adoption of AI/ML in large-

scale CI. 

4. CHALLENGES FACED AND LESSONS 

LEARNED 
Owing to its format, the tech-lab encourages discussions between 

the instructor and participating researchers. It is not surprising that 

the tech-labs are a demanding teaching experience during which 

participant researchers ask several questions. This is particularly 

problematic during virtual sessions when using breakout rooms to 

have students communicate with each other. The instructor can join 

the breakout rooms to help answer their ‘big’ questions that they 

cannot solve together in a breakout room. It is, however, 

challenging for a single instructor to handle several breakout 

rooms. More teaching assistants should be trained for the short 

course to answer questions if the breakout room feature is used. 

Learning from our challenges in supporting all participating 

researchers, in summer 2021, we moved from a single instructor-

supported instruction model to one that included two teaching 

assistants. 

5. SUPPORTING INFORMATION 
All training materials used in this study are available to the 

community via the Texas A&M HPRC website [16]. Videos and 

course recordings are available at the Texas A&M HPRC channel 

on YouTube. The community is invited to join the SWEETER slack 

workspace at https://hprc.tamu.edu/sweeter. Surveys and review 

exercises that will be developed as part of this longitudinal study 

may be requested from the author. Please send us feedback about 

your adoption experience via an email to help@hprc.tamu.edu. 
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ABSTRACT 
Successful outreach to computational researchers for informing 

about the benefits of switching to a different computing 

environment depends on the educator’s ability to showcase 

practical research and development workflows in the new 

computing environment. Interactive, graphical computing 

environments are crucial to engage learners in computing education 

and offer researchers easier ways to adopt new technologies. 

Interactive, graphical computing allows learners to see the results 

of their work in real time, which provides the needed feedback for 

learning and enables chunking of complex tasks. Moreover, there 

is a natural synergy between computing education and computing 

research; researchers who are exposed to new computing skills 

within the context of an interactive and engaging environment are 

more likely to retain the new skills and adopt the new computing 

environment in their research and development workflows. Support 

for interactive, graphical workflows with modern computing tools 

in containerized computing environments has to be incorporated on 

high performance computing systems. To begin to address this 

deficiency, here we discuss our approach to teach containerization 

technologies in the popular integrated development environment of 

the Jupyter Notebook. We report on our scheme for implementing 

containerized software environments for interactive, graphical 

computing within the Open OnDemand (OOD) framework for 

research computing workflows, providing an accessible on-ramp 

for researchers transitioning to containerized technologies. In 

addition, we introduce several quality-of-life improvements for 

researchers and educators that will encourage them to continue to 

use the platform. 

CCS CONCEPTS 
•CS→Computer Science; •Cybertraining→training on using 

cyberinfrastructure; •HPC→high performance computing • 

interactive computing • training  • containers 

Keywords 
Open OnDemand, Cyberinfrastructure, Portal, Jupyter notebooks, 

Singularity, Containers, Training 

1. INTRODUCTION 
Cyber Infrastructure (CI) is challenging; a complex computing 

environment is a barrier to learning for beginning researchers. 

There is an urgent need to offer scaffolded techniques in computing 

environments to reduce the barriers toward adoption of computing 

approaches. Making the computing environment engaging and 

more accessible provides opportunities for teaching in that 

environment while simultaneously improving user adoption of new 

technologies. 

While the development of scientific computing applications and 

analysis of scientific data continues to be done on the command 

line, a broad swath of researchers by and large prefer interactive, 

graphical interfaces where they can develop their applications and 

visualize their data at the same time. An extremely popular example 

is the Jupyter Notebook [1] integrated development environment 

for Python users. Many important scientific research tasks are done 

in Python due to its ease of use in rapid development. For example, 

the popular artificial intelligence and machine learning (AI/ML) 

frameworks Keras, TensorFlow, and Torch are all Python language 

compatible frameworks. Although the workload for machine 

learning would most likely be distributed across a cluster, 

development is done interactively. This enables researchers to 

quickly debug their code by visualizing its output. The application 

in its final form would be exported to a text file for use in a batch 

script. If the researchers wished to deploy their application in a 

specific computing environment, then it makes sense that they 

would want to be developing and debugging applications in that 

same environment. 

Powerful AI/ML tools such as the above are being widely adopted 

by the research community, as are the standards for research and 

development, FAIR (Findability, Accessibility, Interoperability, 

and Reusability) and FEAT (Fairness, Ethics, Accountability and 

Transparency). However, adoption of CI technologies and data 

frameworks that are needed to effectively support those standards 

1 High Performance Research Computing, Texas A&M University, College 

Station, TX 
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are lagging behind the adoption curve. As a result, educators lack 

the tools to properly teach AI/ML skills. This has hindered the 

adoption of FEAT and FAIR community standards for research. 

We need to find ways to make it easier to teach researchers how to 

use these technologies. 

Education for research computation is well-served by interactive, 

graphical environments, which follows from the same reasoning. 

Researchers learning to use Python or any of the scientific Python 

libraries are more likely to retain knowledge and continue using the 

platform if it is the platform that will be used for research and 

development workflows. The Jupyter Notebook is well-suited for 

both Python education and development. The ability to visualize 

code, inputs, and outputs at the same time makes the integrated 

development environment a must for Python education. Cluster 

administrators are well-motivated to support the Jupyter notebook 

and other interactive and graphical computing interfaces to lower 

the barrier of entry for future researchers. 

The Open OnDemand (OOD) platform provides a framework for 

supporting interactive and graphical environments [4]. It provides 

a Web interface to the computing cluster, which is advantageous 

because Web interfaces are generally platform-independent, which 

is good news for users working remotely from their personal 

machines. OOD interfaces on its back end with the computing 

cluster’s batch system. Users can submit and monitor their batch 

jobs using an interactive graphical interface. The template for the 

job management interface is customized for each cluster. OOD also 

provides a framework for creating additional Web servers in the 

form of batch jobs assigned to compute nodes in the cluster. OOD 

allows the user to conveniently connect through a Web-based 

interface to this personal Web server. This is useful for a wide 

variety of graphical applications that can be served to Web 

browsers, from the humble Jupyter Notebook to as much as an 

entire virtual desktop. 

The OOD platform installed out-of-the-box can be enhanced with 

features for educators and researchers. Its primary function is to 

support specific tasks but not necessarily to provide a 

comprehensive suite of tools to support a more general workflow. 

This is disadvantageous for educators who wish to quickly and 

effectively on-ramp researchers to the cluster for two reasons. First, 

if the workflow task the educators wish to teach isn’t supported by 

the OOD platform, then they may need to use unrelated platforms 

for their teaching, which confuses researchers and leaves them with 

no clear transition to the development phase. Second, if researchers 

need to continue using command-line interfaces for some aspects 

of their workflow, then the benefit of adopting the OOD platform 

is marginal, which limits their openness to future education 

delivered through the platform. 

One of the most important technologies for compliance with these 

principles is the container, a technique for bundling a software 

environment for maximum portability. A container allows the 

bundled software to run on any machine with the same basic 

architecture. The most popular container technology is Docker [5], 

which provides a file format for bundling software environments 

and a public repository named DockerHub for sharing those files. 

Many important scientific research frameworks, such Bioconda, 

LAMMPS, and Tensorflow, have already been containerized in the 

Docker format, allowing researchers working at home quick access 

to scientific software. However, for security reasons, Docker is not 

suitable for use on high performance clusters where many users 

share a filesystem. A solution to this problem is Singularity [6], 

which is an alternative to Docker that can both read the Docker file 

format and safely operate in cluster environments. Containers are 

clearly an important technology for the future, yet support for 

containers and especially support for container education lags 

behind the curve.  

Adding container support to existing interactive, graphical 

interfaces will help educators better demonstrate container usage, 

showcase the utility of the approach, elevate the level of discourse 

to more advanced topics like reproducibility in computational 

sciences, and ultimately make it easier for researchers to navigate 

the transition to containerized computing environments. Alongside 

this, cluster administrators can also support sharing locally 

developed containers with external researcher collaborators. In the 

long run, these strategies will lead to a greater rate of container 

adoption and adoption of the FAIR and FEAT principles for 

scientific research, especially in the fields making use of 

biologically-inclined and AI/ML tools. 

2. METHODS 
In order to facilitate computational skills training for researchers, 

an interactive mechanism was needed. Open OnDemand offers 

that, but it is limited in its general scope to Jupyter notebooks and 

apps that represent the desktop. These were used for some 

educational courses. In addition, quality of life improvements were 

developed and support for containers was implemented. These 

features were also used for some educational courses. 

2.1 Experimental Design 
Open OnDemand has been used as an educational platform in 

several Short courses and Primers [2] since 2019. Students were 

polled for feedback after each to determine the achievement rate for 

the educational goals of each course. Results from this program 

have been reported previously [3]. 

2.2 System Design  
At Texas A&M, several quality-of-life improvements and add-ons 

were implemented in the Open OnDemand framework, seen in 

Figure 1. These generally fall under the scope of User Experience, 

which is to say, how easily the user can get what they need from 

the platform. This is especially important for researchers who aren’t 

necessarily trained in cluster computing technologies but still want 

to take advantage of those resources. These features help to draw 

researchers to the platform, which makes them more receptive to 

education delivered through the platform. 

The helpdesk ticket submission form is a tool that allows 

researchers who encounter problems to request help from the 

cluster administrators by populating a form conveniently located in 

the OOD web interface. This makes it easier for researchers to get 

help since they don’t have to leave the website to find instructions 

for how to do so. It also helps researchers get quick responses from 

cluster administrators because the form fields encourage the user to 

provide the administrators with the information needed to 

understand the problem. 

The job composer form is a tool that allows researchers to edit batch 

scripts and submit them to the cluster by populating a form 

conveniently located in the OOD web interface. Parameters are 

selected in fields, while a preview shows the script that results from 

those parameter choices. Templates are provided for common 

scientific programming applications such as R and MATLAB. This 

makes it easier for educators to showcase the basics of batch 

scripting without the burden of also teaching command line syntax. 

It also enables researchers to get started quickly with their research 

tasks. 
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Figure 1. Screenshot of Dashboard page from Terra cluster 

maintained by Texas A&M High Performance Research 

Computing (HPRC). Tables shown: Disk Quota, Allocation, 

and Job monitoring. Highlighted: links to Create Help Ticket, 

Request Software, Quota Increase, and Job Composer forms. 

The quota request form is a tool that allows researchers to ask for 

changes to their disk space allocations by populating a form 

conveniently located in the OOD web interface. This is a simple 

task, but researchers need to do it so rarely that when it comes time 

for it, they are often confused. Streamlining this process helps save 

time for researchers and cluster administrators. 

The view-only link feature for the VNC interactive app is a tool for 

screen sharing implemented in the OOD framework. This is used 

by educators to provide instant feedback while teaching interactive 

computing skills. Each interactive job in the OOD framework 

creates a web server on a compute node and connects that web 

server to the student’s browser. The student uses that web interface 

to perform activities on the compute node. In the case of VNC, the 

web server can also provide a second copy of the web interface that 

is read only. A link to this read-only web server can be distributed 

to allow teachers and collaborators to watch live as the job owner 

interacts with the compute node. In the case of VNC, this is useful 

for education of scientific computing skills for graphical software 

applications that display in a window, which is the majority. 

A scheme for supporting containerized environments within OOD 

was developed. Support for containers can be added to any OOD 

interactive app simply by inserting the correct container runtime 

syntax in the template job script. In the case of the Terra cluster at 

Texas A&M University, the container runtime is Singularity [6]. 

For example, if the command to launch a Jupyter Notebook 

application that appears in the job template takes the form “jupyter 

notebook [arguments],” then the new syntax would be “singularity 

exec [image] jupyter notebook [args].” This substitution is 

relatively trivial, which is exactly why containers are such an 

important technology for clusters to support. 

The major hurdle for implementing containerized app support in 

OOD is not the container syntax itself but the integration of that 

syntax into a larger structure that is flexible enough to support 

multiple computing environments. Although containers are 

fantastic, they are not for everyone. Cluster administrators would 

wish to continue maintaining their local computing environments 

to meet their users’ needs. OOD does not provide a significant 

example or tutorial on how to go about supporting multiple 

computing environments. However, the underlying technologies 

are powerful enough to enable the necessary developments. 

The OOD user interface for each app is assembled from a minimal 

list of specifications, which is convenient for simple apps, but the 

available options for customizing that user interface through the 

specifications are limited. The most significant limitation is that 

every field and widget with which the user may or may not need to 

interact must be displayed. In the case of multiple computing 

environments, where the information that is needed to select an 

environment varies greatly depending on which environment is to 

be used, this quickly grows out of control, hindering usability. The 

solution to this problem is to implement the OOD optional feature 

to support JavaScript in the user interface. This allows for the 

addition of scripts for toggling the visibility and values of the fields 

based on the content of the fields as shown in Figure 2. 

 

Figure 2. Screenshot of the Jupyter Interactive App form 

from the Terra cluster at HPRC. Highlighted: Drop-down 

menu for selecting environment type, Field for selecting 

container file. 

3. RESULTS 
Open OnDemand has been used by Texas A&M High Performance 

Research Computing (HPRC), and Laboratory for Molecular 

Simulation (LMS) for research computing since 2018. Results for 

using OOD in our introductory courses during 2020 have already 

been reported [3]. With over 1600 active users on the platform, 

several courses now use the Texas A&M OOD platform as the 

preferred teaching method. This includes a variety of advanced 

scientific computing skills in addition to the basic topic previously 

studied, as shown in Table 1. An important feature that 

accompanies this growth is the view-only link for VNC sessions, 

which enables a huge number of scientific applications that are 

compatible with VNC. However, the real winners are the many 

scientific applications based on the Python language, all of which 
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can now be demonstrated using the same hardware and software 

environment the researchers will ultimately use. The educational 

benefits of an interactive computing Web interface have made 

themselves evident through rapid adoption by instructors at Texas 

A&M HPRC as shown in Table 1. The view-only link VNC feature 

of OOD was also used during the instruction of CHEM 119: 

Fundamentals of Chemistry I, a formal laboratory course taught in 

Fall 2020 at Texas A&M. Ninety-five students practiced their 

computational skills as part of the course. 

Table 1. List of informal HPRC short courses and Primers in 

Spring 2021. New OOD features that were used in the course 

and the number of participants attending. Courses continue to 

be offered on these topics. 

Course Title OOD Features Partici-

pants 

Linux Primer Shell access 110 

Schedulers Primer Job composer 292 

Jupyter Notebook Primer Jupyter Notebook 126 

Cluster Usage Primer Quota request form 203 

Introduction to Python Jupyter Notebook 235 

Scientific Python Jupyter Notebook 28 

Introduction to Containers Container support in 

Jupyter Notebook 

4 

Molecular Dynamics — 

NAMD 

View-only link VNC 6 

Introduction to Quantum 

Chemistry Simulations 

with ORCA 

View-only link VNC 17 

Drug Design — 

COVID19 for the cure 

View-only link VNC 12 

Intro to Xarray and Dask JupyterLab Notebook 13 

Intro to Deep Learning 

with Pytorch 

JupyterLab Notebook 11 

Intro to Deep Learning 

with Tensorflow 

JupyterLab Notebook 19 

 

3.1 Case Study Teaching Containerization on 

Clusters 
The newest educational offering, Introduction to Containers [7], 

featuring OOD support for Containerized Jupyter Notebooks, 

demonstrates the importance of this ongoing effort. Introduction to 

Containers was a short course of two-and-a-half hours offered on 

April 30, 2021, October 15, 2021, and March 11, 2022. It was 

developed for the purpose of educating researchers about the use of 

containers. Due to COVID-19 conditions, the course was 

developed to be delivered virtual-only via Zoom. 

The intended learning objectives were to: 

1. Provide the researchers the information they need to decide 

if it is worth investing their time into making the switch to 

using containers in their research computing environment. 

2. Familiarize the researchers with basic container workflow 

tasks, including use of the Singularity runtime, utilization of 

Docker-format container repositories, and support for 

containerized interactive graphical applications.  

3. Demonstrate advanced applications of containers across 

multiple scientific disciplines to appeal to a wide audience. 

To accomplish this, the course began with an overview of container 

technologies, leading into interactive exercises with which the 

students could follow along, and finally showcasing a selection of 

advanced topics. Learners were offered the materials from the 

course (for future reference) via the course website and our wiki. 

Wiki entries were updated to reflect the contents of the course. 

The course had a number of descriptive examples for students to 

observe. These were followed with hands-on examples that allowed 

the participating researchers to practice their newly acquired 

knowledge. The Open OnDemand platform helped to make this 

course a success. Easy access to the cluster compute nodes via the 

OOD web interface removed the need for students to install SSH 

software on their local machines. Although command-line usage 

was used for some exercises, the equivalent batch script variations 

of those workflows were also demonstrated, which are entirely 

compatible with the OOD Job Composer feature. In principle, the 

researcher need not use the command line at all for those 

workflows. Finally, container support for interactive applications 

such as the Jupyter Notebook gave researchers the comfort of 

knowing that they could continue using their favorite graphical 

workflows should they choose to make the switch to containers. 

The course was evaluated by polling the students for feedback at 

the end of the course. The poll was delivered through Zoom during 

the course and also by Google Form after the end of the course. 

Although there were few responses (due to the low attendance), the 

responses were overwhelmingly positive, indicating a high rate of 

success for the first two learning objectives. Students indicated that 

the course did give them the information they needed to decide 

whether to make the switch to containers and that they had gained 

familiarity with the basic workflows. The feedback indicated that 

the advanced topics were not of interest to most students, which 

leads us to the conclusion that the course can also be shortened by 

removing the advanced topics and offering it as a 1-hour primer. 

This could potentially increase interest in the course by decreasing 

the time commitment and by allowing the course to be offered at 

different times. We further surmise that offering the course during 

the last week of the semester had limited the number of participants 

in the course. 

The most important improvement that is needed for the 

introduction to containers course is advertisement to counter the 

low attendance rate of the first course offering. Now that the course 

has been shown to be successful, researchers should be made aware 

that container education is an option for them. One way to deliver 

this advertisement is to subtly (or not-so-subtly) place visible 

evidence of container support throughout the OOD web interface 

as the support is expanded. This will help with recognition among 

the large audience of researchers who have been using the OOD 

platform exclusively since the success of the basic Primers and 

Short Courses of 2020. 

A major benefit of the containers course is the cross-topic learning 

gain. Researchers learning how to use containers are by definition 

exposed to the principles of sharing and portability that led to the 

creation of the container technology. This helps to drive long-term 

adoption of FAIR and FEAT practices in research computing. 

Knowledge of containers in general is relevant for scientific 

research, especially in the fields making use of AI/ML tools. 
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4. CONCLUSIONS AND FUTURE 

DIRECTIONS 
Since 2018, Texas A&M HPRC and LMS have successfully used 

the OOD platform to offer informal instruction at week-long 

summer schools, online Primers, and our short course program. 

Here, we reported on our efforts while highlighting a 

containerization course and Primer that benefitted from expanded 

capabilities added to the Texas A&M OOD framework. The use of 

OOD in the course, coupled with enhanced usability features, help 

increase learner engagement, improve adoption of the technology, 

and encourage continuous use of the technology in future research. 

Several of these features are developed and maintained by 

undergraduate and graduate students in the Texas A&M HPRC 

student fellows program. While singularity was the chosen 

containerization technology, the course offered a mechanism for 

researchers to use a Docker alternative. Recognizing the challenges 

faced in evaluating virtual courses, this course has been offered in 

a hybrid face-to-face and virtual setting with the goal of collecting 

more statistics on researcher usage and learning. We hope to further 

the learning gains by improving the rich feature set on our local 

Texas A&M OOD by including access to our knowledge base and 

ensuring access to a locally hosted container registry. 

5. SUPPORTING INFORMATION 
All training materials used in this study are available to the 

community via the Texas A&M HPRC website [2]. Videos and 

course recordings may be accessed via the Texas A&M HPRC 

channel on YouTube. The community is invited to join the 

SWEETER Slack workspace at https://hprc.tamu.edu/sweeter. 

Surveys and review exercises that will be developed as part of this 

longitudinal study may be requested from the author. Please send 

us feedback about your adoption experience via an email to 

help@hprc.tamu.edu. 
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