
Tailored Computing Instruction for Economics Majors
Richard Lawrence*

HPRC†
Texas A&M University

College Station, TX

 rarensu@tamu.edu

Ridham Patoliya
HPRC†

Texas A&M University
College Station, TX

ridhampatoliya@hprc.tamu.edu

Zhenhua He*
HPRC†

Texas A&M University
College Station, TX

happidence1@tamu.edu

Honggao Liu
HPRC†

Texas A&M University
College Station, TX

honggao@tamu.edu

Wesley Brashear
HPRC†

Texas A&M University
College Station, TX

wbrashear@tamu.edu

Dhruva K. Chakravorty
HPRC†

Texas A&M University
College Station, TX

chakravorty@tamu.edu

ABSTRACT
Responding to the growing need for discipline-specific computing

curricula in academic programs, we offer a template to help bridge

the gap between informal and formal curricular support. Here, we

report on a twenty-contact-hour computing course developed for

economics majors at Texas A&M University. The course is built

around thematic laboratories that each include learning objectives,

learning outcomes, assignments, and assessments and is geared

toward students with a high-school level knowledge of

mathematics and statistics. Offered in an informal format, the

course leverages the wide applicability of the Python programming

language and scaffolding offered by discipline-specific, hands-on

activities to introduce a curriculum that covers introductory topics

in programming while prioritizing approaches that are more

relevant to the discipline. The design leverages technology to offer

classes in an interactive, Web-based format for both in-person and

remote learners, ensuring easy access and scalability to other

institutions as needed. To ensure easier adoption among faculty and

offer differentiated learning opportunities for students, lectures are

modularized to 10-minute segments that are mapped to other

concepts covered during the entire course. Class notes, lectures, and

exercises are pre-staged and leverage aspects of flipped classroom

methods. The course concludes with a group project and follow-on

engagements with instructors. In future iterations, curriculum can

be extended with a capstone in a Web-based asynchronous

certification process.

Keywords
Python, Cybertraining, Google Colab, Economics, Cyber

infrastructure (CI)

1. INTRODUCTION
The success of broadening participation in computing efforts relies

on effectively developing a continuum of informal and formal

learning environments for computing instruction. Simultaneously,

we have to offer programming education that should be tailored to

the needs of the students based on their discipline and level of

commitment, rather than apply a one-size-fits-all approach. Indeed,

recruitment and engagement can be improved by offering

computing training in which examples and exercises are tailored to

the academic and professional interests of the student body.

Scaffolding can be achieved by adopting a tailored approach that

focuses on a subset of topics that lead to a discipline-relevant final

project that offers a feeling of accomplishment. The programming

language, learning platform, and technologies should be coupled

with continuing activities to encourage the interested learner to

continue the process well beyond the duration of the activity.

Simultaneously, we have to teach in incremental modules that let

students solve small problems that are tied to real-world examples.

To benefit the larger community, we should incorporate Web-based

interactive computing avenues that ensure scalability and

reproducibility at the core. Finally, the approach should be

grounded in best practices in cyberinfrastructure technologies and

reviewed pedagogical approaches. Such an approach should ideally

not be limited by the computing technologies that are available to

the students, but rather focus on making the current generation of

technologies accessible to the students.

Texas A&M High Performance Research Computing has a legacy

of offering informal courses geared toward adoption of CI practices

in the regional researcher community [1, 4, 6, 7]. These have

extended from our “short courses” that cover several

cyberinfrastructure topics using hands-on exercises. In previous

works, we have studied means to promote programming at the early

undergraduate level [2], relied on visualization to study

cybersecurity, and have explored opportunities to expand

computing to the middle and high school levels [3]. With a view

toward improving student learning in remote learning

environments, we have explored pedagogical approaches such as

our peer-moderated and peer-taught “Primers” [5]. We have built

software platforms to facilitate the use of CI technologies to

improve reproducibility in the sciences and coupled them with

technology enabling “Tech labs” to improve CI adoption in

research [7]. These efforts have been tied into asynchronous

approaches that leverage interactive computing and social media to

further CI technology adoption at Texas A&M University.

* Both authors contributed equally
† High Performance Research Computing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2022 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/13/1/6

Volume 13, Issue 1 Journal of Computational Science Education

32 ISSN 2153-4136 April 2022

As computing becomes more prevalent, programming is

increasingly viewed as a critical career skill. Academic programs

have moved to offer their graduates opportunities to develop skills

in languages such as Python, R, MATLAB, or C++. Academic

programs that do not have courses that directly tie into computing

have relied on informal or certificate-based programs to help their

students gain these skills. Here, we use our experience in offering

CI-based training to develop a structured approach to teach “Python

Programming” to graduate students in the Economics program at

Texas A&M University. A template for adoption at institutions at

other sizes is included here.

2. METHODS
The course was designed to be taught live in a mixed in-person and

virtual hybrid modality and was structured to use active-learning

methods. Curricular materials could be accessed via a Google

Classroom (via Google Drive) for easy sharing. A course template

was developed with unique branding and thematic elements to

ensure that the course has a unique identity and to develop a sense

of familiarity among students as we revisited old concepts. To

ensure continuity during the classes, slide decks for the course were

structured with learning objectives, concepts visited theory, hands-

on exercises, and take-home assignments. To facilitate hands-on

exercises while ensuring portability and equitable access to all

students, Python examples and exercises were delivered in the form

of Jupyter Notebooks as shown in Table 1, hosted in a Google Drive

(students got a copy), and edited and run in Google Colab. The

Notebooks contained a mix of informative lecture elements,

interactive examples, and exercises. With a view toward student

engagement, exercises used current real-world examples and relied

on visualization approaches. Scaffolding was achieved by

including a detailed description of topics covered in each coding

block along with pointers to previously covered concepts.

Assessments and assignments were offered using the notebooks.

Curricular materials including presentation slides were offered

before the class, allowing students to work on the exercises

asynchronously. To facilitate a review of the previous thematic

section, a video covering the major topics was offered before the

lesson. Google Classroom allowed for seamless integration of all

these technologies, with automatic distribution of the Jupyter

Notebook files containing the course materials as well as recording

student progress. From the students’ perspective, this solution

allowed the use of only a few clicks to both navigate the course and

launch the Colab editor to do their coursework.

An initial list of course topics were identified via polling, informed

discussions, and the general format used in Python education.

Topics were developed in consultation with the Economics

program at Texas A&M. Learning objectives, learning outcomes,

and assignments were developed for each section. At its core, the

format was modularized to enable easy adoption in teaching

scenarios. Toward achieving this goal, the identified course topics

were divided into thematic sections as described in Table 1. Each

thematic section included three 50-minute lectures with hands-on

exercises. Each lecture was divided into ten-minute modules that

were mapped to other modules in the course, helping revisit topics

later in the course. The last two thematic sections covered several

topics introduced during the course. A detailed registry of each

module’s dependency on previous modules was developed. As

such, a future instructor could mix and match these modules to

create a new course or grab all the modules that lead to an advanced

topic. The course included mandatory and optional assignments for

each minute lecture. Assignments gradually built up in difficulty

level, offering opportunities for differentiated learning. Students

could choose to work on the take-home exercises or see the

solutions by double-clicking on a cell. Participation was tracked at

multiple points throughout each day, which determined course

pass/fail for students. To facilitate student retention and

participation, office hours were offered by the instructors during

the week. To facilitate continued engagement on the conclusion of

the course, HPRC leveraged its “Bring Your Own Science,” a one-

on-one researcher engagement service to work with student groups

on their group projects. Several measures were considered to ensure

that students participating using the remote option had an enriching

experience. Adopting the best practices developed in our “Primers”

and “Technology Laboratories” approaches, we maintained live

chat via a peer moderator, online help offered via breakout rooms

on Zoom, and the option to participate in remote office hours.

An important aspect of the development of this course was that it

was not the sole work of any individual, but rather a collaborative

effort of several instructors. This allowed for a diverse offering of

teaching styles and helpd to ensure that relevant examples would

be included at all stages of the course.

Table 1a. Concepts covered during the course. Each thematic

section includes three 50-minute lectures that have

accompanying, in-class, hands-on exercises and take-home

assignments.

Thematic Section Topics Covered

Introduction

Google Colaboratory, Variables

Files, Data Types

Dates and Times, how to use Functions, User

Input

Algorithms

Operations

Blocks, Control Structures

Control Structures, Errors

Data Structures

Lists and Strings

Lists, Loops, Dictionaries, Classes

Arrays

Data Tools

Python libraries, Scatter plot, Line plot,

Subplot, Candlestick plot

Series, Index, Values, DataFrame Creation

DataFrame Entry Retrieval, Filtering, Sorting

Data Analysis

DataFrame histogram, Missing and duplicate

data handling

Merge DataFrame (left, right, outer, inner)

Linear regression, Train data, Test data,

Predict, Accuracy

Journal of Computational Science Education Volume 13, Issue 1

April 2022 ISSN 2153-4136 33

Table 1b (continuation of Table 1a).

Thematic Section Topics Covered

Data Scavenging

Web-scraping, HTML, Tags, Browser Inspect

Requests library, FRED API (short for

Application Programming Interface)

Beautiful Soup

3. RESULTS
The course was offered in Fall 2021 to the first-year graduate

students enrolled in the Economics program at Texas A&M

University. Enrollment was limited to 70, with the majority of

students preferring to attend the sessions in-class. 69 students

attended the first day of classes, with 47 students completing the

course. The course was evenly structured in two learning

components. In the first half of the course, we offered three

thematic sections that covered the Python programming basics over

ten contact hours. The second half covered different applications of

Python for students of Economics over another ten hours. This

format lent the course to two continued education credits. Details

of each section are described in Table 1, and the course syllabus is

included as supporting information. The course culminated with

capstone exercises that used the Beautiful Soup library to “Web

scrape” a website with economic data and used finance and plotting

libraries to generate candlestick charts. These exercises offered an

opportunity to reinforce concepts that the participating students had

learned during the thematic sections.

3.1 Learning Outcomes
3.1.1 Orientation and Introduction

● Motivate the use of Python for Economics

● Familiarity with Jupyter IDE via Google Colab

● Understand general programming concepts

● Know what Python is, where it comes from, how to use

3.1.2 Programming Skills
● Import from external libraries (e.g. numpy)

● Use the assignment operator

● Inspect variables with print()

● Read and write a simple file

● Handle common types of data

● Inspect variables with type()

● Using functions with arguments

● Handle dates and times with numpy.datetime

● Get user input

● Apply mathematical rules (order of operations)

● Apply logical rules (comparisons)

● Define control structures with whitespace

● Use functions, loops, and conditionals to implement

algorithms

● Handle errors

● Organize data into simple data structures (string, list,

array)

● Interact with data structures (index, slice, mask)

● Integrate data structures into program control (loops,

array operations)

● Organize data into advanced data structures (dictionary,

class)

● Read HTML to locate data in web page code

3.1.3 Data Skills
● Visualize data with Matplotlib

● Create scatter plot, color map, best-fit-line

● Organize data with Pandas data structures

● Manipulate data with Pandas data methods

● Handle missing data

● Analyze data with Pandas data methods

● Create linear regression models with Scikit-Learn

● Retrieve data from the Web

● Parse HTML format to extract data

● Organize Web-scavenged data into data structures

● Make observations about data and adapt algorithms to

match

Table 2a. In-class exercises and take-home assignments for

additional learning. * indicates a take-home exercise.

Topics and exercises covered Topics and exercises covered

Example Assignment National Economics Data*

Hello World Classes demo*

Your First Variables Talking Cats*

Variables Quiz* Array Basics

Text Files (preview) Array Operations*

Common Variable Types Scatter Plot

How to use Functions Line Plot

Datetime Subplots

The Droid* Color Plots

Data Type Quiz* Series

User Input* Creating a DataFrame method

Story Generator* Retrieve and Drop Rows

User Input Quiz* Select, Filter, and Sort Rows

Arithmetic and Comparisons Read/Write files

Units of Time* Group data

Operations Quiz* DataFrame plots and histogram

Functions Missing and duplicate data*

Conditionals Merge data*

More Conditionals Pandas DataFrame*

Compute Pi* Matplotlib Pandas*

Control Structures Quiz* Candlestick Plot*

Errors and Files* Linear Regression

Calculator HTML

String Index Pandas HTML

List Properties Requests

List Logic FRED API

List Loops Regular Expression

Capstone for Lists and Strings Beautiful Soup and Pandas for

web-scraping

Volume 13, Issue 1 Journal of Computational Science Education

34 ISSN 2153-4136 April 2022

Table 2b. (Continuation of Table 2a).

Topics and exercises covered Topics and exercises covered

Capstone with Dictionaries

and Libraries

Candlestickplots

3.2 Description of Course Content by

Thematic Section
3.2.1 Introduction
Students were first introduced to Python using the Jupyter

Notebook provided by Google Colaboratory. These exercises built

up their understanding of programming concepts and Python

language syntax. The most important topics were covered in class,

while a few were provided as take-home assignments. All of the

exercises were directly related to future assignments that depended

on these fundamentals. Particular emphasis was placed on the

Numpy datetime64 data type as an example to support the future

lessons on time series data. The use of files was introduced early

because they would be critical for data analysis exercises later.

Modules were introduced early despite not being traditionally

considered a fundamental topic because of their massive

importance in future lessons. Students were shown how modules

could be imported (i.e., import <module_name>) and incorporated

within their own code. In this course, the Numpy (the

module/library introduced earlier) arrays were extensively used to

generate data in Pandas and the Matplotlib exercises.

3.2.2 Algorithms
Students practiced with several topics that share a dependence on

the Python language syntax element called indentation. These are

the control structures: functions, conditionals, and loops. In

practice, control structures are primarily used for the

implementation of algorithms, which is not a primary focus of

Economics research. Thus, these topics were less connected to

future exercises. However, we still made use of them, when

possible, to reinforce that learning. The take-home exercises for this

session reinforced the use of files and built upon one another to

form a sort of mini-lesson in themselves.

3.2.3 Data Structures
The most relevant topic for Economics research is the Data

Structure, which is a strategy for keeping large amounts of data

organized for effective processing. In Python, these structures are

the List, Dictionary, and Array (with NumPy). These exercises

depended on existing knowledge of Python fundamentals, most

especially data typing and interacting with files. The exercises here

were in the next session to build a useful network of tools that can

handle time series data.

3.2.4 Data Tools
Students were introduced to two commonly used data handling

libraries: Matplotlib [10] for visualization and Pandas [9] for data

structure. Matplotlib was introduced first, leaning heavily on the

Arrays lesson previously covered in order to handle the data that

was to be visualized. The example data to be visualized was

selected from publicly available Housing market data for relevance

to Economics. This same data would be revisited in a future session

featuring linear regression tools. Pandas includes two data

structures, the simpler of which is the Series, a one-dimensional

labeled array, and multiple Series together form a DataFrame,

which is the most used structure. These data structures directly

combined the elements taught in the previous session, especially

the lessons on Dictionaries and Arrays. The primary kind of data in

Economics research is a time series, so an emphasis was placed on

those by including them as examples in many lessons. This built

upon the Numpy [8] datetime64 introduced in the first session. This

data type integrates with the Pandas [9] dataframe custom index

feature, which is a staple method of handling time series data. The

time series concept was revisited in an advanced exercise, the

candlestick plot, a time series finance data visualization from the

popular mplfinance [11, 12] library that builds upon the Pandas

time series data structure.

3.2.5 Data Analysis
In addition to the data structure provided by the Pandas library,

students were taught how to perform several basic data analysis

operations using the same library. This included manipulation of a

dataset to collect data into groups, add and remove elements, and

filter to search for elements meeting certain logical criteria. This

built upon concepts introduced in the second session where the

operations that were previously used with conditional control

structures were recycled for this new purpose. To tie in with

economic research, the example data for manipulation practice in

this session were chosen to be a sample of National Economic Data,

which reprised the data set previously introduced in a Dictionary-

focused take-home assignment.

Linear regression is one of the primary techniques economists use

to determine correlations between different variables. We

introduced students to linear regression using visualizations and a

practical example. Students were also introduced to a machine

learning package (Scikit-learn) and its functions. Apart from Scikit-

learn, the rest of the code was built upon the modules that students

learned during preceding sessions (Pandas, NumPy, and

Matplotlib). A Housing Price dataset example was used to give

participants a feel for visualizing, cleaning, and manipulating real-

world economic data using Pandas.

3.2.6 Data Scavenging
Nowadays, most data, for example economics data, live online.

Web scraping is an efficient method to collect data for research,

sales, and marketing, popularity comparison, etc. Students were

introduced to common Web data concepts including HTML basics,

HTTP requests, and the JSON data structure. These naturally built

upon previously taught skills, especially functions and data

structures, including Pandas.

Federal Reserve Economic Data (FRED) [13] is a public resource

hosted by the St. Louis Federal Reserve bank. This is commonly

used by economics researchers as a free source of economics data.

This specific API was also requested by faculty in the department.

FRED API is a traditional Web API which can be handled easily in

Python. Data is downloaded in the JSON format, which integrates

easily into the Python dictionary data structure. This example was

used as an advanced exercise building upon previous Python

concepts while also priming students for their future studies using

the same data source.

While APIs offer a straightforward means to retrieve data, we note

that most websites do not have APIs for data extraction. For more

general Web-data extraction, we covered the Beautiful Soup [11]

library. Beautiful Soup is a Python library to pull data out of HTML

files. The example use case for this lesson was salary statistics of a

given job position in one or more cities.

Journal of Computational Science Education Volume 13, Issue 1

April 2022 ISSN 2153-4136 35

3.3 Feedback from Economics Graduate

Students
Surveys released each week collected student impressions of the

material covered that day. Student impressions were generally

positive about the relevance of the materials, interest in the topics,

and opportunities offered by the course. There was a significant

interest in converting this learning opportunity into a certificate that

could be digitally displayed on professional social media sites such

as LinkedIn. The students were able to follow along and use the

Google Classroom platform effectively. From the survey

responses, the most requested change was to slow down, because

the syllabus was too ambitious in its pacing. Incorporating this

request into the course plan resulted in omission of the capstone

project and a few other exercises scattered throughout. We were

pleasantly surprised to receive no comments criticizing the

relatively advanced nature of the API data retrieval and Web-

scraping exercises.

For the learning outcomes, 100% of the students who participated

in the survey agreed that they were able to learn what they expected.

Take-home assignments for continued learning were read but not

graded. We observed that assignments were largely attempted the

night before the previous session. Given the opportunity, we

learned that offering solutions on the Web platform may dissuade

students from working on the problems. To encourage more

discussion, this feature was removed in later weeks. Students were

now asked to attend office hours to get the solutions to the advanced

problems. As such, student activity with regard to take-home

assignments for continued learning was found to be unenthusiastic.

Many students did not attempt the at-home exercises, citing that

their other courses kept them too busy. This is an unfortunate but

predictable result of the choice to do participation-only grading.

This in turn had a negative impact on attendance at our hours, too,

since the harder take-home assignments were designed to foster a

discussion during office hours. In the future, homework should not

represent a significant part of the curriculum unless true grading

can be offered.

4. CONCLUSION
During this course, students were introduced to fundamental

competencies and subject-specific applications in Python

programming. This 20-contact-hour course built on an easy-to-use

Web-based platform and represented a scalable opportunity for

programming language instruction targeted at students of specific

disciplines. Here, we showed that as we work to broaden

participation in computing, tailoring examples and exercises to the

interests of the student body increases student-engagement and

facilitates student learning. The format gave us opportunities to

include modules that increased awareness of cyberinfrastructure

practices such as code optimization and parallel programming that

are common in research computing. This will dovetail into our

current series of HPRC courses that cover topics in Artificial

Intelligence and Machine Learning. A tailored approach can focus

on a subset of topics that lead to a discipline-relevant final project,

which offers a feeling of accomplishment while serving as a

capstone exercise in a certification-styled effort. An asynchronous

version of the course is under development, which will include

videos that accompany class slides and the Google Colab

notebooks. This version will be made available to the community

for wider adoption. A version with mandatory assignments and a

capstone will be offered for certification.

5. SUPPORTING INFORMATION
The slide decks and some of the training materials used in this study

are available to the community via the Texas A&M HPRC website

[14]. The course syllabus is included as supporting information.

Please send us feedback about your adoption experience via an

email to help@hprc.tamu.edu.

6. ACKNOWLEDGEMENTS
This work was supported by the Department of Economics at Texas

A&M University, the National Science Foundation (NSF) award

number 1925764, “CC* Cyberteam SWEETER”, NSF award

number 2019129, “MRI:FASTER”, NSF award number 1730695,

“CyberTraining: CIP: CiSE-ProS: Cyberinfrastructure Security

Education for Professionals and Students,” NSF award number

1818253, “Frontera: Computing for the Endless Frontier,” and NSF

award number 2019136, “CC* BRICCs: Building Research

Innovation at Community Colleges.”

7. REFERENCES
[1] Chakravorty, D. K., Pennings, M., Liu, H., Rodriguez, D. M.,

Jordan, L. T., Ghaffari, N., and Le, S. D. 2019. Effectively

Extending Computational Training Using Informal Means at

Larger Institutions. Journal of Computational Science

Education 10, 7 (Jan. 2019), 40–47. DOI:

https://doi.org/10.22369/issn.2153-4136/10/1/7

[2] Chakravorty, D. K., Pennings, M., Liu, H., Wei, Z.,

Rodriguez, D. M., Jordan, L. T., McMullen D.F., Ghaffari,

N., and Le, S. D. 2019. Evaluating Active Learning

Approaches for Teaching Intermediate Programming at an

Early Undergraduate Level. Journal of Computational

Science Education 10, 7 (Jan. 2019), 61–66. DOI:

https://doi.org/10.22369/issn.2153-4136/10/1/10

[3] Chakravorty, D. K., Pennings, M., Liu, H., Thomas, X.,

Rodriguez, and Perez, L. M. 2020. Incorporating Complexity

in Computing Camps for High School Students - A Report

on the Summer Computing Academy Program at Texas

A&M University. Journal of Computational Science

Education 11, 1 (Jan. 2020), 12–20. DOI:

https://doi.org/10.22369/issn.2153-4136/11/1/3

[4] Chakravorty, D. K., and Pham, M.T. 2020. Evaluating the

Effectiveness of an Online Learning Platform in

Transitioning Users from a High Performance Computing to

a Commercial Cloud Computing Environment. Journal of

Computational Science Education 11, 1 (Jan. 2020), 26–28.

DOI: https://doi.org/10.22369/issn.2153-4136/11/1/5

[5] Chakravorty, D. K., Perez, L. M., Liu, H., Yosko, B.,

Jackson, K., Rodriguez, D.M., Trivedi, S.H., Jordan, L.T.,

and Le, S.D. 2021. Exploring Remote Learning Methods for

User Training in Research Computing. Journal of

Computational Science Education 12, 2 (Feb. 2021), 11–17.

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/2

[6] Lawrence, R.M., Pham, T. M., Au, P. T., Yang, X., Hsu, K.,

Trivedi, S.H., Perez, L.M., and Chakravorty, D. K. In press.

Expanding Interactive Computing to Facilitate Informal

Instruction in Research Computing. Journal of

Computational Science Education.

[7] He, Z., Tao, J., Perez, L.M., and Chakravorty, D. K. In press.

Technology Laboratories: Facilitating Informal Instruction

for Cyberinfrastructure infused Data Sciences in Virtual

Settings. Journal of Computational Science Education.

Volume 13, Issue 1 Journal of Computational Science Education

36 ISSN 2153-4136 April 2022

[8] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,

R., Virtanen, P., Cournapeau, D., … and Oliphant, T. E.

2020. Array programming with NumPy. Nature 585, (Sept.

2020), 357–362. https://doi.org/10.1038/s41586-020-2649-2

[9] McKinney, W. 2010. Data Structures for Statistical

Computing in Python. In Proceedings of the 9th Python in

Science Conference 445, 51–56. DOI:

https://doi.org/10.25080/Majora-92bf1922-00a

[10] Hunter, J. D. 2007. Matplotlib: A 2D Graphics Environment.

Computing in Science & Engineering 9, 3 (May–June 2007),

90–95. DOI: https://doi.org/10.1109/MCSE.2007.55

[11] Richardson, L. 2007. Beautiful Soup Documentation.

[12] Goldfarb, D. 2019. Mplfinance Documentation.

[13] 1997. FRED, Federal Reserve Economic Data. St. Louis,

MO: Federal Reserve Bank of St. Louis. Software, E-

Resource. Retrieved from the Library of Congress,

https://lccn.loc.gov/98802805.

[14] Texas A&M High Performance Research Computing. Python

for Economics Graduate Students. Retrieved from

https://hprc.tamu.edu/events/workshops/2021-09-10-

PyEcon.html

APPENDIX: REPRODUCIBILITY

Figure 1. “Hello world” notebook in Google Colab, first few cells.

Journal of Computational Science Education Volume 13, Issue 1

April 2022 ISSN 2153-4136 37

	1. INTRODUCTION
	2. METHODS
	3. RESULTS
	3.1 Learning Outcomes
	3.1.1 Orientation and Introduction
	3.1.2 Programming Skills
	3.1.3 Data Skills

	3.2 Description of Course Content by Thematic Section
	3.2.1 Introduction
	3.2.2 Algorithms
	3.2.3 Data Structures
	3.2.4 Data Tools
	3.2.5 Data Analysis
	3.2.6 Data Scavenging

	3.3 Feedback from Economics Graduate Students

	4. CONCLUSION
	5. SUPPORTING INFORMATION
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

