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ABSTRACT
The computer science research workforce is characterized by a
lack of demographic diversity. To address this, we designed and
evaluated an end-to-end mentored undergraduate research inter-
vention to nurture diverse cohorts’ skills for research and develop
their vision of themselves as scientists. We hypothesized that this
intervention would (a) grow scientific skills, (b) increase science
identity, and (c) stimulate students to view scientific careers in
computer science as future viable options. The evaluation of the
hypotheses addressed the limitations in self-evaluation with a mul-
ticomponent evaluation framework, comprising five forms of evi-
dence from faculty and students, engaging on team projects, with
cohorts additionally participating in professional development pro-
gramming. Results indicated that students gained in scientific skills
and broadened their identity as scientists and, to some degree,
strengthened their outlook on research careers. The introduced
structured intervention and evaluation framework were part of a
US National Science Foundation Research Experiences for Under-
graduates (REU) computing-focused summer program at Rochester
Institute of Technology and are applicable in other scientific disci-
plines and institutional settings.
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1 INTRODUCTION
Despite being well-documented and extensively debated, underrep-
resentation among women, AALANA (African American, Latino/a
American, Native American), and persons with disabilities in com-
puter science continues to persist, according to US national statis-
tics compiled by the National Science Foundation and the National
Center for Science and Engineering Statistics [39]. The level of un-
derrepresentation among these groups is striking in PhD education
where the focus is on training graduates to pursue careers as scien-
tists in academia, industry, and government. Table 1 highlights the
disparity between the pre-pandemic 2018 US general population
estimates, obtained from the the United States Census Bureau [51],
and the percentage of doctoral degrees awarded at US public and
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private Computer Science departments reported by the Comput-
ing Research Association [14]. While we report on proportions
from 2018 to emphasize that the information was not related to the
pandemic, data from 2020 show similar trends. Moreover, while
proportions may differ somewhat across data sources, evidence
clearly points to a lack of diversity among computer science re-
searchers. Furthermore, data analyzed by the Equity in Graduate
Education Resource Center indicates that the proportion of women
PhD graduates is lower in computer science compared to other sci-
ence and engineering disciplines, with even more inequities when
considering race and gender together [18].

Responding to the need for increasing diversity and inclusion in
the computer science research workforce, we study the impact—for
diverse student cohorts—of participating in an end-to-end under-
graduate research training program. The theme of the program
focused intellectually on sensing humans computationally, using
hardware and software. We hypothesize that early research experi-
ences in computing for diverse cohorts will:

(a) grow scientific skills,
(b) increase science identity, and
(c) stimulate students to view scientific careers in computer

science as future viable options.

By scientific skills, we focus on research skills and knowledge for
computer science, thus involving broader scientific skills such as
teamwork and science dissemination, and also disciplinary-specific
abilities such as computer programming and human subjects re-
search competence in addition to core research process skills such
as formulating research questions, finding relevant research liter-
ature, and articulating the limitations of different methodological
approaches. As discussed by Kim and Sinatra [29], science identity
is a complex socio-cultural construct, intertwined with self/other
recognition as being a researcher and important for retaining peo-
ple in research, following Carlone and Johnson [9]. We focus here
on the perception of belonging, and development into belonging,
to the community of practice of computer science research. We
also attend to the goal and visions for future scientific careers in
computer science by examining aspirations for graduate school and
progression toward careers as scientists. As detailed below, to exam-
ine the above hypotheses, we utilize multi-component evaluation,
using data from three years of demographically diverse undergrad-
uate student cohorts and mentors who participated in the early
mentored research intervention.

1.1 Early Mentored Scientific Experiences in
STEM

It is widely acknowledged that undergraduate research experiences
bring positive benefits. Hammack et al., who link mentoring to
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Table 1: Comparing population estimates from the 2018 US Census Bureau against the 2018 Taulbee Survey’s information on
awarded Computer Science doctoral degrees points to a striking underrepresentation of women and AALANA among com-
puter scientists with terminal research degrees. This reaffirms the need for opening up research careers among underrepre-
sented groups early with effective undergraduate research training programs that are evaluated holistically by considering
multiple evidence and not just self-assessment.

Demographic Population estimate CS PhDs awarded
American Indian or Alaska Native 1.3% 0.1%

Black or African-American 13.4% 1.4%
Hispanic 18.3% 1.8%
Women 50.8% 19.3%

Persons with a disability 8.7% Not reported

“coaching and apprenticeship” (p. 10), note that mentoring provides
multiple positive outcomes for the undergraduate student receiving
the mentee experience and cognitive development directly through
research [25]. Additionally, analysis from biological/life sciences
undergraduate research reveal that mentoring guidance influences
students’ perceptions of their own research competencies, as ob-
served by Byars-Winston et al. [7]. Wright reported on responses
to a survey of almost 800 students by the Computing Research
Association’s Center for Evaluating the Research Pipeline [56]. The
results indicated that the proportion of computing students who ap-
plied to graduate school approximately doubled if undergraduates
experienced research formally and also roughly doubled decisions
to enroll in PhD studies. The National Academies of Sciences, En-
gineering, and Medicine summarized several considerations and
findings about mentoring in undergraduate research in STEM fields
such as the many types of mentors there can be, the many guises
that mentors can adopt and skill development they can support, the
results there can be for faculty and students, existing mentoring-
related measurements, as well as the data linking mentoring and
academic achievements [37]. Johann and Turbak highlighted the
growth provided through a research experience [28] as it “enables
undergraduates to make the transition from course-directed con-
sumption of scientific knowledge to participation in the production
of knowledge” (p. 280). They reported on a computer science un-
dergraduate research program involving principles of “open-ended
closed-endedness” (p. 285)–providing clear objectives for research
while ensuring intellectual room for new discoveries–and “struc-
tured flexibility” (p. 286)–offering students clear guidance and in-
tellectual freedom concurrently. Similarly, Skorinko emphasized
the importance of research for stimulating students, and to engage
diverse students, through scholarly experiences at an early stage
of their undergraduate careers [46]. Cohoon et al. noted that more
undergraduates benefiting from mentoring in research indicated
higher likelihood to attend graduate school at highly regarded insti-
tutions [12]. In addition, Baker et al. summarized reported benefits
to mentors of undergraduate researchers, and observed a positive
link between faculty who mentored undergraduate researchers and
faculty professional productivity such as being active in publishing
research, in pursuing funded research, and in engaging in confer-
ences [3]. Hall et al. observed the importance of mentors’ and their
institutional environments’ recognition of such benefits [24]. In
addition, Alvarado et al. reported on findings from analyzing sopho-
more (second-year) university students who majored in computer

science or a related field while participating in a program struc-
tured around groups; when comparing to groups of control peers,
outcomes pointed to benefits for participant students in terms of
grade point average; and there were potential benefits in terms
of being confident and growth of research interest [2]. The study
presented here recognizes the centrality of mentoring and mentee-
mentor interaction in early research experiences, operationalized
by integrating both the perspective of students and faculty mentors
for examining our hypotheses.

1.2 Diverse Students’ Science Identity and
Early Scientific Experiences

Prior STEM education literature recognizes mentored research ex-
periences as a mechanism toward broadening participation. Barker
noted that students who engage in research as undergraduates are
more likely to pursue graduate degrees [5], and Estrada et al. em-
phasized that it aided students to stay in STEM [19]. Tamer and
Stout conducted an analysis with women and men from under-
represented groups and arrived at four factors impacting study
participants’ intention to pursue academic professorial careers [48].
These included research project collaboration, learning about the
graduate student experience and how to apply to graduate school,
and gaining insight into how computer science research careers
can impact society. Additionally, Tamer and Stout [48] observed
that “[b]y promoting interest in the professorate among URMW
[defined as “underrepresented men as well as women”] undergradu-
ate students, REUs [research experiences for undergraduates] have
the capacity to diversify the types of role models that future gen-
erations of women, and men from racial minority groups interact
with and aspire to become” (p. 118).

Still, there is much room for improvement and growth of such
formative training opportunities, and especially for new empirical
study of outcomes from computer science undergraduate research
training. Indeed, just two decades ago Johann and Turbak pointed
out that computer science lacks the strong tradition of undergradu-
ate research which exists in other science disciplines or in engineer-
ing fields [28]. Kim et al. observed that while most of their surveyed
undergraduate research programs specifically targeted women, and
also mostly successfully recruited a majority of women participants,
the men in these programs still felt more confident in their abilities
and accomplishments for moving forward in STEM disciplines post-
program despite similar performance of the women students [30].

Journal of Computational Science Education Volume 13, Issue 1

April 2022 ISSN 2153-4136 3



Results produced by Estrada at al. suggested that identifying as
a scientist was highly important for downstream making STEM
one’s career, as opposed to other professions [19]. They noted that
“higher education institutions that provide authentic experiences of
belonging and inclusion, which are components of science identity,
may be more likely to increase their URM [defined as “historically
underrepresented minorities”] retention rates” (p. 11).

Follmer et al. noted that, compared to undergraduate research
experiences organized by institutions, nationally-spanning pro-
grams were more diverse and also able to accommodate individuals
without opportunities to engage in research experiences at their
respective institutions [20]. The US National Science Foundation
offers a program that enables Research Experiences for Undergrad-
uates Sites (cohort-based seasonal programs), recognizing these
programs as “an important means for extending high-quality re-
search environments and mentoring to diverse groups of students”
and it also aims to reach students “from academic institutions where
research programs in STEM are limited” [38]. In general, for inclu-
sivementoring a diverse mentoring team is important. This includes
the involvement of female role models as noted by Doerschuk [16].
Shamir noted the importance of “a broad range of interdisciplinary
research topics that can engage and motivate students” (p. 15) [44].
Interdisciplinary projects can help peak computer science under-
graduate students’ interests. In particular, the program discussed
focused on computational sensing research projects linked to moti-
vating applications in impactful societal domains such as education,
wellness, smart living, and leisure.

1.3 Science Skills and Identity Development in
Mentored Experiences

The notion of “cognitive apprenticeships” discussed by Griese et
al. [22] and earlier by Collins et al. [13] provided a theoretical lens
in this study for examining growth of science skills and science iden-
tity in mentored research experiences in computing, and aspirations
for pursuing scientific careers. Marra and Pangborn emphasized
the value of apprenticeship for engineering skills [34], and Charney
et al. reported on how elements of cognitive apprenticeship were
adapted in high school-level research-infused experiences involving
science, resulting in knowledge gains [10]. The present study con-
nected mentoring to apprenticeship/coaching experiences in com-
puter science research. Childress et al. highlighted the distinction
between supervising and mentoring–while providing supervision
and support for daily scientific activities is important, mentoring
extends beyond supervision into supporting students to enter into
and become familiar with the research community and envision
themselves as a researcher, which may nurture interests to choose a
research career path [11]. Additionally, the Social Cognitive Career
Theory (SCCT), introduced by Lent et al. [32], relates to Bandura’s
self-efficacy concept [4] (in the context of the present study: confi-
dence in one’s competency to pursue a research career path). It can
provide a basis for examining student attitudes about educational
career choices as computer scientists as exemplified by Alshahrani
et al.’s work [1]. Thiry et al., discussing socio-cultural theoreti-
cal perspectives, further remarked that development is influenced
by participating in a community where activities are experienced
and reflected upon directly [49]. Highlighting the benefits of team

science, Johann and Turbak argued that structuring computer sci-
ence undergraduate research as a collaboration endeavor nurtured
students persevering in research activities beyond a time-limited
program [28]. Holcomb et al. also observed a need for exposing
students to collaboration in a brief programming-focused summer
school [26]. Similarly, Sturner et al. noted the value of nurturing
teamwork competency in research [47]. These theoretical foci and
observations framed the present study.

1.4 Evaluating Science Skills and Science
Identity

Shanahan et al. [45] observed that much prior work had been based
on self-reporting, covering either perceptions of students, whose
ratings of own skills may not correspond well to actual research
training achievements, which have been shown to be better de-
termined by faculty, as discussed by Griese et al. [22], or faculty
perceptions of undergraduate mentoring. For example, Baker et
al. explored faculty perceptions of enabling or limiting factors for
undergraduate research mentoring based on focus group data [3].
Thiry et al. [49] noted that self-reporting might be particularly ben-
eficial for understanding advancement in “confidence or interest
in a subject” (p. 382), yet it is not the only way to measure edu-
cational gains. Instead, as discussed by Linn et al., evaluation of
experiential research training will benefit from a comprehensive,
holistic approach that relies on multiple, complimentary forms of
evidence [33]. In addition, Griese et al. emphasized the importance
of considering both roles—mentor and protégé—when studying
mentoring in academic contexts [22].

The design and use of a holistic evaluation framework is one
of the differentiators that sets the present work apart from prior
studies on programs for undergraduate research training, in com-
bination with its assessment of development of scientific skills,
identity, and the exploration of seeing oneself as becoming part of
a community of research practice in computer science. In contrast,
for example Miller et al. focused on student self-report data [36]. We
also go beyond the evaluation by Jelen et al. which included student
self-report measurements (surveys, interviews), briefly summarized
answers to a mentor survey that highlighted time commitments
(time spent on mentoring undergraduates, coaching graduate men-
tors, and perception on usefulness of time investment), and indi-
vidual “stakeholder insights” (p. 993) narratives [27]. Moreover,
this work differs through its examination of an end-to-end early
research experience intervention with integrated professional de-
velopment activities. Considering five forms of evidence, this study
assessed the development of research identities, skills, and aspi-
rations for future participation in the computer science research
community.

2 MATERIALS AND METHODS
Our mentored undergraduate research intervention and evaluation
framework were deployed as part of a US National Science Foun-
dation Research Experiences for Undergraduates summer research
program at Rochester Institute of Technology. The intellectual re-
search theme was focused on computational sensing of humans
and the program recruited ten undergraduate students annually
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from across the United States for a 10-week summer research ex-
perience. In addition to engaging in team-based research projects,
participating students were also exposed to a suite of programmatic
activities designed to grow scientific and career skills and stimulate
their view of scientific careers as viable options.

2.1 Participants
Across three cohort years, there were 30 students in total from
diverse demographic backgrounds, outlined in Figure 1. In addition,
students came from 26 distinct institutions, with most character-
ized by limited opportunities for computer science research. While
attempts were made to engage students from across the USA, more
came from the US Northeast given its concentration of universities
and colleges. The students participated in 15 team-based computer
science research projects, with gender-balanced pairs of students
being mentored per project. Of 15 faculty mentors who guided
the research experiences, 40% participated all three years and one
third in one year. A third of faculty were women. The mentors
represented varying ethnic and national backgrounds.

2.2 Early Research Experience Intervention
For ten summer weeks, students experienced engaging in scien-
tific practices. The research projects centered on sensing and ana-
lyzing human behaviors and cognitive processes using computer
science. Additionally, a preparatory pre phase (e.g., completion
of human subjects research certification and an introductory pro-
gramming course) and a dissemination-focused post phase (with
remote meetings with mentors) extended the 10-week experience.
The approximate annual timetable of the early research experience

in which students participated is in Figure 2. Prior work on under-
graduate research training has also highlighted the importance of
thoughtful, year-long logistical pre-program planning [55]. Our in-
tellectual theme focused on basic research in the acquisition, fusion,
and analysis of multimodal human sensing data. The ten weeks
had a two-fold structure: (1) students conducted a team science
research project with mentors and (2) they also participated in pro-
fessional development activities as a cohort (see overview in the
Appendix and Figure 3) centered on research and graduate school
competencies and knowledge.

Research projects were structured as scaffolded team-science
experiences spanning experimental design, data acquisition, analy-
sis and inference with collected data including data visualization,
and dissemination with deliverable milestones. Projects provided
experience with human subjects experiments including collection
and analysis of multimodal human-elicited data, and students par-
ticipated in the Institutional Review Board (IRB) ethics review appli-
cation process. The team science structure adopted in the training
program involved regular student-student and student-faculty in-
teractions.

Johann and Turbak highlighted the challenge of conducting a
research project in a short time span such as just ten weeks [28]. To
mitigate this issue, the pre-program phase engaged students with
preparatory research activities — online human-subjects training
and an online computer programming course. Faculty mentor teams
also assigned project-relevant pre-readings to bring students up
to speed on key relevant research before the program started. The
pre-program activities required a reasonable time commitment,
recognizing that students were also concluding their regular se-
mester activities. The time-progression of the ten-week in-program

Figure 1: Student demographics. Other participants refer to additional undergraduates who participated in mentoring, re-
search, and program activities but not in the evaluation. Comparison averages (*) are aggregates for nationwide undergraduate
research training programs from Raicu et al. [41]. Green and bold: Met/exceeded the average 3-year targets set by the program
organizers.
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Figure 2: Timetable of annual program logistics. The upper half conveys the student perspective and the lower half organiza-
tional logistics. Program details (green interval) are expanded in Figure 4 for the 10-week program.

Figure 3: Professional development activities. A: Workshops with active learning-by-doing. B: Panel discussing grant writing
for graduate schoolwith students. C: Public STEMoutreach event. D: Coordinated interdisciplinary symposiumabout graduate
school and research. E: Post-program video follow-up. Faces have been blurred for anonymity.

experience is depicted in Figure 4. The leftmost column outlines
progression in the research process. A post-program phase contin-
ued team interaction for external dissemination as well as cohort
follow-up with video gatherings and support in the graduate school
application process. Students were also encouraged to seek out
new research experiences either at their home institutions after
the program ended or at other universities. This was motivated
by a finding by Estrada et al. [19] using a statistical model that
two semesters in undergraduate research “uniquely predict overall
science self-efficacy, identity, and values” (p. 10).

Based on a review of numerous publications, Walkington et al.
converged on ten beneficial strategies when mentoring undergrad-
uate researchers [52]. Almost all were operationalized structurally
in the intervention. For example, we planned ahead for the research
process in the pre-program phase; made expectations clear for antic-
ipated outcomes during orientation; provided a challenging as well
as emotionally supporting environment; promoted team-building

with field trips and joint meals; encouraged gradually increased
research independence; enabled networking opportunities in coor-
dinated events and formally discussed disciplinary practices in a
journal club and non-credit course; and provided support in schol-
arly dissemination post-program.

2.3 Multicomponent Evaluation
Inspired by the STEM and computer science mentoring and early
research training literature, the evaluation framework integrated
both subjective self-reported and objective program-level measures.
We considered five forms of evidence (E1–E5) described below.
Participating students and mentors consented to completing assess-
ments, and this work was IRB-approved. We focus on measures of
proportions and central tendency as well as qualitative responses;
Linn et al. noted that experiential reflection was beneficial in un-
dergraduate research experiences [33].
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Figure 4: Timeline of the 10-week program, with sequenced steps of the research process. After the initial year, professional
development activities were front-loaded to prioritize focus on research later in the program.

2.4 E1: Faculty-assessed Student Skills
(Repeated In-program Measures)

Students were individually assessed in three formal mentor reports
with 33 assessed skills using five-point Likert scale ratings (strongly
disagree to strongly agree) spread out across the summer, admin-
istered approximately every three weeks. Skills assessed, in part
adapted from a program at Willamette University [54], are listed in
Table 2. For example, mentors assessed the student’s ability to find,
filter, and apply technical scientific information to their project,
initiative-taking and time management skills, capability of formu-
lating research questions, ability to deploy sound methodological
practices, problem solving and creative skills, ability to link theory
with empirical work, presentation and technical writing skills, etc.
Additional assessed skills focused on the discipline such as com-
puter software and hardware, software development and computer
programming, etc. There were not multiple raters, and for this
reason inter-rater reliability measurements are not reported. The
analysis focused on whether individual skills, and how many skills
in total, were assessed as increasing over the course of the program.
(We do not compare the means since in this case, the Likert scales
elicit subjective ratings and raters may adopt different calibration
strategies.)

2.5 E2: Student Self-assessed Skills and Benefits
(Pre and Post Measures)

A program-independent evaluator elicited student self-assessment
data in pre and post surveys. As shown in Figure 2, the pre survey

occurred right before the start of the program and the post survey
in the 10th week of the program. Students assessed their level pre
and post (How would you rank your skill level in the following areas?)
for theoretical or applied scientific skills (research ethics, under-
standing and critiquing research literature, formulating research
questions) and disciplinary-specific skills (programming and sys-
tem development, human subjects research) on an ordinal 5-point
scale. The analysis computed gains in the proportion of students
that assessed themselves as being high-skilled, i.e., asMaster, Expert
or Proficient vs. low-skilled, i.e., Familiar or Beginner, given the
difference between pre to post self-assessment. In addition, in the
post survey, students self-assessed benefits of the early scientific
research experience to their development of skills (Please indicate to
what extent the program benefited you for each) on a 4-point ordinal
scale (from not at all to a great extent). We computed the proportion
of students reporting benefits (somewhat or a great extent ratings),
leaving out those who did not (not at all or very little ratings). These
benefits assessed involved scientific skills (such as learning ethical
conduct in research, ability to analyze data and interpret results, tol-
erance for obstacles faced in research), scientific identity (increased
academic self-confidence, understanding how researchers think
and work on problems), and research career aspirations (readiness
for more demanding research, increased confidence in potential
for academic career). Lastly, two summative metrics focused on
career plans—intent to pursue graduate school in a STEM field or a
non-STEM field.
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Table 2: Skills mentors assessed three times at approximately three-week intervals (n = 10; 30 annually). Items began with
The student... except for S20, S22, S23, and S26. The right-most columns indicate items for which average ratings increased
across all three assessment opportunities; this applied more to Y2 and Y3. Missing ratings could occur for lack of assessment
evidence; these were excluded.

ID Skill assessed Y1 Y2 Y3
S1 is a capable programmer/software developer. ✓ ✓
S2 is capable of finding relevant research resources (software, datasets, literature, etc.) ✓ ✓
S3 is capable of adapting to unfamiliar software. ✓ ✓
S4 is capable of adapting to unfamiliar equipment/hardware. ✓ ✓
S5 takes initiative in research tasks beyond what is assigned. ✓
S6 demonstrates eagerness to learn about forms of data she/he has not worked with before. ✓
S7 understands technical/scientific literature. ✓ ✓
S8 applies insights from research literature to their project. ✓ ✓
S9 applies critical thinking in the research process. ✓
S10 demonstrates capability in formulating research questions answerable with data. ✓ ✓
S11 demonstrates understanding of sound methodological procedures when setting up experimental work. ✓ ✓ ✓
S12 demonstrates knowledge or understanding of data analysis procedures. ✓ ✓
S13 contributes own creative ideas to the project. ✓ ✓
S14 can identify and articulate limitations in research design. ✓ ✓
S15 is adept at problem-solving. ✓ ✓
S16 is capable of linking theory with empirical work. ✓
S17 prepares effective scholarly presentation materials. ✓ ✓
S18 demonstrates adequate scholarly presentation skills. ✓ ✓
S19 demonstrates adequate scholarly writing skills. ✓
S20 I can count on the student to meet scheduled commitments. ✓ ✓
S21 gives advance notice if unable to keep scheduled tasks or appointments. ✓ ✓
S22 Overall, the student has good time management skills. ✓
S23 Overall, the student is very dependable. ✓ ✓
S24 shows genuine interest in the research project and process. ✓
S25 takes ownership of the project. ✓ ✓
S26 When the student ‘gets stuck’, she/he seeks paths forward by own initiative. ✓ ✓
S27 conducts her/himself in a professional manner in face-to-face interactions. ✓
S28 conducts her/himself in a professional manner in email correspondence. ✓
S29 is capable of discussing scholarly concepts with team members. ✓
S30 is respectful to different points of view. ✓ ✓
S31 has the ability to make independent progress between mentor/team meetings.
S32 contributes to a motivating research team experience. ✓
S33 demonstrates thoughtfulness in making own decisions or seeking support for evolving directions of the project. ✓

Total number of questions for which average ratings increased across mentor assessments 6 28 19

2.6 E3: Faculty-assessed Student Outcomes and
Benefits (Post Measure)

Faculty mentors individually completed a survey released immedi-
ately after the program ended. Faculty assessed student outcomes
(my students were able to make progress on working independently;
my students were able to work on the project we identified for her/him
in the way we envisioned), as well as benefits for students of the
early research experience in terms of scientific identity (program
helped students become better researchers; program gave my students
a realistic understanding of life as a researcher) or career aspirations
(program will help my students be more successful in graduate study;
program helped my students develop career paths). We computed
the proportion of faculty that strongly agreed with corresponding
statements.

2.7 E4: Student-led Disseminated Products
(Post Measure)

As a loosely relevant objective measure, we tracked research dis-
semination outcomes: number of accepted refereed team publica-
tions at professional venues, number of students as lead author
of publications, and number of student presentations about the
research. While not directly reflecting perceptions of belonging, re-
search products can be viewed as an objective validator and as overt
recognition of belonging to the research community of practice.
Presenting research on behalf of their teams can provide students
with opportunities to network toward graduate school and research
careers; such formative networking was identified as important by
Shanahan et al. [45].
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2.8 E5: Alumni-assessed Career Aspirations
and Progression (Extended Post Measure)

We conducted an alumni survey which gathered facts and anec-
dotes of post-program activities in both structured and unstructured
answer formats. Program alumni (former students) were invited
back to complete the survey anonymously. This resulted in 39 indi-
vidual responses over the three years such that 2016 participants
(43.5% of total 39 responses) had three opportunities to complete
the alumni survey, 2017 (43.5% of responses) had two opportunities,
and 2018 (13% of responses) had one opportunity. Alumni provided
information on career progression and engagement in scholarship
dissemination. The survey was administered at a point after which
graduate school applications would have been submitted and ap-
plication decisions received. We computed the percent of total
responses. Qualitative data from alumni’s open-ended comments
was also considered.

3 RESULTS
We used the multicomponent framework introduced in the prior
section to report on results of the training intervention per three
hypotheses about the development of scientific skills, scientific
identity, and aspirations for research career. Given the sample size,
we focused on descriptive measures and trends as well as qualitative
discussion of open-ended answers.

3.1 E1 Results
The right-most three columns of Table 2 indicate per year the
skills for which average ratings continuously improved over three
assessments. Skills not indicatedwere assessed on average as having
a flat or decreasing rating for at least one of the three assessments.

The research methodology skill (S11) had a continuous increase
in all years, highlighting that the intervention supported its stead-
fast development. Several disciplinary and broader scientific skills
also showed a continuous increase in ratings in two of the three
years: S1 (computer programming), S2 (resourcefulness), S3 (new
software), S4 (new hardware), S7 (technical/scientific literature), S8
(research literature), S10 (formulating research questions), S12 (data
analysis), S13 (creative ideas), S14 (research design limitations), S15
(problem-solving), S17 (presentations preparation), S18 (present-
ing), S20 (accountability), S21 (notifying), S23 (dependability), S25
(taking ownership), S26 (initiative-taking), and S30 (respectfulness).
The last two cohort years indicated a more pronounced improve-
ment trend, applicable to 19 or 28 of the assessed skills.

In contrast, skills related to communication (S27–S29) or to other
scholarly skills (S5 — initiative taking; S6 — eagerness to explore
unknowns; S9 — application of critical thinking; S16 — ability to
connect theory and empiricism; S19 — scholarly writing; S22 — time

management; S24 — genuine interest; S31 — independence; S32—
motivating a research team; S33 — thoughtful decision-making) did
not show as consistent improvement.

3.2 E2 Results
As seen in Figure 5, pre and post comparison of student self-assessed
scientific skills showed gain for, especially: formulating research
questions, developing a research plan, data collection and human
subjects considerations, data processing, understanding and critiquing
research literature, research ethics, and preparing spoken and written
research dissemination. In contrast, two skills were self-assessed
as declining in one year: grant writing in Y3 and programming
and application/system development in Y1. In addition, Figure 6
reveals that students, when completing the post survey, perceived
that their abilities generally increased, and especially in Y3. For
instance, in Y3, 100% felt that they improved their ability to critique
research literature, ability to analyze data and interpret results, skills
to effectively disseminate findings, knowledge of tools and techniques
in the field, and their tolerance for obstacles in the research process
either somewhat or to a great extent. In terms of development of
scientific identity, a majority of students reported gains in increased
academic self-confidence and understanding how researchers think
and work on problems. In addition, there were gains for increased
confidence in potential for academic career and readiness for more
demanding research, relating to research career aspirations and
career progression. Additionally, results for summative metrics
about career intent are in Table 3. Most participating students
intended to pursue graduate study and the majority in STEM fields.

3.3 E3 Results
Figure 7 shows that faculty felt the intervention contributed to
student development, although with a lower proportion of strongly
agree in one year. Faculty also identified benefits for students in
terms of developing scientific identity and positive career aspi-
rations toward the scientific profession. For career aspirations,
responses affirmed stronger benefit for preparation for graduate
school than for careers in research generally. On average, faculty
above all indicated they strongly agreed that the program will make
students more successful in graduate study (i.e., research career aspi-
rations and progression), and that the experience helped students
become better researchers (i.e., scientific identity). The lowest aver-
age proportion of strongly agreed among faculty respondents was
for gave my students a realistic understanding of life as a researcher
(scientific identity) and helped my students develop career paths
(research career aspirations and progression).

Table 3: Students’ self-reported intent to pursue graduate school (n = 10 annually; 30 total).

Evidence from student evaluation Y1 Y2 Y3 Mean
1. Intend to pursue grad school in STEM 50% 80% 70% 67%
2. Intend to pursue grad school in non-STEM 30% 10% 10% 17%
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Figure 5: For all three years, students’ self-assessment of
their skills show cohort gains in most skills in pre and post
program comparison. Gain was computed as the difference
between the post and pre upper-end skill ratings. (Propor-
tion of n = 10 annually; 30 total; Y2 and Y3 had 9 post re-
sponses.)

Figure 6: For all three years responses from the student post-
program survey shows that the majority of student cohorts
perceived gains in skills somewhat to a great extent in many
areas. (Proportion of n = 10 annually; 30 total).
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Figure 7: Many faculty strongly agreed with statements
about student benefits across the three years; others gener-
ally agreed. (Proportion of n = 10 in Y1 vs. n = 8 in Y2 to Y3.)

Figure 8: Percent program alumni responses self-reporting
career and activities choices for three years (n = 39 total re-
sponses). 1+ = one or many.
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3.4 E4 Results
The research projects placed computational sensing in the center
of a research experience, translating into refereed dissemination
of research discoveries, including eleven refereed technical team
publications with students as lead authors [8, 17, 21, 23, 31, 35, 40,
42, 43, 50, 53], and two other student-led technical publications [6,
15]. There were additionally 30 pre-publication student-presented
talks or posters at a local undergraduate research event, as well as
annual pre-publication posters at a national undergraduate research
symposium.

3.5 E5 Results
Aggregated results of alumni surveys over the three years are in
Figure 8. Students continued to engage in research after returning to
their home institution. In addition, of the responses, almost a fifth
reported they presented research at a STEM conference and/or pub-
lished a conference proceedings paper. Over one fifth of the responses
also indicated that respondents were attending graduate school in
STEM disciplines, and/or that respondents applied or intended to
apply to graduate school in a STEM discipline. Graduate program
aspirations included computer science, human-computer interac-
tion or human factors, robotics, computational physics, psychology,
game design and development, mathematics, computer engineering
or other engineering disciplines.

Additional open-ended comments about recent activities or ca-
reer plans indicated impact of the research experience for future
career visions in computer science and STEM disciplines:

[This] program was mentioned in all of my formal and
informal interviews for grad school, so I give it a lot of
credit for helping me achieve my educational goals.

If it weren’t for [this program] and my mentors, I may
never have considered applying to get my MS, and my
short term career prospects may have been very differ-
ent.

I was accepted to 2 PhD programs and took a position
in [program] at [university]. I started in August, and
my research focuses primarily on perception-action and
robotics with funding from [organization], technology
use and design for people with Autism Spectrum Dis-
orders, and cybersecurity. I’ve completed one semester,
going on two, with research submitted for publication
with multiple Human Factors-related conferences and
journals.

I intend to earn a PhD in Computer Science and then see
where that takes me. I might try to become a professor
some day.

I attended [conference], the yearly conference of the [or-
ganization], where I attended various career building
sessions and got an internship offer from [organization].

In addition, I travelled to IEEE [conference] with my re-
search partner to present our research from our summer
[program]. Outside of STEM pursuits, I have resumed a
job writing for my school’s newspaper ...

Obtain a PhD in Computer or Mechanical Engineering.

I am fairly set on pursuing a PhD after finishing un-
dergrad, although I’m not sure if I want to ultimately
go into industry or academia. I am interested in AI
for robotics or medical applications and computational
physics, and I will probably end up pursuing my PhD
research in one of those areas.

... I attended the Grace Hopper [women in computing]
conference on a full scholarship, presented research at
the [...] Symposium, and completed my computer sci-
ence degree. Currently I am in a fully-funded machine
learning bootcamp program organized by [organiza-
tion].

4 DISCUSSION
We reported on the impact of an early research experience for di-
verse cohorts of undergraduates in computing for growing scientific
skills, increasing science identities, and fostering career aspirations.
Figure 9 integrates results from all forms of evidence in our evalua-
tion framework. They indicated the benefits of the intervention.

For hypothesis (a), evidence from faculty assessments of students
and student self-assessments (E1, E2) indicated that the interven-
tion resulted in gains in scientific skills. That communication and
abstract skills were not reported to consistently improve may re-
flect that extended practice is required to develop them. Moreover,
the difference in Table 2 from Y1 compared to Y2–Y3 in the num-
ber of consistently improving skills may reflect adjustments made
in response to student/faculty feedback in the training schedule,
including in front-loading the schedule of professional develop-
ment activities in the experience which appeared to have better
supported skills development.

For hypothesis (b), evidence from students and faculty (E2, E3)
indicated that the early scientific experience contributed to scien-
tific identity development. Additionally, the dissemination data (E4)
arguably represented a tangible recognition of belonging to the
scientific community. That faculty rated students’ development of
a realistic understanding of research lower may relate to the com-
pressed timeframe of the intervention and that a 10-week research
project is not reflective of the typical duration of graduate research
projects.

As regards hypothesis (c), evidence from faculty (E3) suggested
that the intervention nurtured scientific career progression, espe-
cially in terms of preparing students for graduate school, the next
step in their careers. Considering the SCCT theoretical framework
[32], the majority of students indicated an intent to pursue grad-
uate school in STEM (E2) and also a confidence boost about their
capacity for an academic career. These were indicators that the
program promoted scientific career aspirations, as were alumni
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Figure 9: Overview of evaluation framework components and key findings. A comprehensive multicomponent evaluation
framework is adopted to avoid pitfalls associated with self-reporting alone.

responses about planned applications or confirmed acceptances to
graduate school. Additional post-contact with alumni completes
the picture for hypothesis (c). Approximately a third have already
continued on to PhD programs in STEM, and additional students
to Master’s programs. Alumni have, in particular, placed into grad-
uate programs in computer science or closely related fields, such
as degree programs with an interdisciplinary computing focus.

In addition, regarding the need for increasing diversity in com-
puting and in other STEM fields, comments from students in the
diverse cohorts acknowledged the importance of diversity and in-
clusion in the practice of research:

Diversity is vital, particularly when the research in-
volves human subjects, because human populations are
diverse. The researchers should reflect their work. Ad-
ditionally, diversity allows for unique experiences and
thus ideas and viewpoints.

Diversity can help prevent implicit biases that may be
held by a particular group without them even realizing
it.

[H]aving a range of perspectives overseeing a project is
essential for the best possible outcome.

[Diversity is] very important. It’s always nice to see
someone who looks like you or have a similar upbring-
ing in the same field of study, especially computer sci-
ence. Diversity is also important because it allows for
different perspectives to be brought to a project or re-
search assignment.

I feel that having a variety of experiences and back-
grounds always helps any project, whether in research
or otherwise. To this extent, diversity is extremely im-
portant as it creates the opportunity for a wealth of
ideas and viewpoints to be expressed. Additionally, I
believe that people do their best work when they are
in an environment they feel welcome in, and having
diverse mentors and peers supports this.

Revisiting the cognitive apprenticeship framework discussed ear-
lier, these comments further emphasize the link between effective
apprenticeship and coaching with inclusive mentoring environ-
ments, and they highlight the importance of collaborative diversity
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in research teams. That students recognize the discipline’s chal-
lenges and its present limitations in diversity, equity, and inclusion
can also be regarded as an indicator of their growing connection
and self-identification with the field.

5 CONCLUSION
We reported on and discussed an intervention that provided diverse
student cohorts with a computer science-focused early scientific
experience. Integrating multiple sources of evidence supported that
the intervention helped develop scientific skills and identity, in
addition to nurturing research career aspirations and progression.
Several participants have already continued on to PhD programs in
computer science or STEM. Targeted recruitment outside of the US
Northeast may improve geographic diversity of participants. The
introduced intervention—see overviews in Figures 2, 3, and 4, and
the Appendix—is applicable in other disciplines and institutional
settings. Resource needs would primarily include cost and time
involved. For example, in the reported study, students received
internship stipends, subsistence, and travel support; and the orga-
nizers and faculty of the training intervention invested their time
before, during, and after the 10-week experience. In future work,
we are interested in studying potential long-term implications for
undergraduate researchers who publish the results of their research
and subsequently pursue a research profession, including topics
such as downstream research career productivity and thementoring
practices they adopt as research professionals.
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A APPENDIX: OVERVIEW OF PROFESSIONAL
DEVELOPMENT PROGRAMMING
• Workshops: Students attendedworkshops on research-relevant
topics such as human subject research, statistics, data visual-
ization and research storytelling. (Figure 3: A).
• Toward Graduate Studies: Students developed understanding
about graduate school or initial grant writing skills for grad-
uate school, a new topic to most participants. We focused on
a national program for graduate fellows and students also
met a panel of prior recipients (Figure 3: B).
• Public STEM Outreach: Students presented a hands-on ex-
hibit of various sensing technologies at a local public library,
interacting with library patrons of all ages (Figure 3: C).
• Coordinated Interdisciplinary Events: The organizers coordi-
nated interdisciplinary joint activities with nearby programs
that were both social and academic in nature, including a
graduate study and research symposium featuring sessions
with research talks by doctoral candidates for insight into
PhD-level STEM research, and panels about graduate school
(Figure 3: D).
• Journal Club: Students discussed papers within the scope of
the program’s intellectual theme. Written and oral reflection
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exercises coached critical scholarly reading and technical
writing.
• Industry Research Lab Visit: Students visited an industrial re-
search lab as part of having them consider a range of research
career paths. At this visit, students interacted with profes-
sionals and received feedback on their project-in-progress.
• Observing a PhDDefense: Students were encouraged to attend
a PhD dissertation defense.
• Teaching-to-Mentoring Bridge: In talks, mentors shared about
their research journey and discussed topics of expertise of

relevance to the program’s intellectual focus such as: Facial
expressions in VR and affective computing, Visual perception
and what we learn from eye tracking, Linguistic sensing and
computers making linguistic sense, and Intelligent systems that
learn deeply.
• Post-program Sessions: In video get-togethers, organizers re-
connected with the cohort and let alumni share about their
progress and activities at home institutions (Figure 3: E).

Volume 13, Issue 1 Journal of Computational Science Education

16 ISSN 2153-4136 April 2022


	Abstract
	1 Introduction
	1.1 Early Mentored Scientific Experiences in STEM
	1.2 Diverse Students' Science Identity and Early Scientific Experiences
	1.3 Science Skills and Identity Development in Mentored Experiences
	1.4 Evaluating Science Skills and Science Identity

	2 Materials and Methods
	2.1 Participants
	2.2 Early Research Experience Intervention
	2.3 Multicomponent Evaluation
	2.4 E1: Faculty-assessed Student Skills (Repeated In-program Measures)
	2.5 E2: Student Self-assessed Skills and Benefits (Pre and Post Measures)
	2.6 E3: Faculty-assessed Student Outcomes and Benefits (Post Measure)
	2.7 E4: Student-led Disseminated Products (Post Measure)
	2.8 E5: Alumni-assessed Career Aspirations and Progression (Extended Post Measure)

	3 Results
	3.1 E1 Results
	3.2 E2 Results
	3.3 E3 Results
	3.4 E4 Results
	3.5 E5 Results

	4 Discussion
	5 Conclusion
	A Appendix: Overview of Professional Development Programming
	Acknowledgments
	References



