
Expanding Interactive Computing to Facilitate Informal 
Instruction in Research Computing 

Richard Lawrence1 
rarensu@tamu.edu 

 

Xin Yang1 
karen890@tamu.edu 

 

Lisa M. Perez1 
perez@tamu.edu 

 

Tri M. Pham1 
phamminhtris@tamu.edu 

 

Kyle Hsu1 
hsuk1001@tamu.edu 

 

Dhruva K. Chakravorty1 
chakravorty@tamu.edu 

 

Phi T. Au1 
thau@tamu.edu 

 

Stuti H. Trivedi1 
stutitrivedi1373@tamu.edu

ABSTRACT 
Successful outreach to computational researchers for informing 

about the benefits of switching to a different computing 

environment depends on the educator’s ability to showcase 

practical research and development workflows in the new 

computing environment. Interactive, graphical computing 

environments are crucial to engage learners in computing education 

and offer researchers easier ways to adopt new technologies. 

Interactive, graphical computing allows learners to see the results 

of their work in real time, which provides the needed feedback for 

learning and enables chunking of complex tasks. Moreover, there 

is a natural synergy between computing education and computing 

research; researchers who are exposed to new computing skills 

within the context of an interactive and engaging environment are 

more likely to retain the new skills and adopt the new computing 

environment in their research and development workflows. Support 

for interactive, graphical workflows with modern computing tools 

in containerized computing environments has to be incorporated on 

high performance computing systems. To begin to address this 

deficiency, here we discuss our approach to teach containerization 

technologies in the popular integrated development environment of 

the Jupyter Notebook. We report on our scheme for implementing 

containerized software environments for interactive, graphical 

computing within the Open OnDemand (OOD) framework for 

research computing workflows, providing an accessible on-ramp 

for researchers transitioning to containerized technologies. In 

addition, we introduce several quality-of-life improvements for 

researchers and educators that will encourage them to continue to 

use the platform. 

CCS CONCEPTS 
•CS→Computer Science; •Cybertraining→training on using 

cyberinfrastructure; •HPC→high performance computing • 

interactive computing • training  • containers 

Keywords 
Open OnDemand, Cyberinfrastructure, Portal, Jupyter notebooks, 

Singularity, Containers, Training 

1. INTRODUCTION 
Cyber Infrastructure (CI) is challenging; a complex computing 

environment is a barrier to learning for beginning researchers. 

There is an urgent need to offer scaffolded techniques in computing 

environments to reduce the barriers toward adoption of computing 

approaches. Making the computing environment engaging and 

more accessible provides opportunities for teaching in that 

environment while simultaneously improving user adoption of new 

technologies. 

While the development of scientific computing applications and 

analysis of scientific data continues to be done on the command 

line, a broad swath of researchers by and large prefer interactive, 

graphical interfaces where they can develop their applications and 

visualize their data at the same time. An extremely popular example 

is the Jupyter Notebook [1] integrated development environment 

for Python users. Many important scientific research tasks are done 

in Python due to its ease of use in rapid development. For example, 

the popular artificial intelligence and machine learning (AI/ML) 

frameworks Keras, TensorFlow, and Torch are all Python language 

compatible frameworks. Although the workload for machine 

learning would most likely be distributed across a cluster, 

development is done interactively. This enables researchers to 

quickly debug their code by visualizing its output. The application 

in its final form would be exported to a text file for use in a batch 

script. If the researchers wished to deploy their application in a 

specific computing environment, then it makes sense that they 

would want to be developing and debugging applications in that 

same environment. 

Powerful AI/ML tools such as the above are being widely adopted 

by the research community, as are the standards for research and 

development, FAIR (Findability, Accessibility, Interoperability, 

and Reusability) and FEAT (Fairness, Ethics, Accountability and 

Transparency). However, adoption of CI technologies and data 

frameworks that are needed to effectively support those standards 

1 High Performance Research Computing, Texas A&M University, College 

Station, TX 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. To copy otherwise, or 

republish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. Copyright ©JOCSE, a supported publication of the 

Shodor Education Foundation Inc. 
 

© 2022 Journal of Computational Science Education 

DOI: https://doi.org/10.22369/issn.2153-4136/13/1/9 

Volume 13, Issue 1 Journal of Computational Science Education

50 ISSN 2153-4136 April 2022



 

 

are lagging behind the adoption curve. As a result, educators lack 

the tools to properly teach AI/ML skills. This has hindered the 

adoption of FEAT and FAIR community standards for research. 

We need to find ways to make it easier to teach researchers how to 

use these technologies. 

Education for research computation is well-served by interactive, 

graphical environments, which follows from the same reasoning. 

Researchers learning to use Python or any of the scientific Python 

libraries are more likely to retain knowledge and continue using the 

platform if it is the platform that will be used for research and 

development workflows. The Jupyter Notebook is well-suited for 

both Python education and development. The ability to visualize 

code, inputs, and outputs at the same time makes the integrated 

development environment a must for Python education. Cluster 

administrators are well-motivated to support the Jupyter notebook 

and other interactive and graphical computing interfaces to lower 

the barrier of entry for future researchers. 

The Open OnDemand (OOD) platform provides a framework for 

supporting interactive and graphical environments [4]. It provides 

a Web interface to the computing cluster, which is advantageous 

because Web interfaces are generally platform-independent, which 

is good news for users working remotely from their personal 

machines. OOD interfaces on its back end with the computing 

cluster’s batch system. Users can submit and monitor their batch 

jobs using an interactive graphical interface. The template for the 

job management interface is customized for each cluster. OOD also 

provides a framework for creating additional Web servers in the 

form of batch jobs assigned to compute nodes in the cluster. OOD 

allows the user to conveniently connect through a Web-based 

interface to this personal Web server. This is useful for a wide 

variety of graphical applications that can be served to Web 

browsers, from the humble Jupyter Notebook to as much as an 

entire virtual desktop. 

The OOD platform installed out-of-the-box can be enhanced with 

features for educators and researchers. Its primary function is to 

support specific tasks but not necessarily to provide a 

comprehensive suite of tools to support a more general workflow. 

This is disadvantageous for educators who wish to quickly and 

effectively on-ramp researchers to the cluster for two reasons. First, 

if the workflow task the educators wish to teach isn’t supported by 

the OOD platform, then they may need to use unrelated platforms 

for their teaching, which confuses researchers and leaves them with 

no clear transition to the development phase. Second, if researchers 

need to continue using command-line interfaces for some aspects 

of their workflow, then the benefit of adopting the OOD platform 

is marginal, which limits their openness to future education 

delivered through the platform. 

One of the most important technologies for compliance with these 

principles is the container, a technique for bundling a software 

environment for maximum portability. A container allows the 

bundled software to run on any machine with the same basic 

architecture. The most popular container technology is Docker [5], 

which provides a file format for bundling software environments 

and a public repository named DockerHub for sharing those files. 

Many important scientific research frameworks, such Bioconda, 

LAMMPS, and Tensorflow, have already been containerized in the 

Docker format, allowing researchers working at home quick access 

to scientific software. However, for security reasons, Docker is not 

suitable for use on high performance clusters where many users 

share a filesystem. A solution to this problem is Singularity [6], 

which is an alternative to Docker that can both read the Docker file 

format and safely operate in cluster environments. Containers are 

clearly an important technology for the future, yet support for 

containers and especially support for container education lags 

behind the curve.  

Adding container support to existing interactive, graphical 

interfaces will help educators better demonstrate container usage, 

showcase the utility of the approach, elevate the level of discourse 

to more advanced topics like reproducibility in computational 

sciences, and ultimately make it easier for researchers to navigate 

the transition to containerized computing environments. Alongside 

this, cluster administrators can also support sharing locally 

developed containers with external researcher collaborators. In the 

long run, these strategies will lead to a greater rate of container 

adoption and adoption of the FAIR and FEAT principles for 

scientific research, especially in the fields making use of 

biologically-inclined and AI/ML tools. 

2. METHODS 
In order to facilitate computational skills training for researchers, 

an interactive mechanism was needed. Open OnDemand offers 

that, but it is limited in its general scope to Jupyter notebooks and 

apps that represent the desktop. These were used for some 

educational courses. In addition, quality of life improvements were 

developed and support for containers was implemented. These 

features were also used for some educational courses. 

2.1 Experimental Design 
Open OnDemand has been used as an educational platform in 

several Short courses and Primers [2] since 2019. Students were 

polled for feedback after each to determine the achievement rate for 

the educational goals of each course. Results from this program 

have been reported previously [3]. 

2.2 System Design  
At Texas A&M, several quality-of-life improvements and add-ons 

were implemented in the Open OnDemand framework, seen in 

Figure 1. These generally fall under the scope of User Experience, 

which is to say, how easily the user can get what they need from 

the platform. This is especially important for researchers who aren’t 

necessarily trained in cluster computing technologies but still want 

to take advantage of those resources. These features help to draw 

researchers to the platform, which makes them more receptive to 

education delivered through the platform. 

The helpdesk ticket submission form is a tool that allows 

researchers who encounter problems to request help from the 

cluster administrators by populating a form conveniently located in 

the OOD web interface. This makes it easier for researchers to get 

help since they don’t have to leave the website to find instructions 

for how to do so. It also helps researchers get quick responses from 

cluster administrators because the form fields encourage the user to 

provide the administrators with the information needed to 

understand the problem. 

The job composer form is a tool that allows researchers to edit batch 

scripts and submit them to the cluster by populating a form 

conveniently located in the OOD web interface. Parameters are 

selected in fields, while a preview shows the script that results from 

those parameter choices. Templates are provided for common 

scientific programming applications such as R and MATLAB. This 

makes it easier for educators to showcase the basics of batch 

scripting without the burden of also teaching command line syntax. 

It also enables researchers to get started quickly with their research 

tasks. 

Journal of Computational Science Education Volume 13, Issue 1

April 2022 ISSN 2153-4136 51



 

Figure 1. Screenshot of Dashboard page from Terra cluster 

maintained by Texas A&M High Performance Research 

Computing (HPRC). Tables shown: Disk Quota, Allocation, 

and Job monitoring. Highlighted: links to Create Help Ticket, 

Request Software, Quota Increase, and Job Composer forms. 

The quota request form is a tool that allows researchers to ask for 

changes to their disk space allocations by populating a form 

conveniently located in the OOD web interface. This is a simple 

task, but researchers need to do it so rarely that when it comes time 

for it, they are often confused. Streamlining this process helps save 

time for researchers and cluster administrators. 

The view-only link feature for the VNC interactive app is a tool for 

screen sharing implemented in the OOD framework. This is used 

by educators to provide instant feedback while teaching interactive 

computing skills. Each interactive job in the OOD framework 

creates a web server on a compute node and connects that web 

server to the student’s browser. The student uses that web interface 

to perform activities on the compute node. In the case of VNC, the 

web server can also provide a second copy of the web interface that 

is read only. A link to this read-only web server can be distributed 

to allow teachers and collaborators to watch live as the job owner 

interacts with the compute node. In the case of VNC, this is useful 

for education of scientific computing skills for graphical software 

applications that display in a window, which is the majority. 

A scheme for supporting containerized environments within OOD 

was developed. Support for containers can be added to any OOD 

interactive app simply by inserting the correct container runtime 

syntax in the template job script. In the case of the Terra cluster at 

Texas A&M University, the container runtime is Singularity [6]. 

For example, if the command to launch a Jupyter Notebook 

application that appears in the job template takes the form “jupyter 

notebook [arguments],” then the new syntax would be “singularity 

exec [image] jupyter notebook [args].” This substitution is 

relatively trivial, which is exactly why containers are such an 

important technology for clusters to support. 

The major hurdle for implementing containerized app support in 

OOD is not the container syntax itself but the integration of that 

syntax into a larger structure that is flexible enough to support 

multiple computing environments. Although containers are 

fantastic, they are not for everyone. Cluster administrators would 

wish to continue maintaining their local computing environments 

to meet their users’ needs. OOD does not provide a significant 

example or tutorial on how to go about supporting multiple 

computing environments. However, the underlying technologies 

are powerful enough to enable the necessary developments. 

The OOD user interface for each app is assembled from a minimal 

list of specifications, which is convenient for simple apps, but the 

available options for customizing that user interface through the 

specifications are limited. The most significant limitation is that 

every field and widget with which the user may or may not need to 

interact must be displayed. In the case of multiple computing 

environments, where the information that is needed to select an 

environment varies greatly depending on which environment is to 

be used, this quickly grows out of control, hindering usability. The 

solution to this problem is to implement the OOD optional feature 

to support JavaScript in the user interface. This allows for the 

addition of scripts for toggling the visibility and values of the fields 

based on the content of the fields as shown in Figure 2. 

 

Figure 2. Screenshot of the Jupyter Interactive App form 

from the Terra cluster at HPRC. Highlighted: Drop-down 

menu for selecting environment type, Field for selecting 

container file. 

3. RESULTS 
Open OnDemand has been used by Texas A&M High Performance 

Research Computing (HPRC), and Laboratory for Molecular 

Simulation (LMS) for research computing since 2018. Results for 

using OOD in our introductory courses during 2020 have already 

been reported [3]. With over 1600 active users on the platform, 

several courses now use the Texas A&M OOD platform as the 

preferred teaching method. This includes a variety of advanced 

scientific computing skills in addition to the basic topic previously 

studied, as shown in Table 1. An important feature that 

accompanies this growth is the view-only link for VNC sessions, 

which enables a huge number of scientific applications that are 

compatible with VNC. However, the real winners are the many 

scientific applications based on the Python language, all of which 

Volume 13, Issue 1 Journal of Computational Science Education

52 ISSN 2153-4136 April 2022



 

 

can now be demonstrated using the same hardware and software 

environment the researchers will ultimately use. The educational 

benefits of an interactive computing Web interface have made 

themselves evident through rapid adoption by instructors at Texas 

A&M HPRC as shown in Table 1. The view-only link VNC feature 

of OOD was also used during the instruction of CHEM 119: 

Fundamentals of Chemistry I, a formal laboratory course taught in 

Fall 2020 at Texas A&M. Ninety-five students practiced their 

computational skills as part of the course. 

Table 1. List of informal HPRC short courses and Primers in 

Spring 2021. New OOD features that were used in the course 

and the number of participants attending. Courses continue to 

be offered on these topics. 

Course Title OOD Features Partici-

pants 

Linux Primer Shell access 110 

Schedulers Primer Job composer 292 

Jupyter Notebook Primer Jupyter Notebook 126 

Cluster Usage Primer Quota request form 203 

Introduction to Python Jupyter Notebook 235 

Scientific Python Jupyter Notebook 28 

Introduction to Containers Container support in 

Jupyter Notebook 

4 

Molecular Dynamics — 

NAMD 

View-only link VNC 6 

Introduction to Quantum 

Chemistry Simulations 

with ORCA 

View-only link VNC 17 

Drug Design — 

COVID19 for the cure 

View-only link VNC 12 

Intro to Xarray and Dask JupyterLab Notebook 13 

Intro to Deep Learning 

with Pytorch 

JupyterLab Notebook 11 

Intro to Deep Learning 

with Tensorflow 

JupyterLab Notebook 19 

 

3.1 Case Study Teaching Containerization on 

Clusters 
The newest educational offering, Introduction to Containers [7], 

featuring OOD support for Containerized Jupyter Notebooks, 

demonstrates the importance of this ongoing effort. Introduction to 

Containers was a short course of two-and-a-half hours offered on 

April 30, 2021, October 15, 2021, and March 11, 2022. It was 

developed for the purpose of educating researchers about the use of 

containers. Due to COVID-19 conditions, the course was 

developed to be delivered virtual-only via Zoom. 

The intended learning objectives were to: 

1. Provide the researchers the information they need to decide 

if it is worth investing their time into making the switch to 

using containers in their research computing environment. 

2. Familiarize the researchers with basic container workflow 

tasks, including use of the Singularity runtime, utilization of 

Docker-format container repositories, and support for 

containerized interactive graphical applications.  

3. Demonstrate advanced applications of containers across 

multiple scientific disciplines to appeal to a wide audience. 

To accomplish this, the course began with an overview of container 

technologies, leading into interactive exercises with which the 

students could follow along, and finally showcasing a selection of 

advanced topics. Learners were offered the materials from the 

course (for future reference) via the course website and our wiki. 

Wiki entries were updated to reflect the contents of the course. 

The course had a number of descriptive examples for students to 

observe. These were followed with hands-on examples that allowed 

the participating researchers to practice their newly acquired 

knowledge. The Open OnDemand platform helped to make this 

course a success. Easy access to the cluster compute nodes via the 

OOD web interface removed the need for students to install SSH 

software on their local machines. Although command-line usage 

was used for some exercises, the equivalent batch script variations 

of those workflows were also demonstrated, which are entirely 

compatible with the OOD Job Composer feature. In principle, the 

researcher need not use the command line at all for those 

workflows. Finally, container support for interactive applications 

such as the Jupyter Notebook gave researchers the comfort of 

knowing that they could continue using their favorite graphical 

workflows should they choose to make the switch to containers. 

The course was evaluated by polling the students for feedback at 

the end of the course. The poll was delivered through Zoom during 

the course and also by Google Form after the end of the course. 

Although there were few responses (due to the low attendance), the 

responses were overwhelmingly positive, indicating a high rate of 

success for the first two learning objectives. Students indicated that 

the course did give them the information they needed to decide 

whether to make the switch to containers and that they had gained 

familiarity with the basic workflows. The feedback indicated that 

the advanced topics were not of interest to most students, which 

leads us to the conclusion that the course can also be shortened by 

removing the advanced topics and offering it as a 1-hour primer. 

This could potentially increase interest in the course by decreasing 

the time commitment and by allowing the course to be offered at 

different times. We further surmise that offering the course during 

the last week of the semester had limited the number of participants 

in the course. 

The most important improvement that is needed for the 

introduction to containers course is advertisement to counter the 

low attendance rate of the first course offering. Now that the course 

has been shown to be successful, researchers should be made aware 

that container education is an option for them. One way to deliver 

this advertisement is to subtly (or not-so-subtly) place visible 

evidence of container support throughout the OOD web interface 

as the support is expanded. This will help with recognition among 

the large audience of researchers who have been using the OOD 

platform exclusively since the success of the basic Primers and 

Short Courses of 2020. 

A major benefit of the containers course is the cross-topic learning 

gain. Researchers learning how to use containers are by definition 

exposed to the principles of sharing and portability that led to the 

creation of the container technology. This helps to drive long-term 

adoption of FAIR and FEAT practices in research computing. 

Knowledge of containers in general is relevant for scientific 

research, especially in the fields making use of AI/ML tools. 

Journal of Computational Science Education Volume 13, Issue 1

April 2022 ISSN 2153-4136 53



4. CONCLUSIONS AND FUTURE 

DIRECTIONS 
Since 2018, Texas A&M HPRC and LMS have successfully used 

the OOD platform to offer informal instruction at week-long 

summer schools, online Primers, and our short course program. 

Here, we reported on our efforts while highlighting a 

containerization course and Primer that benefitted from expanded 

capabilities added to the Texas A&M OOD framework. The use of 

OOD in the course, coupled with enhanced usability features, help 

increase learner engagement, improve adoption of the technology, 

and encourage continuous use of the technology in future research. 

Several of these features are developed and maintained by 

undergraduate and graduate students in the Texas A&M HPRC 

student fellows program. While singularity was the chosen 

containerization technology, the course offered a mechanism for 

researchers to use a Docker alternative. Recognizing the challenges 

faced in evaluating virtual courses, this course has been offered in 

a hybrid face-to-face and virtual setting with the goal of collecting 

more statistics on researcher usage and learning. We hope to further 

the learning gains by improving the rich feature set on our local 

Texas A&M OOD by including access to our knowledge base and 

ensuring access to a locally hosted container registry. 

5. SUPPORTING INFORMATION 
All training materials used in this study are available to the 

community via the Texas A&M HPRC website [2]. Videos and 

course recordings may be accessed via the Texas A&M HPRC 

channel on YouTube. The community is invited to join the 

SWEETER Slack workspace at https://hprc.tamu.edu/sweeter. 

Surveys and review exercises that will be developed as part of this 

longitudinal study may be requested from the author. Please send 

us feedback about your adoption experience via an email to 

help@hprc.tamu.edu. 

6. ACKNOWLEDGEMENTS 
This work was supported by the National Science Foundation 

(NSF) award number 1925764, “CC* Cyberteam SWEETER,” and 

NSF award number 2019129, “MRI:FASTER”, NSF award 

number 1730695, “CyberTraining: CIP: CiSE-ProS: 

Cyberinfrastructure Security Education for Professionals and 

Students”, NSF award number 2019136, “CC* BRICCs: Building 

Research Innovation at Community Colleges,” and NSF award 

number 1829799, “Cybertrainining: CMS3”. 

7. REFERENCES 
[1] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, 

Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle 

Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul 

Ivanov, Damián Avila, Safia Abdalla, Carol Willing and 

Jupyter development team. 2016. Jupyter Notebooks — a 

publishing format for reproducible computational workflows. 

In Positioning and Power in Academic Publishing: Players, 

Agents and Agendas. Fernando Loizides and Birgit Scmidt 

(Eds.), 87–90. DOI: https://doi.org/10.3233/978-1-61499-

649-1-87 

[2] Texas A&M High Performance Research Computing 

Website. Retrieved from https://hprc.tamu.edu 

[3] Dhruva K. Chakravorty, Lisa M. Perez, Honggao Liu, 

Braden Yosko, Keith Jackson, Dylan Rodriguez, Stuti H. 

Trivedi, Levi Jordan and Shaina Le. 2021. Exploring Remote 

Learning Methods for User Training in Research Computing. 

Journal of Computational Science Education 12, 2 (Feb. 

2021), 11–17. DOI: https://doi.org/10.22369/issn.2153-

4136/12/2/2 

[4] Dave Hudak, Doug Johnson, Alan Chalker, Jeremy Nicklas, 

Eric Franz, Trey Dockendorf and Brian L. McMichael. 2018. 

Open OnDemand: A web-based client portal for HPC 

centers. Journal of Open Source Software 3, 25 (May 2018), 

622. DOI: https://doi.org/10.21105/joss.00622 

[5] Dirk Merkel. 2014. Docker: lightweight linux containers for 

consistent development and deployment. Linux Journal 

2014, 239 (Mar. 2014), 2. Retrieved from 

https://dl.acm.org/doi/10.5555/2600239.2600241 

[6] Texas A&M HPRC wiki page for Singularity. Retrieved 

from https://hprc.tamu.edu/wiki/SW:Singularity 

[7] Texas A&M HPRC Containers Short Course Website. 

Retrieved from 

https://hprc.tamu.edu/training/intro_containers.html 

 

Volume 13, Issue 1 Journal of Computational Science Education

54 ISSN 2153-4136 April 2022


	1. INTRODUCTION
	2. METHODS
	2.1 Experimental Design
	2.2 System Design

	3. RESULTS
	3.1 Case Study Teaching Containerization on Clusters

	4. CONCLUSIONS AND FUTURE DIRECTIONS
	5. SUPPORTING INFORMATION
	6. ACKNOWLEDGEMENTS
	7. REFERENCES



